[go: up one dir, main page]

JP2007024004A - Axial fan - Google Patents

Axial fan Download PDF

Info

Publication number
JP2007024004A
JP2007024004A JP2005211542A JP2005211542A JP2007024004A JP 2007024004 A JP2007024004 A JP 2007024004A JP 2005211542 A JP2005211542 A JP 2005211542A JP 2005211542 A JP2005211542 A JP 2005211542A JP 2007024004 A JP2007024004 A JP 2007024004A
Authority
JP
Japan
Prior art keywords
blade
fan
rear edge
outer peripheral
bent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005211542A
Other languages
Japanese (ja)
Other versions
JP5259919B2 (en
Inventor
Jiro Yamamoto
治郎 山本
Masahiro Shigemori
正宏 重森
Kouji Somahara
浩二 杣原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005211542A priority Critical patent/JP5259919B2/en
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to PCT/JP2006/314259 priority patent/WO2007010936A1/en
Priority to CN200680022040XA priority patent/CN101203680B/en
Priority to AU2006270875A priority patent/AU2006270875B2/en
Priority to US11/922,599 priority patent/US20080253897A1/en
Priority to KR1020077029958A priority patent/KR20080009762A/en
Priority to EP06768285A priority patent/EP1906028A4/en
Publication of JP2007024004A publication Critical patent/JP2007024004A/en
Application granted granted Critical
Publication of JP5259919B2 publication Critical patent/JP5259919B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/388Blades characterised by construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S416/00Fluid reaction surfaces, i.e. impellers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

【課題】 軸流ファンの羽根の外周に負圧面側への曲成部(反り返り部又は折り曲げ部)を設けると、翼端渦の抑制には有効であるが、ファンの昇圧仕事に大きく寄与する翼の反りが小さくなり、逆に昇圧量が低下する。これを解決する。
【解決手段】 ハブ14に設けられた複数枚の羽根13,13,13の外周を、それぞれ負圧面13e側に曲成してなる軸流ファンにおいて、吹出し風速が大きく、昇圧仕事を最も有効に行える上記羽根後縁部13bの半径方向部分を、上記羽根13の後縁部ハブ端と後縁部外周端とを結ぶ直線Lを超えて上記羽根13の回転方向と逆方向に突出する凸状部13fに形成した。
このように、羽根13の後縁部13bの吹出し風速が大きく、昇圧仕事を最も有効に行える半径方向部分を、反回転方向に凸状部として翼面積を拡大すると、外周部を曲成したことで反りが緩くなり、静圧上昇量が低下した分を補うことができる。
【選択図】 図3
PROBLEM TO BE SOLVED: To provide a bent portion (curved portion or bent portion) toward the suction surface side on the outer periphery of a blade of an axial fan, which is effective for suppressing blade tip vortex, but greatly contributes to the pressure boosting work of the fan. The warpage of the wing is reduced, and the pressure increase is reduced. Solve this.
SOLUTION: In an axial fan in which the outer circumferences of a plurality of blades 13, 13, 13 provided on a hub 14 are bent to the negative pressure surface 13e side, the blown-out air speed is large and the pressure boosting work is most effective. A convex shape projecting in a direction opposite to the rotation direction of the blade 13 beyond the straight line L that connects the rear edge hub end of the blade 13 and the outer peripheral end of the rear edge. Part 13f was formed.
In this way, when the blower wind speed of the trailing edge portion 13b of the blade 13 is large and the radial direction portion where the pressure increasing work can be most effectively performed is a convex portion in the counter-rotating direction, the blade area is enlarged, and the outer peripheral portion is bent. Therefore, the warpage becomes loose and the amount of increase in static pressure can be compensated.
[Selection] Figure 3

Description

本願発明は、プロペラファン等の軸流ファンの構造に関するものである。   The present invention relates to the structure of an axial fan such as a propeller fan.

例えばプロペラファン等の軸流ファンは、空気調和機用室外機ユニットの送風機として一般に使用されている。このようなプロペラファン等の軸流ファンを送風ユニットとして採用した空気調和機用室外機ユニットの構成の一例を、図6に示す。   For example, an axial fan such as a propeller fan is generally used as a blower for an outdoor unit for an air conditioner. An example of the configuration of an outdoor unit for an air conditioner that employs an axial fan such as a propeller fan as a blower unit is shown in FIG.

すなわち、同空気調和機用室外機ユニットは、同図6に示すように、軸流ファンの一例であるプロペラファン4と、該プロペラファン4の外周側に位置して該プロペラファン4の後方側吸込領域Xと前方側吹出領域Yとを仕切るベルマウス5と、上記プロペラファン4の吹出側(前方側)に位置するファンガード6とから送風ユニット3を構成し、該送風ユニット3を、箱型の本体ケーシング1内において背面空気吸込口10a側熱交換器2の空気流下流側に配設して構成されている。符号12は、上記プロペラファン4を回転駆動するファンモータであり、上記熱交換器2の下流側に位置して設けられた図示しないファンモータ取付ブラケットに支持固定されている。   That is, as shown in FIG. 6, the outdoor unit for the air conditioner includes a propeller fan 4 that is an example of an axial flow fan, and a rear side of the propeller fan 4 that is located on the outer peripheral side of the propeller fan 4. A blower unit 3 is constituted by a bell mouth 5 that partitions the suction area X and the front blowing area Y and a fan guard 6 located on the blowing side (front side) of the propeller fan 4. In the main body casing 1 of the mold, the rear air inlet 10a side heat exchanger 2 is disposed downstream of the air flow. Reference numeral 12 denotes a fan motor that rotationally drives the propeller fan 4, and is supported and fixed to a fan motor mounting bracket (not shown) that is provided on the downstream side of the heat exchanger 2.

そして、上記プロペラファン4は、上記ファンモータ12の駆動軸12aに連結固定され、例えば図7及び図8に拡大して示すように、当該プロペラファン4の回転中心となるハブ14と、該ハブ14の外周面に一体に設けられた複数枚の羽根13,13,13とから構成されている。   The propeller fan 4 is connected and fixed to the drive shaft 12a of the fan motor 12. For example, as shown in enlarged views in FIGS. 7 and 8, the hub 14 serving as the rotation center of the propeller fan 4 and the hub 14 is composed of a plurality of blades 13, 13, 13 provided integrally on the outer peripheral surface of 14.

このような構造の室外機ユニットの場合、上記プロペラファン4単体からの騒音に加え、上記プロペラファン4からの吹出気流がファンガード6等の下流側構造物に衝突して発生する騒音が原因となって、運転時の騒音が高くなるという不具合がある。   In the case of an outdoor unit having such a structure, in addition to the noise from the propeller fan 4 alone, the noise generated by the blown airflow from the propeller fan 4 colliding with a downstream structure such as the fan guard 6 is the cause. Therefore, there is a problem that the noise during driving becomes high.

そこで、以上のようにプロペラファン4等の軸流ファンを空気調和機用室外機ユニットの送風機として採用した時のトータルの騒音を低減するために、これまで例えばプロペラファン羽根部の翼面形状の最適化や空力性能に優れたエアフォイル翼化等の対策、検討が行われてきた。しかし、これらの静音化手法のみでは、次のような問題を解決することはできない。   Therefore, in order to reduce the total noise when the axial fan such as the propeller fan 4 is used as the blower of the outdoor unit for the air conditioner as described above, for example, the blade surface shape of the propeller fan blade has been used so far. Measures such as optimization and airfoil wing with excellent aerodynamic performance have been studied. However, these silent methods alone cannot solve the following problems.

すなわち、今例えば図7および図8のようなプロペラファン4の羽根構造において、該羽根13,13,13が回転すると、図8に示すように、該羽根13,13,13の外周側において、圧力の高い圧力面13d側から圧力の低い負圧面13e側へ回り込む空気流(イ)が発生し、該空気流(イ)によって、図示のような翼端渦(ロ)が形成される。そして、このような羽根13,13,13の外周部付近において吐き出し側から吸い込み側へ回り込む空気流(イ)によって生じる翼端渦(ロ)による吐き出し気流の乱れは、例えば図9および図10に示すように、下流側に行くに従って積層されて次第に成長増大するとともに、やがて羽根13,13,13の負圧面13eから離れ、隣接する羽根13,13,13の圧力面13d,13dや上記ベルマウス5の内周面、あるいは送風機下流側の構造物であるファンガード6などと干渉し、さらに騒音を増大させる。   That is, for example, in the blade structure of the propeller fan 4 as shown in FIGS. 7 and 8, when the blades 13, 13, 13 are rotated, as shown in FIG. 8, on the outer peripheral side of the blades 13, 13, 13, An air flow (A) that circulates from the high pressure surface 13d side to the low pressure negative surface 13e side is generated, and a blade tip vortex (B) as shown in the figure is formed by the air flow (A). Then, in the vicinity of the outer periphery of the blades 13, 13, 13, the turbulence of the discharge airflow due to the blade tip vortex (b) generated by the airflow (b) flowing from the discharge side to the suction side is shown in FIGS. 9 and 10, for example. As shown in the figure, the layers are stacked and gradually grow and increase toward the downstream side, and eventually, the pressure surfaces 13d and 13d of the adjacent blades 13, 13, and 13 and the bell mouth are separated from the negative pressure surface 13e of the blades 13, 13, and 13 5 interferes with the inner peripheral surface of 5 or the fan guard 6 which is a structure downstream of the blower, and further increases noise.

特に図10に示すように、上記羽根13,13,13の負圧面13eから離れた翼端渦(ロ)は、後続の羽根13,13,13と干渉することによって、さらに乱れが大きくなる結果、送風機下流側で、さらに一層大きな騒音を発生させることになる。   In particular, as shown in FIG. 10, the blade tip vortex (b) away from the suction surface 13 e of the blades 13, 13, 13 interferes with the subsequent blades 13, 13, 13, resulting in further disturbance. An even larger noise is generated on the downstream side of the blower.

このような現象は、例えば送風機軽量化(廉価化)のために、上記羽根13,13,13の翼弦長を短かくすると、当該羽根13,13,13本来の翼列効果が小さくなるため、例えば図11に示すように、より翼端渦(ロ)が負圧面13eから遠のきやすくなり、上記の場合よりも隣接する羽根13,13,13と早期に干渉するようになるので、騒音は一層増大しやすくなる。   Such a phenomenon is because, for example, if the blade chord length of the blades 13, 13, 13 is shortened in order to reduce the weight of the blower (cost reduction), the original cascade effect of the blades 13, 13, 13 is reduced. For example, as shown in FIG. 11, the blade tip vortex (b) is more likely to move away from the suction surface 13 e and interferes with the adjacent blades 13, 13, 13 earlier than in the above case. It becomes easier to increase.

これに関し、例えば図12および図13に示すように、羽根13,13,13の前縁13a側から後縁13b側に到る外周部13cの全体が負圧面側(吸い込み側)に曲成され(反り返り部又は折り曲げ部の設置により)、かつ該曲成部13cの半径方向の幅を前縁13a側から後縁13b側にかけて次第に大きくしたものがある(例えば特許文献1参照)。   In this regard, for example, as shown in FIGS. 12 and 13, the entire outer peripheral portion 13 c from the front edge 13 a side to the rear edge 13 b side of the blades 13, 13, 13 is bent to the suction surface side (suction side). There is one in which the radial width of the bent portion 13c is gradually increased from the front edge 13a side to the rear edge 13b side (for example, see Patent Document 1).

このような構成によると、例えば図13および図14に示すように、当該羽根13,13,13の圧力面13d側の気流(イ)が当該羽根13,13,13の外周端側凸円弧面状の圧力面13dに沿って滑らかに羽根13,13,13の外周端側凹円弧面状の負圧面13e内に回り込むようになり、渦径が小さく安定したものとなって、負圧面13e側における羽根13,13,13の外周方向への気流(ハ)の流れが当該翼端渦(ロ)と干渉しなくなる。   According to such a configuration, for example, as shown in FIGS. 13 and 14, the air flow (b) on the pressure surface 13 d side of the blades 13, 13, 13 is a convex arc surface on the outer peripheral end side of the blades 13, 13, 13. The outer surface of the blades 13, 13, 13 smoothly wraps around the negative pressure surface 13e on the outer circumferential end side along the pressure surface 13d, and the vortex diameter becomes small and stable. The flow of airflow (c) in the outer circumferential direction of the blades 13, 13, and 13 in the blade no longer interferes with the blade tip vortex (b).

そして、この作用は、上記のように羽根13,13,13の前縁13a付近から後縁13b付近にかけて、上記羽根外周端部13cの曲成部13cの幅が次第に大きくなっていると、羽根13の前縁13a側から後縁13b側にかけて、徐々に発達して渦径が拡大される翼端渦(ロ)の渦径に対応して、同前縁13a側から後縁13b側までスムーズに効果を発揮するようになり、また発生した翼端渦(ロ)が羽根負圧面13eから離れにくくなる。   Then, as described above, when the width of the bent portion 13c of the blade outer peripheral end portion 13c gradually increases from the vicinity of the front edge 13a to the vicinity of the rear edge 13b of the blades 13, 13, 13 as described above, 13 from the front edge 13a side to the rear edge 13b side, corresponding to the vortex diameter of the blade tip vortex (b) gradually developing and expanding the vortex diameter, smoothly from the front edge 13a side to the rear edge 13b side The blade tip vortex (b) generated is less likely to be separated from the blade suction surface 13e.

そのため、例えば羽根13,13,13軽量化のために翼弦長を短かくしたような場合にも、翼端渦(ロ)が隣接する羽根13,13,13間で相互に干渉しなくなり、送風機下流側での吐き出し気流の乱れも少なくなる。   Therefore, for example, when the blade chord length is shortened to reduce the weight of the blades 13, 13, 13, the blade tip vortex (b) does not interfere with each other between the adjacent blades 13, 13, 13, Disturbances in the air flow at the downstream side of the blower are also reduced.

その結果、空気調和機用室外機ユニットに組み込んだ時の騒音も有効に低減されることになる。   As a result, noise when incorporated in an outdoor unit for an air conditioner is also effectively reduced.

特許3629702号公報(明細書1−17頁、図1−27)Japanese Patent No. 3629702 (Specification, page 1-17, Fig. 1-27)

ところが、以上のように、羽根13の外周に負圧面側への曲成部(反り返り部又は折り曲げ部)13cを設けると、翼端渦(ロ)自体の抑制には有効であるが、送風性能には寄与しない。   However, as described above, when the bent portion (curved portion or bent portion) 13c toward the suction surface side is provided on the outer periphery of the blade 13, it is effective for suppressing the blade tip vortex (b) itself. Does not contribute.

寄与しないどころか、結果としてファンの昇圧仕事に大きく寄与する翼の反りが小さくなり、逆に昇圧量が低下する問題がある。   As a result, there is a problem that the blade warpage that greatly contributes to the boosting work of the fan is reduced, and the boosting amount is reduced.

したがって、上記曲成部13cの幅を必要以上に大きくすることはマイナスである。そこで、上述の従来例では、少なくとも後縁13b付近の最大幅部分で、当該羽根13の回転中心から半径方向外周端までの長さの例えば15%以下の範囲で、当該羽根外周端の前後長さに応じた変化幅とすることが好ましいとされている。   Therefore, it is a minus to increase the width of the bent portion 13c more than necessary. Therefore, in the above-described conventional example, the front-rear length of the outer peripheral edge of the blade within a range of, for example, 15% or less of the length from the rotation center of the blade 13 to the outer peripheral edge in the radial direction at least at the maximum width portion near the trailing edge 13b. It is said that it is preferable to set the change width according to the thickness.

しかし、そのような最適幅を選択したとしても一定量の昇圧量の低下は避けられない。   However, even if such an optimum width is selected, a certain amount of increase in the boost amount is unavoidable.

ところで、図12および図13のような従来のプロペラファンの羽根13の後縁部13bは、例えば図15に示すように、ハブ14側から外周端にかけて全体が円弧状に曲成され、ファン羽根車の回転中心軸O方向から見て、羽根13の後縁部ハブ端と後縁部外周端とを結んだ直線Lよりも、当該後縁部13bの半径方向中央部が、羽根13の回転方向と逆方向に浅く広く突出した凸状部に形成されている。   By the way, the rear edge portion 13b of the blade 13 of the conventional propeller fan as shown in FIGS. 12 and 13 is entirely bent in an arc shape from the hub 14 side to the outer peripheral end as shown in FIG. When viewed from the direction of the rotation center axis O of the vehicle, the radial center portion of the trailing edge portion 13b is rotated by the rotation of the blade 13 rather than the straight line L connecting the trailing edge hub end and the trailing edge outer peripheral end of the blade 13. It is formed in the convex part which protruded shallowly and widely in the reverse direction.

これによって、一応翼面積を広く確保している。   As a result, the wing area is secured widely.

しかし、種々検討して見ると、当該羽根13において、最も吹出し風速が大きくなるのは、例えば図15中にF−F′で示した外周寄りの翼弦線領域であり、この部分で有効に翼面積を拡大するのでなければ、余り昇圧量のアップには寄与しない。   However, from various examinations, the blade 13 has the largest blown wind speed, for example, in the chord line region near the outer circumference indicated by FF ′ in FIG. Unless the wing area is enlarged, it does not contribute to the increase of the pressure increase.

したがって、図15のように、後縁部13bのハブ14側から外周端に到る全体を、ファン羽根車の回転中心軸O方向から見て羽根13の後縁部ハブ端側と後縁部外周端側側とを結んだ直線Lを超える凸状としても、翼面積の拡大の割には有効に昇圧量がアップせず、逆に羽根車の軽量化、羽根材量の節減化に反することになる。   Accordingly, as shown in FIG. 15, the rear edge 13 b of the rear edge 13 b as viewed from the hub 14 side of the rear edge 13 b toward the outer peripheral end as viewed from the rotation center axis O direction of the fan impeller, Even if the convex shape exceeds the straight line L connecting the outer peripheral end side, the amount of pressure increase does not increase effectively for the expansion of the blade area, but contrary to the weight reduction of the impeller and the reduction of the amount of blade material. It will be.

本願発明は、このような問題を解決するためになされたもので、羽根の外周部を、その前縁側から後縁側にかけて負圧面側に曲成してなるプロペラファンにおいて、吹出し風速が大きく、昇圧仕事を最も有効に行える上記羽根後縁部の半径方向部分を、羽根の後縁部ハブ端側と後縁部外周端側を結んだ直線を超えて羽根の回転方向と逆方向に突出する凸状部に形成することによって、上述の羽根外周を曲成したことによる静圧上昇量の低下分を補うことができるようにした高性能の軸流ファンを提供することを目的とするものである。   The present invention has been made to solve such a problem. In a propeller fan in which the outer peripheral portion of a blade is bent to the suction surface side from the front edge side to the rear edge side, the blowout wind speed is large and the pressure is increased. Convex projecting in the direction opposite to the rotation direction of the blade beyond the straight line connecting the rear edge hub end side of the blade and the outer peripheral end side of the rear edge, the radial portion of the blade trailing edge that can work most effectively It is an object of the present invention to provide a high-performance axial fan that can compensate for the decrease in the amount of increase in static pressure caused by bending the outer periphery of the blade by forming the outer periphery of the blade. .

本願発明は、同目的を達成するために、次のような有効な課題解決手段を備えて構成されている。   In order to achieve the same object, the present invention comprises the following effective problem solving means.

(1) 請求項1の発明
この発明の軸流ファンは、ハブ14に設けられた複数枚の羽根13,13,13の外周を、それぞれ負圧面13e側に曲成してなる軸流ファンにおいて、吹出し風速が大きく、昇圧仕事を最も有効に行える上記羽根後縁部13bの半径方向部分を、上記羽根13の後縁部ハブ端と後縁部外周端とを結ぶ直線Lを超えて上記羽根13の回転方向と逆方向に突出する凸状部13fに形成したことを特徴としている。
(1) Invention of Claim 1 An axial fan according to the present invention is an axial fan in which the outer periphery of a plurality of blades 13, 13, 13 provided on the hub 14 is bent toward the negative pressure surface 13 e, respectively. The radial direction portion of the blade trailing edge portion 13b where the blowing air speed is large and pressure boosting work can be most effectively performed is beyond the straight line L connecting the trailing edge hub end and the trailing edge outer peripheral end of the blade 13 It is characterized in that it is formed in a convex portion 13f protruding in the direction opposite to the rotational direction of 13.

上記のように、複数枚の羽根13,13,13の外周部が、それぞれ負圧面13e側に曲成されていると、当該羽根13,13,13の圧力面13d側の気流(イ)が当該羽根13,13,13の外周端側凸円弧面状の圧力面13dに沿って滑らかに羽根13の外周端側凹円弧面状の負圧面13e内に回り込むようになる。   As described above, when the outer peripheral portions of the plurality of blades 13, 13, 13 are bent toward the negative pressure surface 13 e, the airflow (A) on the pressure surface 13 d side of the blades 13, 13, 13 is generated. The blades 13, 13, 13 smoothly wrap around the outer circumferential end side concave arcuate negative pressure surface 13 e along the outer circumferential end side convex arcuate pressure surface 13 d.

その結果、渦径が小さく安定したものとなって、負圧面13e側における羽根13の外周方向への気流(ハ)の流れが当該翼端渦(ロ)と干渉しなくなる。
As a result, the vortex diameter becomes small and stable, and the flow of airflow (c) toward the outer periphery of the blade 13 on the suction surface 13e side does not interfere with the blade tip vortex (b).

そして、その場合において、上記羽根13,13,13の後縁部13bの吹出し風速が大きく、昇圧仕事を最も有効に行える半径方向部分を、羽根の後縁部ハブ端側と後縁部外周端側を結んだ直線Lを超えて回転方向と逆方向に突出する凸状部に形成することによって翼面積を拡大すると、上述のように外周部を負圧面13e側に曲成したことで反りが緩くなり、静圧上昇量が低下した静圧上昇量の不足分を有効に補うことができる。   In that case, the radial direction portions where the blowing air speed of the trailing edge portion 13b of the blades 13, 13, 13 is large and the pressure increasing work can be most effectively performed are the trailing edge hub end side and the trailing edge outer peripheral end. When the blade area is enlarged by forming a convex portion that protrudes in the direction opposite to the rotational direction beyond the straight line L connecting the sides, the outer periphery is bent toward the suction surface 13e as described above, and warpage occurs. It is possible to effectively compensate for the shortage of the static pressure increase amount that has become loose and the static pressure increase amount has decreased.

その結果、送風音の低減と送風性能の高効率化とを実現することができる。   As a result, it is possible to reduce the blowing sound and increase the efficiency of the blowing performance.

(2) 請求項2の発明
この発明の軸流ファンは、上記請求項1の発明の構成において、負圧面側への曲成部13cは、羽根13の前縁13aから後縁13bまでの全体にかけて設けられていることを特徴としている。
(2) Invention of Claim 2 In the axial fan of this invention, in the configuration of the invention of Claim 1, the bent portion 13c to the suction surface side is the entire from the front edge 13a of the blade 13 to the rear edge 13b. It is characterized by the fact that it is provided over the distance.

このような構成によると、先ず羽根13の前縁13a側から後縁13b側に到る外周部の全体が負圧面13e側に曲成されているので、当該羽根13の圧力面13d側の気流(イ)が当該羽根13の外周端側凸面状の圧力面13dに沿って滑らかに羽根13の外周端側凹面状の負圧面13e内に回り込むようになり、渦径が小さく安定したものとなって、負圧面13e側における羽根13の外周方向への気流(ハ)の流れが当該翼端渦(ロ)と干渉しなくなる。   According to such a configuration, since the entire outer peripheral portion from the front edge 13a side to the rear edge 13b side of the blade 13 is first bent to the negative pressure surface 13e side, the air flow on the pressure surface 13d side of the blade 13 (A) smoothly wraps around the outer peripheral end side concave negative pressure surface 13e of the blade 13 along the outer peripheral end side convex pressure surface 13d of the blade 13, and the vortex diameter is small and stable. Thus, the flow of airflow (c) toward the outer periphery of the blade 13 on the suction surface 13e side does not interfere with the blade tip vortex (b).

そして、その場合において、上記羽根13,13,13の後縁部13bの吹出し風速が大きく、昇圧仕事を最も有効に行える半径方向部分を、羽根の後縁部ハブ端側と後縁部外周端側を結んだ直線Lを超えて回転方向と逆方向に突出する凸状部に形成することによって翼面積を拡大すると、上述のように外周部全体を負圧面13e側に曲成したことで反りが緩くなり、静圧上昇量が低下した静圧上昇量の不足分を有効に補うことができる。   In that case, the radial direction portions where the blowing air speed of the trailing edge portion 13b of the blades 13, 13, 13 is large and the pressure increasing work can be most effectively performed are the trailing edge hub end side and the trailing edge outer peripheral end. When the blade area is enlarged by forming a convex portion protruding in the direction opposite to the rotation direction beyond the straight line L connecting the sides, the entire outer peripheral portion is warped by bending toward the suction surface 13e as described above. It is possible to effectively compensate for the deficiency of the static pressure increase amount, which has been reduced and the static pressure increase amount has decreased.

その結果、送風音の低減と送風性能の高効率化とを実現することができる。   As a result, it is possible to reduce the blowing sound and increase the efficiency of the blowing performance.

(3) 請求項3の発明
この発明の軸流ファンは、上記請求項1の発明の構成において、負圧面側への曲成部13cは、羽根13の前縁13aから後縁13bに到る途中の所定位置から後縁13bにかけて設けられていることを特徴としている。
(3) Invention of Claim 3 In the axial fan of this invention, in the configuration of the invention of Claim 1, the bent portion 13c to the suction surface side reaches from the front edge 13a of the blade 13 to the rear edge 13b. It is characterized by being provided from a predetermined position in the middle to the rear edge 13b.

このような構成によると、先ず羽根13の前縁13a側から後縁13bに到る途中の所定位置から後縁13bまでの外周部が負圧面13e側に曲成されているので、上記請求項2の発明の場合と略同様に、当該羽根13の圧力面13d側の気流(イ)が当該羽根13の外周端側凸面状の圧力面13dに沿って滑らかに羽根13の外周端側凹面状の負圧面13e内に回り込むようになり、渦径が小さく安定したものとなって、負圧面13e側における羽根13の外周方向への気流(ハ)の流れが当該翼端渦(ロ)と干渉しなくなる。   According to such a configuration, the outer peripheral portion from the predetermined position on the way from the front edge 13a side to the rear edge 13b of the blade 13 to the rear edge 13b is bent toward the negative pressure surface 13e. As in the case of the invention of 2, the air flow (a) on the pressure surface 13d side of the blade 13 smoothly flows along the outer peripheral end-side convex pressure surface 13d of the blade 13 and the outer peripheral end-side concave shape of the blade 13. The vortex diameter becomes small and stable, and the flow of airflow (c) toward the outer periphery of the blade 13 on the negative pressure surface 13e side interferes with the blade tip vortex (b). No longer.

そして、その場合において、上記羽根13,13,13の後縁部13bの吹出し風速が大きく、昇圧仕事を最も有効に行える半径方向部分を、羽根の後縁部ハブ端側と後縁部外周端側を結んだ直線Lを超えて回転方向と逆方向に突出する凸状部に形成することによって翼面積を拡大すると、上述のように外周部の所定長さ部分を負圧面13e側に曲成したことで反りが緩くなり、静圧上昇量が低下した静圧上昇量の不足分を有効に補うことができる。   In that case, the radial direction portions where the blowing air speed of the trailing edge portion 13b of the blades 13, 13, 13 is large and the pressure increasing work can be most effectively performed are the trailing edge hub end side and the trailing edge outer peripheral end. When the blade area is enlarged by forming a convex portion protruding in the direction opposite to the rotation direction beyond the straight line L connecting the sides, the predetermined length portion of the outer peripheral portion is bent toward the negative pressure surface 13e as described above. As a result, the warpage is loosened, and the deficiency of the static pressure increase amount, which has decreased, can be effectively compensated.

その結果、送風音の低減と送風性能の高効率化とを実現することができる。   As a result, it is possible to reduce the blowing sound and increase the efficiency of the blowing performance.

(4) 請求項4の発明
この発明の軸流ファンでは、上記請求項1,2又は3の発明の構成において、負圧面側への曲成部13cの半径方向の幅は、後縁13b側ほど大きく形成されていることを特徴としている。
(4) Invention of Claim 4 In the axial flow fan of this invention, in the structure of the said invention of Claim 1, 2, or 3, the width of the radial direction of the bending part 13c to the suction surface side is the rear edge 13b side. It is characterized by being formed so large.

このように、曲成部13c部分の半径方向の幅が、後縁13b側にかけて大きくなるように形成されていると、羽根13,13,13の前縁13a側から後縁13b側にかけて、次第に積層増大されて渦径が拡大される翼端渦(ロ)の渦径に対応して、同前縁13a側から後縁13b側までスムーズに渦径を小さくする効果を発揮するようになり、また発生した翼端渦(ロ)が羽根負圧面13eから離れにくくなる。   Thus, when the radial width of the bent portion 13c is formed so as to increase toward the rear edge 13b, the blades 13, 13, and 13 gradually increase from the front edge 13a to the rear edge 13b. Corresponding to the vortex diameter of the blade tip vortex (b) whose lamination is increased and the vortex diameter is expanded, the effect of smoothly reducing the vortex diameter from the front edge 13a side to the rear edge 13b side comes to be exhibited. Further, the generated blade tip vortex (b) is unlikely to be separated from the blade suction surface 13e.

そのため、例えば羽根13を軽量化するために翼弦長を短かくしたような場合にも、翼端渦(ロ)が隣接する羽根13,13,13間で相互に干渉しなくなり、送風機下流側での吐き出し気流の乱れも少なくなる。   Therefore, for example, even when the chord length is shortened to reduce the weight of the blade 13, the blade tip vortex (b) does not interfere with each other between the adjacent blades 13, 13, and the downstream side of the blower The turbulence of the air flow at the air is also reduced.

これらの結果、同構成では、上述の各作用が効果的に組合わされて、空気調和機用室外機ユニットに組み込んだ時の騒音が、より有効に低減されることになる。   As a result, in the same configuration, the above-described operations are effectively combined, and noise when incorporated in the outdoor unit for an air conditioner is more effectively reduced.

(5) 請求項5の発明
この発明の軸流ファンでは、上記請求項1,2,3又は4の発明の構成において、羽根後縁部13bにおける凸状部13fの最も回転方向と逆方向に凸となる半径方向部分は、ファン羽根車の回転中心Oからの半径をRt、ハブ14の半径をRh、ファン羽根車の回転中心Oからの半径Rt上の任意の位置をRとした時に、(R−Rh)/(Rt−Rh)が0.65〜0.85となる部分としたことを特徴としている。
(5) Invention of Claim 5 In the axial fan of this invention, in the structure of the said invention of Claim 1, 2, 3 or 4, it is in the direction opposite to the rotation direction of the most convex part 13f in the blade | wing trailing edge part 13b. The convex radial direction portion has a radius from the rotation center O of the fan impeller as Rt, a radius of the hub 14 as Rh, and an arbitrary position on the radius Rt from the rotation center O of the fan impeller as R, It is characterized in that (R-Rh) / (Rt-Rh) is a portion that is 0.65 to 0.85.

本願発明者等の測定結果によると、最も吹出し風速が大きく、昇圧仕事を最も有効に行える半径方向部分は、ファン羽根車の回転中心Oからの半径をRt、ハブ14の半径をRh、ファン羽根車の回転中心Oからの半径Rt上の任意の位置をRとした時に、(R−Rh)/(Rt−Rh)で示される半径方向の位置が、0.65〜0.85であった。   According to the measurement results of the inventors of the present application, the radial direction portion where the blown-out air speed is the highest and the pressure boosting work can be most effectively performed is the radius from the rotation center O of the fan impeller Rt, the radius of the hub 14 Rh, and the fan blade When an arbitrary position on the radius Rt from the rotation center O of the vehicle is R, the radial position indicated by (R−Rh) / (Rt−Rh) is 0.65 to 0.85. .

したがって、該半径方向部分を、上述のように羽根の後縁部ハブ端側と後縁部外周端側を結んだ直線Lを超えて反回転方向に突出する凸状部13fとして翼面積を拡大する。   Accordingly, the blade area is expanded as the convex portion 13f protruding in the counter-rotating direction beyond the straight line L connecting the trailing edge hub end side and the trailing edge outer peripheral end side of the blade as described above. To do.

このようにすると、外周部の曲成で反りが緩くなり、静圧上昇量が低下した静圧上昇量の不足分を最も効果的に補うことができる。   If it does in this way, curvature will become loose by the curve of an outer peripheral part, and the shortage of the amount of static pressure rise which the amount of static pressure rise fell can be compensated most effectively.

以上の結果、本願発明の軸流ファンによると、羽根外周に曲成部を設けることにより、翼端渦を負圧面近傍に安定的に発生させるとともに、羽根吹出し風速が最大となる後縁部分に反回転方向へ突出する凸状部を設けて有効に翼面積を拡大することにより、同曲成部が存在しても静圧上昇量を低下させることなく、騒音の低減が可能となるようにしている。   As a result, according to the axial fan of the present invention, by providing a curved portion on the outer periphery of the blade, the blade tip vortex can be stably generated near the suction surface, and at the trailing edge portion where the blade blowing wind speed becomes maximum. By providing a convex part that protrudes in the counter-rotating direction and effectively expanding the blade area, noise can be reduced without reducing the amount of increase in static pressure even if the curved part exists. ing.

その結果、送風音の低減と送風性能の高効率化とを両立させることができる。   As a result, it is possible to achieve both reduction of blowing sound and high efficiency of blowing performance.

また、必要以上に翼面積を拡大させなくて済むので、無駄な羽根材料の増大を招かなくて済む。   Further, since it is not necessary to enlarge the blade area more than necessary, it is not necessary to increase wasteful blade material.

その結果、ファン羽根車の軽量化(低コスト化)の要求にも適したものとなる。   As a result, the fan impeller is also suitable for the demand for weight reduction (cost reduction).

図1〜図4は、本願発明の最良の実施の形態に係るプロペラファン等の軸流ファンの構成および作用を示している。   1 to 4 show the configuration and operation of an axial fan such as a propeller fan according to the best embodiment of the present invention.

先ず図1〜図3は、同軸流ファンとしてプロペラファン4を採用した場合の羽根車の羽根の基本的な構成を、また、図4は、同羽根の後縁部の半径方向の位置と吹出風速との関係を、それぞれ示している。   First, FIGS. 1 to 3 show the basic configuration of a blade of an impeller when the propeller fan 4 is adopted as a coaxial flow fan, and FIG. 4 shows the radial position and blowing of the trailing edge of the blade. The relationship with wind speed is shown respectively.

(ファン羽根車部の基本構成)
先ず図1〜図3において、符号14は当該プロペラファン4の回転中心となる合成樹脂製のハブであり、該ハブ14の外周面には複数枚(3枚)の羽根13,13,13が一体に形成されている。
(Basic configuration of fan impeller)
First, in FIGS. 1 to 3, reference numeral 14 denotes a synthetic resin hub that serves as a rotation center of the propeller fan 4, and a plurality of (three) blades 13, 13, 13 are provided on the outer peripheral surface of the hub 14. It is integrally formed.

該羽根13,13,13は、その前縁13aの外周端と後縁13bの外周端が、それぞれハブ14側の内周端よりも当該羽根13の回転方向前方に位置しているとともに、その外周端部分は図示のように前縁13a付近から後縁13b付近にかけて、例えば折り曲げるか又は反り返らせることにより所定の幅で吸い込み側に曲成されており、該曲成部13cの半径方向の幅は、上記前縁13a側から後縁13b側にかけて次第に所定の比率で拡大されたものとなっている。   The blades 13, 13, 13 are such that the outer peripheral end of the front edge 13 a and the outer peripheral end of the rear edge 13 b are positioned in front of the inner peripheral end on the hub 14 side in the rotational direction of the blade 13, respectively. As shown in the figure, the outer peripheral end portion is bent toward the suction side with a predetermined width, for example, by being bent or warped from the vicinity of the front edge 13a to the vicinity of the rear edge 13b. The width is gradually enlarged from the front edge 13a side to the rear edge 13b side at a predetermined ratio.

この曲成部13cの半径方向の幅は、当該羽根13の送風性能を低下させることなく、有効に前述の翼端渦(ロ)を抑制するためには、例えば上記後縁13b部における最大幅部分が、当該プロペラファン4の羽根車の回転中心(すなわち、ハブ14の中心)から上記羽根13の外周端までの半径方向の長さの例えば15%以下の寸法であることが望ましい。   The radial width of the bent portion 13c is, for example, the maximum width at the trailing edge 13b portion in order to effectively suppress the blade tip vortex (b) without reducing the air blowing performance of the blade 13. It is desirable that the portion has a dimension of, for example, 15% or less of the radial length from the rotation center of the impeller of the propeller fan 4 (that is, the center of the hub 14) to the outer peripheral end of the blade 13.

また上記羽根13,13,13の後縁部13bは、ファンの回転中心軸O方向から見て、上記羽根13の後縁部13bのハブ端と同後縁部13bの外周端とを結んだ直線L(図3の破線参照)に対して、吹出し風速が大きく、昇圧仕事を最も有効に行える半径方向部分(例えば図3中のファン羽根車の直径φ1〜φ5の外周線で示される領域)を、上記直線Lを超えて上記羽根13の回転方向Mと逆方向に突出する凸状部13fに形成している。 Further, the rear edge portion 13b of the blades 13, 13, 13 connects the hub end of the rear edge portion 13b of the blade 13 and the outer peripheral end of the rear edge portion 13b when viewed from the direction of the rotation center axis O of the fan. With respect to the straight line L (refer to the broken line in FIG. 3), the blowout wind speed is large, and the radial portion (for example, the outer peripheral line of the diameter φ 1 to φ 5 of the fan impeller in FIG. Region) is formed in a convex portion 13f that protrudes in the direction opposite to the rotation direction M of the blade 13 beyond the straight line L.

そして、該羽根13の後縁部13bにおける凸状部13fの最も回転方向Mと逆方向に凸となる半径方向部分(図3中の最大凸量部a)は、ファン羽根車の回転中心Oからの半径をRt、ハブ14の半径をRh、ファン羽根車の回転中心Oからの半径Rt上の任意の位置をRとした時に、(R−Rh)/(Rt−Rh)が、0.65〜0.85となる部分としている。   And the radial direction part (maximum convex amount part a in FIG. 3) which protrudes in the reverse direction to the rotational direction M of the convex part 13f in the trailing edge part 13b of the blade 13 is the rotational center O of the fan impeller. (R−Rh) / (Rt−Rh) is 0, where Rt is the radius from Rt, Rh is the radius of the hub 14, and R is an arbitrary position on the radius Rt from the rotation center O of the fan impeller. The portion is 65 to 0.85.

今、例えば図7および図8のような羽根13の外周に曲成部13cのない従来一般のプロペラファンの羽根と図12、図13および図1〜図3のような外周に曲成部13cを設けたプロペラファンの羽根の各々について、上記(R−Rh)/(Rt−Rh)の値0〜1.0間の羽根吹出風速を測定して見ると、図4のようになった。   Now, for example, a conventional propeller fan blade having no bent portion 13c on the outer periphery of the blade 13 as shown in FIGS. 7 and 8, and a bent portion 13c on the outer periphery as shown in FIGS. For each of the blades of the propeller fan provided with the blade speed, the blade blowing air speed between the values (R−Rh) / (Rt−Rh) of 0 to 1.0 was measured and looked as shown in FIG.

この測定結果から見ると、羽根外周に曲成部13cがあるか否かに拘わらず、羽根後縁部13bの最大風速を生じる半径方向の領域は、(R−Rh)/(Rt−Rh)≒0.65〜0.85の領域である。   From this measurement result, regardless of whether or not the bent portion 13c is present on the outer periphery of the blade, the radial region in which the maximum wind speed of the blade trailing edge portion 13b is generated is (R−Rh) / (Rt−Rh). The region is approximately 0.65 to 0.85.

そして、本実施の形態の場合、上記曲成部13fは、(R−Rh)/(Rt−Rh)≒0.9〜1.0の範囲(図3のファン羽根車直径φ5とφ6の外周線間)に設けられている。 In the case of the present embodiment, the bent portion 13f has a range of (R−Rh) / (Rt−Rh) ≈0.9 to 1.0 (fan impeller diameters φ 5 and φ 6 in FIG. 3). Between the outer peripheral lines).

したがって、上記凸状部13fは、ファン羽根車の回転中心Oからの半径をRt、ハブ14の半径をRh、ファン羽根車の回転中心Oからの半径Rt上の任意の位置をRとした時に、(R−Rh)/(Rt−Rh)が、0.65〜0.85となる部分に設けることが好ましい。   Therefore, the convex portion 13f has a radius from the rotation center O of the fan impeller as Rt, a radius of the hub 14 as Rh, and an arbitrary position on the radius Rt from the rotation center O of the fan impeller as R. , (R-Rh) / (Rt-Rh) is preferably provided in a portion where 0.65 to 0.85.

そして、同凸状部13fの上記直線Lを超えた反回転方向への突出量aが最大となる頂部位置は、上記曲成部13cとの境界(図3のファン羽根車直径φ5の外周線)よりも半径方向内側であって、羽根13の吹出風速が最も大きくなる部分、例えば(R−Rh)/(Rt−Rh)≒0.75付近が適している(図4参照)。 And the top position where the protrusion amount a in the counter-rotating direction beyond the straight line L of the convex portion 13f is the maximum is the boundary with the bent portion 13c (the outer periphery of the fan impeller diameter φ 5 in FIG. 3). The portion that is radially inward of the line 13 and has the highest blown wind speed of the blade 13, for example, the vicinity of (R−Rh) / (Rt−Rh) ≈0.75 is suitable (see FIG. 4).

これに対し、図15の従来例では、最も反回転方向側に凸となる半径方向位置を(R−Rh)/(Rt−Rh)≒0.5付近としているが、このような場合、拡大した翼部の吹出し風速が小さいため、凸状部を設けたことによる静圧上昇量が小さく、折角の翼面積の増加が有効に機能しない。   On the other hand, in the conventional example of FIG. 15, the radial position that is most convex in the counter-rotation direction side is set to (R−Rh) / (Rt−Rh) ≈0.5. Since the blowing air speed of the wing portion is small, the increase in static pressure due to the provision of the convex portion is small, and the increase in the wing area at the corner does not function effectively.

(羽根車の羽根部の作用)
以上のように、この発明の最良の実施の形態におけるプロペラファン4は、ハブ14に設けられた複数枚の羽根13,13,13の外周を前縁13a側から後縁13b側にかけて負圧面13e側に曲成してなる軸流ファンにおいて、吹出し風速が大きく、昇圧仕事を最も有効に行える上記羽根後縁部13bの半径方向部分を、上記羽根13の後縁部ハブ端と後縁部外周端とを結ぶ直線Lを超えて上記羽根13の回転方向と逆方向に突出する凸状部13fに形成している。
(Operation of impeller blades)
As described above, the propeller fan 4 according to the best embodiment of the present invention has the suction surface 13e extending from the front edge 13a side to the rear edge 13b side around the outer periphery of the plurality of blades 13, 13, 13 provided on the hub 14. In the axial fan that is bent to the side, the radial direction portion of the blade trailing edge portion 13b that has the highest blown-out air speed and can perform the pressure increasing work most effectively is defined as the rear edge hub end and the rear edge outer periphery of the blade 13 It is formed in a convex portion 13f that protrudes in the direction opposite to the rotation direction of the blade 13 beyond the straight line L connecting the ends.

このように羽根13の前縁13a側から後縁13b側に到る外周部が負圧面13e側に曲成されていると、図13に示すように、当該羽根13の圧力面13d側の気流(イ)が当該羽根13の外周端側凸面状の圧力面13dに沿って滑らかに羽根13の外周端側凹面状の負圧面13e内に回り込むようになり、渦径が小さく安定したものとなって、負圧面13e側における羽根13の外周方向への気流(ハ)の流れが当該翼端渦(ロ)と干渉しなくなる。   When the outer peripheral portion from the front edge 13a side to the rear edge 13b side of the blade 13 is bent toward the negative pressure surface 13e in this way, the air flow on the pressure surface 13d side of the blade 13 as shown in FIG. (A) smoothly wraps around the outer peripheral end side concave negative pressure surface 13e of the blade 13 along the outer peripheral end side convex pressure surface 13d of the blade 13, and the vortex diameter is small and stable. Thus, the flow of airflow (c) toward the outer periphery of the blade 13 on the suction surface 13e side does not interfere with the blade tip vortex (b).

そして、その場合において、図1〜図3に示すように羽根13の後縁部13bの吹出し風速が大きく、昇圧仕事を最も有効に行える半径方向部分を、上記羽根13の後縁部ハブ端と後縁部外周端とを結ぶ直線Lを超えて上記羽根13の回転方向と逆方向に突出する凸状部13fとして翼面積を拡大するようにすると、上述のように外周部を負圧面13e側に曲成したことで反りが緩くなり、静圧上昇量が低下した静圧上昇量の不足分を有効に補うことができる。   In this case, as shown in FIGS. 1 to 3, the radial direction portion where the blowing air speed of the trailing edge portion 13 b of the blade 13 is large and the pressure increasing work can be most effectively performed is the rear edge portion hub end of the blade 13. When the blade area is enlarged as a convex portion 13f that protrudes in a direction opposite to the rotation direction of the blade 13 beyond the straight line L that connects the outer peripheral end of the trailing edge portion, the outer peripheral portion is arranged on the suction surface 13e side as described above. As a result of the bending, the warp is loosened, and the deficiency of the static pressure increase amount that the static pressure increase amount is reduced can be effectively compensated.

その結果、送風音の低減と送風性能の高効率化とを実現することができる。   As a result, it is possible to reduce the blowing sound and increase the efficiency of the blowing performance.

しかも、その場合において、上記羽根外周の前縁13a側から後縁13b側への曲成部13cの半径方向の幅は、後縁13b側ほど大きく形成されている。   Moreover, in that case, the radial width of the bent portion 13c from the front edge 13a side to the rear edge 13b side of the outer periphery of the blade is formed to be larger toward the rear edge 13b side.

このように、曲成部13c部の半径方向の幅が、前縁13a付近から後縁13b側にかけて大きくなるように形成されていると、羽根13の前縁13a側から後縁13b側にかけて、次第に積層増大されて、渦径が拡大される翼端渦(ロ)の渦径に対応して、同前縁13a側から後縁13b側までスムーズに渦径縮小効果を発揮するようになり、また発生した翼端渦(ロ)が羽根負圧面13eから離れにくくなる。   In this way, when the radial width of the bent portion 13c is formed so as to increase from the vicinity of the front edge 13a to the rear edge 13b side, from the front edge 13a side to the rear edge 13b side of the blade 13, Corresponding to the vortex diameter of the tip vortex (b) that is gradually increased in lamination and expanded, the vortex diameter reduction effect is smoothly exhibited from the front edge 13a side to the rear edge 13b side, Further, the generated blade tip vortex (b) is unlikely to be separated from the blade suction surface 13e.

そのため、例えば羽根13を軽量化するために翼弦長を短かくしたような場合にも、翼端渦(ロ)が隣接する羽根13,13,13間で相互に干渉しなくなり、送風機下流側での吐き出し気流の乱れも少なくなる。   Therefore, for example, even when the chord length is shortened to reduce the weight of the blade 13, the blade tip vortex (b) does not interfere with each other between the adjacent blades 13, 13, and the downstream side of the blower The turbulence of the air flow at the air is also reduced.

これらの結果、同構成では、上述の各作用が効果的に組合わされて、空気調和機用室外機ユニットに組み込んだ時の騒音が、より有効に低減されることになる。   As a result, in the same configuration, the above-described operations are effectively combined, and noise when incorporated in the outdoor unit for an air conditioner is more effectively reduced.

さらに、この実施の形態の軸流ファンでは、上記羽根13の後縁部13bにおける凸状部13fの羽根回転方向と逆方向に最も凸となる半径方向部分を、図3に示すように、ファン羽根車の回転中心Oからの半径をRt、ハブ14の半径をRh、ファン羽根車の回転中心Oからの半径Rt上の任意の位置をRとした時に、(R−Rh)/(Rt−Rh)が0.65〜0.85となる部分としている。   Furthermore, in the axial fan of this embodiment, the radial direction portion that is most convex in the direction opposite to the blade rotation direction of the convex portion 13f of the rear edge portion 13b of the blade 13 is shown in FIG. When the radius from the rotation center O of the impeller is Rt, the radius of the hub 14 is Rh, and an arbitrary position on the radius Rt from the rotation center O of the fan impeller is R, (R−Rh) / (Rt− Rh) is set to be 0.65 to 0.85.

上述のようなプロペラファン4の羽根13,13,13において、吹出し風速が大きく、昇圧仕事を最も有効に行える半径方向部分は、上述のように(R−Rh)/(Rt−Rh)が0.65〜0.85となる部分である(図4参照)。したがって、該部分を反回転方向に凸状に拡大して効果的に翼面積を拡大する。   In the blades 13, 13, 13 of the propeller fan 4 as described above, the radial direction portion where the blowing wind speed is large and the pressure increasing work can be most effectively performed is (R−Rh) / (Rt−Rh) being 0 as described above. .65 to 0.85 (see FIG. 4). Therefore, the area of the blade is effectively enlarged by enlarging the portion in a convex shape in the counter-rotating direction.

これにより、外周部の曲成で反りが緩くなり、静圧上昇量が低下した静圧上昇量の不足分有効に補うことができる。   As a result, the warpage is loosened by the bending of the outer peripheral portion, and it is possible to effectively compensate for the shortage of the static pressure increase amount in which the static pressure increase amount has decreased.

以上の結果、この実施の形態の軸流ファンによると、羽根外周に曲成部を設けることにより、翼端渦を負圧面近傍に安定的に発生させるとともに、羽根吹出し風速が最大となる後縁部分に反回転方向への凸部を設けて翼面積を拡大することにより、同曲成部が存在しても静圧上昇量を低下させることなく、騒音低減が可能となるようにしている。   As a result of the above, according to the axial fan of this embodiment, by providing the curved portion on the outer periphery of the blade, the blade tip vortex is stably generated near the suction surface, and the trailing edge that maximizes the blade blowing air speed is obtained. By providing a convex portion in the counter-rotating direction at the portion to increase the blade area, noise can be reduced without reducing the amount of increase in static pressure even if the bent portion exists.

その結果、送風音の低減と送風性能の高効率化とを両立させることができる。   As a result, it is possible to achieve both reduction of blowing sound and high efficiency of blowing performance.

また、必要以上に翼面積を拡大させなくて済むので、無駄な羽根材料の増大を招かなくて済む。   Further, since it is not necessary to enlarge the blade area more than necessary, it is not necessary to increase wasteful blade material.

その結果、ファン羽根車の軽量化(低コスト化)の要求にも適したものとなる。   As a result, the fan impeller is also suitable for the demand for weight reduction (cost reduction).

(変形例)
次に図5は、上記本願発明の最良の実施の形態の変形例に係るプロペラファンの羽根車の羽根部の構成を示している。
(Modification)
Next, FIG. 5 shows a configuration of a blade portion of an impeller of a propeller fan according to a modification of the best embodiment of the present invention.

この例では、上記最良の実施の形態において羽根13の外周の前縁13aから後縁13bまでの全体に亘って設けられる負圧面側への曲成部13cを、羽根外周部の全体ではなく、同羽根外周の前縁13aから後縁13bに到る途中の所定位置(例えば前縁13a側から25%程度後縁13b側に寄った位置)から後縁13bまでの範囲にかけて設けたことを特徴としている。   In this example, the bent portion 13c to the suction surface side provided over the whole of the outer periphery of the blade 13 from the front edge 13a to the rear edge 13b in the best embodiment is not the entire blade outer peripheral portion. It is provided over a range from a predetermined position (for example, a position approaching the rear edge 13b side by about 25% from the front edge 13a side) to the rear edge 13b on the way from the front edge 13a to the rear edge 13b on the outer periphery of the blade. It is said.

このような構成においても、先ず羽根13外周の前縁13a側から後縁13b側に到る途中の所定位置部分から後縁部13b部分までが、同様に負圧面13e側に曲成されているので、やはり当該羽根13の圧力面13d側の気流(イ)が、図13に示すように当該羽根13の外周端側凸面状の圧力面13dに沿って滑らかに羽根13の外周端側凹面状の負圧面13e内に回り込むようになり、渦径が小さく安定したものとなる。   Also in such a configuration, first, a portion from a predetermined position in the middle of the outer periphery of the blade 13 from the front edge 13a side to the rear edge 13b side to the rear edge portion 13b is similarly bent to the negative pressure surface 13e side. Therefore, the air flow (b) on the pressure surface 13d side of the blade 13 is also smoothly formed on the outer peripheral end side concave surface of the blade 13 along the outer peripheral end convex pressure surface 13d of the blade 13 as shown in FIG. , And the vortex diameter is small and stable.

その結果、負圧面13e側における羽根13の外周方向への気流(ハ)の流れが当該翼端渦(ロ)と干渉しなくなる。   As a result, the flow of airflow (c) toward the outer periphery of the blade 13 on the suction surface 13e side does not interfere with the blade tip vortex (b).

そして、その場合において、図示のように、上記羽根13,13,13の後縁部13bの吹出し風速が大きく、昇圧仕事を最も有効に行える半径方向部分を、羽根の後縁部ハブ端側と後縁部外周端側を結んだ直線Lを超えて回転方向と逆方向に突出する凸状部に形成することによって翼面積を拡大すると、上述のように外周部を負圧面13e側に曲成したことで反りが緩くなり、静圧上昇量が低下した静圧上昇量の不足分を有効に補うことができる。   In that case, as shown in the figure, the radial direction portion where the blowing air speed of the trailing edge portion 13b of the blades 13, 13, 13 is large and the pressure increasing work can be most effectively performed is the blade trailing edge hub end side. When the blade area is enlarged by forming a convex portion that protrudes in the direction opposite to the rotation direction beyond the straight line L connecting the outer peripheral end side of the rear edge portion, the outer peripheral portion is bent toward the negative pressure surface 13e as described above. As a result, the warpage is loosened, and the deficiency of the static pressure increase amount, which has decreased, can be effectively compensated.

その結果、送風音の低減と送風性能の高効率化とを実現することができる。   As a result, it is possible to reduce the blowing sound and increase the efficiency of the blowing performance.

(羽根の種類について)
以上の実施の形態および変形例では、その何れにあっても薄翼構造の羽根の場合について説明した。
(About types of feathers)
In the above embodiments and modifications, the case of a blade having a thin blade structure has been described.

しかし、この出願の発明の適用対象は、そのような薄翼構造のものの場合に限らず、例えば厚肉翼一般、また厚肉翼であって、その空力性能を一層向上させた各種エアフォイル翼などの場合にも全く同様に採用できるものであることは言うまでもない。   However, the application object of the invention of this application is not limited to the case of such a thin blade structure, for example, a general thick blade and a thick blade, and various airfoil blades having further improved aerodynamic performance. Needless to say, it can be adopted in the same manner.

本願発明の最良の実施の形態に係るプロペラファンの背面図である。It is a rear view of the propeller fan which concerns on the best embodiment of this invention. 同プロペラファンの羽根車部の斜視図である。It is a perspective view of the impeller part of the same propeller fan. 同プロペラファンの羽根車部の背面図である。It is a rear view of the impeller part of the same propeller fan. 同プロペラファンの羽根車部の羽根の後縁部の半径方向の位置と吹出風速との関係を示すグラフである。It is a graph which shows the relationship between the position of the radial direction of the rear edge part of the blade | wing of the impeller part of the same propeller fan, and the blowing wind speed. 同本願発明の最良の実施の形態の変形例に係る羽根の要部の形状を示す平面図である。It is a top view which shows the shape of the principal part of the blade | wing which concerns on the modification of the best embodiment of this invention. 従来一般のプロペラファンを採用した空気調和機用室外機ユニットの構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the outdoor unit for air conditioners which employ | adopted the conventional general propeller fan. 同室外機ユニットで採用されている従来一般のプロペラファンの羽根車の背面図である。It is a rear view of the impeller of the conventional general propeller fan employ | adopted with the outdoor unit. 同従来一般のプロペラファンの羽根部の断面構造とその要部の作用(問題点)を示す断面図である。It is sectional drawing which shows the cross-section of the blade | wing part of the conventional general propeller fan, and the effect | action (problem) of the principal part. 同従来一般のプロペラファンによる室外機ユニットの構造との関係における問題点(翼端渦発生メカニズム)を示す概略説明図である。It is a schematic explanatory drawing which shows the problem (blade tip vortex generating mechanism) in the relationship with the structure of the outdoor unit by the conventional general propeller fan. 同従来一般のプロペラファンの羽根の隣接翼間の翼端渦干渉現象を示す概略説明図である。It is a schematic explanatory drawing which shows the blade edge vortex interference phenomenon between the adjacent blades of the blade | wing of the same general propeller fan. 同従来一般のプロペラファンの羽根の翼弦長を短かくした場合における隣接翼間の翼端渦干渉状態を示す概略説明図である。It is a schematic explanatory drawing which shows the wing tip vortex interference state between adjacent blades in the case where the chord length of the blade of the conventional general propeller fan is shortened. 図8〜図11の問題点に対処した従来例に係るプロペラファンの羽根の基本形状を示す斜視図である。It is a perspective view which shows the basic shape of the blade | wing of the propeller fan which concerns on the conventional example which addressed the problem of FIGS. 8-11. 同従来例のプロペラファンの羽根の翼端渦抑制作用を示す断面図である。It is sectional drawing which shows the blade tip vortex suppression effect | action of the blade | wing of the propeller fan of the prior art example. 同従来例のプロペラファンの羽根の隣接翼間の作用を示す説明図である。It is explanatory drawing which shows the effect | action between the adjacent blades of the blade | wing of the propeller fan of the prior art example. 同従来例のプロペラファンの羽根の新たな問題点を示す説明図である。It is explanatory drawing which shows the new problem of the blade | wing of the propeller fan of the prior art example.

符号の説明Explanation of symbols

1は本体ケーシング、2は熱交換器、3は送風ユニット、4はプロペラファン、5はベルマウス、6はファンガード、8は熱交換器、13は羽根、13aは前縁、13bは後縁、13cは曲成部、13dは圧力面、13eは負圧面、13fは羽根後縁13bの凸状部、14はハブである。   1 is a main body casing, 2 is a heat exchanger, 3 is a blower unit, 4 is a propeller fan, 5 is a bell mouth, 6 is a fan guard, 8 is a heat exchanger, 13 is a blade, 13a is a front edge, 13b is a rear edge , 13c are bent portions, 13d is a pressure surface, 13e is a negative pressure surface, 13f is a convex portion of the blade trailing edge 13b, and 14 is a hub.

Claims (5)

ハブ(14)に設けられた複数枚の羽根(13),(13),(13)の外周を、それぞれ負圧面(13e)側に曲成してなる軸流ファンにおいて、吹出し風速が大きく、昇圧仕事を最も有効に行える上記羽根後縁部(13b)の半径方向部分を、上記羽根(13)の後縁部ハブ端と後縁部外周端とを結ぶ直線Lを超えて上記羽根(13)の回転方向と逆方向に突出する凸状部(13f)に形成したことを特徴とする軸流ファン。   In the axial flow fan in which the outer periphery of the plurality of blades (13), (13), (13) provided on the hub (14) is bent to the negative pressure surface (13e) side, the blowout wind speed is large, The radial direction portion of the blade trailing edge (13b) capable of performing pressure increasing work most effectively exceeds the straight line L connecting the trailing edge hub end and the trailing edge outer peripheral end of the blade (13). The axial flow fan is characterized in that it is formed in a convex portion (13f) projecting in the direction opposite to the rotation direction. 負圧面側への曲成部(13c)は、羽根(13)の前縁(13a)から後縁(13b)までの全体にかけて設けられていることを特徴とする請求項1記載の軸流ファン。   The axial flow fan according to claim 1, wherein the bent portion (13c) toward the suction surface side is provided from the front edge (13a) to the rear edge (13b) of the blade (13). . 負圧面側への曲成部(13c)は、羽根(13)の前縁(13a)から後縁(13b)に到る途中の所定位置から後縁(13b)にかけて設けられていることを特徴とする請求項1記載の軸流ファン。   The bent portion (13c) to the suction surface side is provided from a predetermined position on the way from the front edge (13a) to the rear edge (13b) of the blade (13) to the rear edge (13b). The axial fan according to claim 1. 負圧面側への曲成部(13c)の半径方向の幅は、後縁(13b)側ほど大きく形成されていることを特徴とする請求項1,2又は3記載の軸流ファン。   The axial fan according to claim 1, 2 or 3, wherein a width in the radial direction of the bent portion (13c) toward the suction surface is formed larger toward the rear edge (13b). 羽根後縁部(13b)における凸状部(13f)の最も回転方向と逆方向に凸となる半径方向部分は、ファン羽根車の回転中心Oからの半径をRt、ハブ(14)の半径をRh、ファン羽根車の回転中心Oからの半径Rt上の任意の位置をRとした時に、(R−Rh)/(Rt−Rh)が0.65〜0.85となる部分としたことを特徴とする請求項1,2,3又は4記載の軸流ファン。   The radial portion of the blade trailing edge (13b) that protrudes most in the direction opposite to the rotational direction of the convex portion (13f) has a radius from the rotation center O of the fan impeller as Rt and a radius of the hub (14). Rh, when R is an arbitrary position on the radius Rt from the rotation center O of the fan impeller, R (R-Rh) / (Rt-Rh) is a portion where 0.65 to 0.85. The axial fan according to claim 1, 2, 3, or 4, characterized by the above.
JP2005211542A 2005-07-21 2005-07-21 Axial fan Expired - Fee Related JP5259919B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005211542A JP5259919B2 (en) 2005-07-21 2005-07-21 Axial fan
CN200680022040XA CN101203680B (en) 2005-07-21 2006-07-19 axial fan
AU2006270875A AU2006270875B2 (en) 2005-07-21 2006-07-19 Axial flow fan
US11/922,599 US20080253897A1 (en) 2005-07-21 2006-07-19 Axial Flow Fan
PCT/JP2006/314259 WO2007010936A1 (en) 2005-07-21 2006-07-19 Axial flow fan
KR1020077029958A KR20080009762A (en) 2005-07-21 2006-07-19 Axial flow fan
EP06768285A EP1906028A4 (en) 2005-07-21 2006-07-19 Axial flow fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005211542A JP5259919B2 (en) 2005-07-21 2005-07-21 Axial fan

Publications (2)

Publication Number Publication Date
JP2007024004A true JP2007024004A (en) 2007-02-01
JP5259919B2 JP5259919B2 (en) 2013-08-07

Family

ID=37668812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005211542A Expired - Fee Related JP5259919B2 (en) 2005-07-21 2005-07-21 Axial fan

Country Status (7)

Country Link
US (1) US20080253897A1 (en)
EP (1) EP1906028A4 (en)
JP (1) JP5259919B2 (en)
KR (1) KR20080009762A (en)
CN (1) CN101203680B (en)
AU (1) AU2006270875B2 (en)
WO (1) WO2007010936A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190087A (en) * 2009-02-17 2010-09-02 Hitachi Plant Technologies Ltd Pump impeller
CN103185036A (en) * 2011-12-28 2013-07-03 珠海格力电器股份有限公司 Axial fan and air conditioner with same
CN103835992A (en) * 2014-02-24 2014-06-04 广东美的厨房电器制造有限公司 Fan blade capable of blowing air in diffused mode and fan blade support
CN103835993A (en) * 2014-02-24 2014-06-04 广东美的厨房电器制造有限公司 Fan blade capable of blowing air in diffused mode and fan blade support
WO2014102970A1 (en) * 2012-12-27 2014-07-03 三菱電機株式会社 Propeller fan, air blowing equipment, outdoor unit
CN103967839A (en) * 2013-01-30 2014-08-06 珠海格力电器股份有限公司 Axial flow fan blade and air conditioner with same
WO2015146013A1 (en) * 2014-03-25 2015-10-01 パナソニックIpマネジメント株式会社 Propeller fan for electric fan, and electric fan

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5379138B2 (en) * 2007-08-23 2013-12-25 グーグル・インコーポレーテッド Creating an area dictionary
DE102008055631A1 (en) * 2008-11-03 2010-05-06 Rolls-Royce Deutschland Ltd & Co Kg Hub cone for an aircraft engine
JP5322900B2 (en) * 2009-11-27 2013-10-23 三洋電機株式会社 Bell mouth structure of blower
WO2011116231A2 (en) 2010-03-19 2011-09-22 Sp Tech Propeller blade
CN103185037B (en) * 2011-12-28 2015-12-02 珠海格力电器股份有限公司 Axial fan and air conditioner with same
CN103486081B (en) * 2012-06-11 2017-02-01 珠海格力电器股份有限公司 Axial flow fan blade, fan and air conditioner outdoor unit
US9647501B2 (en) 2013-02-14 2017-05-09 Mitsubishi Electric Corporation Interior permanent magnet motor, compressor and refrigeration and air conditioning apparatus
CN104214139B (en) * 2013-05-30 2016-12-28 台达电子工业股份有限公司 fan
CN104895838A (en) * 2014-03-05 2015-09-09 珠海格力电器股份有限公司 Axial flow fan blade and axial flow fan
KR101467168B1 (en) * 2014-06-25 2014-12-01 장석호 Motor fan for donut
CN104358712A (en) * 2014-11-28 2015-02-18 德清振达电气有限公司 Fan blade of safe and high-efficiency axial flow fan
JP6373414B2 (en) * 2015-01-20 2018-08-15 シャープ株式会社 Propeller fan, fluid feeder and mold
JP6849366B2 (en) * 2016-09-29 2021-03-24 山洋電気株式会社 Reversible flow fan
CN106640759A (en) * 2016-12-13 2017-05-10 广东美的环境电器制造有限公司 Axial-flow type fan
CN106930962B (en) * 2017-03-21 2023-09-26 莱克电气股份有限公司 Fan blade structure and fan using same
CN108151287A (en) * 2017-12-04 2018-06-12 周亮 Machine fixed frame in a kind of cabinet air-conditioner
JP7292405B2 (en) * 2019-11-12 2023-06-16 三菱電機株式会社 Axial fan, air blower, and refrigeration cycle device
CN112253537B (en) * 2020-11-19 2022-03-22 泛仕达机电股份有限公司 Bionic axial flow wind wheel
CN114909325A (en) * 2022-05-30 2022-08-16 华中科技大学 Low-noise axial flow fan blade and axial flow fan
JP2024051594A (en) * 2022-09-30 2024-04-11 山洋電気株式会社 Axial flow fan

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181006A (en) * 1975-01-14 1976-07-15 Matsushita Seiko Kk SOFUKINO HANEGURUMA
JPH06159290A (en) * 1992-07-22 1994-06-07 Valeo Thermique Moteur Fan
JP2000018194A (en) * 1998-07-02 2000-01-18 Daikin Ind Ltd Impeller for blower
JP2002357197A (en) * 2001-05-31 2002-12-13 Matsushita Refrig Co Ltd Impeller, blower, and refrigerator
JP2005105865A (en) * 2003-09-29 2005-04-21 Daikin Ind Ltd Propeller fan

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1855660A (en) * 1931-02-06 1932-04-26 William W Allen Fan
US4063852A (en) * 1976-01-28 1977-12-20 Torin Corporation Axial flow impeller with improved blade shape
JP3028422B2 (en) * 1990-07-30 2000-04-04 臼井国際産業株式会社 Axial fan with centrifugal component
JP3483447B2 (en) * 1998-01-08 2004-01-06 松下電器産業株式会社 Blower
US6814545B2 (en) * 2000-04-21 2004-11-09 Revcor, Inc. Fan blade
JP3978083B2 (en) * 2001-06-12 2007-09-19 漢拏空調株式会社 Axial fan
JP4161015B2 (en) * 2002-02-15 2008-10-08 臼井国際産業株式会社 Axial fan
US6994523B2 (en) * 2002-02-28 2006-02-07 Daikin Industries Ltd. Air blower apparatus having blades with outer peripheral bends
DE202004005548U1 (en) * 2003-04-19 2004-06-17 Ebm-Papst St. Georgen Gmbh & Co. Kg Fan

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181006A (en) * 1975-01-14 1976-07-15 Matsushita Seiko Kk SOFUKINO HANEGURUMA
JPH06159290A (en) * 1992-07-22 1994-06-07 Valeo Thermique Moteur Fan
JP2000018194A (en) * 1998-07-02 2000-01-18 Daikin Ind Ltd Impeller for blower
JP2002357197A (en) * 2001-05-31 2002-12-13 Matsushita Refrig Co Ltd Impeller, blower, and refrigerator
JP2005105865A (en) * 2003-09-29 2005-04-21 Daikin Ind Ltd Propeller fan

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190087A (en) * 2009-02-17 2010-09-02 Hitachi Plant Technologies Ltd Pump impeller
CN103185036A (en) * 2011-12-28 2013-07-03 珠海格力电器股份有限公司 Axial fan and air conditioner with same
US9897108B2 (en) 2012-12-27 2018-02-20 Mitsubishi Electric Corporation Propeller fan, air blower, outdoor unit
JP5933759B2 (en) * 2012-12-27 2016-06-15 三菱電機株式会社 Propeller fan, blower, outdoor unit
WO2014102970A1 (en) * 2012-12-27 2014-07-03 三菱電機株式会社 Propeller fan, air blowing equipment, outdoor unit
WO2014103702A1 (en) * 2012-12-27 2014-07-03 三菱電機株式会社 Propeller fan, air blowing equipment, outdoor unit
CN103967839B (en) * 2013-01-30 2016-03-16 珠海格力电器股份有限公司 Axial flow fan blade and air conditioner with same
CN103967839A (en) * 2013-01-30 2014-08-06 珠海格力电器股份有限公司 Axial flow fan blade and air conditioner with same
CN103835993A (en) * 2014-02-24 2014-06-04 广东美的厨房电器制造有限公司 Fan blade capable of blowing air in diffused mode and fan blade support
CN103835992A (en) * 2014-02-24 2014-06-04 广东美的厨房电器制造有限公司 Fan blade capable of blowing air in diffused mode and fan blade support
WO2015146013A1 (en) * 2014-03-25 2015-10-01 パナソニックIpマネジメント株式会社 Propeller fan for electric fan, and electric fan
JP2015183605A (en) * 2014-03-25 2015-10-22 パナソニックIpマネジメント株式会社 Propeller fan for electric fan
CN106133330A (en) * 2014-03-25 2016-11-16 松下知识产权经营株式会社 The propeller fan of electric fan, electric fan
CN106133330B (en) * 2014-03-25 2018-12-28 松下知识产权经营株式会社 Propeller fan, the electric fan of electric fan

Also Published As

Publication number Publication date
EP1906028A1 (en) 2008-04-02
CN101203680A (en) 2008-06-18
AU2006270875B2 (en) 2010-04-01
KR20080009762A (en) 2008-01-29
AU2006270875A1 (en) 2007-01-25
WO2007010936A1 (en) 2007-01-25
JP5259919B2 (en) 2013-08-07
CN101203680B (en) 2010-11-03
EP1906028A4 (en) 2011-06-01
US20080253897A1 (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP5259919B2 (en) Axial fan
JP3979388B2 (en) Blower
AU2006276567B2 (en) Axial flow fan
JP4867950B2 (en) Blower
CN102345638A (en) Diagonal flow fan and air conditioner equipped with the diagonal flow fan
JPH1144432A (en) Air conditioner
JP5448874B2 (en) Multiblade centrifugal fan and air conditioner using the same
JP3629702B2 (en) Blower
WO2018020708A1 (en) Propeller fan and fluid feeding device
CN100374732C (en) blower impeller
JP4818310B2 (en) Axial blower
JP2006233886A (en) Propeller fan
JP6060370B2 (en) Blower
JP3744489B2 (en) Blower
JP2010236371A (en) Axial blower, air conditioner and ventilator
JP2009127541A (en) Centrifugal fan
JP2005016457A (en) Blower and heat exchange unit equipped with blower
JP2013083158A (en) Axial flow fan or diagonal fan
JP4491711B2 (en) Jet fan
JP4967883B2 (en) Mixed flow blower impeller and air conditioner
JP2003042095A (en) Axial flow fan and air conditioner
JP2006017037A (en) Impeller of multiblade fan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120927

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees