[go: up one dir, main page]

JP2007022989A - Anti-fatigue agent - Google Patents

Anti-fatigue agent Download PDF

Info

Publication number
JP2007022989A
JP2007022989A JP2005210456A JP2005210456A JP2007022989A JP 2007022989 A JP2007022989 A JP 2007022989A JP 2005210456 A JP2005210456 A JP 2005210456A JP 2005210456 A JP2005210456 A JP 2005210456A JP 2007022989 A JP2007022989 A JP 2007022989A
Authority
JP
Japan
Prior art keywords
lactoferrin
iron
fatigue
bound
binding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005210456A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawakami
浩 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP2005210456A priority Critical patent/JP2007022989A/en
Publication of JP2007022989A publication Critical patent/JP2007022989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new safe and inexpensive anti-fatigue agent having production promoting actions on ATP (adenosine 5'-triphosphate) in muscles, effective for recovery from fatigue and having great effects. <P>SOLUTION: The anti-fatigue agent comprises lactoferrin or an iron-bound type lactoferrin in which iron is bound to the lactoferrin as an active ingredient. The anti-fatigue agent has production promoting actions on the ATP and is effective for the recovery from the fatigue. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ATP産生及びミトコンドリア酵素活性を上昇させることにより、効果的に、かつ安全に、疲労を改善する抗疲労剤に関する。本発明の抗疲労剤は、ラクトフェリンまたはラクトフェリンと鉄とを結合させた鉄結合型ラクトフェリンを有効成分とすることを特徴とする。   The present invention relates to an anti-fatigue agent that improves fatigue effectively and safely by increasing ATP production and mitochondrial enzyme activity. The anti-fatigue agent of the present invention is characterized by using as an active ingredient iron-binding lactoferrin obtained by binding lactoferrin or lactoferrin and iron.

労働や運動により発生し蓄積する疲労を回復したり、予め服用してから労働や運動を行うと疲労を予防したりすることができる疲労回復剤や疲労予防剤は、ある種のビタミンを有効成分とする錠剤やドリンク剤等の形態で市販されており、特にドリンク剤の需要は年々増加傾向にある。これらは有効成分としてビタミン類のほかに各種の成分を配合し、それぞれの商品特徴を出している。商品特徴は配合物の種類や量がポイントであり、例えばブドウ糖、グルクロノラクトン等の糖類、タウリン、アルギニン塩、アスパラギン酸塩等のアミノ酸類、カフェイン等のほか、鉄やマンガン等の無機物、にんにく、朝鮮人参、ハーブ等の抽出物等、その種類は極めて多岐にわたっている。しかしながら従来のこれら商品は、効果や価格の点で必ずしも満足できるものではなかった。   Fatigue recovery and anti-fatigue agents that can recover from accumulated fatigue caused by work or exercise, or prevent fatigue when taking work or exercise after taking in advance, are some vitamins that are active ingredients In particular, the demand for drinks is increasing year by year. These contain various ingredients in addition to vitamins as active ingredients, and each product has its characteristics. The product features are the type and amount of the compound, for example, sugars such as glucose and glucuronolactone, amino acids such as taurine, arginine salt and aspartate, caffeine, inorganic substances such as iron and manganese, There are a wide variety of garlic, ginseng, and herb extracts. However, these conventional products are not always satisfactory in terms of effect and price.

乳から抽出分離した乳タンパク質であるラクトフェリンは、免疫賦活(例えば、特許文献1参照。)、細胞増殖(例えば、特許文献2参照。)、抗リウマチ(例えば、特許文献3参照。)、抗菌(例えば、非特許文献1参照。)、抗腫瘍(例えば、非特許文献2参照。)などの様々な作用をもつことで知られている。また、魚、えび、及び水中に生息する無脊椎動物などの水生動物の抗ストレス剤に含まれる免疫刺激剤の1種としてラクトフェリンが挙げられている(例えば、特許文献4参照。)。さらに、ラクトフェリンを有効成分として含有する陸生動物の抗ストレス剤が開示されている(例えば、特許文献5参照。)。これらはいずれも攻撃、取り扱い、輸送などの要因により情動ストレスを受けた動物体内でのホルモン分泌によるさまざまな反応を抑制しようとするものであり、本願発明の肉体疲労の回復あるいは予防とは異なる。エネルギー産生にかかわる抗疲労作用に関しては、現在までに明らかにされていない。   Lactoferrin, which is a milk protein extracted and separated from milk, is immunostimulatory (for example, see Patent Document 1), cell proliferation (for example, see Patent Document 2), anti-rheumatic (for example, see Patent Document 3), antibacterial (for example, Patent Document 3). For example, it is known to have various actions such as non-patent document 1) and anti-tumor (for example, refer to non-patent document 2). Moreover, lactoferrin is mentioned as one of the immunostimulants contained in the anti-stress agent of aquatic animals such as fish, shrimp, and invertebrates that live in water (see, for example, Patent Document 4). Furthermore, an antistress agent for terrestrial animals containing lactoferrin as an active ingredient has been disclosed (for example, see Patent Document 5). These are all intended to suppress various reactions due to hormone secretion in an animal body that has been subjected to emotional stress due to factors such as attack, handling, and transportation, and are different from the recovery or prevention of physical fatigue of the present invention. The anti-fatigue action related to energy production has not been clarified so far.

また、ラクトフェリンは腸管からの鉄の吸収を促進することが知られている。鉄は体内に豊富に存在しているが、体内では合成できないため、食品からの摂取にのみ頼っている。因みに、女性にみられる貧血の多くは鉄欠乏性の貧血であり、鉄分の不足によるものであることは周知である。脂肪は高カロリーで高エネルギーの栄養素であるが、脂肪の構成成分である脂肪酸は、細胞内のミトコンドリアに取り込まれて、β−酸化、三カルボン酸サイクル(TCAサイクル)及び酸化的リン酸化反応を経て、多量の酸素を使用してアデノシン三リン酸(ATP)を生産し、エネルギーとして利用しやすい形となる。又、血液中のヘモグロビンには鉄が含まれており、この鉄が酸素の体内への運搬に重要な役割を担っているのは周知である。このため、鉄分の摂取が不足すると、体内への酸素の供給が低下するため、酸素を多量に必要とする代謝活動が低下し、エネルギー源であるATPへの変換が制限されることになる。つまり、体内への酸素の供給量の増大は、体力の増強・疲労回復及びスタミナアップの効果を高めることが予測される。
酸化的リン酸化反応においてもチトクローム類が関与しているが、この蛋白質にも鉄が含まれている。このように、脂肪の分解によるエネルギーの産出には、鉄が大きく関与しており、鉄の吸収量の増加は体力の増強・疲労回復及びスタミナアップの効果があるということができる。
これらの面から、ATPの産生や酸化的リン酸化反応を促進する作用を持つ物質の探索が求められている。
Lactoferrin is also known to promote iron absorption from the intestinal tract. Iron is abundant in the body, but cannot be synthesized in the body, so it relies only on food intake. Incidentally, it is well known that most of the anemia found in women is iron deficiency anemia, which is caused by a lack of iron. Fat is a high-calorie, high-energy nutrient, but fatty acids, which are constituents of fat, are taken up by mitochondria in the cell and undergo β-oxidation, tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation. After that, a large amount of oxygen is used to produce adenosine triphosphate (ATP), making it easy to use as energy. Moreover, it is well known that hemoglobin in blood contains iron, and this iron plays an important role in transporting oxygen into the body. For this reason, when the intake of iron is insufficient, the supply of oxygen to the body decreases, so that metabolic activity that requires a large amount of oxygen decreases, and conversion to ATP, which is an energy source, is limited. In other words, an increase in the amount of oxygen supplied to the body is expected to increase the effects of physical strength enhancement, fatigue recovery, and stamina improvement.
Cytochromes are also involved in the oxidative phosphorylation reaction, but this protein also contains iron. Thus, it can be said that iron is greatly involved in the production of energy by the decomposition of fat, and that the increase in the amount of absorbed iron has the effect of enhancing physical strength, recovering from fatigue, and improving stamina.
From these aspects, search for a substance having an action of promoting ATP production and oxidative phosphorylation is required.

エネルギーを産生するミトコンドリア内への脂肪酸の取り込みにはカルニチンが必要であることが知られている。生体内でのカルニチンの合成過程において、2つのヒドロキシラーゼ(水酸化酵素)が必要であるが、この2つのヒドロキシラーゼは、活性発現に鉄が必要なことがわかっている(例えば、非特許文献3、4参照。)。また、妊娠及び授乳中の母ラットに鉄欠乏食を与えると、子ラットの血中中性脂肪は8倍高くなり、ヘモグロビン濃度や肝臓カルニチン量は有意に低下した(例えば、非特許文献5参照。)。つまり、鉄欠乏状態では組織中のカルニチン含量の低下により、ミトコンドリア内への脂肪酸の輸送が抑制されて、エネルギー源として使用されず、脂肪酸は脂肪へと再合成され、体内に蓄積されることになる。
したがって、ミトコンドリア内のヒドロキシラーゼの酵素活性を上昇させることにより、ミトコンドリア内へ脂肪酸が取り込まれてエネルギーの産生が促進され、疲労回復効果が期待できる。
従来、抗疲労剤としては,ビタミンB1(誘導体を含む)、B2、ニコチン酸、パントテン酸等のビタミン群が用いられてきた。これらのビタミン群は、いずれもTCA回路の反応に関連する補酵素または配合団である。その結果、これらのビタミン群は効率よくATPを産生し、また間接的に乳酸の代謝を促すとされる。ATPの産生は、解糖過程及び酸化的リン酸化に基づくものであるが、ミトコンドリアレベルでのエネルギー産生においては、酸素の利用が、ユビキノンの存在に依存する。ユビキノンは、代謝改善やATP産生の目的で使用されている。しかしながら、ユビキノンは、心筋の抗疲労作用に限定されており、乾燥酵母エキスの様な原料を多量に混合しなければ効果が認められず、またその効果も十分なものであると言い得ないものであった。
また、鉄欠乏状態に起因するエネルギー産生の抑制に関しても、単に鉄分を補給するだけでは、貧血は解消するものの、抗疲労作用については解消することは困難であった。
特開平7−179355号公報 特開平6−48955号公報 特開平5−186368号公報 特表平11−514973号公報 特開2001−354583号公報 ジャーナル・オブ・ペディアトリクス(Journal of Pediatrics)、94巻、1頁、1979年 キャンサー・リサーチ(Cancer Research)、54巻、2310頁、1994年 ジェイ・ディー・ハルセ(Hulse,J.D.)外、ジャーナル・オブ・バイオロジカルケミストリー(J.Biol.Chem.)、253巻、1654-1659頁、1978年 ジー・リンドステット(Lindstedt,G.)、バイオケミストリー(Biochemistry)、5巻、1271-1281頁、1967年 エス・ジェイ・バーソロミュー(Bartholmey,S.J.), ジャーナル・オブ・ニュートリション(Journal of Nutrition)、115巻,138-145頁、1985年
It is known that carnitine is required for the incorporation of fatty acids into mitochondria that produce energy. In the process of carnitine synthesis in vivo, two hydroxylases (hydroxylase) are required, and it is known that these two hydroxylases require iron for the expression of activity (for example, non-patent literature). 3 and 4). In addition, when an iron-deficient diet was given to a mother rat during pregnancy and lactation, blood neutral fat in the pup rat increased 8 times, and the hemoglobin concentration and the amount of liver carnitine decreased significantly (for example, see Non-Patent Document 5). .) In other words, in the iron deficient state, the transport of fatty acids into the mitochondria is suppressed due to the decrease in the content of carnitine in the tissue, and it is not used as an energy source, but the fatty acids are re-synthesized into fat and accumulated in the body. Become.
Therefore, by increasing the enzyme activity of hydroxylase in mitochondria, fatty acid is taken into mitochondria, energy production is promoted, and fatigue recovery effect can be expected.
Conventionally, vitamin groups such as vitamin B1 (including derivatives), B2, nicotinic acid, and pantothenic acid have been used as anti-fatigue agents. These vitamin groups are all coenzymes or combinations associated with the TCA cycle reaction. As a result, these vitamin groups are said to efficiently produce ATP and indirectly promote lactic acid metabolism. The production of ATP is based on the glycolysis process and oxidative phosphorylation, but in the energy production at the mitochondrial level, the use of oxygen depends on the presence of ubiquinone. Ubiquinone is used for the purpose of improving metabolism and ATP production. However, ubiquinone is limited to the anti-fatigue action of the myocardium. If ubiquinone is not mixed with a large amount of raw materials such as dry yeast extract, the effect is not recognized, and the effect cannot be said to be sufficient. Met.
In addition, regarding suppression of energy production caused by iron deficiency, anemia can be solved by simply supplementing with iron, but it has been difficult to eliminate anti-fatigue action.
JP-A-7-179355 Japanese Patent Laid-Open No. 6-48955 JP-A-5-186368 Japanese National Patent Publication No. 11-514773 Japanese Patent Laid-Open No. 2001-354583 Journal of Pediatrics, 94, 1, 1979 Cancer Research, 54, 2310, 1994 J. D. Halse (Jul), Journal of Biological Chemistry (J. Biol. Chem.), 253, 1654-1659, 1978 Lindstedt, G., Biochemistry, 5, 1271-1281, 1967 S. J. Bartholomey (SJ), Journal of Nutrition, 115, 138-145, 1985

前述のように、従来、抗疲労剤としてビタミン群が用いられてきた。しかし、ミトコンドリアレベルでのエネルギー産生においては、酸素の利用が、ユビキノンの存在に依存し、ユビキノンは、心筋の抗疲労作用に限定され、その効果も十分なものであると言い得ないものであった。また、鉄欠乏状態に起因するエネルギー産生の抑制に関しても、単に鉄分を補給するだけでは、貧血は解消するものの、抗疲労作用については解消することは困難であった。
したがって本発明の課題は、安全、安価で効果の大きい新規な抗疲労剤を提供するところにある。
As described above, vitamins have been conventionally used as anti-fatigue agents. However, in energy production at the mitochondrial level, the use of oxygen depends on the presence of ubiquinone, and ubiquinone is limited to the anti-fatigue action of the myocardium and cannot be said to be sufficient. It was. In addition, regarding suppression of energy production caused by iron deficiency, anemia can be solved by simply supplementing with iron, but it has been difficult to eliminate anti-fatigue action.
Accordingly, an object of the present invention is to provide a novel anti-fatigue agent that is safe, inexpensive and highly effective.

本発明者等は上記課題を解決するため鋭意研究を重ねたところ、乳に含まれるラクトフェリンに、有効な抗疲労作用があることを見出し、本発明を成すに至った。さらに、ラクトフェリンに鉄を結合させた鉄結合型ラクトフェリンが抗疲労に著しい効果があることを見出し、本発明を成すに至った。
本発明者らは、ラクトフェリン、またはこれに鉄を結合させた鉄結合型ラクトフェリンを経口摂取することにより、様々な因子に起因する疲労が改善されることを見出し、更にこの知見に基づき本発明の抗疲労剤を完成した。すなわち本発明は、乳から分離したラクトフェリン、またはこれに鉄を結合させた鉄結合型ラクトフェリンを有効成分として含有することを特徴とする抗疲労剤である。
As a result of intensive studies to solve the above problems, the present inventors have found that lactoferrin contained in milk has an effective anti-fatigue action, and have achieved the present invention. Furthermore, the present inventors have found that iron-bound lactoferrin obtained by binding iron to lactoferrin has a remarkable effect on anti-fatigue, and has led to the present invention.
The present inventors have found that fatigue caused by various factors can be improved by orally ingesting lactoferrin or iron-bound lactoferrin in which iron is bound to this, and further based on this finding, Completed anti-fatigue agent. That is, the present invention is an anti-fatigue agent characterized by containing lactoferrin separated from milk or iron-bound lactoferrin obtained by binding iron to this as an active ingredient.

抗疲労剤としての効果は、次の試験により確認することができる。
第一は、ラットの強制運動前後の腓腹筋の総ATP量の変化を測定することにより、投与した被験物質のATP産生促進作用を確認する試験である。すなわち、被験飼料と一般飼料を投与したラットを用い、トレッドミルによる強制運動実験により、走行過労状態に至らせ、実験開始時より、腓腹筋の31P NMRスペクトルを採り、安静時、運動時、運動直後、および運動5分後の筋肉ATP量を算定する。ATPは筋肉をはじめとして広く生体内に存在し、エネルギー伝達体として数多くのエネルギー代謝に関与し、エネルギーの獲得および利用に重要な役割を果たしている。特に好気的代謝においては、酸化的リン酸化反応によってより効率よく生産される。すなわち、1分子のグルコースが代謝される場合には、解糖系を経て酸素呼吸によって完全酸化される際には、38分子のATPが産生される。運動で消費されたATP量が再生されれば、筋肉をはじめとする様々な組織において利用されるエネルギーが増えることによって、疲労回復作用があるということができる。
The effect as an anti-fatigue agent can be confirmed by the following test.
The first is a test for confirming the ATP production promoting action of the administered test substance by measuring the change in the total amount of ATP in the gastrocnemius muscle before and after forced exercise of rats. That is, using a rat administered with the test feed and general feed, a treadmill forced exercise experiment led to a running overwork state, and from the start of the experiment, the 31P NMR spectrum of the gastrocnemius muscle was taken, at rest, during exercise, immediately after exercise The amount of muscle ATP after 5 minutes of exercise is calculated. ATP is widely present in living bodies including muscles, and is involved in many energy metabolisms as an energy transmitter, and plays an important role in the acquisition and use of energy. Especially in aerobic metabolism, it is more efficiently produced by oxidative phosphorylation. That is, when one molecule of glucose is metabolized, 38 molecules of ATP are produced when it is completely oxidized by oxygen respiration via the glycolysis. If the amount of ATP consumed by exercise is regenerated, it can be said that there is a fatigue recovery effect by increasing the energy used in various tissues including muscles.

第二は、連続運動負荷によるミトコンドリア中サイトレートシンセターゼ活性の変化を確認する試験である。サイトレートシンターゼは、エネルギー産生に重要な働きをもつクエン酸回路に、解糖や脂肪酸の分解によって生じたアセチルCoAを導くための初期段階の酵素である。アセチルCoAとオキサロ酢酸からCoAとクエン酸を生成し、クエン酸回路を円滑に回すために重要であることが知られている。被検飼料及び一般飼料を投与したラットを用いて、トレッドミルによる強制運動を10日間行い、実験開始後20日後に腓腹筋からミトコンドリアを分離する。分光光度計でミトコンドリア中のサイトレートシンセターゼの酵素活性を測定し、運動開始前後で比較する。被験物質の投与によって、ミトコンドリア中のサイトレートシンセターゼ酵素活性が上昇すると、エネルギー産生に重要な働きをもつクエン酸回路に、解糖や脂肪酸の分解によって生じたアセチルCoAを導き、CoAとクエン酸を生成してクエン酸回路を円滑に回転させ、疲労回復作用があるということができる。   The second is a test to confirm changes in mitochondrial cytolate synthetase activity due to continuous exercise. Cytolate synthase is an early stage enzyme for introducing acetyl-CoA produced by glycolysis or fatty acid degradation into a citrate cycle that plays an important role in energy production. It is known to be important for producing CoA and citric acid from acetyl CoA and oxaloacetic acid and smoothly turning the citric acid cycle. Using rats fed the test diet and general diet, forced exercise with a treadmill is performed for 10 days, and mitochondria are separated from the gastrocnemius muscle 20 days after the start of the experiment. Measure the enzymatic activity of cytolate synthetase in mitochondria with a spectrophotometer and compare it before and after the start of exercise. When the cytosolic synthase enzyme activity in mitochondria is increased by administration of the test substance, acetyl CoA generated by glycolysis and fatty acid degradation is led to the citrate cycle, which plays an important role in energy production, and CoA and citrate It can be said that the citric acid circuit is smoothly rotated to generate a fatigue recovery action.

第三は、強制水泳における不動時間(秒)の測定である。すなわち、被験物質の経口投与後に、ラットを水槽に入れ、5分間隔で15分後まで不動時間(秒)を測定する。被験物質の投与によって、筋肉の活動が不可能となった不動時間が短縮すると、疲労に対する抵抗性があることが確認される。   The third is measurement of immobility time (seconds) in forced swimming. That is, after oral administration of the test substance, the rat is placed in a water bath, and the immobility time (seconds) is measured until 15 minutes at 5-minute intervals. When the immobility time when the muscle activity becomes impossible is shortened by administration of the test substance, it is confirmed that the test substance is resistant to fatigue.

さらに、強制水泳後において、血中の乳酸濃度を測定することにより、被験物質の投与によって、血中の乳酸濃度の増加を抑制する作用の有無を確認することができる。乳酸はエネルギーを消費した際に産生される疲労物質の一つとして知られており、これが血中や組織に蓄積すると、様々な運動機能に支障をきたすとともに、筋肉疲労などの自覚症状のもとになるといわれている。   Furthermore, after forced swimming, by measuring the lactic acid concentration in the blood, it is possible to confirm the presence or absence of the action of suppressing the increase in the lactic acid concentration in the blood by administering the test substance. Lactic acid is known as one of the fatigue substances produced when energy is consumed, and when this accumulates in the blood and tissues, it interferes with various motor functions and causes subjective symptoms such as muscle fatigue. It is said that it becomes.

このように、肉体疲労の改善能は、強制運動実験時の筋肉ATP量の消長、連続強制運動によるミトコンドリア内酵素活性の上昇、そして強制水泳時の不動時間(秒)の測定および血中の乳酸濃度の測定の4点を測定することにより、確認することができる。
本発明は、これらの試験により、乳から分離したラクトフェリン、およびこれに鉄を結合させた鉄結合型ラクトフェリンが、予期されない薬理学的及び治療学的効果を持つことを確認することができた。
すなわち、本発明は、ラクトフェリンを有効成分とする抗疲労剤に関する。また、本発明は、ラクトフェリンに鉄を結合させた鉄結合型ラクトフェリンを有効成分とする抗疲労剤に関する。
As described above, the ability to improve physical fatigue is such that the amount of muscle ATP changes during forced exercise experiments, the increase of enzyme activity in mitochondria by continuous forced exercise, the measurement of immobility time (seconds) during forced swimming, and lactic acid in blood It can be confirmed by measuring four points of concentration measurement.
The present invention was able to confirm that lactoferrin isolated from milk and iron-bound lactoferrin bound with iron had unexpected pharmacological and therapeutic effects by these tests.
That is, the present invention relates to an anti-fatigue agent containing lactoferrin as an active ingredient. The present invention also relates to an anti-fatigue agent comprising iron-bound lactoferrin obtained by binding iron to lactoferrin as an active ingredient.

本発明の抗疲労剤は、これを服用することにより疲れにくくなり、また疲労回復にも効果がある。すなわち、スポーツなどの筋肉運動に際して肉体疲労を感じたときに服用して疲労の回復を図ることができることはいうまでもないが、予め服用してから労働、スポーツなどを行うと疲労を予防することもできる。また、スポーツを行う前や途中で摂取することにより、持久力向上が期待できる。
本発明の抗疲労剤に使用するラクトフェリンは有史以来の食経験がある乳を原料にした乳由来のタンパク質であるので安全性が高く、副作用の問題がないものであり、数々の医薬品、特定用保健食品、機能性食品等への利用が期待できる。また、長期連用することも可能で、それ自体は殆ど無味無臭であるという汎用性が高いタンパク質であり、さらに比較的安価に入手することができるという利点があり、実用上極めて利用価値が高い。また、鉄結合型ラクトフェリンは、上記ラクトフェリンに鉄を結合させたものであるので、安全性に何ら問題はない。
The anti-fatigue agent of the present invention is less fatigued by taking it, and is also effective for recovery from fatigue. In other words, when you feel physical fatigue during sports or other muscle exercises, you can take it to recover from fatigue, but if you take it in advance and then do labor, sports, etc., you will prevent fatigue You can also. In addition, endurance can be expected by taking it before or during sports.
Lactoferrin used in the anti-fatigue agent of the present invention is a milk-derived protein made from milk that has been eaten since a long history, so it is highly safe and has no side-effect problems. Expected to be used for health foods and functional foods. Further, it can be used for a long time, and is a highly versatile protein that itself is almost tasteless and odorless. Further, it has an advantage that it can be obtained at a relatively low cost, and is extremely useful in practical use. Moreover, since iron-binding lactoferrin is obtained by binding iron to the above-mentioned lactoferrin, there is no problem in safety.

本発明の抗疲労剤の有効成分である乳から分離したラクトフェリンは、例えば、ウシ、ヤギ、ヒツジ、ウマ、ヒト等の乳、又はこれらの乳の処理物である脱脂乳、ホエー等から、イオン交換クロマトグラフィーなどにより分離して調製することができる。例えば、脱脂乳をカラムに通液し、吸着しているタンパク質を溶出する際に、0.3M食塩水で樹脂を十分洗浄した後に、1.5M食塩水を通液し、イオン交換樹脂に吸着したラクトフェリンの溶出液を得ることができる。この溶出液を限外濾過膜モジュール(商品名:SLP0053、旭化成社製)を用いて限外濾過した後、水を添加して同装置を用いてダイアフィルトレーションで脱塩する。その後、凍結乾燥することによって、粉末状ラクトフェリンを得ることができる。以上の方法により得られたラクトフェリンの純度は、電気泳動法により測定した結果、95%以上の純度を有している。
また、ラクトフェリンは、通常、1分子当たり鉄を2原子までキレート結合することができるが、本発明では、鉄を全く結合していない鉄非結合型ラクトフェリン、乳から調製した1分子当たり鉄が平均0.2原子程度結合したラクトフェリン、1分子当たり鉄が2原子結合したラクトフェリンのいずれも使用することができ、さらにこれらをタンパク質分解酵素で分解したものも使用することができる
Lactoferrin isolated from milk, which is an active ingredient of the anti-fatigue agent of the present invention, is ionized from, for example, milk from cows, goats, sheep, horses, humans, etc., or skim milk, whey, etc., processed products of these milks. It can be prepared separately by exchange chromatography or the like. For example, when skim milk is passed through a column and the adsorbed protein is eluted, the resin is thoroughly washed with 0.3 M saline, then 1.5 M saline is passed through, and lactoferrin adsorbed on the ion exchange resin. Can be obtained. This eluate is ultrafiltered using an ultrafiltration membrane module (trade name: SLP0053, manufactured by Asahi Kasei Co., Ltd.), then water is added, and desalting is performed by diafiltration using the same apparatus. Then, powdery lactoferrin can be obtained by freeze-drying. The purity of lactoferrin obtained by the above method has a purity of 95% or more as a result of measurement by electrophoresis.
In addition, lactoferrin can usually chelate up to two atoms of iron per molecule, but in the present invention, iron non-binding lactoferrin that does not bind iron at all, iron per molecule prepared from milk is an average. Either lactoferrin bonded to about 0.2 atoms or lactoferrin bonded with 2 atoms of iron per molecule can be used, and those obtained by degrading them with proteolytic enzymes can also be used.

本発明で使用するラクトフェリンに鉄を結合させた鉄結合型ラクトフェリンは従来から知られている。
ラクトフェリンは、通常、1分子当たり鉄を2原子までしかキレート結合できないが、本発明で使用する鉄結合型ラクトフェリンは、ラクトフェリンに特定の処理を行うことにより、ラクトフェリン1分子当たり少なくとも3原子の鉄を安定に保持できるようにしたものである。このような鉄結合型ラクトフェリンは、例えば、ラクトフェリン溶液に鉄塩を添加し、アルカリを加えて溶液のpHを高めることによって得られる。ラクトフェリン1分子当たり少なくとも3原子の鉄を安定に保持したラクトフェリン粉末としては、ラクトフェリンのアミノ基に重炭酸イオンを介して鉄が結合した耐熱性ラクトフェリン−鉄結合体(「耐熱性ラクトフェリン‐鉄結合体及びその製造法」、特許第2835902号公報)、あるいはラクトフェリンに一定の割合で、炭酸及び/又は重炭酸を含む溶液と、鉄を含む溶液とを添加して得られる鉄−ラクトフェリン複合体(「鉄‐ラクトフェリン複合体及びその製造法」、特許第2884045号公報)等が知られている。
本発明で使用することができる鉄結合型ラクトフェリンは、これらいずれの鉄−ラクトフェリンであっても良い。鉄結合型ラクトフェリンは、鉄とラクトフェリンとが結合した状態のものであって、鉄とラクトフェリンとが結合しているか、あるいは他の物質を介して鉄とラクトフェリンとが結合しているものであって、いわゆる、鉄がイオン状態で存在していないものであれば良い。特にラクトフェリン類に炭酸及び/又は重炭酸を含む溶液と鉄を含む溶液とを添加して得られる前記の「鉄−ラクトフェリン結合体」や「鉄−ラクトフェリン複合体」を例示することができ、これらの鉄結合型ラクトフェリンを使用することが望ましい。また、これらの鉄結合型ラクトフェリンは、鉄の収斂味や金属味等が全く無いという特徴を有しているので、風味上の問題も全くない。
また、鉄結合型ラクトフェリンをタンパク質分解酵素で分解したものも、鉄結合能を保持しており、本発明に使用することができる。さらに、ラクトフェリンをタンパク質分解酵素で分解したものに鉄を結合させたものも本発明に使用することができる。
An iron-bound lactoferrin obtained by binding iron to lactoferrin used in the present invention is conventionally known.
Lactoferrin usually chelates only up to 2 atoms of iron per molecule, but the iron-binding lactoferrin used in the present invention provides at least 3 atoms of iron per molecule of lactoferrin by performing a specific treatment on lactoferrin. It can be held stably. Such iron-binding lactoferrin can be obtained, for example, by adding an iron salt to a lactoferrin solution and adding an alkali to increase the pH of the solution. Lactoferrin powder that stably holds at least 3 atoms of iron per molecule of lactoferrin includes a heat-resistant lactoferrin-iron conjugate in which iron is bound to the amino group of lactoferrin via bicarbonate ions (“heat-resistant lactoferrin-iron conjugate” And its production method ", Japanese Patent No. 2835902), or an iron-lactoferrin complex obtained by adding a solution containing carbonic acid and / or bicarbonate and a solution containing iron at a certain ratio to lactoferrin (""Iron-lactoferrin complex and method for producing the same", Japanese Patent No. 2884045) and the like are known.
The iron-binding lactoferrin that can be used in the present invention may be any of these iron-lactoferrins. Iron-bound lactoferrin is in a state where iron and lactoferrin are bound, and iron and lactoferrin are bound, or iron and lactoferrin are bound via another substance. Any so-called iron may be used as long as it does not exist in an ionic state. In particular, the above-mentioned “iron-lactoferrin conjugate” and “iron-lactoferrin complex” obtained by adding a solution containing carbonic acid and / or bicarbonate to a lactoferrin and a solution containing iron can be exemplified. It is desirable to use iron-binding lactoferrin. In addition, these iron-bound lactoferrin has a characteristic that there is no iron astringency, metal taste, etc., so there is no problem in flavor.
Moreover, what decomposed | disassembled the iron binding type lactoferrin with the proteolytic enzyme retains the iron binding ability, and can be used for this invention. Furthermore, the thing which combined iron with what decomposed | disassembled the lactoferrin with the proteolytic enzyme can also be used for this invention.

上述したような鉄結合型ラクトフェリンを製造する際に使用することができる鉄としては、硫酸第一鉄、硫酸第二鉄、乳酸鉄、クエン酸鉄、クエン酸第一鉄ナトリウム、クエン酸鉄アンモニウム、ピロリン酸第一鉄、ピロリン酸第二鉄、塩化第二鉄、硝酸第一鉄、硝酸第二鉄等を例示することができる。   Examples of iron that can be used in producing the iron-binding lactoferrin as described above include ferrous sulfate, ferric sulfate, iron lactate, iron citrate, sodium ferrous citrate, and ammonium iron citrate. And ferrous pyrophosphate, ferric pyrophosphate, ferric chloride, ferrous nitrate, ferric nitrate and the like.

本発明の抗疲労剤の有効成分であるラクトフェリンは、乳由来の天然物であって、摂取した場合の安全性が高く、牛乳等の食品中に含有され、日常的に摂取されているもので、毒性を示さず、長期間連続的に摂取しても副作用が殆ど認められない。従って、経口等の投与方法により適宜使用することが可能である。   Lactoferrin, which is an active ingredient of the anti-fatigue agent of the present invention, is a natural product derived from milk, is highly safe when ingested, is contained in foods such as milk, and is ingested on a daily basis. It shows no toxicity and has almost no side effects even when ingested continuously for a long period of time. Therefore, it can be appropriately used depending on the administration method such as oral.

本発明の有効成分であるラクトフェリン及び鉄結合型ラクトフェリンを用いた抗疲労剤は、そのままあるいは必要に応じて他の公知の添加剤、例えば、賦形剤、崩壊剤、結合剤、滑沢剤、抗酸化剤、コーティング剤、着色剤、矯味矯臭剤、界面活性剤、可塑剤などを混合して、常法により顆粒剤、散剤、カプセル剤、錠剤、ドライシロップ剤、液剤などの経口製剤とすることができる。賦形剤としては、たとえばマンニトール、キシリトール、ソルビトール、ブドウ糖、白糖、乳糖、結晶セルロース、結晶セルロース・カルボキシメチルセルロースナトリウム、リン酸水素カルシウム、小麦デンプン、米デンプン、トウモロコシデンプン、馬鈴薯デンプン、カルボキシメチルスターチナトリウム、デキストリン、α−シクロデキストリン、β−シクロデキストリン、カルボキシビニルポリマー、軽質無水ケイ酸、酸化チタン、メタケイ酸アルミン酸マグネシウム、ポリエチレングリコール、中鎖脂肪酸トリグリセリドなどが挙げられる。ドリンク剤の場合、必要に応じて他の生理活性成分、ミネラル、ビタミン、栄養成分、香料などを混合することにより、嗜好性をもたせることもできる。   The anti-fatigue agent using lactoferrin and iron-binding type lactoferrin which are the active ingredients of the present invention is used as it is or if necessary, other known additives such as excipients, disintegrants, binders, lubricants, Mixing antioxidants, coating agents, coloring agents, flavoring agents, surfactants, plasticizers, etc., and preparing oral preparations such as granules, powders, capsules, tablets, dry syrups, and liquids by conventional methods Can do. Excipients include, for example, mannitol, xylitol, sorbitol, glucose, sucrose, lactose, crystalline cellulose, crystalline cellulose / sodium carboxymethylcellulose, calcium hydrogen phosphate, wheat starch, rice starch, corn starch, potato starch, carboxymethyl starch sodium , Dextrin, α-cyclodextrin, β-cyclodextrin, carboxyvinyl polymer, light anhydrous silicic acid, titanium oxide, magnesium aluminate metasilicate, polyethylene glycol, medium chain fatty acid triglyceride and the like. In the case of a drink, palatability can also be imparted by mixing other physiologically active ingredients, minerals, vitamins, nutritional ingredients, fragrances and the like as necessary.

また、本発明のラクトフェリン、または鉄結合型ラクトフェリンを有効成分とした抗疲労剤は、飲食品に配合して食品中に含有させることもでき、抗疲労剤の一態様として抗疲労効果を有する機能性食品又は飼料に加工することも可能である。飲食品に配合する場合は、ラクトフェリン、または鉄結合型ラクトフェリンを調製した直後の状態である液状のまま配合することができるし、さらに、凍結乾燥や噴霧乾燥等によって乾燥を行い粉末化したものも配合することができる。   Moreover, the anti-fatigue agent which used the lactoferrin of this invention or the iron binding type lactoferrin as an active ingredient can be mix | blended with food-drinks, and can be made to contain in a foodstuff, The function which has an anti-fatigue effect as one aspect | mode of an anti-fatigue agent It is also possible to process into a natural food or feed. When blended in foods and drinks, lactoferrin or iron-binding lactoferrin can be blended as it is in the liquid state immediately after it is prepared, and further powdered by drying by freeze drying, spray drying, etc. Can be blended.

本発明のラクトフェリン、または鉄結合型ラクトフェリンを配合した飲食品としては、チーズ、バター、乳飲料、ジュース、ヨーグルト、ゼリー、パン、アイスクリーム、麺、ソーセージ、育児用調製乳や離乳食等を挙げることができる。   Examples of the food and drink containing the lactoferrin of the present invention or iron-binding lactoferrin include cheese, butter, milk drinks, juice, yogurt, jelly, bread, ice cream, noodles, sausage, infant formula and baby food Can do.

本発明における乳から分離したラクトフェリン、およびこれに鉄を結合させた鉄結合型ラクトフェリンの有効投与量は、疲労の程度、目的、体重、年齢や性別等を考慮して適宜決定すればよいが、通常、成人1日あたり10〜2,000mg投与すれば、疲労の回復または予防効果が得られる。このように本発明は低用量で効果がある。 本発明の疲労の回復作用を有する成分は、抗疲労剤として、あるいはそれらを配合した飲食品を経口摂取することによって生体内で疲労を回復させる作用を発揮する。   The effective dose of lactoferrin separated from milk in the present invention and iron-bound lactoferrin in which iron is bound thereto may be appropriately determined in consideration of the degree of fatigue, purpose, weight, age, sex, etc. In general, administration of 10 to 2,000 mg per day for adults can provide a recovery or prevention effect of fatigue. Thus, the present invention is effective at low doses. The component having an action of recovering fatigue according to the present invention exhibits an action of recovering fatigue in a living body as an anti-fatigue agent or by orally ingesting a food or drink containing them.

以下に実施例及び試験例を示し、本発明をより詳細に説明するが、これらは単に例示するのみであり、本発明はこれらによって何ら限定されるものではない。   EXAMPLES The present invention will be described in more detail below with reference to examples and test examples, but these are merely illustrative and the present invention is not limited by these.

[試験例1]
(鉄結合型ラクトフェリン(70FeLF)の調製)
ラクトフェリン(DMV社製) 90g、塩化第二鉄6水和物 20g、重炭酸ナトリウム5gを水10リットルに溶解し、鉄結合型ラクトフェリンを含む溶液を調製した。この溶液を分子量 5,000カットの限外濾過膜で脱塩及び濃縮した後、水を加えて容量10リットルの鉄結合型ラクトフェリン溶液とした。本溶液を凍結乾燥した後、鉄結合型ラクトフェリン凍結乾燥物の鉄含量を誘導結合プラズマ発光分光器(ICP)(ST-3000、Leeman Labs 社製)で測定したところ、ラクトフェリン1分子当たりに鉄を70原子含んでいたことから、本凍結乾燥物を鉄結合型ラクトフェリン(70FeLF)粉末とした。
[Test Example 1]
(Preparation of iron-bound lactoferrin (70FeLF))
90 g of lactoferrin (manufactured by DMV), 20 g of ferric chloride hexahydrate and 5 g of sodium bicarbonate were dissolved in 10 liters of water to prepare a solution containing iron-bound lactoferrin. This solution was desalted and concentrated with an ultrafiltration membrane having a molecular weight of 5,000 cut, and water was added to obtain an iron-binding lactoferrin solution with a capacity of 10 liters. After freeze-drying this solution, the iron content of the iron-bound lactoferrin freeze-dried product was measured with an inductively coupled plasma emission spectrometer (ICP) (ST-3000, manufactured by Leeman Labs). Since it contained 70 atoms, this lyophilized product was used as iron-bound lactoferrin (70FeLF) powder.

(ラット腓腹筋の総ATP量の変化)
ウイスター系雄ラット(体重250〜300g)を用い以下の実験を行った。食餌は強制運動実験開始1週間前までは、一般飼料(CE-2:オリエンタル酵母工業社製)と水を自由摂取させた。その後、対照群には塩化第二鉄を添加した大豆タンパク質20mg/kg体重/日を与え、試験群には20mg/kg体重/日、2mg/kg体重/日、0.2mg/kg体重/日、0.02mg/kg体重/日のラクトフェリン(DMV社製)、および鉄結合型ラクトフェリン(70FeLF)を摂取させた。なお、一群は5匹とした。1分間の安静時に続き、トレッドミルにより、100m/分で3分間走行過労状態に至らせた。運動終了後5分間を回復期とした。実験開始時より、動物用MRIを用いて1分毎に右後脚の腓腹筋の31P NMRスペクトルを記録し、筋肉中のATPの量を算定した。安静時、運動時、運動直後、および運動5分後の筋肉中のATP量を、安静時の値を1.0とした場合の相対値で表1に示す。
(Changes in total amount of ATP in rat gastrocnemius muscle)
The following experiment was conducted using Wistar male rats (body weight 250 to 300 g). The diet was freely ingested with general feed (CE-2: manufactured by Oriental Yeast Co., Ltd.) and water until one week before the start of the forced exercise experiment. Thereafter, the control group was given 20 mg / kg body weight / day soy protein supplemented with ferric chloride, the test group was 20 mg / kg body weight / day, 2 mg / kg body weight / day, 0.2 mg / kg body weight / day, 0.02 mg / kg body weight / day of lactoferrin (manufactured by DMV) and iron-bound lactoferrin (70FeLF) were ingested. The group consisted of 5 animals. Following a rest of 1 minute, the vehicle was overworked for 3 minutes at 100 m / min with a treadmill. The recovery period was 5 minutes after the end of exercise. From the start of the experiment, a 31P NMR spectrum of the gastrocnemius muscle of the right hind leg was recorded every minute using MRI for animals, and the amount of ATP in the muscle was calculated. The amount of ATP in the muscles at rest, during exercise, immediately after exercise, and after 5 minutes of exercise is shown in Table 1 as relative values when the value at rest is 1.0.

Figure 2007022989
Figure 2007022989

表1に見られるように、ATP生成量を対照群(大豆タンパク質+鉄)と比較した場合、ラクトフェリン、鉄結合型ラクトフェリンにおいて有意な効果が認められた。また、その効果は鉄結合型ラクトフェリンで顕著であった。これらの結果より、ラクトフェリン、鉄結合型ラクトフェリンの摂取により、既存データでは予知されないATP産生促進作用があることが示され、疲労回復に有効であることが明らかになった。   As seen in Table 1, when the amount of ATP produced was compared with that of the control group (soy protein + iron), significant effects were observed in lactoferrin and iron-bound lactoferrin. Moreover, the effect was remarkable with iron binding type lactoferrin. From these results, it was shown that the ingestion of lactoferrin and iron-binding lactoferrin has an ATP production promoting action that is not predicted by existing data, and it is clarified that it is effective for recovery from fatigue.

[試験例2]
(連続運動負荷によるミトコンドリア中サイトレートシンセターゼ活性の変化)
ウイスター系雄ラット(体重250〜300g)20匹を用い以下の実験を行った。食餌はトレッドミルによる強制運動実験開始1週間前までは、一般飼料(CE-2:オリエンタル酵母工業社製)と水を自由摂取させた。その後、ラットを5群に分け、対照群はそのまま一般飼料を与え、試験は20mg/kg体重/日、2mg/kg体重/日、0.2mg/kg体重/日、0.02mg/kg体重/日の鉄結合型ラクトフェリン(70FeLF)を摂取させた。トレッドミルによる強制運動を1日に120分、40m/分の条件で10日間行った。実験開始後20日目に屠殺し、腓腹筋を分離し、ホモジナイズした後に分画遠心分離に供してミトコンドリアを分離した。Oscai等の方法[Am. J. Physiol., vol. 220, p. 1238-1241, 1971]に従い、分光光度計でミトコンドリアの酵素活性であるサイトレートシンセターゼを測定し、運動開始前後で比較した。結果を表2に示す。
[Test Example 2]
(Change in mitochondrial cytolate synthetase activity due to continuous exercise)
The following experiment was conducted using 20 Wistar male rats (body weight 250 to 300 g). The diet was freely ingested with general feed (CE-2: manufactured by Oriental Yeast Co., Ltd.) and water until one week before the start of the forced exercise experiment using the treadmill. Thereafter, the rats were divided into 5 groups, the control group was fed the general diet as it was, and the tests were 20 mg / kg body weight / day, 2 mg / kg body weight / day, 0.2 mg / kg body weight / day, 0.02 mg / kg body weight / day. Iron-bound lactoferrin (70FeLF) was ingested. Forced exercise with a treadmill was performed for 120 days a day for 10 days at 40 m / min. On the 20th day after the experiment was started, the gastrocnemius muscle was separated, homogenized, and subjected to differential centrifugation to separate mitochondria. According to the method of Oscai et al. [Am. J. Physiol., Vol. 220, p. 1238-1241, 1971], citrate synthetase, which is a mitochondrial enzyme activity, was measured with a spectrophotometer and compared before and after the start of exercise. . The results are shown in Table 2.

Figure 2007022989
Figure 2007022989

表2に示されるように、運動10日後には(20mg/kg体重/日)群、(2mg/kg体重/日)群および(0.2mg/kg体重/日)群において有意な酵素活性の上昇がみられた。一方、対照群および(0.02mg/kg体重/日)群ではわずかな上昇がみられたにすぎなかった。   As shown in Table 2, significant increase in enzyme activity in the (20 mg / kg body weight / day) group, the (2 mg / kg body weight / day) group, and the (0.2 mg / kg body weight / day) group after 10 days of exercise. Was seen. On the other hand, there was only a slight increase in the control group and the (0.02 mg / kg body weight / day) group.

[試験例3]
(鉄非結合型ラクトフェリン(0FeLF)の調製)
市販のラクトフェリン(シグマ社製)の1%水溶液を透析チューブに封入し、20倍量の0.05%EDTAを含む0.1Mクエン酸水溶液に対して4℃で30時間透析した。引き続き、この透析チューブを取り出して、蒸留水に対して24時間透析し、鉄非結合型ラクトフェリン(0FeLF)溶液を調製し、この溶液を凍結乾燥して、鉄非結合型ラクトフェリン(0FeLF)粉末を得た。
[Test Example 3]
(Preparation of non-iron-binding lactoferrin (0FeLF))
A commercially available 1% aqueous solution of lactoferrin (manufactured by Sigma) was sealed in a dialysis tube and dialyzed against a 0.1M aqueous citric acid solution containing 20 times the amount of 0.05% EDTA at 4 ° C. for 30 hours. Subsequently, the dialysis tube is taken out and dialyzed against distilled water for 24 hours to prepare an iron non-binding lactoferrin (0FeLF) solution. The solution is freeze-dried to obtain iron non-binding lactoferrin (0FeLF) powder. Obtained.

(市販ラクトフェリンの鉄含量の確認)
市販のラクトフェリン(シグマ社製) の鉄含量を誘導結合プラズマ発光分光器(ICP)で測定したところ、ラクトフェリン1分子当たりに鉄を 2原子含んでいたことから、本品をラクトフェリン(2FeLF)粉末とした。
(Confirmation of iron content of commercial lactoferrin)
When the iron content of commercially available lactoferrin (manufactured by Sigma) was measured with an inductively coupled plasma emission spectrometer (ICP), it contained 2 atoms of iron per molecule of lactoferrin, so this product was called lactoferrin (2FeLF) powder. did.

(鉄結合型ラクトフェリン(200FeLF)の調製)
水2リットルに重炭酸ナトリウム400gを添加し、撹拌機で撹拌して調製した重炭酸ナトリウム過飽和溶液中に、水8リットルに市販のラクトフェリン(DMV社製) 90 g と塩化第二鉄6水和物60 gを溶解した溶液を撹拌しながら添加し、鉄結合型ラクトフェリンを含む溶液を調製した。この溶液を分子量 5,000カットの限外濾過膜で脱塩及び濃縮した後、水を加えて容量10リットルの鉄結合型ラクトフェリン溶液とした。本溶液を凍結乾燥した後、鉄結合型ラクトフェリン凍結乾燥物の鉄含量を誘導結合プラズマ発光分光器(ICP)で測定したところ、ラクトフェリン1分子当たりに鉄を 200原子含んでいたことから、本凍結乾燥物を鉄結合型ラクトフェリン(200FeLF)粉末とした。
(Preparation of iron-binding lactoferrin (200FeLF))
To 2 liters of water, 400 g of sodium bicarbonate was added and stirred with a stirrer. In a supersaturated solution of sodium bicarbonate, 8 liters of water were added 90 g of commercially available lactoferrin (DMV) and ferric chloride hexahydrate. A solution in which 60 g of the product was dissolved was added with stirring to prepare a solution containing iron-bound lactoferrin. This solution was desalted and concentrated with an ultrafiltration membrane having a molecular weight of 5,000 cut, and water was added to obtain an iron-binding lactoferrin solution with a capacity of 10 liters. After freeze-drying this solution, the iron content of the iron-bound lactoferrin freeze-dried product was measured with an inductively coupled plasma emission spectrometer (ICP). As a result, it contained 200 atoms of iron per molecule of lactoferrin. The dried product was iron-bonded lactoferrin (200FeLF) powder.

(ラットの強制水泳実験)
ウイスター系雄ラット(7週齢)を購入後、5日間以上の検疫馴化期間中に体重を測定するとともに一般状態を観察し、健康と判断した動物を試験に供した。動物はすべて温度24±2℃、湿度55±10%、換気回数13回/時、照明12時間(午前7時〜午後7時)の条件下(マウス、ラット区域内飼育室)で飼育した。ラクトフェリンおよび鉄結合型ラクトフェリン(ラクトフェリン1分子あたりの鉄結合分子数:0,2,70,200)投与群、及び対照群として5%アラビアガム生理食塩液を投与する群を設定した。血中の乳酸値の測定では、30分間の前負荷のみを実施する無処置群を設定した。被験物質は経口投与とし、プラスチック製胃ゾンデを用いて強制的に投与した。なお、投与量は5ml/kg体重/日とした。体重範囲299〜323gの8週齢ラットを1群8匹使用した。深さ19.5cmまで25±1℃の水を入れた100 L (底面直径40cm、上面直径50cm×高さ60cm)のポリバケツに動物を30分間入れ(前負荷)、その直後に被験物質を経口投与した。次に、Porsolt らの方法[ネイチャー(Nature), 266,730-732,1977年]に従い、被験物質の経口投与1時間後に、動物を深さ24cmまで25±1℃の水を入れた円筒形塩化ビニル製容器に1匹ずつ入れ、5分間隔で15分後まで不動時間(秒)を測定した。円筒形塩化ビニル製容器は高さ40cm、直径20cmのものを使用した。また、不動時間の測定終了後(無処置群では前負荷終了後)にエチルエーテル麻酔下に腹部大静脈よりヘパリン加血液約5mlを採血した。乳酸量の測定は、過塩素酸により除タンパクした後3,500rpm で10分間遠心分離して得られる血清を用いた。
15分間の後負荷強制水泳の結果を表3に示す。
乳酸量の測定結果を表4に示す。
(Forced swimming experiment in rats)
After purchasing Wistar male rats (7 weeks old), the body weight was measured during a quarantine habituation period of 5 days or more and the general condition was observed, and animals judged healthy were used for the test. All animals were housed under conditions of temperature 24 ± 2 ° C., humidity 55 ± 10%, ventilation rate 13 times / hour, lighting 12 hours (7 am-7pm) (mouse, rearing room in the rat area). A lactoferrin and iron-binding lactoferrin (number of iron-binding molecules per lactoferrin molecule: 0,2,70,200) administration group and a group to which 5% gum arabic physiological saline was administered were set as a control group. In the measurement of blood lactate level, an untreated group was set in which only 30 minutes preload was performed. The test substance was administered orally and was forcibly administered using a plastic gastric sonde. The dose was 5 ml / kg body weight / day. Eight 8-week-old rats with a body weight range of 299-323 g were used per group. Place animal in a 100 L (bottom diameter 40 cm, top diameter 50 cm x height 60 cm) polybucket containing water at 25 ± 1 ° C to a depth of 19.5 cm for 30 minutes (preload), and immediately after that, the test substance is orally administered. did. Next, according to the method of Porsolt et al. [Nature, 266, 730-732, 1977], 1 hour after oral administration of the test substance, the animal was placed in cylindrical vinyl chloride containing 25 ± 1 ° C water to a depth of 24 cm. One animal was placed in each container, and the immobility time (seconds) was measured until 15 minutes after 5 minutes. A cylindrical vinyl chloride container having a height of 40 cm and a diameter of 20 cm was used. In addition, about 5 ml of heparinized blood was collected from the abdominal vena cava under ethyl ether anesthesia after completion of measurement of immobility time (after completion of preload in the untreated group). For the measurement of the amount of lactic acid, serum obtained by deproteinization with perchloric acid and then centrifugation at 3,500 rpm for 10 minutes was used.
Table 3 shows the results of after-load forced swimming for 15 minutes.
Table 4 shows the measurement results of the amount of lactic acid.

Figure 2007022989
Figure 2007022989

Figure 2007022989
Figure 2007022989

表3に見られるように、ラクトフェリン(0FeLF、2FeLF)および鉄結合型ラクトフェリン(70FeLF、200FeLF)の投与によって、不動時間が有意に短縮し、疲労に対する抵抗性が高まることが明らかとなった。また、鉄結合量が多いほど不動時間が短くなる傾向がみられた。
さらに、表4に見られるように、血中の乳酸濃度は、無処置群では、前負荷の水泳後が24.0mg/mlであるのに対して、対照群では後負荷の強制水泳後に43.3mg/mlとなり、血中の乳酸濃度が有意に上昇した。ラクトフェリンおよび鉄結合型ラクトフェリンの経口投与により血中乳酸濃度は有意に低下し、ラクトフェリンおよび鉄結合型ラクトフェリンは血中の乳酸濃度の増加を抑制する作用があることを示した。
As shown in Table 3, it was revealed that administration of lactoferrin (0FeLF, 2FeLF) and iron-bound lactoferrin (70FeLF, 200FeLF) significantly shortened immobility time and increased resistance to fatigue. Moreover, the tendency for immobility time to become short was seen, so that there was much iron binding amount.
Furthermore, as seen in Table 4, the blood lactate concentration in the untreated group was 24.0 mg / ml after preload swimming, whereas in the control group 43.3 mg after afterload forced swimming. / ml, and the blood lactate concentration increased significantly. Blood lactate concentration was significantly reduced by oral administration of lactoferrin and iron-bound lactoferrin, indicating that lactoferrin and iron-bound lactoferrin have the effect of suppressing the increase in blood lactate concentration.

(ラクトフェリンの調製)
陽イオン交換樹脂のスルホン化キトパール(富士紡績社製)400gを充填したカラム(直径5cm×高さ30cm)を脱イオン水で十分洗浄した後、このカラムに未殺菌脱脂乳40L(pH6.7)を流速25ml/分で通液した。通液後、このカラムを脱イオン水で十分洗浄し、続いて0.7M塩化ナトリウムを含む0.02M炭酸緩衝液(pH7.0)で洗浄した後、0.98M塩化ナトリウムを含む0.02M炭酸緩衝液(pH7.0)で樹脂に吸着した画分を溶出した。そして、この溶出液を逆浸透(RO)膜により脱塩して、濃縮した後、凍結乾燥してラクトフェリン粉末11gを得た。
このようにして得られたラクトフェリン粉末には、ラクトフェリンが93重量%含まれ、そのまま本発明の抗疲労剤として利用可能である。
(Preparation of lactoferrin)
A column (5 cm in diameter x 30 cm in height) packed with 400 g of a cation exchange resin sulfonated chitopearl (Fuji Boseki) was thoroughly washed with deionized water, and then 40 L (pH 6.7) of non-sterilized skim milk was added to this column. At a flow rate of 25 ml / min. After passing through the column, the column was thoroughly washed with deionized water, then washed with 0.02 M carbonate buffer (pH 7.0) containing 0.7 M sodium chloride, and then 0.02 M carbonate buffer (0.98 M sodium chloride (pH 7.0)). The fraction adsorbed on the resin at pH 7.0) was eluted. The eluate was desalted with a reverse osmosis (RO) membrane, concentrated, and lyophilized to obtain 11 g of lactoferrin powder.
The lactoferrin powder thus obtained contains 93% by weight of lactoferrin and can be used as it is as the anti-fatigue agent of the present invention.

(鉄結合型ラクトフェリンの調製)
実施例1で得られたラクトフェリン10μmolと重炭酸ナトリウム1.2molとを含む溶液1LをA液として作製した。硫酸第二鉄を鉄イオンとして1.5mmol含む溶液1LをB液として作製した。A液にB液を加えた後、分子量5,000カットの限外ろ過膜にて脱塩、濃縮し、模擬緩衝液(pH8.9)にて鉄濃度が94mg/100mlになるように希釈して鉄結合型ラクトフェリンを得た。
このようにして得られた鉄結合型ラクトフェリンは、溶液100ml当たりラクトフェリンを0.9g、及び鉄を94mg含有しており、そのまま本発明の抗疲労剤としても利用可能である。
(Preparation of iron-binding lactoferrin)
A solution 1 L containing 10 μmol of lactoferrin obtained in Example 1 and 1.2 mol of sodium bicarbonate was prepared as solution A. 1 L of a solution containing 1.5 mmol of ferric sulfate as iron ions was prepared as solution B. After adding solution B to solution A, desalting and concentrating with an ultrafiltration membrane with a molecular weight of 5,000 cut, and diluting with simulated buffer (pH 8.9) so that the iron concentration becomes 94 mg / 100 ml. A conjugated lactoferrin was obtained.
The iron-bound lactoferrin thus obtained contains 0.9 g of lactoferrin and 94 mg of iron per 100 ml of the solution, and can be used as it is as an anti-fatigue agent of the present invention.

(ラクトフェリンを含有した錠剤の調製)
実施例1の方法で得られたラクトフェリン36重量部、乳糖(DMV社製)36重量部、結晶セルロース(和光純薬工業社製)25重量部、水3重量部を十分混合した後、打錠機(富士薬品機械社製)により打錠し、錠剤型の抗疲労剤を得た。
(Preparation of tablets containing lactoferrin)
After sufficiently mixing 36 parts by weight of lactoferrin obtained by the method of Example 1, 36 parts by weight of lactose (manufactured by DMV), 25 parts by weight of crystalline cellulose (manufactured by Wako Pure Chemical Industries, Ltd.) and 3 parts by weight of water, tableting is performed. Tableting was carried out using a machine (Fuji Yakuhin Co., Ltd.) to obtain a tablet-type anti-fatigue agent.

(鉄結合型ラクトフェリンを含有した錠剤の調製)
実施例2の方法で得られた鉄結合型ラクトフェリン36重量部、乳糖(DMV社製)36重量部、結晶セルロース(和光純薬工業社製)25重量部、水3重量部を十分混合した後、打錠機(富士薬品機械社製)により打錠し、錠剤型の抗疲労剤を得た。
(Preparation of tablets containing iron-binding lactoferrin)
After sufficiently mixing 36 parts by weight of iron-bound lactoferrin obtained by the method of Example 2, 36 parts by weight of lactose (DMV), 25 parts by weight of crystalline cellulose (manufactured by Wako Pure Chemical Industries), and 3 parts by weight of water Tableting was performed with a tableting machine (Fuji Pharmaceutical Co., Ltd.) to obtain a tablet-type anti-fatigue agent.

(抗疲労剤を配合した清涼飲料水の調製)
市販のラクトフェリン(DMV社製)0.1重量部、50%乳酸溶液0.12重量部、マルチトール 7.5重量部、香料 0.2重量部、水 92.08重量部を混合し、プレート式加熱殺菌機を用いて90℃、15秒間殺菌し、抗疲労効果を有する清涼飲料水を製造した。
(Preparation of soft drink containing anti-fatigue agent)
Commercially available lactoferrin (manufactured by DMV) 0.1 parts by weight, 50% lactic acid solution 0.12 parts by weight, maltitol 7.5 parts by weight, perfume 0.2 parts by weight, water 92.08 parts by weight were mixed, using a plate type heat sterilizer at 90 ° C. Sterilized for 15 seconds to produce a soft drink with anti-fatigue effect.

(抗疲労剤を配合した清涼飲料水の調製)
実施例2の方法で得られた鉄結合型ラクトフェリン0.1重量部、50%乳酸溶液0.12重量部、マルチトール 7.5重量部、香料 0.2重量部、水 92.08重量部を混合し、プレート式加熱殺菌機を用いて90℃、15秒間殺菌し、抗疲労効果を有する清涼飲料水を製造した。
(Preparation of soft drink containing anti-fatigue agent)
Mixing 0.1 parts by weight of iron-bound lactoferrin obtained by the method of Example 2, 0.12 parts by weight of 50% lactic acid solution, 7.5 parts by weight of maltitol, 0.2 parts by weight of fragrance, and 92.08 parts by weight of water, It was sterilized at 90 ° C. for 15 seconds to produce a soft drink having an anti-fatigue effect.

(抗疲労剤を配合した乳飲料の調製)
実施例1の方法で得られたラクトフェリンを、100mg/100gとなるように生乳に添加し、150kgf/cm2で均質処理を行い、プレート式加熱殺菌機を用いて 130℃、2秒間殺菌し、抗疲労効果を有する乳飲料を製造した。
(Preparation of milk beverages containing anti-fatigue agents)
The lactoferrin obtained by the method of Example 1 is added to raw milk so as to be 100 mg / 100 g, homogenized at 150 kgf / cm 2 , sterilized at 130 ° C. for 2 seconds using a plate type heat sterilizer, A milk beverage having an anti-fatigue effect was produced.

(鉄結合型ラクトフェリンを添加した乳飲料の調製)
実施例2の方法で得られた鉄結合型ラクトフェリンを、100mg/100gとなるように生乳に添加し、150kgf/cm2で均質処理を行い、プレート殺菌機を用いて 130℃、2秒間殺菌し、抗疲労効果を有する乳飲料を製造した。
(Preparation of milk beverage with iron-binding lactoferrin added)
The iron-binding lactoferrin obtained by the method of Example 2 is added to raw milk so as to be 100 mg / 100 g, homogenized at 150 kgf / cm 2 , and sterilized at 130 ° C. for 2 seconds using a plate sterilizer. A milk beverage having an anti-fatigue effect was produced.

Claims (2)

ラクトフェリンを有効成分として含有することを特徴とする抗疲労剤。   An anti-fatigue agent comprising lactoferrin as an active ingredient. ラクトフェリンがラクトフェリンと鉄とを結合させた鉄結合型ラクトフェリンである請求項1記載の抗疲労剤。
The anti-fatigue agent according to claim 1, wherein the lactoferrin is iron-bound lactoferrin in which lactoferrin and iron are bound.
JP2005210456A 2005-07-20 2005-07-20 Anti-fatigue agent Pending JP2007022989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005210456A JP2007022989A (en) 2005-07-20 2005-07-20 Anti-fatigue agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005210456A JP2007022989A (en) 2005-07-20 2005-07-20 Anti-fatigue agent

Publications (1)

Publication Number Publication Date
JP2007022989A true JP2007022989A (en) 2007-02-01

Family

ID=37784230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005210456A Pending JP2007022989A (en) 2005-07-20 2005-07-20 Anti-fatigue agent

Country Status (1)

Country Link
JP (1) JP2007022989A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031403A (en) * 2005-07-29 2007-02-08 Morinaga Milk Ind Co Ltd Lactic acid production inhibitor
WO2010119804A1 (en) * 2009-04-17 2010-10-21 雪印乳業株式会社 Anti-mental fatigue agent
JP2011148769A (en) * 2009-12-25 2011-08-04 Lion Corp Degradation inhibitor for branched chain amino acid
WO2016136904A1 (en) * 2015-02-26 2016-09-01 味の素株式会社 Cheese production method and preparation for cheese reformulation
JP2018043964A (en) * 2016-09-16 2018-03-22 サンスター株式会社 Sleep improving composition
JP2019011302A (en) * 2017-06-30 2019-01-24 サンスター株式会社 Composition for improving biological rhythm
JP2019142976A (en) * 2019-06-04 2019-08-29 株式会社東洋新薬 Adjuvant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591837A (en) * 1991-10-01 1993-04-16 Eiichi Nakagawa Dried confectionery
JPH10113147A (en) * 1996-10-08 1998-05-06 Ito Ham Kk Physical Strength Enhancement / Fatigue Recovery Agent and Food Using It
JPH11103824A (en) * 1997-09-29 1999-04-20 Snow Brand Milk Prod Co Ltd Food, beverage and feed containing iron-enriched dietary fibers
JP2001354583A (en) * 2000-06-09 2001-12-25 Morinaga Milk Ind Co Ltd Anti-stress agent
JP2002284667A (en) * 2001-03-28 2002-10-03 Kiguchi:Kk Skin liniment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591837A (en) * 1991-10-01 1993-04-16 Eiichi Nakagawa Dried confectionery
JPH10113147A (en) * 1996-10-08 1998-05-06 Ito Ham Kk Physical Strength Enhancement / Fatigue Recovery Agent and Food Using It
JPH11103824A (en) * 1997-09-29 1999-04-20 Snow Brand Milk Prod Co Ltd Food, beverage and feed containing iron-enriched dietary fibers
JP2001354583A (en) * 2000-06-09 2001-12-25 Morinaga Milk Ind Co Ltd Anti-stress agent
JP2002284667A (en) * 2001-03-28 2002-10-03 Kiguchi:Kk Skin liniment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031403A (en) * 2005-07-29 2007-02-08 Morinaga Milk Ind Co Ltd Lactic acid production inhibitor
WO2010119804A1 (en) * 2009-04-17 2010-10-21 雪印乳業株式会社 Anti-mental fatigue agent
JP2010248147A (en) * 2009-04-17 2010-11-04 Snow Brand Milk Prod Co Ltd Anti-mental fatigue agent
JP2011148769A (en) * 2009-12-25 2011-08-04 Lion Corp Degradation inhibitor for branched chain amino acid
WO2016136904A1 (en) * 2015-02-26 2016-09-01 味の素株式会社 Cheese production method and preparation for cheese reformulation
JP2018043964A (en) * 2016-09-16 2018-03-22 サンスター株式会社 Sleep improving composition
JP2019011302A (en) * 2017-06-30 2019-01-24 サンスター株式会社 Composition for improving biological rhythm
JP2019142976A (en) * 2019-06-04 2019-08-29 株式会社東洋新薬 Adjuvant

Similar Documents

Publication Publication Date Title
CN104159592B (en) The purposes of casein composition
KR101355868B1 (en) Liquid formulation based on a guanidinoacetic acid component
JP2012530067A (en) Glycomacropeptide medical food for nutritional management of phenylketonuria and other metabolic disorders
JP2010521420A (en) Use of guanidinoacetic acid (salt) in combination with betaine and / or choline for the manufacture of health enhancers
CN105578899A (en) New prophylactic use for prevention of infections
JP5922863B2 (en) Motor function improver
CN105682481A (en) Compositions comprising choline and derivatives thereof, uses thereof and processes for their preparation
JP2007022989A (en) Anti-fatigue agent
RU2428193C2 (en) Accelerating agent of calcium absorption
JP5414142B2 (en) Lipid metabolism improver
CN107529805A (en) Composition comprising choline and its derivative, preparation method and use
WO2006114840A1 (en) Iron composition containing milk protein
JP2001057869A (en) Material for ameliorating obesity and dieting, and diet food
JP2001046021A (en) Materials for enhancing physical strength and recovering from fatigue and foods using the same
RU2274003C2 (en) Method for complex processing agricultural animals blood for preparing hemoglobin-base biologically active substance with anti-anemic properties, biologically active substance with anti-anemic properties (variants) and product comprising thereof (variants)
JP2019170205A (en) Powdery composition
JP2013538822A (en) Trivalent chromium / boron fortified composition, nutritional supplement water, and preparation method thereof
KR101306931B1 (en) Preparation method for milk protein with high content of organic calcium
JP3608884B2 (en) Lipid metabolism improving agent and food using the same
JP2010095474A (en) Calcium absorption-promoting composition and calcium absorption-promoting food and drink
JPH07241172A (en) Food and drink promoting absorption of mineral
WO2005082166A1 (en) Mineral-enrichment composition
JPH1066542A (en) Obesity ameliorating and diet food material and diet food using the same
JP2001029011A (en) Nutrient composition
JP2001057868A (en) Lipid metabolism-improving material and food using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728