JP2007026726A - Memsスイッチ - Google Patents
Memsスイッチ Download PDFInfo
- Publication number
- JP2007026726A JP2007026726A JP2005203483A JP2005203483A JP2007026726A JP 2007026726 A JP2007026726 A JP 2007026726A JP 2005203483 A JP2005203483 A JP 2005203483A JP 2005203483 A JP2005203483 A JP 2005203483A JP 2007026726 A JP2007026726 A JP 2007026726A
- Authority
- JP
- Japan
- Prior art keywords
- mems switch
- movable electrode
- switch according
- transmission line
- driving means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 62
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 238000006073 displacement reaction Methods 0.000 claims abstract description 4
- 238000002955 isolation Methods 0.000 abstract description 17
- 238000003780 insertion Methods 0.000 abstract description 9
- 230000037431 insertion Effects 0.000 abstract description 9
- 238000000034 method Methods 0.000 description 25
- 238000004519 manufacturing process Methods 0.000 description 15
- 230000003071 parasitic effect Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 8
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 239000010408 film Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Landscapes
- Micromachines (AREA)
- Contacts (AREA)
- Waveguide Switches, Polarizers, And Phase Shifters (AREA)
Abstract
【課題】 高周波領域において挿入損失が低く、アイソレーション特性が良好なMEMSスイッチを提供する。
【解決手段】 基板1表面に互いの端部を対向させて配置した少なくとも2本の伝送線路2と、これらの伝送線路2間を接続するために前記伝送線路2上方に配置した可動電極4と、この可動電極4を変位させるための駆動手段3とを備えたMEMSスイッチにおいて、前記対向する伝送線路2間には、電気的に絶縁された凸部11が形成され、前記可動電極4の一部は、その変位時において、前記凸部11端部を支点として変形する。
【選択図】 図1
【解決手段】 基板1表面に互いの端部を対向させて配置した少なくとも2本の伝送線路2と、これらの伝送線路2間を接続するために前記伝送線路2上方に配置した可動電極4と、この可動電極4を変位させるための駆動手段3とを備えたMEMSスイッチにおいて、前記対向する伝送線路2間には、電気的に絶縁された凸部11が形成され、前記可動電極4の一部は、その変位時において、前記凸部11端部を支点として変形する。
【選択図】 図1
Description
本発明は、高周波帯におけるスイッチ素子に関し、とくにプリント基板表面の伝送線路間を接続するために配置した可動電極、この可動電極を変位させる駆動手段を備えるMEMSスイッチに関するものである。
高周波回路で使用されるスイッチとしては、半導体デバイス、例えば能動デバイスのFETやPINダイオードなどが知られている(例えば、特許文献1参照)。
しかし、これら半導体デバイスでは、信号周波数がGHz帯になると挿入損失が増加し、アイソレーションが劣化する欠点があった。より具体的には、FETでは4GHzにおいて、挿入損失が2(dB)、アイソレーションが−20(dB)、PINダイオードでは20GHzにおいて、挿入損失が4(dB)、アイソレーションが−18(dB)程度であった。
このように、半導体デバイススイッチでは、導電性を有しかつ比誘電率が高いGaAs(εr=13)などの半導体を使うために、高周波帯において挿入損失が増加し、アイソレーションが劣化してしまう。
そこで、近年、マイクロマシン技術を用いたMEMSスイッチが研究、開発されている。MEMSスイッチでは、接点間に絶縁性の空隙(エア)があるため高い周波数まで良好なアイソレーション特性が期待されている。
しかし、これら半導体デバイスでは、信号周波数がGHz帯になると挿入損失が増加し、アイソレーションが劣化する欠点があった。より具体的には、FETでは4GHzにおいて、挿入損失が2(dB)、アイソレーションが−20(dB)、PINダイオードでは20GHzにおいて、挿入損失が4(dB)、アイソレーションが−18(dB)程度であった。
このように、半導体デバイススイッチでは、導電性を有しかつ比誘電率が高いGaAs(εr=13)などの半導体を使うために、高周波帯において挿入損失が増加し、アイソレーションが劣化してしまう。
そこで、近年、マイクロマシン技術を用いたMEMSスイッチが研究、開発されている。MEMSスイッチでは、接点間に絶縁性の空隙(エア)があるため高い周波数まで良好なアイソレーション特性が期待されている。
図23は従来のMEMSスイッチの構造を示す概略斜視図である。図23において、基板1表面には高周波信号が伝送する2本の伝送線路2が対向して形成されている。
2本の伝送線路2の直上には、絶縁性部材からなるビーム3に連結した可動電極4が配置され、ビーム3上には第1の制御電極5が形成されており、直流電源バイアス配線8に接続されている。
ビーム3はアンカー部6に固定されて中空に浮いている。第1の制御電極5の直下には、エアギャップを介してグランドに接続された第2の制御電極7が形成されている。以下に動作を簡単に説明する。
第1の制御電極5に直流電圧を印加することにより、第2の制御電極7との間に静電力が発生して両者は吸引し合い、プルダウン電圧Vpで接触する。その結果、ビーム3の端部に形成した可動電極4が下の伝送線路2と接触し、回路がオン状態となる。一般的に、伝送線路2と可動電極4とのギャップは1〜3μm、第1の制御電極5に印加する電圧としては数十Vの直流電圧が使われる。
このようなMEMSスイッチでは、40GHzにおいて、挿入損失が0.15(dB)、アイソレーションが−25(dB)と良好な特性が得られることが知られている。
MEMSスイッチにおける挿入損失は、主にスイッチ接点のコンタクト抵抗Rcによる電力損失である。また、アイソレーションはオフ状態でのMEMSスイッチに寄生するキャパシタンス、とくに伝送線路2と可動電極4間ギャップで形成される寄生キャパシタンスCsの影響が大きい。
図24は図23のMEMSスイッチのオフ時を示す断面図である。図25は図24の電気的等価回路を示す回路図である。アイソレーション特性を劣化させる寄生キャパシタには、伝送線路2と可動電極4間に形成されるCsと、伝送線路2間の基板内に寄生するCpの2種類がある。一般的には、伝送線路2と可動電極4に形成されるCsが大きい。
したがって、アイソレーション特性を向上させるには、Csの低減を行う必要がある。しかし、静電駆動方式においては、前記ギャップを大きくすると駆動のための印加電圧が大きくなってしまう不具合がある。
2本の伝送線路2の直上には、絶縁性部材からなるビーム3に連結した可動電極4が配置され、ビーム3上には第1の制御電極5が形成されており、直流電源バイアス配線8に接続されている。
ビーム3はアンカー部6に固定されて中空に浮いている。第1の制御電極5の直下には、エアギャップを介してグランドに接続された第2の制御電極7が形成されている。以下に動作を簡単に説明する。
第1の制御電極5に直流電圧を印加することにより、第2の制御電極7との間に静電力が発生して両者は吸引し合い、プルダウン電圧Vpで接触する。その結果、ビーム3の端部に形成した可動電極4が下の伝送線路2と接触し、回路がオン状態となる。一般的に、伝送線路2と可動電極4とのギャップは1〜3μm、第1の制御電極5に印加する電圧としては数十Vの直流電圧が使われる。
このようなMEMSスイッチでは、40GHzにおいて、挿入損失が0.15(dB)、アイソレーションが−25(dB)と良好な特性が得られることが知られている。
MEMSスイッチにおける挿入損失は、主にスイッチ接点のコンタクト抵抗Rcによる電力損失である。また、アイソレーションはオフ状態でのMEMSスイッチに寄生するキャパシタンス、とくに伝送線路2と可動電極4間ギャップで形成される寄生キャパシタンスCsの影響が大きい。
図24は図23のMEMSスイッチのオフ時を示す断面図である。図25は図24の電気的等価回路を示す回路図である。アイソレーション特性を劣化させる寄生キャパシタには、伝送線路2と可動電極4間に形成されるCsと、伝送線路2間の基板内に寄生するCpの2種類がある。一般的には、伝送線路2と可動電極4に形成されるCsが大きい。
したがって、アイソレーション特性を向上させるには、Csの低減を行う必要がある。しかし、静電駆動方式においては、前記ギャップを大きくすると駆動のための印加電圧が大きくなってしまう不具合がある。
以下に具体的に説明する。MEMSスイッチにおいて図23のような片持ビームでは駆動電圧(プルダウン電圧)Vpは次の式で表せる。
Vp=√(8k/27ε0WL)g3
ここで、kはバネ定数で、εoは真空の誘電率、WおよびLは制御電極の幅と長さ、gはギャップである。
今、ばね定数としてアームの形状が長さl=100μm、幅w=25μm、厚さt=2μmのSiN膜と厚さ2μmの金薄膜の積層構造とし、ばね定数を19.3(N/m)、静電駆動部の制御電極面積(W×L)を100μm×100μmと仮定する。
図26は静電駆動部のギャップgとプルダウン電圧との関係を上記式から求めた結果を示す特性図である。図26に示すように、従来のMEMSスイッチでは、ギャップが3.5(μm)以上になるとプルダウン電圧Vpは50(V)以上となってしまい実用化は難しくなってしまう。したがって、可動電極と伝送線路間隔を大きくし、寄生キャパシタンスCsを低減させることで高周波特性を改善することには限界があった。
そこで、アイソレーションを向上させる他の方法として特許文献1はマイクロマシンスイッチを開示している。図27はマイクロマシンスイッチの構造を示す斜視図である。
図27に示すように可動電極4の両端部に切り欠かれた部分10を形成することで、伝送線路2であるマイクロストリップ線路と可動電極4で形成する寄生キャパシタンスCsを低減させる構造となっている。
つまり、可動電極4に切り欠き10を形成することで伝送線路2との対向面積を減らし寄生キャパシタンスを低減させ、アイソレーション特性が改善されるのである。
特許第3112001号
Vp=√(8k/27ε0WL)g3
ここで、kはバネ定数で、εoは真空の誘電率、WおよびLは制御電極の幅と長さ、gはギャップである。
今、ばね定数としてアームの形状が長さl=100μm、幅w=25μm、厚さt=2μmのSiN膜と厚さ2μmの金薄膜の積層構造とし、ばね定数を19.3(N/m)、静電駆動部の制御電極面積(W×L)を100μm×100μmと仮定する。
図26は静電駆動部のギャップgとプルダウン電圧との関係を上記式から求めた結果を示す特性図である。図26に示すように、従来のMEMSスイッチでは、ギャップが3.5(μm)以上になるとプルダウン電圧Vpは50(V)以上となってしまい実用化は難しくなってしまう。したがって、可動電極と伝送線路間隔を大きくし、寄生キャパシタンスCsを低減させることで高周波特性を改善することには限界があった。
そこで、アイソレーションを向上させる他の方法として特許文献1はマイクロマシンスイッチを開示している。図27はマイクロマシンスイッチの構造を示す斜視図である。
図27に示すように可動電極4の両端部に切り欠かれた部分10を形成することで、伝送線路2であるマイクロストリップ線路と可動電極4で形成する寄生キャパシタンスCsを低減させる構造となっている。
つまり、可動電極4に切り欠き10を形成することで伝送線路2との対向面積を減らし寄生キャパシタンスを低減させ、アイソレーション特性が改善されるのである。
しかし、従来技術の可動電極の一部を切り欠く方法では、より寄生キャパシタンスを低減させるために切り欠く幅を広くすれば、伝送線路との接触面積が減少し、コンタクト抵抗Rcの増加、また電流が集中することでインダクタンスが増加するなどの不具合があるため挿入損失が増加することが懸念される。
また、MEMSスイッチのより詳細な解析では、寄生キャパシタンスとして、マイクロストリップ線路間容量Cpの影響を考慮する必要がある。しかし、従来技術では、配線間容量Cpを低減させることはできないため、さらなる高周波化には限界があった。
そこで、本発明の目的は、上述した実情を考慮して、高周波領域において挿入損失が低く、アイソレーション特性が良好なMEMSスイッチを提供することにある。
また、MEMSスイッチのより詳細な解析では、寄生キャパシタンスとして、マイクロストリップ線路間容量Cpの影響を考慮する必要がある。しかし、従来技術では、配線間容量Cpを低減させることはできないため、さらなる高周波化には限界があった。
そこで、本発明の目的は、上述した実情を考慮して、高周波領域において挿入損失が低く、アイソレーション特性が良好なMEMSスイッチを提供することにある。
上記の課題を解決するために、請求項1に記載の発明は、基板表面に互いの端部を対向させて配置した少なくとも2本の伝送線路と、これらの伝送線路間を接続するために前記伝送線路上方に配置した可動電極、この可動電極を変位させるための駆動手段とを備えたMEMSスイッチにおいて、前記対向する伝送線路間には、電気的に絶縁された凸部が形成され、前記可動電極の一部は、その変位時において、前記凸部端部を支点として変形するMEMSスイッチを特徴とする。
また、請求項2に記載の発明は、前記凸部の表面高さが、前記伝送線路の高さよりも低い請求項1記載のMEMSスイッチを特徴とする。
また、請求項3に記載の発明は、前記可動電極直下の前記基板の高さが前記伝送線路直下の前記基板の高さよりも低い請求項1記載のMEMSスイッチを特徴とする。
また、請求項4に記載の発明は、前記可動電極の底部に導電性部材による突起が形成されている請求項1記載のMEMSスイッチを特徴とする。
また、請求項5に記載の発明は、前記可動電極に取り付けた駆動手段が片持梁型である請求項1記載のMEMSスイッチを特徴とする。
また、請求項6に記載の発明は、前記可動電極に取り付けた駆動手段が片持ち梁であり、可動電極が梁方向に変形する請求項1記載のMEMSスイッチを特徴とする。
また、請求項7に記載の発明は、前記可動電極に取り付けた駆動手段が両持ち梁型である請求項1記載のMEMSスイッチを特徴とする。
また、請求項8に記載の発明は、前記駆動手段が静電力を利用した静電駆動方式である請求項1記載のMEMSスイッチを特徴とする。
また、請求項9に記載の発明は、前記駆動手段が圧電素子を利用した圧電型駆動方式である請求項1記載のMEMSスイッチを特徴とする。
また、請求項10に記載の発明は、前記駆動手段が熱膨張を利用したバイメタル型駆動方式である請求項1記載のMEMSスイッチを特徴とする。
また、請求項2に記載の発明は、前記凸部の表面高さが、前記伝送線路の高さよりも低い請求項1記載のMEMSスイッチを特徴とする。
また、請求項3に記載の発明は、前記可動電極直下の前記基板の高さが前記伝送線路直下の前記基板の高さよりも低い請求項1記載のMEMSスイッチを特徴とする。
また、請求項4に記載の発明は、前記可動電極の底部に導電性部材による突起が形成されている請求項1記載のMEMSスイッチを特徴とする。
また、請求項5に記載の発明は、前記可動電極に取り付けた駆動手段が片持梁型である請求項1記載のMEMSスイッチを特徴とする。
また、請求項6に記載の発明は、前記可動電極に取り付けた駆動手段が片持ち梁であり、可動電極が梁方向に変形する請求項1記載のMEMSスイッチを特徴とする。
また、請求項7に記載の発明は、前記可動電極に取り付けた駆動手段が両持ち梁型である請求項1記載のMEMSスイッチを特徴とする。
また、請求項8に記載の発明は、前記駆動手段が静電力を利用した静電駆動方式である請求項1記載のMEMSスイッチを特徴とする。
また、請求項9に記載の発明は、前記駆動手段が圧電素子を利用した圧電型駆動方式である請求項1記載のMEMSスイッチを特徴とする。
また、請求項10に記載の発明は、前記駆動手段が熱膨張を利用したバイメタル型駆動方式である請求項1記載のMEMSスイッチを特徴とする。
本発明のMEMSスイッチは、従来よりも可動電極と伝送線路間隔を大きくすることができ、その結果、可動電極と伝送線路に形成される寄生キャパシタンスを低減することができる。
また、伝送線路間に溝を設けた本発明のMEMSスイッチにおいては、伝送線路間の誘電体内に形成される寄生キャパシタンスを低減することが可能になり、より一層の寄生キャパシタンス低減が可能で、その結果、スイッチオフ時のアイソレーション特性を大幅に改善する効果がある。
また、伝送線路間に溝を設けた本発明のMEMSスイッチにおいては、伝送線路間の誘電体内に形成される寄生キャパシタンスを低減することが可能になり、より一層の寄生キャパシタンス低減が可能で、その結果、スイッチオフ時のアイソレーション特性を大幅に改善する効果がある。
以下、図面を参照して、本発明の実施の形態を詳細に説明する。図1は本発明によるMEMSスイッチの第1の実施の形態を示す平面図である。図2は図1の線B−B’に沿う断面図である。第1の実施の形態において可動電極4の駆動方式が片持ちビーム型静電駆動方式である本MEMSスイッチを説明する。
図1および図2に示すように、基板1、即ち高周波信号伝送に適した誘電体基板上、例えば、厚さ200μmの石英基板上に、幅60μmの2本の伝送線路2が、夫々の端縁間を60μm離して対向して形成されている。
伝送線路2の材質としては、下地に基板1との密着性を確保するために薄く(0.1μm程度)チタンが成膜され、さらのその上に数μm程度の金を積層して形成される。2本の伝送線路2の上方には、これらの伝送線路2に跨るように可動電極4が配置されている。
可動電極4は絶縁性部材からなるビーム3の下面に形成され、ビーム3はアンカー部6で基板1に固定されている。ビーム3の表面には第1の制御電極5が形成されており、直流バイアス用配線8aを介して電圧が印加できる。
また、第1の制御電極5直下の基板1表面には第2の制御電極7が形成されており、直流バイアス用配線8bを介して電圧が印加できる。両制御電極5、7間に直流バイアス用配線8a、8bを通して直流電圧を印加することで、静電力が発生する。
図1および図2に示すように、基板1、即ち高周波信号伝送に適した誘電体基板上、例えば、厚さ200μmの石英基板上に、幅60μmの2本の伝送線路2が、夫々の端縁間を60μm離して対向して形成されている。
伝送線路2の材質としては、下地に基板1との密着性を確保するために薄く(0.1μm程度)チタンが成膜され、さらのその上に数μm程度の金を積層して形成される。2本の伝送線路2の上方には、これらの伝送線路2に跨るように可動電極4が配置されている。
可動電極4は絶縁性部材からなるビーム3の下面に形成され、ビーム3はアンカー部6で基板1に固定されている。ビーム3の表面には第1の制御電極5が形成されており、直流バイアス用配線8aを介して電圧が印加できる。
また、第1の制御電極5直下の基板1表面には第2の制御電極7が形成されており、直流バイアス用配線8bを介して電圧が印加できる。両制御電極5、7間に直流バイアス用配線8a、8bを通して直流電圧を印加することで、静電力が発生する。
図3は図1のMEMSスイッチの第1の実施の形態のオン状態を線A−A’に沿って示す断面図である。図4は図1のMEMSスイッチの第1の実施の形態のオフ状態を線A−A’に沿って示す断面図である。図3および図4は図1中のA−A’断面の拡大図を示している。
図3および図4に示すように、基板1の表面には2本の伝送線路2と2つの凸部11が形成され、凸部11表面の高さは伝送線路2の表面高さよりも低く設定されている。凸部11の最上層には、基板エッチング時のマスク材12で絶縁性部材のSiNなどが成膜されている。
この構造は、後で説明するように、基板1をエッチングすることで容易に形成することができる。さらに2本の伝送線路2の上方には、両者に跨るように可動電極4が配置され、可動電極4はビーム3により制御電極と連結されている。
同じく図3および図4を用いて本発明によるMEMSスイッチの動作について説明する。本発明のMEMSスイッチは、制御電極への印加電圧が0(V)では、僅かに浮いた状態となっているため、回路はオフ状態である。
まず、第1の制御電極5および第2の制御電極7に電圧を印加する。例えば、第1の制御電極に+Va(V)を、第2の制御電極7をグランド電位に設定する。制御電極への電圧を印加すると、両制御電極5、7間に静電力が発生し、第1の制御電極5が基板側に引き寄せられる。その結果、まず、可動電極4が伝送線路2に接触し、回路はオン状態となる(図3)。
さらに、制御電極への印加電圧を増加させプルダウン電圧Vpに達すると、第1および第2の制御電極5、7は接触し、可動電極4も最下点まで降下する。このとき、可動電極4の端部は基板1に配置した凸部11を支点として折り返され変形する。その結果、回路はオフ状態となる(図4)。
図3および図4に示すように、基板1の表面には2本の伝送線路2と2つの凸部11が形成され、凸部11表面の高さは伝送線路2の表面高さよりも低く設定されている。凸部11の最上層には、基板エッチング時のマスク材12で絶縁性部材のSiNなどが成膜されている。
この構造は、後で説明するように、基板1をエッチングすることで容易に形成することができる。さらに2本の伝送線路2の上方には、両者に跨るように可動電極4が配置され、可動電極4はビーム3により制御電極と連結されている。
同じく図3および図4を用いて本発明によるMEMSスイッチの動作について説明する。本発明のMEMSスイッチは、制御電極への印加電圧が0(V)では、僅かに浮いた状態となっているため、回路はオフ状態である。
まず、第1の制御電極5および第2の制御電極7に電圧を印加する。例えば、第1の制御電極に+Va(V)を、第2の制御電極7をグランド電位に設定する。制御電極への電圧を印加すると、両制御電極5、7間に静電力が発生し、第1の制御電極5が基板側に引き寄せられる。その結果、まず、可動電極4が伝送線路2に接触し、回路はオン状態となる(図3)。
さらに、制御電極への印加電圧を増加させプルダウン電圧Vpに達すると、第1および第2の制御電極5、7は接触し、可動電極4も最下点まで降下する。このとき、可動電極4の端部は基板1に配置した凸部11を支点として折り返され変形する。その結果、回路はオフ状態となる(図4)。
図5は可動電極の端部が基板に配置した凸部を支点として折り返されて変形された状態の左側半分を示す概略図である。図5から明らかなように、本発明は可動電極4の僅かな変位が支点を介して拡大されるので可動電極4端部では大きな変位量が得られる効果がある。
例えば、可動電極4の左半分の後続を、可動電極4の左端と凸部端水平距離a=35μm、凸部端部からビーム端部までの水平距離b=15μmとし、凸部11と可動電極ビームまでの距離c=5μm、凸部高さd=1.5μm、伝送線路厚さt=2μmと仮定する。
この構造において、制御電極にプルダウン電圧を印加することにより、可動電極4は、伝送線路2表面から2μm下降して基板1に接触する、その結果、可動電極4の一部(端部)は凸部11を支点にし、図のように折り返される。
このとき、折り返された可動電極4と伝送線路2表面との距離は、最大(h1)で8.5μm程度、最小(h2)でも溝4μm程度と予測される。つまり、可動電極の移動量2μmが、支点を介して折り返すことで2倍から8倍以上拡大されることが分かる。図5において、符号12は後述するマスクパターンを示している。
したがって、伝送線路2と可動電極4間が大きく離されることで寄生キャパシタンスCsが減少し、アイソレーション特性を向上させることが可能になるのである。また、従来と同程度のアイソレーション特性であれば、プルダウン電圧を低くすることが可能になる。
図6は第1の実施の形態のMEMSスイッチの製造プロセスの第1工程を示す概略図である。図7は第1の実施の形態のMEMSスイッチの製造プロセスの第2工程を示す概略図である。図8は第1の実施の形態のMEMSスイッチの製造プロセスの第3工程を示す概略図である。図9は第1の実施の形態のMEMSスイッチの製造プロセスの第4工程を示す概略図である。
図10は第1の実施の形態のMEMSスイッチの製造プロセスの第5工程を示す概略図である。図11は第1の実施の形態のMEMSスイッチの製造プロセスの第6工程を示す概略図である。図12は第1の実施の形態のMEMSスイッチの製造プロセスの第7工程を示す概略図である。
例えば、可動電極4の左半分の後続を、可動電極4の左端と凸部端水平距離a=35μm、凸部端部からビーム端部までの水平距離b=15μmとし、凸部11と可動電極ビームまでの距離c=5μm、凸部高さd=1.5μm、伝送線路厚さt=2μmと仮定する。
この構造において、制御電極にプルダウン電圧を印加することにより、可動電極4は、伝送線路2表面から2μm下降して基板1に接触する、その結果、可動電極4の一部(端部)は凸部11を支点にし、図のように折り返される。
このとき、折り返された可動電極4と伝送線路2表面との距離は、最大(h1)で8.5μm程度、最小(h2)でも溝4μm程度と予測される。つまり、可動電極の移動量2μmが、支点を介して折り返すことで2倍から8倍以上拡大されることが分かる。図5において、符号12は後述するマスクパターンを示している。
したがって、伝送線路2と可動電極4間が大きく離されることで寄生キャパシタンスCsが減少し、アイソレーション特性を向上させることが可能になるのである。また、従来と同程度のアイソレーション特性であれば、プルダウン電圧を低くすることが可能になる。
図6は第1の実施の形態のMEMSスイッチの製造プロセスの第1工程を示す概略図である。図7は第1の実施の形態のMEMSスイッチの製造プロセスの第2工程を示す概略図である。図8は第1の実施の形態のMEMSスイッチの製造プロセスの第3工程を示す概略図である。図9は第1の実施の形態のMEMSスイッチの製造プロセスの第4工程を示す概略図である。
図10は第1の実施の形態のMEMSスイッチの製造プロセスの第5工程を示す概略図である。図11は第1の実施の形態のMEMSスイッチの製造プロセスの第6工程を示す概略図である。図12は第1の実施の形態のMEMSスイッチの製造プロセスの第7工程を示す概略図である。
次に、図6ないし図12を参照して第1の実施の形態の製造プロセスを簡単に説明する。基板1として石英やGaAs、あるいはSi基板を用い、先ず凸部を形成するために、SiN膜などからなるマスクパターン12を形成する(図6)。
その後、基板1全面をドライエッチング法により、可動電極4(図5参照)の移動量よりも深く基板をエッチングして凸部11を形成する(図7)。次に、蒸着法やメッキ法を用いて金の伝送線路2のパターンをリフトオフ法により形成する(図8)。
その後、全面に犠牲層13となるレジスト剤を充填し、基板1表面を平坦化する(図9)。このとき、伝送線路2上のレジスト厚さは0.5μm以下と薄くすることが望ましい。次に、金を蒸着し、可動電極4をリフトオフ法により形成する(図10)。
次に、可動電極4を支持するためのビーム3として絶縁性材料であるSiN膜をPCVDにより成膜・パターニングを行う(図11)。次に、金の蒸着・リフトオフ法により第1の制御電極5を形成する(図示せず)。最後に、図11の犠牲層13のレジストを除去してMEMSスイッチが完成する(図12)。
その後、基板1全面をドライエッチング法により、可動電極4(図5参照)の移動量よりも深く基板をエッチングして凸部11を形成する(図7)。次に、蒸着法やメッキ法を用いて金の伝送線路2のパターンをリフトオフ法により形成する(図8)。
その後、全面に犠牲層13となるレジスト剤を充填し、基板1表面を平坦化する(図9)。このとき、伝送線路2上のレジスト厚さは0.5μm以下と薄くすることが望ましい。次に、金を蒸着し、可動電極4をリフトオフ法により形成する(図10)。
次に、可動電極4を支持するためのビーム3として絶縁性材料であるSiN膜をPCVDにより成膜・パターニングを行う(図11)。次に、金の蒸着・リフトオフ法により第1の制御電極5を形成する(図示せず)。最後に、図11の犠牲層13のレジストを除去してMEMSスイッチが完成する(図12)。
図13は本発明によるMEMSスイッチの第2の実施の形態をオン状態で示す断面図である。図14は図13の第2の実施の形態をオフ状態で示す断面図である。図13および図14に示すように、伝送線路2間に形成した2つの凸部11の間の基板表面14を、伝送線路2底部よりも下に向けて凹状に形成した構造となっている。
本構造のプロセスの説明は省略するが、第1の実施の形態とほぼ同様なプロセスで作製することができる。このMEMSスイッチ構造においても、制御電極にプルダウイン電圧以下でオン状態、プルダウン電圧において可動電極4は凸部11を支点として折り返される。
その結果、オフ状態では、可動電極4とマイクロストリップ線路間距離は大きく離れ、寄生キャパシタンスCsは低減する。さらに、本構造では、伝送線路2間に溝14を形成したことにより配線間容量Cp低減を可能としたことを特徴としている。
図15は本発明によるMEMSスイッチの第3の実施の形態をオン状態で示す断面図である。図16は図15の第3の実施の形態をオフ状態で示す断面図である。図15および図16に示すように、2本の伝送線路2間に溝14を形成し、その後、伝送線路2と凸部12(11)を同一工程により形成したことを特徴としている。
第1の実施例が伝送線路2下の基板1をエッチングしたのに対して、この第3の実施の形態の構造では、伝送線路2下の基板1はエッチングしないため、基板厚さが変化せず伝送線路2にマイクロストリップ線路を用いた場合でも特性インピーダンスが変化しない利点がある。
第3の実施の形態の動作は第1および第2の実施の形態と同様であり、第2の実施の形態と同様に伝送線路2間に溝14が形成されているために配線間寄生キャパシタンスCpを従来よりも低減することができる利点がある。本実施の形態の凸部12(11)は、伝送線路パターニング工程により伝送線路2と同時に金で形成することができる。
本構造のプロセスの説明は省略するが、第1の実施の形態とほぼ同様なプロセスで作製することができる。このMEMSスイッチ構造においても、制御電極にプルダウイン電圧以下でオン状態、プルダウン電圧において可動電極4は凸部11を支点として折り返される。
その結果、オフ状態では、可動電極4とマイクロストリップ線路間距離は大きく離れ、寄生キャパシタンスCsは低減する。さらに、本構造では、伝送線路2間に溝14を形成したことにより配線間容量Cp低減を可能としたことを特徴としている。
図15は本発明によるMEMSスイッチの第3の実施の形態をオン状態で示す断面図である。図16は図15の第3の実施の形態をオフ状態で示す断面図である。図15および図16に示すように、2本の伝送線路2間に溝14を形成し、その後、伝送線路2と凸部12(11)を同一工程により形成したことを特徴としている。
第1の実施例が伝送線路2下の基板1をエッチングしたのに対して、この第3の実施の形態の構造では、伝送線路2下の基板1はエッチングしないため、基板厚さが変化せず伝送線路2にマイクロストリップ線路を用いた場合でも特性インピーダンスが変化しない利点がある。
第3の実施の形態の動作は第1および第2の実施の形態と同様であり、第2の実施の形態と同様に伝送線路2間に溝14が形成されているために配線間寄生キャパシタンスCpを従来よりも低減することができる利点がある。本実施の形態の凸部12(11)は、伝送線路パターニング工程により伝送線路2と同時に金で形成することができる。
図17は本発明によるMEMSスイッチの第4の実施の形態をオン状態で示す断面図である。図18は図17の第4の実施の形態をオフ状態で示す断面図である。
図17および図18に示すように、本構造では、伝送線路2と可動電極4の電気的接触を確実に行うために、可動電極4の両端下面に突起15を設けた構造となっている。可動電極4に突起15を設けることで、面での接触で懸念される片当たりによる接触不良をなくし、良好な接触状態を実現することを可能にしている。
図19は本発明によるMEMSスイッチの第5の実施の形態をオン状態で示す斜視図である。図20は図19の第5の実施の形態をオフ状態で示す斜視図である。
図19および図20に示すように、可動電極4はビーム3の先端に取り付けられた片持ち梁(ビーム)構造の静電駆動MEMSスイッチ構造である。図19および図20において、第1の制御電極はビーム3の内部に形成するので図示しないが、第2の制御電極7はビーム3の直下に配置している。
また、ビーム3の先端部直下の基板1上には凸部11が配置されている。動作を簡単に説明すれば、第1の制御電極および第2の制御電極7に電圧を印加すると、ビーム3は第2の制御電極7に引き寄せられ、この第2の制御電極7に接触する。
その結果、可動電極4側のビーム3は凸部11を支点としてアンカー部6側のビーム3の方向に反り返ることになる。図20に示すように、可動電極4と伝送線路2間は大きく離すことができるので、十分なアイソレーションが確保できる。
図17および図18に示すように、本構造では、伝送線路2と可動電極4の電気的接触を確実に行うために、可動電極4の両端下面に突起15を設けた構造となっている。可動電極4に突起15を設けることで、面での接触で懸念される片当たりによる接触不良をなくし、良好な接触状態を実現することを可能にしている。
図19は本発明によるMEMSスイッチの第5の実施の形態をオン状態で示す斜視図である。図20は図19の第5の実施の形態をオフ状態で示す斜視図である。
図19および図20に示すように、可動電極4はビーム3の先端に取り付けられた片持ち梁(ビーム)構造の静電駆動MEMSスイッチ構造である。図19および図20において、第1の制御電極はビーム3の内部に形成するので図示しないが、第2の制御電極7はビーム3の直下に配置している。
また、ビーム3の先端部直下の基板1上には凸部11が配置されている。動作を簡単に説明すれば、第1の制御電極および第2の制御電極7に電圧を印加すると、ビーム3は第2の制御電極7に引き寄せられ、この第2の制御電極7に接触する。
その結果、可動電極4側のビーム3は凸部11を支点としてアンカー部6側のビーム3の方向に反り返ることになる。図20に示すように、可動電極4と伝送線路2間は大きく離すことができるので、十分なアイソレーションが確保できる。
図21は本発明によるMEMSスイッチの第6の実施の形態をオン状態で示す斜視図である。図22は図21の第6の実施の形態をオフ状態で示す斜視図である。
図21および図22に示すように、本実施の形態では静電駆動手段として両持梁(ビーム)構造を用いている。両持ち梁構造とすることで、可動電極4の保持が確実となり、安定したオン/オフ特性を実現できる。
図21および図22において、第1の制御電極はビーム3内部に形成してあるので見えず、第2の制御電極7は可動電極4直下に配置している。直流バイアス用配線は省略した。図中には、伝送線路2、アンカー部6および突起11が示してある。
上記説明では、静電型駆動方式による本発明のMEMSスイッチを説明したが、駆動方式としては、圧電素子を用いた圧電型駆動方式や、熱膨張を利用したバイメタル型駆動方式を用いても同様な効果を得ることができる。
図21および図22に示すように、本実施の形態では静電駆動手段として両持梁(ビーム)構造を用いている。両持ち梁構造とすることで、可動電極4の保持が確実となり、安定したオン/オフ特性を実現できる。
図21および図22において、第1の制御電極はビーム3内部に形成してあるので見えず、第2の制御電極7は可動電極4直下に配置している。直流バイアス用配線は省略した。図中には、伝送線路2、アンカー部6および突起11が示してある。
上記説明では、静電型駆動方式による本発明のMEMSスイッチを説明したが、駆動方式としては、圧電素子を用いた圧電型駆動方式や、熱膨張を利用したバイメタル型駆動方式を用いても同様な効果を得ることができる。
1 基板
2 伝送線路
3 駆動手段(ビーム(梁)、片持ち梁型、両持ち梁型)
4 可動電極
11 凸部
14 可動電極の底部の突起
2 伝送線路
3 駆動手段(ビーム(梁)、片持ち梁型、両持ち梁型)
4 可動電極
11 凸部
14 可動電極の底部の突起
Claims (10)
- 基板表面に互いの端部を対向させて離間配置した少なくとも2本の伝送線路と、各伝送線路の端部間を接続するために前記伝送線路上方に上下動可能に配置した可動電極と、この可動電極を変位させるための駆動手段と、を備えたMEMSスイッチにおいて、前記伝送線路の端部間の基板表面には、電気的に絶縁された凸部が形成され、前記可動電極の一部はその変位時において、前記凸部端部を支点として変形することを特徴とするMEMSスイッチ。
- 前記凸部の表面高さは、前記伝送線路の表面高さよりも低いことを特徴とする請求項1記載のMEMSスイッチ。
- 前記可動電極直下の前記基板表面の高さは前記伝送線路直下の前記基板の高さよりも低いことを特徴とする請求項1記載のMEMSスイッチ。
- 前記可動電極の底部に導電性部材による突起が形成されていることを特徴とする請求項1記載のMEMSスイッチ。
- 前記可動電極に取り付けた駆動手段は片持梁型であることを特徴とする請求項1記載のMEMSスイッチ。
- 前記可動電極に取り付けた駆動手段は片持ち梁であり、該可動電極が梁方向に変形することを特徴とする請求項1記載のMEMSスイッチ。
- 前記可動電極に取り付けた駆動手段は両持ち梁型であることを特徴とする請求項1記載のMEMSスイッチ。
- 前記駆動手段は静電力を利用した静電駆動方式であることを特徴とする請求項1記載のMEMSスイッチ。
- 前記駆動手段は圧電素子を利用した圧電型駆動方式であることを特徴とする請求項1記載のMEMSスイッチ。
- 前記駆動手段は熱膨張を利用したバイメタル型駆動方式であることを特徴とする請求項1記載のMEMSスイッチ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005203483A JP2007026726A (ja) | 2005-07-12 | 2005-07-12 | Memsスイッチ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005203483A JP2007026726A (ja) | 2005-07-12 | 2005-07-12 | Memsスイッチ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007026726A true JP2007026726A (ja) | 2007-02-01 |
Family
ID=37787264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005203483A Pending JP2007026726A (ja) | 2005-07-12 | 2005-07-12 | Memsスイッチ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007026726A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008221463A (ja) * | 2007-03-08 | 2008-09-25 | Brother Ind Ltd | 駆動装置及び液滴吐出ヘッド |
-
2005
- 2005-07-12 JP JP2005203483A patent/JP2007026726A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008221463A (ja) * | 2007-03-08 | 2008-09-25 | Brother Ind Ltd | 駆動装置及び液滴吐出ヘッド |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7605675B2 (en) | Electromechanical switch with partially rigidified electrode | |
JP4109182B2 (ja) | 高周波memsスイッチ | |
US6307452B1 (en) | Folded spring based micro electromechanical (MEM) RF switch | |
US7098577B2 (en) | Piezoelectric switch for tunable electronic components | |
US8570705B2 (en) | MEMS sprung cantilever tunable capacitors and methods | |
EP1560787B1 (en) | Micro electro-mechanical system device with piezoelectric thin film actuator | |
US7122942B2 (en) | Electrostatic RF MEMS switches | |
JP4186727B2 (ja) | スイッチ | |
KR100492004B1 (ko) | 미세전자기계적 시스템 기술을 이용한 고주파 소자 | |
EP2200063B1 (en) | Micro-electromechanical system switch | |
US20080174390A1 (en) | Micro-switching device and method of manufacturing the same | |
US20100001355A1 (en) | RF MEMS Switch | |
US20140183014A1 (en) | Electric equipment having movable portion, and its manufacture | |
KR100619110B1 (ko) | 미세전자기계적 스위치 및 그 제조 방법 | |
JP2015517195A (ja) | Rfマイクロ・エレクトロ・メカニカル・システム(mems)静電容量スイッチ | |
JP2007026726A (ja) | Memsスイッチ | |
JP2012191052A (ja) | Mems及びその製造方法 | |
JP2006269127A (ja) | マイクロマシンスイッチ及び電子機器 | |
JP4628275B2 (ja) | マイクロスイッチング素子およびマイクロスイッチング素子製造方法 | |
KR100554468B1 (ko) | 자기유지 중앙지지대를 갖는 미세 전자기계적 스위치 및그의 제조방법 | |
KR100485899B1 (ko) | 시소형 알에프 멤스 스위치 | |
TWI384518B (zh) | 低吸附電壓之射頻微機電開關及其製造方法 | |
JP4174761B2 (ja) | 機構デバイスの製造方法及び機構デバイス | |
KR100744543B1 (ko) | 미세전자기계적 구조 스위치 및 그 제조방법 | |
JP2004319215A (ja) | 静電駆動素子 |