[go: up one dir, main page]

JP2007035289A - Electrode catalyst for fuel cell, electrode composition, and fuel cell - Google Patents

Electrode catalyst for fuel cell, electrode composition, and fuel cell Download PDF

Info

Publication number
JP2007035289A
JP2007035289A JP2005212207A JP2005212207A JP2007035289A JP 2007035289 A JP2007035289 A JP 2007035289A JP 2005212207 A JP2005212207 A JP 2005212207A JP 2005212207 A JP2005212207 A JP 2005212207A JP 2007035289 A JP2007035289 A JP 2007035289A
Authority
JP
Japan
Prior art keywords
catalyst
silicon dioxide
electrode
platinum
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005212207A
Other languages
Japanese (ja)
Inventor
Atsushi Okamura
淳志 岡村
Kuninori Miyazaki
邦典 宮碕
Koichi Yamamoto
光一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2005212207A priority Critical patent/JP2007035289A/en
Priority to US11/886,538 priority patent/US20090081511A1/en
Priority to PCT/JP2006/305144 priority patent/WO2006100982A1/en
Priority to TW095108979A priority patent/TW200640064A/en
Publication of JP2007035289A publication Critical patent/JP2007035289A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode catalyst carrying platinum or the like on silicon dioxide, by which a fuel cell with high practicality can be manufactured, and an electrode composition using the electrode catalyst, and a fuel cell. <P>SOLUTION: Platinum or its alloy is made to carry silicon dioxide, having BET specific area of 100 to 500 m<SP>2</SP>/g, and oil absorbing amount of 1.6 to 3.7 mL/g, by 50 to 80 mass%. Further, one element selected from cerium, lanthanum, and tantalum may be carried. Further, platinum and its alloy, and oxide of at least one element selected from cerium, lanthanum, and tantalum can be carried on the silicon dioxide. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池用電極触媒、燃料電池用電極組成物および燃料電池に関し、詳しくは、触媒活性成分を二酸化ケイ素に担持してなる燃料電池用電極触媒、特に固体高分子型燃料電池に用いるに好適な電極触媒、この電極触媒と導電性物質とプロトン伝導性物質とを含む電極組成物、およびこの電極組成物を用いて電極を構成してなる燃料電池に関する。   The present invention relates to an electrode catalyst for a fuel cell, an electrode composition for a fuel cell, and a fuel cell. More specifically, the present invention is used for an electrode catalyst for a fuel cell in which a catalytic active component is supported on silicon dioxide, particularly a solid polymer fuel cell. The present invention relates to a suitable electrode catalyst, an electrode composition comprising the electrode catalyst, a conductive material and a proton conductive material, and a fuel cell comprising an electrode using the electrode composition.

燃料電池は、化学反応を利用して、その化学エネルギーを直接電気エネルギーに変換する発電システムである。現状の石油や天然ガスを燃焼し、その熱エネルギーを電気エネルギーに変換するシステムに比べて、発電効率が高く、NOxやSOxが排出されないため、次世代のクリーンエネルギーとして注目されている。燃料電池は、電解質の種類からリン酸型燃料電池、溶融炭酸型燃料電池、固体高分子型燃料電池、固体酸化物型燃料電池に分類することができる。そのなかでも固体高分子型燃料電池は、他の燃料電池より低い温度領域において発電させることができ、小型化が容易なことから自動車用電源、家庭用電源、携帯用電源など種々の用途に適用できる可能性がある。   A fuel cell is a power generation system that uses chemical reaction to directly convert chemical energy into electrical energy. Compared to the current system that burns oil and natural gas and converts the thermal energy into electric energy, it has high power generation efficiency and does not emit NOx or SOx. Fuel cells can be classified into phosphoric acid fuel cells, molten carbonate fuel cells, polymer electrolyte fuel cells, and solid oxide fuel cells according to the type of electrolyte. Among them, the polymer electrolyte fuel cell can generate power in a lower temperature range than other fuel cells, and is easy to downsize, so it can be applied to various applications such as automobile power supplies, household power supplies, and portable power supplies. There is a possibility.

固体高分子型燃料電池では、プロトン伝導性を示す固体高分子型電解質膜(例えば、米国デュポン社製のナフィオン膜)の両側に触媒とプロトン伝導性高分子電解質とを含んだ触媒層とその外面に通気性および導電性を併せ持つガス拡散層(例えば、ポリテトラフルオロエチレン(PTFE)などで撥水処理を行ったカーボンペーパーやカーボンクロス等)が設けられている。触媒層とガス拡散層とを合わせて電極と呼び、固体高分子電解質膜の両側に燃料極および空気極を設けた電極−固体高分子型電解質膜を基本単位とする。燃料極に水素やメタノールなどの燃料を、空気極に酸素や空気を供給し、燃料またはガスと固体高分子電解質膜と電極の3相界面において反応を進行させることにより電気を取り出すことができる。   In a polymer electrolyte fuel cell, a catalyst layer containing a catalyst and a proton conductive polymer electrolyte on both sides of a solid polymer electrolyte membrane exhibiting proton conductivity (for example, Nafion membrane manufactured by DuPont, USA) and its outer surface A gas diffusion layer having both air permeability and conductivity (for example, carbon paper or carbon cloth subjected to water repellent treatment with polytetrafluoroethylene (PTFE) or the like) is provided. The catalyst layer and the gas diffusion layer are collectively referred to as an electrode, and the basic unit is an electrode-solid polymer electrolyte membrane in which a fuel electrode and an air electrode are provided on both sides of the solid polymer electrolyte membrane. Electricity can be taken out by supplying a fuel such as hydrogen or methanol to the fuel electrode and supplying oxygen or air to the air electrode and allowing the reaction to proceed at the three-phase interface of the fuel or gas, the solid polymer electrolyte membrane, and the electrode.

燃料極および空気極に使用される電極触媒としては、導電性担体としてのカーボンブラックに白金などの貴金属を担持したものが主流となっている。しかし、一般の方法によりカーボンブラックに貴金属を担持した電極触媒を用いて得られる燃料電池は、電池特性にばらつきがあって、その実用化にはなお問題が残されている。そこで、このような問題を解決することを目的として、二酸化ケイ素(SiO)を主成分とする担体に白金またはその合金を担持して電極触媒とし、これを導電性物質とプロトン伝導性物質とを組み合わせて電極とすることが提案されている(特許文献1)。 As the electrode catalyst used for the fuel electrode and the air electrode, the one in which a noble metal such as platinum is supported on carbon black as a conductive carrier has become the mainstream. However, fuel cells obtained using an electrode catalyst in which a noble metal is supported on carbon black by a general method have variations in cell characteristics, and problems still remain in practical use. Therefore, for the purpose of solving such problems, platinum or an alloy thereof is supported on a carrier mainly composed of silicon dioxide (SiO 2 ) to form an electrode catalyst, which is composed of a conductive substance, a proton conductive substance, It has been proposed to form an electrode by combining (Patent Document 1).

特開2002−246033号公報Japanese Patent Laid-Open No. 2002-246033

本発明の目的は、二酸化ケイ素に白金などの触媒活性成分を担持してなる電極触媒であって、より実用性の高い燃料電池を製造可能な、燃料電池用、特に固体高分子型燃料電池用の電極触媒、さらにはこの電極触媒を用いてなる燃料電池用電極組成物および燃料電池を提供することにある。   An object of the present invention is an electrode catalyst in which a catalytic active component such as platinum is supported on silicon dioxide, and can be used to produce a more practical fuel cell, particularly for a fuel cell, particularly for a polymer electrolyte fuel cell It is another object of the present invention to provide an electrode composition for a fuel cell and a fuel cell using the electrode catalyst.

本発明者らの研究によれば、二酸化ケイ素のなかでもBET比表面積および吸油量が特定範囲にあるものを担体として用い、これに触媒活性成分としての白金またはその合金を特定量担持すると上記目的が達成できることがわかった。また、触媒活性成分として、白金またはその合金と、セリウム、ランタンおよびタンタルから選ばれる少なくとも1種の元素の酸化物とを二酸化ケイ素に担持することによっても上記目的が達成できることがわかった。本発明は、これらの知見に基づいて完成されたものであり、次のとおりのものである。
(1)白金またはその合金をBET比表面積100〜500m/g、吸油量1.6〜3.7mL/gの二酸化ケイ素に50〜80質量%の割合で担持してなることを特徴とする燃料電池用電極触媒。
(2)さらにセリウム、ランタンおよびタンタルから選ばれる少なくとも1種の元素の酸化物を担持してなる上記(1)の燃料電池用電極触媒。
(3)白金またはその合金と、セリウム、ランタンおよびタンタルから選ばれる少なくとも1種の元素の酸化物とを二酸化ケイ素に担持してなることを特徴とする燃料電池用電極触媒。
(4)上記(1)、(2)または(3)の燃料電池用電極触媒と導電性物質とプロトン伝導性物質とを含有する燃料電池用電極組成物。
(5)上記(1)、(2)または(3)の燃料電池用電極触媒を用いて得られる燃料電池。
According to the researches of the present inventors, when silicon dioxide having a BET specific surface area and an oil absorption amount in a specific range is used as a support, and a specific amount of platinum or an alloy thereof as a catalyst active component is supported on the carrier, the above object is achieved. It was found that can be achieved. It has also been found that the above object can also be achieved by supporting platinum or an alloy thereof and an oxide of at least one element selected from cerium, lanthanum and tantalum on silicon dioxide as catalytic active components. The present invention has been completed based on these findings, and is as follows.
(1) Platinum or an alloy thereof is supported on silicon dioxide having a BET specific surface area of 100 to 500 m 2 / g and an oil absorption of 1.6 to 3.7 mL / g at a ratio of 50 to 80% by mass. Fuel cell electrode catalyst.
(2) The fuel cell electrode catalyst according to (1), further comprising an oxide of at least one element selected from cerium, lanthanum and tantalum.
(3) A fuel cell electrode catalyst comprising platinum or an alloy thereof and an oxide of at least one element selected from cerium, lanthanum and tantalum supported on silicon dioxide.
(4) A fuel cell electrode composition comprising the fuel cell electrode catalyst according to the above (1), (2) or (3), a conductive material and a proton conductive material.
(5) A fuel cell obtained using the fuel cell electrode catalyst according to (1), (2) or (3).

二酸化ケイ素のなかでも、BET比表面積が100〜500m/g、また吸油量が1.6〜3.7mL/gという限定的な表面特性を有する二酸化ケイ素を選択し、これに白金またはその合金、もしくは白金またはその合金とセリウム、ランタンおよびタンタルから選ばれる少なくとも1種の元素の酸化物とを特定の割合で担持することにより、一段と触媒性能に優れた電極触媒を得ることができる。 Among silicon dioxides, silicon dioxide having limited surface properties such as a BET specific surface area of 100 to 500 m 2 / g and an oil absorption of 1.6 to 3.7 mL / g is selected, and platinum or an alloy thereof is selected. Alternatively, by supporting platinum or an alloy thereof and an oxide of at least one element selected from cerium, lanthanum, and tantalum at a specific ratio, an electrode catalyst having further excellent catalytic performance can be obtained.

また、二酸化ケイ素に、白金またはその合金に加えて、セリウム、ランタンおよびタンタルから選ばれる少なくとも1種の元素の酸化物を担持することにより、白金またはその合金を単独で担持したものに比べて、触媒性能に優れた電極触媒を得ることができる。   Further, in addition to platinum or an alloy thereof, in addition to platinum or an alloy thereof, by supporting an oxide of at least one element selected from cerium, lanthanum, and tantalum, compared to the one in which platinum or an alloy thereof is supported alone, An electrode catalyst having excellent catalytic performance can be obtained.

本発明の電極触媒の一つ(以下、電極触媒Aという。)は、白金またはその合金をBET比表面積100〜500m/g、吸油量1.6〜3.7mL/g、好ましくは1.8〜3.6mL/gの二酸化ケイ素に50〜80質量%の割合で担持してなるものである。ここで、「吸油量」は、JIS K5101の方法により測定したものである。また、触媒活性成分の担持割合は、電極触媒の全質量を基準とするものである。 One of the electrode catalysts of the present invention (hereinafter referred to as electrode catalyst A) is platinum or an alloy thereof having a BET specific surface area of 100 to 500 m 2 / g and an oil absorption of 1.6 to 3.7 mL / g, preferably 1. 8 to 3.6 mL / g of silicon dioxide is supported at a ratio of 50 to 80% by mass. Here, the “oil absorption amount” is measured by the method of JIS K5101. Further, the loading ratio of the catalytically active component is based on the total mass of the electrode catalyst.

BET比表面積、吸油量および担持量はそれぞれ100〜500m/g、1.6〜3.7mL/gおよび50〜80質量%という範囲内になければならず、BET比表面積および担持量がそれぞれ100〜500m/gおよび50〜80質量%という条件を満たしていても、吸油量が1.6mL/gより小さい二酸化ケイ素、あるいは吸油量が3.7mL/gより大きな二酸化ケイ素を用いては目的とする電極触媒を得ることはできない。特に、吸油量の1.6〜3.7mL/gという範囲は臨界的であり、この数値外では触媒性能が著しく低下する。 The BET specific surface area, oil absorption amount and loading amount must be in the range of 100 to 500 m 2 / g, 1.6 to 3.7 mL / g and 50 to 80% by mass, respectively. Even if the conditions of 100 to 500 m 2 / g and 50 to 80% by mass are satisfied, silicon dioxide having an oil absorption of less than 1.6 mL / g or silicon dioxide having an oil absorption of more than 3.7 mL / g should be used. The target electrode catalyst cannot be obtained. Particularly, the range of 1.6 to 3.7 mL / g of oil absorption is critical, and the catalyst performance is remarkably reduced outside this value.

上記電極触媒(A)において、触媒活性成分として、白金またはその合金に加えて、セリウム、ランタンおよびタンタルから選ばれる少なくとも1種の元素の酸化物を担持することにより、白金またはその合金を単独で担持したものに比べて、触媒性能がより優れた電極触媒を得ることができる。   In the electrode catalyst (A), in addition to platinum or an alloy thereof as a catalyst active component, platinum or an alloy thereof is singly supported by supporting an oxide of at least one element selected from cerium, lanthanum and tantalum. It is possible to obtain an electrode catalyst having more excellent catalytic performance as compared with the supported catalyst.

上記のBET比表面積100〜500m/g、吸油量1.6〜3.7mL/gの二酸化ケイ素は一般に入手可能であり、市販の二酸化ケイ素から適宜選択して使用することができる。例えば、Tokusil GU、Tokusil U、Tokusil NR(以上、株式会社トクヤマ製)、Nipgel AZ200、Nipgel BY400(以上、東ソー・シリカ(株)製)などを用いることができる。 The silicon dioxide having a BET specific surface area of 100 to 500 m 2 / g and an oil absorption of 1.6 to 3.7 mL / g is generally available, and can be appropriately selected from commercially available silicon dioxide. For example, Tokusil GU, Tokusil U, Tokusil NR (manufactured by Tokuyama Corporation), Nipgel AZ200, Nipgel BY400 (manufactured by Tosoh Silica Co., Ltd.) can be used.

二酸化ケイ素は、通常、粒子の形態で用いられるが、その平均粒子径は、10nm〜1μmの範囲にあるのが好ましい。   Silicon dioxide is usually used in the form of particles, but the average particle diameter is preferably in the range of 10 nm to 1 μm.

上記の白金合金は、燃料電池用電極触媒に一般に用いられている白金合金であればいずれでもよく、例えば、白金とルテニウム、ロジウム、イリジウム、オスミウム、パラジウムなどの1種または2種以上との合金を挙げることができる。 白金またはその合金の担持量は、50〜80質量%、好ましくは60〜80質量%であり、セリウム、ランタンおよびタンタルから選ばれる少なくとも1種の元素の酸化物の担持量は0.2〜10質量%、好ましくは0.5〜5質量%である。   The platinum alloy may be any platinum alloy that is generally used for an electrode catalyst for fuel cells. For example, an alloy of platinum and one or more of ruthenium, rhodium, iridium, osmium, palladium and the like. Can be mentioned. The supported amount of platinum or an alloy thereof is 50 to 80% by mass, preferably 60 to 80% by mass, and the supported amount of an oxide of at least one element selected from cerium, lanthanum and tantalum is 0.2 to 10%. % By mass, preferably 0.5 to 5% by mass.

本発明のもう一つの電極触媒(以下、電極触媒Bという。)は、白金またはその合金と、セリウム、ランタンおよびタンタルから選ばれる少なくとも1種の元素の酸化物とを二酸化ケイ素に担持してなるものである。   Another electrode catalyst of the present invention (hereinafter referred to as electrode catalyst B) is formed by supporting platinum or an alloy thereof and an oxide of at least one element selected from cerium, lanthanum and tantalum on silicon dioxide. Is.

上記の電極触媒Bに用いる二酸化ケイ素の表面特性には特に制限はないが、BET比表面積が10〜1000m/g、好ましくは100〜500m/gであり、吸油量が1〜5mL/g、好ましくは1.6〜3.7mL/g、より好ましくは1.8〜3.6mL/gである二酸化ケイ素が好適に用いられる。なかでも、BET比表面積100〜500m/g、吸油量が1.6〜3.7mL/gである二酸化ケイ素に、白金またはその合金を50〜80質量%、好ましくは60〜80質量%、またセリウム、ランタンおよびタンタルから選ばれる少なくとも1種の元素の酸化物を0.2〜10質量%、好ましくは0.5〜5質量%の割合で担持して得られる電極触媒が特に優れた電池特性を発揮するので好ましいものである。 There is no particular limitation on the surface properties of the silicon dioxide used for the above electrode catalyst B, BET specific surface area of 10 to 1000 m 2 / g, preferably 100 to 500 m 2 / g, an oil absorption of 1-5 mL / g , Preferably 1.6 to 3.7 mL / g, more preferably 1.8 to 3.6 mL / g of silicon dioxide. Of these, silicon or a BET specific surface area of 100 to 500 m 2 / g and an oil absorption of 1.6 to 3.7 mL / g, platinum or an alloy thereof is 50 to 80% by mass, preferably 60 to 80% by mass, A battery in which an electrode catalyst obtained by supporting an oxide of at least one element selected from cerium, lanthanum and tantalum in a proportion of 0.2 to 10% by mass, preferably 0.5 to 5% by mass is particularly excellent. This is preferable because it exhibits its characteristics.

電極触媒(A)または(B)における、触媒活性成分の二酸化ケイ素への担持方法については、例えば、触媒活性成分として白金またはその合金を用いる場合、この種の電極触媒の調製に一般に用いられている方法にしたがって調製することができる。例えば、ジニトロジアンミン白金などの白金化合物を無水エタノールなどの溶媒に溶解し、これに二酸化ケイ素を懸濁させ、十分に攪拌した後、溶媒を蒸発させ、次いで、水素含有窒素などの還元性雰囲気下、100〜800℃程度の温度で還元処理を行えばよい。また、触媒活性成分として白金またはその合金とセリウム、ランタンおよびタンタルから選ばれる少なくとも1種の元素の酸化物のうち、例えば、セリウム酸化物を担持する場合は、硝酸セリウム、酢酸セリウムなどの金属塩を純水などの溶媒に所定量溶解し、得られる金属塩含有溶液に二酸化ケイ素を添加して均一に分散させた後、溶媒を蒸発させるなどして金属塩を二酸化ケイ素に担持し、次いで、得られた粉体を空気などの酸素含有ガス中で200〜700℃で加熱処理することで金属塩を分解、酸化してセリウム酸化物を二酸化ケイ素に担持させる方法を例示することができる。このように、セリウム、ランタンおよびタンタルから選ばれる少なくとも1種の元素の酸化物を担持した後に、上記と同様にして、白金またはその合金を担持すればよい。   Regarding the method for supporting the catalytically active component on silicon dioxide in the electrode catalyst (A) or (B), for example, when platinum or an alloy thereof is used as the catalytically active component, it is generally used for the preparation of this type of electrode catalyst. Can be prepared according to the existing methods. For example, a platinum compound such as dinitrodiammine platinum is dissolved in a solvent such as anhydrous ethanol, silicon dioxide is suspended in this, and after sufficient stirring, the solvent is evaporated, and then in a reducing atmosphere such as hydrogen-containing nitrogen. The reduction treatment may be performed at a temperature of about 100 to 800 ° C. In addition, among the oxides of at least one element selected from platinum or an alloy thereof and cerium, lanthanum, and tantalum as a catalyst active component, for example, when supporting cerium oxide, a metal salt such as cerium nitrate or cerium acetate Is dissolved in a predetermined amount of a solvent such as pure water, and silicon dioxide is added and uniformly dispersed in the resulting metal salt-containing solution, and then the metal salt is supported on the silicon dioxide by evaporating the solvent, etc. An example is a method in which the obtained powder is heat-treated at 200 to 700 ° C. in an oxygen-containing gas such as air to decompose and oxidize the metal salt to support the cerium oxide on silicon dioxide. Thus, after supporting an oxide of at least one element selected from cerium, lanthanum and tantalum, platinum or an alloy thereof may be supported in the same manner as described above.

本発明の燃料電池用電極組成物は、上述した燃料電池用電極触媒(A)または(B)と導電性物質とプロトン伝導性物質とを含有するものである。本発明の電極触媒は、非導電性の二酸化ケイ素に触媒活性成分を担持したものなので、電極に導電性を付与するために導電性物質を配合することが必要である。   The fuel cell electrode composition of the present invention comprises the above-described fuel cell electrode catalyst (A) or (B), a conductive material, and a proton conductive material. Since the electrode catalyst of the present invention is a non-conductive silicon dioxide carrying a catalytically active component, it is necessary to blend a conductive material in order to impart conductivity to the electrode.

上記の導電性物質は、電極組成物、ひいてはこの電極組成物を用いて得られる電極に必要な導電性を付与し得るものであればよく、例えば、カーボン粒子、カーボンファイバー、カーボンナノチューブなどの炭素材料のほかに、金属粒子を挙げることができる。   The conductive material may be any material that can impart the necessary conductivity to the electrode composition, and thus the electrode obtained using the electrode composition. For example, carbon such as carbon particles, carbon fibers, and carbon nanotubes. In addition to the materials, mention may be made of metal particles.

上記のプロトン伝導性物質は、上記導電性物質と同様に、必要なプロトン伝導性を付与し得るものであればよく、例えば、ナフィオン(デュポン社製)、フレミオン(旭化成(株)製)、アシブレック(旭硝子(株)製)などのスルホン酸基を有するフッ素樹脂や、タングステン酸、リンタングステン酸などの無機物などを挙げることができる。   The proton conductive material may be any material as long as it can provide the necessary proton conductivity, for example, Nafion (manufactured by DuPont), Flemion (manufactured by Asahi Kasei Co., Ltd.), Ashiblek. Examples thereof include fluororesins having a sulfonic acid group such as (manufactured by Asahi Glass Co., Ltd.) and inorganic substances such as tungstic acid and phosphotungstic acid.

本発明の電極組成物における、導電性物質およびプロトン伝導性物質の割合については、電極としたときに必要な導電性とプロトン伝導性とが得られるように適宜決定すればよく、例えば、電極触媒100質量部に対し、導電性物質を50〜500質量部、またプロトン伝導性物質を10〜200質量部の割合で適宜配合すればよい。   The ratio of the conductive substance and the proton conductive substance in the electrode composition of the present invention may be appropriately determined so as to obtain the necessary conductivity and proton conductivity when used as an electrode. For example, an electrode catalyst What is necessary is just to mix | blend a conductive substance suitably with the ratio of 50-500 mass parts and a proton-conductive substance 10-200 mass parts with respect to 100 mass parts.

本発明の電極組成物および燃料電池は、電極触媒として上述の電極触媒(A)または(B)を用いる点を除けば、一般に知られた方法により調製することが可能であり、これについては、例えば、前記特許文献1を参考とすることができる。   The electrode composition and fuel cell of the present invention can be prepared by a generally known method except that the above-described electrode catalyst (A) or (B) is used as an electrode catalyst. For example, Patent Document 1 can be referred to.

本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。   The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention.

(触媒調製例1)
比表面積が119m/g、吸油量が1.6mL/gである株式会社トクヤマ製非晶質二酸化ケイ素Tokusil GUを110℃にて乾燥した後、メノウ乳鉢で粉砕し、45μm以下にメッシュを揃えた後、その0.7gを無水エタノール100mLに投入し、攪拌・縣濁させた。次いで、金属として0.692gの白金を含むジニトロジアンミン白金、また、金属として0.358gのルテニウムを含む硝酸ルテニウムを無水エタノール100mLに溶解させた後、上記二酸化ケイ素0.7gを縣濁させた無水エタノール溶液に加え、十分に攪拌した後、ロータリーエバポレータを用いて窒素気流下、60〜70℃に保持して無水エタノールを蒸発させた。その後、5%水素含有窒素を用いて300℃にて2時間還元処理を行って触媒Aを調製した。この触媒Aの組成は、白金:ルテニウム:二酸化ケイ素(Pt:Ru:SiO)=40:20:40(質量%)であった(触媒金属担持量:60質量%)。
(触媒調製例2)
株式会社トクヤマ製非晶質二酸化ケイ素TokusiL GUに代えて、比表面積が183m/g、吸油量が1.8mL/gである株式会社トクヤマ製非晶質二酸化ケイ素TokusiL Uを用いた以外は触媒調製例1と同様にして触媒Bを調製した。この触媒Bの組成は、白金:ルテニウム:二酸化ケイ素(Pt:Ru:SiO)=40:20:40(質量%)であった(触媒金属担持量:60質量%)。
(触媒調製例3)
株式会社トクヤマ製非晶質二酸化ケイ素TokusiL GUに代えて、比表面積が195m/g、吸油量が2.5mL/gである株式会社トクヤマ製非晶質二酸化ケイ素TokusiL NRを用いた以外は触媒調製例1と同様にして触媒Cを調製した。この触媒Cの組成は、白金:ルテニウム:二酸化ケイ素(Pt:Ru:SiO)=40:20:40(質量%)であった(触媒金属担持量:60質量%)。
(触媒調製例4)
株式会社トクヤマ製非晶質二酸化ケイ素TokusiL GUに代えて、比表面積が290m/g、吸油量が3.6mL/gである東ソー・シリカ株式会社製非晶質二酸化ケイ素Nipgel AZ200を用いた以外は触媒調製例1と同様にして触媒Dを調製した。この触媒Dの組成は、白金:ルテニウム:二酸化ケイ素(Pt:Ru:SiO)=40:20:40(質量%)であった(触媒金属担持量:60質量%)。
(触媒調製例5)
株式会社トクヤマ製非晶質二酸化ケイ素TokusiL GU代えて、比表面積が450m/g、吸油量が2.1mL/gである東ソー・シリカ株式会社製非晶質二酸化ケイ素Nipgel BY400を用いた以外は触媒調製例1と同様にして触媒Eを調製した。この触媒Eの組成は、白金:ルテニウム:二酸化ケイ素(Pt:Ru:SiO)=40:20:40(質量%)であった(触媒金属担持量:60質量%)。
(触媒調製例6)
金属として0.081gの白金を含むジニトロジアンミン白金、また、金属として0.042gのルテニウムを含む硝酸ルテニウムを無水エタノール100mLに溶解させたものに変更した以外は触媒調製例2と同様にして触媒Fを調製した。この触媒Fの組成は、白金:ルテニウム:二酸化ケイ素(Pt:Ru:SiO)=10:5:85 (質量%)であった(触媒金属担持量:15質量%)。
(触媒調製例7)
金属として0.198gの白金を含むジニトロジアンミン白金、また、金属として0.102gのルテニウムを含む硝酸ルテニウムを無水エタノール100mLに溶解させたものに変更した以外は触媒調製例2と同様にして触媒Gを調製した。この触媒Gの組成は、白金:ルテニウム:二酸化ケイ素(Pt:Ru:SiO)=20:10:70 (質量%)であった(触媒金属担持量:30質量%)。
(触媒調製例8)
金属として0.461gの白金を含むジニトロジアンミン白金、また、金属として0.239gのルテニウムを含む硝酸ルテニウムを無水エタノール100mLに溶解させたものに変更した以外は触媒調製例2と同様にして触媒Hを調製した。この触媒Hの組成は、白金:ルテニウム:二酸化ケイ素(Pt:Ru:SiO)=33:17:50 (質量%)であった(触媒金属担持量:50質量%)。
(触媒調製例9)
金属として1.84gの白金を含むジニトロジアンミン白金、また、金属として0.956gのルテニウムを含む硝酸ルテニウムを無水エタノール100mLに溶解させたものに変更した以外は触媒調製例2と同様にして触媒Iを調製した。この触媒Iの組成は、白金:ルテニウム:二酸化ケイ素(Pt:Ru:SiO)=53:27:20 (質量%)であった(触媒金属担持量:80質量%)。
(触媒調製例10)
金属として4.15gの白金を含むジニトロジアンミン白金、また、金属として2.15gのルテニウムを含む硝酸ルテニウムを無水エタノール100mLに溶解させたものに変更した以外は触媒調製例2と同様にして触媒Jを調製した。この触媒Jの組成は、白金:ルテニウム:二酸化ケイ素(Pt:Ru:SiO)=60:30:10 (質量%)であった(触媒金属担持量:90質量%)。
(触媒調製例11)
比表面積が183m/g、吸油量が1.8mL/gである株式会社トクヤマ製非晶質二酸化ケイ素TokusiL Uを110℃にて乾燥した後、メノウ乳鉢で粉砕し、45μm以下にメッシュを揃えた後、その1.0gを硝酸セリウム・6水和物を0.105g溶解させた水溶液中に添加し、十分に攪拌した後、ロータリーエバポレータを用いて窒素気流下、100℃に保持して水分を蒸発させた。得られた粉体を、空気中450℃にて2時間焼成し、酸化セリウムを二酸化ケイ素に担持させた。その後、酸化セリウム担持二酸化ケイ素をメノウ乳鉢で粉砕し、45μm以下にメッシュを揃え、その0.7gを無水エタノール100mLに投入し、攪拌・縣濁させた。次いで、金属として0.692gの白金を含むジニトロジアンミン白金、また、金属として0.358gのルテニウムを含む硝酸ルテニウムを無水エタノール100mLに溶解させた後、酸化セリウム担持二酸化ケイ素0.7gを縣濁させた無水エタノール溶液に加え、十分に攪拌した後、ロータリーエバポレータを用いて窒素気流下、60〜70℃に保持して無水エタノールを蒸発させた。その後、5%水素含有窒素を用いて300℃にて2時間還元処理を行って触媒Kを調製した。この触媒Kの組成は、白金:ルテニウム:酸化セリウム : 二酸化ケイ素(Pt:Ru:CeO:SiO)=40:20:2:38 (質量%)であった(触媒金属担持量:60質量%)。
(触媒調製例12)
硝酸セリウム・6水和物を0.105gを硝酸ランタン・6水和物0.14gに変更した以外は、触媒調製例11と同様にして触媒Lを調製した。この触媒Lの組成は、白金:ルテニウム:酸化ランタン : 二酸化ケイ素(Pt:Ru:La:SiO)=40:20:2:38 (質量%)であった(触媒金属担持量:60質量%)。
(触媒調製例13)
硝酸セリウム・6水和物を0.105g溶解させた水溶液に代えて塩化タンタル0.085gを無水エタノールに溶解させたものを用いた以外は、触媒調製例11と同様にして触媒Mを調製した。この触媒Mの組成は、白金:ルテニウム:酸化タンタル : 二酸化ケイ素(Pt:Ru:Ta:SiO)=40:20:2:38 (質量%)であった(触媒金属担持量:60質量%)。
(触媒調製例14)
株式会社トクヤマ製非晶質二酸化ケイ素TokusiL GUに代えて、比表面積が689m/g、吸油量が1.2mL/gである東ソー・シリカ株式会社製非晶質二酸化ケイ素Nigel CX200を用いた以外は触媒調製例1と同様にして触媒Nを調製した。この触媒Nの組成は、白金:ルテニウム:二酸化ケイ素=40:20:40(Pt:Ru:SiO)(質量%)であった(触媒金属担持量:60質量%)。
(触媒調製例15)
株式会社トクヤマ製非晶質二酸化ケイ素TokusiL GUに代えて、比表面積が45m/g、吸油量が1.8mL/gである東ソー・シリカ株式会社製非晶質二酸化ケイ素Nipsil E−74Pを用いた以外は触媒調製例1と同様にして触媒Oを調製した。この触媒Oの組成は、白金:ルテニウム:二酸化ケイ素(Pt:Ru:SiO)=40:20:40 (質量%)であった(触媒金属担持量:60質量%)。
(触媒調製例16)
株式会社トクヤマ製非晶質二酸化ケイ素TokusiL GUに代えて、比表面積が690m/g、吸油量が3.8mL/gである旭硝子株式会社製非晶質二酸化ケイ素Sunsphere H−33を用いた以外は触媒調製例1と同様にして触媒Pを調製した。この触媒Pの組成は、白金:ルテニウム:二酸化ケイ素(Pt:Ru:SiO)=40:20:40 (質量%)であった(触媒金属担持量:60質量%)。
(触媒調製例17)
株式会社トクヤマ製非晶質二酸化ケイ素TokusiL GUに代えて、比表面積が793m/g、吸油量が3.6mL/gである三菱化学株式会社製カーボンブラックKetjen Black ECを用いた以外は触媒調製例1と同様にして触媒Qを調製した。この触媒Qの組成は、白金:ルテニウム:カーボンブラック(Pt:Ru:C)=40:20:40 (質量%)であった(触媒金属担持量:60質量%)。
(性能評価)
触媒調製例1〜17で得られた触媒A〜Q (触媒F、G、J、N、O、P、Qは比較用)の電極触媒としての性能を評価した。触媒性能の評価は、固体高分子型燃料電池用電極触媒の評価に有効であり、かつ、燃料電池性能と良い相関性が得られる回転電極法にて実施した。
<評価方法>
触媒10mgおよびカーボンブラック(キャボット社製Vulcan XC72)10mgを5%ナフィオン溶液 (アルドリッチ社製)1mLに加え、超音波により十分に分散させて触媒ペーストを作成した。次いで、この触媒ペーストをグラッシーカーボン電極上に塗布し、十分に乾燥させて触媒層を回転グラッシーカーボン電極上に固定化して試験電極とした。触媒性能は、25℃に保持した1規定の過塩素酸水溶液に1モル / Lとなるようにメタノールを加え、この溶液中に該試験電極を浸漬して作用極とし、対極に白金線、参照電極に可逆水素電極(RHE)を用いて電位規制法によりメタノール酸化電流と電極電位の関係を測定し、0.7Vvs.RHEにおける酸化電流値を比較することで行った。酸化電流値が高いほど触媒性能が優れていることを示す。結果を表1に示した。なお、メタノール酸化電流値は、測定された酸化電流値をグラッシーカーボン電極上に塗布した触媒中に含有される貴金属重量で除した値 (貴金属質量あたりの酸化電流値) とした。
(Catalyst Preparation Example 1)
After the specific surface area has dried 119m 2 / g, oil absorption of Tokuyama amorphous silicon dioxide Tokusil GU Corporation, a 1.6 mL / g at 110 ° C., and ground in an agate mortar, align the mesh to 45μm or less After that, 0.7 g of the solution was put into 100 mL of absolute ethanol, and stirred and suspended. Next, dinitrodiammine platinum containing 0.692 g of platinum as a metal and ruthenium nitrate containing 0.358 g of ruthenium as a metal were dissolved in 100 mL of absolute ethanol, and then anhydrous silicon dioxide 0.7 g was suspended. In addition to the ethanol solution, after sufficiently stirring, absolute ethanol was evaporated by maintaining at 60 to 70 ° C under a nitrogen stream using a rotary evaporator. Thereafter, reduction treatment was performed at 300 ° C. for 2 hours using 5% hydrogen-containing nitrogen to prepare Catalyst A. The composition of the catalyst A was platinum: ruthenium: silicon dioxide (Pt: Ru: SiO 2 ) = 40: 20: 40 (mass%) (catalyst metal loading: 60 mass%).
(Catalyst preparation example 2)
Instead of Tokuyama Amorphous Silicon Dioxide TokuLu GU, a catalyst was used except that Tokuyama Amorphous Silicon Dioxide TokuiL U with a specific surface area of 183 m 2 / g and an oil absorption of 1.8 mL / g was used. Catalyst B was prepared in the same manner as in Preparation Example 1. The composition of this catalyst B was platinum: ruthenium: silicon dioxide (Pt: Ru: SiO 2 ) = 40: 20: 40 (mass%) (catalyst metal loading: 60 mass%).
(Catalyst Preparation Example 3)
Instead of the Tokuyama amorphous silicon dioxide TokusiL GU, a catalyst other than the Tokuyama amorphous silicon dioxide TokusiL NR having a specific surface area of 195 m 2 / g and an oil absorption of 2.5 mL / g was used. Catalyst C was prepared in the same manner as in Preparation Example 1. The composition of the catalyst C was platinum: ruthenium: silicon dioxide (Pt: Ru: SiO 2 ) = 40: 20: 40 (mass%) (catalyst metal loading: 60 mass%).
(Catalyst Preparation Example 4)
Instead of using Tokuyama amorphous silicon dioxide Tokusi L GU, Tosoh Silica Co., Ltd. amorphous silicon dioxide Nippon AZ200 having a specific surface area of 290 m 2 / g and an oil absorption of 3.6 mL / g was used. Prepared Catalyst D in the same manner as Catalyst Preparation Example 1. The composition of the catalyst D was platinum: ruthenium: silicon dioxide (Pt: Ru: SiO 2 ) = 40: 20: 40 (mass%) (catalyst metal loading: 60 mass%).
(Catalyst Preparation Example 5)
Instead of using Tokuyama amorphous silicon dioxide TokusiL GU, Tosoh Silica Co., Ltd. amorphous silicon dioxide BY400 having a specific surface area of 450 m 2 / g and an oil absorption of 2.1 mL / g was used. Catalyst E was prepared in the same manner as in Catalyst Preparation Example 1. The composition of the catalyst E was platinum: ruthenium: silicon dioxide (Pt: Ru: SiO 2 ) = 40: 20: 40 (mass%) (catalyst metal loading: 60 mass%).
(Catalyst Preparation Example 6)
Catalyst F was prepared in the same manner as in Catalyst Preparation Example 2, except that dinitrodiammine platinum containing 0.081 g of platinum as metal and ruthenium nitrate containing 0.042 g of ruthenium as metal were dissolved in 100 mL of absolute ethanol. Was prepared. The composition of this catalyst F are platinum: ruthenium: silicon dioxide (Pt: Ru: SiO 2) = 10: 5: 85 was (wt%) (catalytic amount of metal supported: 15 wt%).
(Catalyst Preparation Example 7)
Catalyst G was prepared in the same manner as in Catalyst Preparation Example 2, except that dinitrodiammine platinum containing 0.198 g of platinum as a metal and ruthenium nitrate containing 0.102 g of ruthenium as a metal was dissolved in 100 mL of absolute ethanol. Was prepared. The composition of the catalyst G was platinum: ruthenium: silicon dioxide (Pt: Ru: SiO 2 ) = 20: 10: 70 (mass%) (catalyst metal loading: 30 mass%).
(Catalyst Preparation Example 8)
Catalyst H in the same manner as in Catalyst Preparation Example 2, except that dinitrodiammine platinum containing 0.461 g of platinum as a metal and ruthenium nitrate containing 0.239 g of ruthenium as a metal was dissolved in 100 mL of absolute ethanol. Was prepared. The composition of this catalyst H was platinum: ruthenium: silicon dioxide (Pt: Ru: SiO 2 ) = 33: 17: 50 (mass%) (catalyst metal loading: 50 mass%).
(Catalyst Preparation Example 9)
Catalyst I was prepared in the same manner as in Catalyst Preparation Example 2, except that dinitrodiammine platinum containing 1.84 g of platinum as a metal and ruthenium nitrate containing 0.956 g of ruthenium as a metal was dissolved in 100 mL of absolute ethanol. Was prepared. The composition of this catalyst I was platinum: ruthenium: silicon dioxide (Pt: Ru: SiO 2 ) = 53: 27: 20 (mass%) (catalyst metal loading: 80 mass%).
(Catalyst Preparation Example 10)
Catalyst J was prepared in the same manner as Catalyst Preparation Example 2, except that dinitrodiammine platinum containing 4.15 g of platinum as metal and ruthenium nitrate containing 2.15 g of ruthenium as metal were dissolved in 100 mL of absolute ethanol. Was prepared. The composition of the catalyst J was platinum: ruthenium: silicon dioxide (Pt: Ru: SiO 2 ) = 60: 30: 10 (mass%) (catalyst metal loading: 90 mass%).
(Catalyst Preparation Example 11)
After drying amorphous silicon dioxide TokuiL U made by Tokuyama Co., Ltd., which has a specific surface area of 183 m 2 / g and oil absorption of 1.8 mL / g, at 110 ° C., it is pulverized in an agate mortar, and a mesh of 45 μm or less is prepared. Then, 1.0 g of the solution was added to an aqueous solution in which 0.105 g of cerium nitrate hexahydrate was dissolved, and after sufficiently stirring, the water was maintained at 100 ° C. under a nitrogen stream using a rotary evaporator. Was evaporated. The obtained powder was fired in air at 450 ° C. for 2 hours, and cerium oxide was supported on silicon dioxide. Thereafter, cerium oxide-supporting silicon dioxide was pulverized in an agate mortar, and a mesh was prepared to be 45 μm or less, and 0.7 g thereof was added to 100 mL of absolute ethanol, and stirred and suspended. Next, dinitrodiammine platinum containing 0.692 g of platinum as a metal and ruthenium nitrate containing 0.358 g of ruthenium as a metal are dissolved in 100 mL of absolute ethanol, and then 0.7 g of cerium oxide-supporting silicon dioxide is suspended. In addition to the absolute ethanol solution, after sufficiently stirring, the absolute ethanol was evaporated by maintaining at 60-70 ° C. under a nitrogen stream using a rotary evaporator. Thereafter, reduction treatment was performed at 300 ° C. for 2 hours using 5% hydrogen-containing nitrogen to prepare catalyst K. The composition of this catalyst K was platinum: ruthenium: cerium oxide: silicon dioxide (Pt: Ru: CeO 2 : SiO 2 ) = 40: 20: 2: 38 (mass%) (catalyst metal loading: 60 mass) %).
(Catalyst Preparation Example 12)
Catalyst L was prepared in the same manner as in Catalyst Preparation Example 11, except that 0.105 g of cerium nitrate hexahydrate was changed to 0.14 g of lanthanum nitrate hexahydrate. The composition of the catalyst L was platinum: ruthenium: lanthanum oxide: silicon dioxide (Pt: Ru: La 2 O 3 : SiO 2 ) = 40: 20: 2: 38 (mass%) (catalyst metal loading: 60% by mass).
(Catalyst Preparation Example 13)
Catalyst M was prepared in the same manner as in Catalyst Preparation Example 11, except that 0.085 g of tantalum chloride was dissolved in absolute ethanol instead of an aqueous solution in which 0.105 g of cerium nitrate hexahydrate was dissolved. . The composition of the catalyst M was platinum: ruthenium: tantalum oxide: silicon dioxide (Pt: Ru: Ta 2 O 5 : SiO 2 ) = 40: 20: 2: 38 (mass%) (catalyst metal loading: 60% by mass).
(Catalyst Preparation Example 14)
Instead of using Tokuyama amorphous silicon dioxide TokusiL GU, Tosoh Silica Co., Ltd. amorphous silicon dioxide Nigel CX200 having a specific surface area of 689 m 2 / g and an oil absorption of 1.2 mL / g was used. Prepared Catalyst N in the same manner as in Catalyst Preparation Example 1. The composition of this catalyst N is platinum: ruthenium: silicon dioxide = 40: 20: 40 (Pt : Ru: SiO 2) was (wt%) (catalytic amount of metal supported: 60 wt%).
(Catalyst Preparation Example 15)
Instead of Tokuyama amorphous silicon dioxide TokusiL GU, Tosoh Silica Co., Ltd. amorphous silicon dioxide Nippon E-74P with a specific surface area of 45 m 2 / g and oil absorption of 1.8 mL / g is used. Catalyst O was prepared in the same manner as in Catalyst Preparation Example 1 except that The composition of the catalyst O was platinum: ruthenium: silicon dioxide (Pt: Ru: SiO 2 ) = 40: 20: 40 (mass%) (catalyst metal loading: 60 mass%).
(Catalyst Preparation Example 16)
Instead of using Tokuyama amorphous silicon dioxide TokusiL GU, non-crystalline silicon dioxide Sunsphere H-33 manufactured by Asahi Glass Co., Ltd. having a specific surface area of 690 m 2 / g and an oil absorption of 3.8 mL / g Prepared Catalyst P in the same manner as in Catalyst Preparation Example 1. The composition of the catalyst P was platinum: ruthenium: silicon dioxide (Pt: Ru: SiO 2 ) = 40: 20: 40 (mass%) (catalyst metal loading: 60 mass%).
(Catalyst Preparation Example 17)
Catalyst preparation except that carbon black Ketjen Black EC manufactured by Mitsubishi Chemical Co., Ltd. having a specific surface area of 793 m 2 / g and an oil absorption of 3.6 mL / g was used in place of Tokuyama amorphous silicon dioxide Tokusi GU Catalyst Q was prepared as in Example 1. The composition of the catalyst Q was platinum: ruthenium: carbon black (Pt: Ru: C) = 40: 20: 40 (mass%) (catalyst metal loading: 60 mass%).
(Performance evaluation)
The performance of the catalysts A to Q (catalysts F, G, J, N, O, P, and Q for comparison) obtained in Catalyst Preparation Examples 1 to 17 as electrode catalysts was evaluated. The evaluation of the catalyst performance was carried out by a rotating electrode method that is effective for the evaluation of a solid polymer fuel cell electrode catalyst and has a good correlation with the fuel cell performance.
<Evaluation method>
10 mg of the catalyst and 10 mg of carbon black (Vulcan XC72 manufactured by Cabot) were added to 1 mL of a 5% Nafion solution (manufactured by Aldrich) and sufficiently dispersed by ultrasonic waves to prepare a catalyst paste. Next, this catalyst paste was applied onto a glassy carbon electrode and sufficiently dried to immobilize the catalyst layer on the rotating glassy carbon electrode to obtain a test electrode. The catalyst performance is as follows: methanol is added to a 1N perchloric acid aqueous solution maintained at 25 ° C. so that the concentration is 1 mol / L, and the test electrode is immersed in this solution to form a working electrode, and a counter electrode is a platinum wire. Using a reversible hydrogen electrode (RHE) as an electrode, the relationship between the methanol oxidation current and the electrode potential was measured by a potential regulation method, and 0.7 V vs. This was done by comparing the oxidation current values in RHE. The higher the oxidation current value, the better the catalyst performance. The results are shown in Table 1. The methanol oxidation current value was a value obtained by dividing the measured oxidation current value by the weight of the noble metal contained in the catalyst applied on the glassy carbon electrode (oxidation current value per noble metal mass).

Figure 2007035289
Figure 2007035289

表1の結果から次のことがわかる。
(a)二酸化ケイ素のBET比表面積100〜500m/g、吸油量1.6〜3.7mL/g、それに触媒活性成分担持量50〜80質量%という条件をすべて満たすことにより良好な触媒性能が得られる。
(b)白金またはその合金に加えて、セリウム、ランタンおよびタンタルから選ばれる少なくとも1種の酸化物を使用することにより、より良好な触媒性能が得られる。
The following can be seen from the results in Table 1.
(A) Good catalytic performance by satisfying all the conditions of BET specific surface area of silicon dioxide of 100 to 500 m 2 / g, oil absorption of 1.6 to 3.7 mL / g, and catalytic active component loading of 50 to 80% by mass Is obtained.
(B) By using at least one oxide selected from cerium, lanthanum and tantalum in addition to platinum or an alloy thereof, better catalytic performance can be obtained.

さらに、上記の触媒のなかから触媒A〜Eおよび触媒N、Pをピックアップし、二酸化ケイ素の吸油量とメタノール酸化電流値との関係をグラフにして、図1に示した。図1のグラフから、吸油量1.6mL/gおよび3.7mL/gを境に、メタノール酸化電流値が著しく低下することがわかる。   Furthermore, the catalysts A to E and the catalysts N and P were picked up from the above catalysts, and the relationship between the oil absorption amount of silicon dioxide and the methanol oxidation current value was graphed and shown in FIG. From the graph of FIG. 1, it can be seen that the methanol oxidation current value significantly decreases at the oil absorption amounts of 1.6 mL / g and 3.7 mL / g.

二酸化ケイ素の吸油量とメタノール酸化電流値との関係を示すグラフである。It is a graph which shows the relationship between the oil absorption amount of silicon dioxide, and methanol oxidation current value.

Claims (5)

白金またはその合金をBET比表面積100〜500m/g、吸油量1.6〜3.7mL/gの二酸化ケイ素に50〜80質量%の割合(燃料電池用電極触媒の全質量を基準とする割合)で担持してなることを特徴とする燃料電池用電極触媒。 A ratio of 50 to 80% by mass of platinum or an alloy thereof in silicon dioxide having a BET specific surface area of 100 to 500 m 2 / g and an oil absorption of 1.6 to 3.7 mL / g (based on the total mass of the electrode catalyst for fuel cells) The electrode catalyst for fuel cells, which is supported at a ratio). さらにセリウム、ランタンおよびタンタルから選ばれる少なくとも1種の元素の酸化物を担持してなる請求項1記載の燃料電池用電極触媒。 2. The fuel cell electrode catalyst according to claim 1, further comprising an oxide of at least one element selected from cerium, lanthanum and tantalum. 白金またはその合金と、セリウム、ランタンおよびタンタルから選ばれる少なくとも1種の元素の酸化物とを二酸化ケイ素に担持してなることを特徴とする燃料電池用電極触媒。 A fuel cell electrode catalyst comprising platinum or an alloy thereof and an oxide of at least one element selected from cerium, lanthanum and tantalum supported on silicon dioxide. 請求項1、2または3の燃料電池用電極触媒と導電性物質とプロトン伝導性物質とを含有する燃料電池用電極組成物。 A fuel cell electrode composition comprising the fuel cell electrode catalyst according to claim 1, 2 or 3, a conductive material and a proton conductive material. 請求項1、2または3の燃料電池用電極触媒を用いて得られる燃料電池。

A fuel cell obtained using the fuel cell electrode catalyst according to claim 1, 2 or 3.

JP2005212207A 2005-03-18 2005-07-22 Electrode catalyst for fuel cell, electrode composition, and fuel cell Pending JP2007035289A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005212207A JP2007035289A (en) 2005-07-22 2005-07-22 Electrode catalyst for fuel cell, electrode composition, and fuel cell
US11/886,538 US20090081511A1 (en) 2005-03-18 2006-03-15 Electrode Catalyst for Fuel Cell
PCT/JP2006/305144 WO2006100982A1 (en) 2005-03-18 2006-03-15 Electrode catalyst for fuel cell
TW095108979A TW200640064A (en) 2005-03-18 2006-03-16 Electrode catalyst for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005212207A JP2007035289A (en) 2005-07-22 2005-07-22 Electrode catalyst for fuel cell, electrode composition, and fuel cell

Publications (1)

Publication Number Publication Date
JP2007035289A true JP2007035289A (en) 2007-02-08

Family

ID=37794311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005212207A Pending JP2007035289A (en) 2005-03-18 2005-07-22 Electrode catalyst for fuel cell, electrode composition, and fuel cell

Country Status (1)

Country Link
JP (1) JP2007035289A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237584A (en) * 2009-03-31 2010-10-21 Nippon Paper Chemicals Co Ltd Anti-glare hard coat film
JP2011014475A (en) * 2009-07-06 2011-01-20 Toyota Motor Corp Electrode catalyst for fuel cell, manufacturing method thereof, and solid polymer fuel cell
JP2016505193A (en) * 2012-08-29 2016-02-18 ソルビコア・ゲーエムベーハー・ウント・コ・カーゲー Colloidal dispersions containing noble metal particles and acidic ionomer components and methods for their production and use
KR20180013500A (en) * 2016-07-29 2018-02-07 울산과학기술원 Self-supported mesoporous structure nanometal catalysts, manufacturing method thereof and fuel cell comprising the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455034A (en) * 1977-10-11 1979-05-01 Kansai Paint Co Ltd Crack pattern finish
JPS598273A (en) * 1982-06-21 1984-01-17 エンゲルハ−ド・コ−ポレ−シヨン Electrode for phosphotic acid fuel battery
JPH073161A (en) * 1993-06-16 1995-01-06 Shin Etsu Chem Co Ltd Silicone rubber composition
JPH1055807A (en) * 1996-08-08 1998-02-24 Aisin Seiki Co Ltd Air electrode for fuel cell and method of manufacturing the same
JP2002246033A (en) * 2001-02-14 2002-08-30 Toshiba Corp Electrode, electrode composition, fuel cell using the same and electrode producing method
JP2004076084A (en) * 2002-08-15 2004-03-11 Asahi Kasei Chemicals Corp Electrode catalyst
JP2004146223A (en) * 2002-10-25 2004-05-20 National Institute Of Advanced Industrial & Technology Anode catalyst for fuel cells
JP2004197130A (en) * 2002-12-17 2004-07-15 Asahi Kasei Corp Electrode catalyst for oxygen reduction

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455034A (en) * 1977-10-11 1979-05-01 Kansai Paint Co Ltd Crack pattern finish
JPS598273A (en) * 1982-06-21 1984-01-17 エンゲルハ−ド・コ−ポレ−シヨン Electrode for phosphotic acid fuel battery
JPH073161A (en) * 1993-06-16 1995-01-06 Shin Etsu Chem Co Ltd Silicone rubber composition
JPH1055807A (en) * 1996-08-08 1998-02-24 Aisin Seiki Co Ltd Air electrode for fuel cell and method of manufacturing the same
JP2002246033A (en) * 2001-02-14 2002-08-30 Toshiba Corp Electrode, electrode composition, fuel cell using the same and electrode producing method
JP2004076084A (en) * 2002-08-15 2004-03-11 Asahi Kasei Chemicals Corp Electrode catalyst
JP2004146223A (en) * 2002-10-25 2004-05-20 National Institute Of Advanced Industrial & Technology Anode catalyst for fuel cells
JP2004197130A (en) * 2002-12-17 2004-07-15 Asahi Kasei Corp Electrode catalyst for oxygen reduction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237584A (en) * 2009-03-31 2010-10-21 Nippon Paper Chemicals Co Ltd Anti-glare hard coat film
JP2011014475A (en) * 2009-07-06 2011-01-20 Toyota Motor Corp Electrode catalyst for fuel cell, manufacturing method thereof, and solid polymer fuel cell
JP2016505193A (en) * 2012-08-29 2016-02-18 ソルビコア・ゲーエムベーハー・ウント・コ・カーゲー Colloidal dispersions containing noble metal particles and acidic ionomer components and methods for their production and use
KR20180013500A (en) * 2016-07-29 2018-02-07 울산과학기술원 Self-supported mesoporous structure nanometal catalysts, manufacturing method thereof and fuel cell comprising the same
KR101881209B1 (en) * 2016-07-29 2018-07-23 울산과학기술원 Self-supported mesoporous structure nanometal catalysts, manufacturing method thereof and fuel cell comprising the same

Similar Documents

Publication Publication Date Title
JP5209474B2 (en) Electrode catalyst, method for producing electrode catalyst, and method for suppressing coarsening of catalyst particles
JP4656576B2 (en) Method for producing Pt / Ru alloy catalyst for fuel cell anode
KR100552697B1 (en) Catalyst carrier composed of metal oxide-carbon composite and fuel cell using same
Kakaei et al. Fabrication of Pt–CeO2 nanoparticles supported sulfonated reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation
JPWO2009060582A1 (en) Method for producing fuel cell electrode material, fuel cell electrode material, and fuel cell using the fuel cell electrode material
CN101495232A (en) Membrane comprising an electrocatalyst containing palladium and ruthenium
JP6141741B2 (en) Fuel cell electrode catalyst and method for producing the same
EP3006106B1 (en) Catalyst particles, support-type catalyst particles, and use thereof
KR20080067554A (en) Platinum / ruthenium alloy supported catalyst, its manufacturing method and fuel cell using the same
JP2010102889A (en) Electrode catalyst for fuel cell
KR102277962B1 (en) Catalyst for fuel cell and manufacturing method thereof
JP2015032468A (en) Electrode catalyst for fuel cell, method for producing the same, catalyst carrying electrode for fuel cell, and fuel cell
US20090081511A1 (en) Electrode Catalyst for Fuel Cell
JP2004510316A (en) Tungsten-containing fuel cell catalyst and method for producing the same
JP2008041498A (en) Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JPH11126616A (en) Electrodes for co-resistant platinum zinc fuel cells
WO2014034357A1 (en) Electrode catalyst for fuel cells, and fuel cell
JP2006210135A (en) Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device
JP5106342B2 (en) Catalyst, method for producing the same and use thereof
JP2006224095A (en) Electrode catalyst for fuel cell
CN112714972B (en) Anode catalyst layer for fuel cell and fuel cell using the same
WO2024190902A1 (en) Electrode catalyst containing porous silicon carbide composite material, electrode for electrode catalyst, fuel cell, and manufacturing method of electrode catalyst
JP2005085607A (en) Anode electrode catalyst for fuel cell and method for producing the same
JP2007035289A (en) Electrode catalyst for fuel cell, electrode composition, and fuel cell
JP4992185B2 (en) Catalyst for fuel cell, membrane electrode composite, and solid polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208