[go: up one dir, main page]

JP2007020565A - Method and system for detecting viruses in a sample - Google Patents

Method and system for detecting viruses in a sample Download PDF

Info

Publication number
JP2007020565A
JP2007020565A JP2006163071A JP2006163071A JP2007020565A JP 2007020565 A JP2007020565 A JP 2007020565A JP 2006163071 A JP2006163071 A JP 2006163071A JP 2006163071 A JP2006163071 A JP 2006163071A JP 2007020565 A JP2007020565 A JP 2007020565A
Authority
JP
Japan
Prior art keywords
virus
fluorescent
sample
influenza
binding substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006163071A
Other languages
Japanese (ja)
Other versions
JP4757103B2 (en
Inventor
Shin Hasegawa
慎 長谷川
Masae Ito
正恵 伊藤
Tamio Mizukami
民夫 水上
Nobuaki Shirai
伸明 白井
Toshiki Okada
俊樹 岡田
Hisashi Nagaya
寿 長屋
Yoshiaki Nishiya
西矢  芳昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO SCIENCE KK
Shiga Prefectural Government.
Toyobo Co Ltd
Kansai Bunri Sogo Gakuen
Original Assignee
TECHNO SCIENCE KK
Shiga Prefectural Government.
Toyobo Co Ltd
Kansai Bunri Sogo Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO SCIENCE KK, Shiga Prefectural Government. , Toyobo Co Ltd, Kansai Bunri Sogo Gakuen filed Critical TECHNO SCIENCE KK
Priority to JP2006163071A priority Critical patent/JP4757103B2/en
Publication of JP2007020565A publication Critical patent/JP2007020565A/en
Application granted granted Critical
Publication of JP4757103B2 publication Critical patent/JP4757103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

【課題】ウイルスを高感度に検出する検出方法および検出装置を提供する。
【解決手段】蛍光標識されたあるいは蛍光性を持つウイルス結合性物質と試料を混合して試料溶液を調製する工程、共焦点光学系を用いて該試料溶液の蛍光信号の時間経過を計測する工程を含む、試料中のウイルスまたは/およびウイルス感染細胞由来ウイルス関連物質を検出する方法。上記のウイルス結合性物質は、糖、抗体、タンパク質、ペプチド、核酸、脂質、低分子化合物からなる群から選ばれる。
【選択図】図2
A detection method and a detection apparatus for detecting a virus with high sensitivity are provided.
A step of preparing a sample solution by mixing a fluorescently labeled or fluorescent virus-binding substance with a sample, and a step of measuring a time course of a fluorescence signal of the sample solution using a confocal optical system A method for detecting a virus or / and a virus-related substance derived from a virus-infected cell in a sample, comprising: The virus-binding substance is selected from the group consisting of sugars, antibodies, proteins, peptides, nucleic acids, lipids, and low molecular compounds.
[Selection] Figure 2

Description

本発明は、試料中のウイルスを検出するための迅速、高感度な試験方法、および試料中のウイルスを検出するための試薬、機器に関する。   The present invention relates to a rapid and sensitive test method for detecting a virus in a sample, and a reagent and an instrument for detecting a virus in a sample.

最近、新型肺炎やトリインフルエンザなどのウイルス感染症が全世界的に大きな脅威となっている。ウイルスはヒトや動植物のさまざまな病気の原因の一つであり、その検査・診断のためにはウイルスの確認が非常に重要である。特に、抗生物質の効かないウイルス感染症を克服するためには、治療薬の開発と共に迅速な診断法を確立し、治療に役立てることは勿論、素早い公衆衛生上の対策を講じることが不可欠である。また、種々の抗ウイルス剤が臨床応用され始めたことによりその治療効果の確認のため極低濃度のウイルスを検出する技術も必要とされている。さらに、細胞培養等によって生産されるバイオ医薬品の安全性確保のため、ウイルスを高感度に検出することが重要となってきている。   Recently, viral infections such as new pneumonia and avian influenza have become a major threat worldwide. Viruses are one of the causes of various diseases in humans, animals and plants, and virus confirmation is very important for testing and diagnosis. In particular, in order to overcome viral infections for which antibiotics do not work, it is essential to establish rapid diagnostic methods together with the development of therapeutic drugs and to take immediate measures for public health as well as to help with treatment. . In addition, since various antiviral agents have begun to be applied clinically, a technique for detecting extremely low concentrations of viruses is also required in order to confirm their therapeutic effects. Furthermore, in order to ensure the safety of biopharmaceuticals produced by cell culture or the like, it has become important to detect viruses with high sensitivity.

従来のウイルス検査・診断法としては、ウイルス抗原あるいは抗ウイルス抗体の免疫学的測定が一般的である。しかしながら、ウイルス感染から数週間〜数ヶ月は、ウイルス量あるいは抗ウイルス抗体量が少ないため、これらの免疫学的測定法では検出できない場合が多い。したがって、検出できない期間をできる限り短縮するため、免疫学的測定限界下のウイルスを高感度に検出できる技術の開発が急務とされている。また、現行の検査方法は、専門知識を持つ技術者と装置設備が必要であり、大病院や臨床検査機関の検査室、あるいは大学や公的研究所レベル以上の施設でなければ実施できない。   As a conventional virus inspection / diagnosis method, immunological measurement of a virus antigen or an antiviral antibody is generally used. However, during weeks to months after virus infection, the amount of virus or antiviral antibody is small, and in many cases it cannot be detected by these immunoassays. Therefore, there is an urgent need to develop a technology that can detect a virus under the limit of immunological measurement with high sensitivity in order to shorten the period during which it cannot be detected as much as possible. In addition, current inspection methods require engineers and equipment with specialized knowledge, and can only be performed at large hospitals, clinical laboratory laboratories, or at universities or public laboratory level or higher.

近年、ポリメラーゼチェインリアクション(PCR)法に代表される、核酸増幅技術により、極微量のウイルスでも検出できる可能性が開けてきた。しかしながら、PCR法などによっても極微量のウイルス検出は特殊な施設と高度な技術が必要とされ、一般的な施設で簡便に実施することはきわめて困難である。   In recent years, the possibility of detecting even a trace amount of virus has been opened by nucleic acid amplification techniques represented by the polymerase chain reaction (PCR) method. However, detection of a trace amount of virus by PCR or the like requires special facilities and advanced techniques, and it is extremely difficult to carry out easily in general facilities.

一方、ヒトインフルエンザでは、近年、優れた治療薬が市場に出たが、その投与条件は感染後48時間以内であり、それ以後では、治療効果が極端に下がる。このことは、ウイルス感染直後のウイルス量の少ない時期の診断こそが重要であるにもかかわらず、現行の簡易検査法では検出感度が低すぎる為検出できないという危険性が高いことを示唆している。また、精度においても十分とは言えず、昨今のトリインフルエンザでは、最終の確定診断は、ウイルス分離検査の結果を待たなければならなかった。インフルエンザは、現在、全世界で新型ウイルスの出現が危惧されており、その高感度で精度の高い迅速検査方法の確立は、危急の課題である。   On the other hand, in the case of human influenza, excellent therapeutic drugs have been put on the market in recent years, but the administration conditions are within 48 hours after infection, and thereafter, the therapeutic effect is extremely lowered. This suggests that there is a high risk that detection cannot be performed because the detection sensitivity is too low with the current simple test method, even though it is important to diagnose at a low viral load immediately after virus infection. . In addition, the accuracy is not sufficient, and in recent avian influenza, the final definitive diagnosis had to wait for the result of the virus isolation test. Influenza is currently concerned about the emergence of new viruses all over the world, and the establishment of a highly sensitive and accurate rapid test method is an urgent issue.

したがって本発明は、診療現場、さらには動物まで含んだ包括的な公衆衛生対策に即応できるウイルスの検出方法、検出装置とそのための試薬を製作し、迅速で高感度、かつ信頼度の高い診断系を提供することを目的とする。   Therefore, the present invention produces a virus detection method, a detection apparatus and a reagent therefor that can immediately respond to comprehensive public health measures including clinical sites and even animals, and is a rapid, highly sensitive and reliable diagnostic system. The purpose is to provide.

本発明者らは、試料中のウイルスを簡単なシステムで迅速、高感度に検出するための試験方法を開発するため鋭意研究を重ね、共焦点光学系と適切な蛍光標識試薬を組合せることにより迅速で高感度、かつ信頼度の高いウイルス検出が可能となることを見出し、本発明を完成するに至った。   The inventors have conducted extensive research to develop a test method for detecting a virus in a sample quickly and with a simple system, by combining a confocal optical system with an appropriate fluorescent labeling reagent. The inventors have found that virus detection can be performed quickly, with high sensitivity and with high reliability, and the present invention has been completed.

すなわち本発明は、以下の通りである。
1. 蛍光標識されたあるいは蛍光性を持つウイルス結合性物質と試料を混合して試料溶液を調製する工程、共焦点光学系を用いて該試料溶液の蛍光信号の時間経過を計測する工程を含む試料中のウイルスまたは/およびウイルス感染細胞由来ウイルス関連物質を検出する方法。
2. 前記ウイルス結合性物質が、糖、抗体、タンパク質、ペプチド、核酸、脂質、低分子化学物質からなる群から選ばれる項1に記載の方法。
3. ウイルスが粒子状態であり、ウイルス表層にて蛍光標識物質と結合することを特徴とする、項1記載の方法。
4. あらかじめウイルス粒子の一部または全部を物理的または化学的に破砕することを特徴とする、項1記載の方法。
5. 試料中のウイルスの抽出および精製のための前処理工程をさらに含むことを特徴とする、項1〜4のいずれかに記載の方法。
6. ウイルスの平均粒子直径が短径1〜1000nm、長径5〜10000nmであることを特徴とする、項1〜5のいずれかに記載の方法。
7. ウイルスがインフルエンザウイルスであることを特徴とする、項1〜6のいずれかに記載の方法。
8. 蛍光標識されたあるいは蛍光性を持つウイルス結合性物質と共焦点光学系を含むウイルスまたは/およびウイルス感染細胞由来ウイルス関連物質の検出システム。
9. 前記ウイルス結合性物質が、糖、抗体、タンパク質、ペプチド、核酸、脂質、低分子化学物質からなる群から選ばれる項8に記載のシステム。
10. 蛍光標識されたあるいは蛍光性を持つウイルス結合性物質の蛍光波長が350〜800nm、分子量が120以上、共焦点光学系の共焦点領域が10−16〜10−10リットルであることを特徴とする、項8または9に記載のシステム。
11. ウイルスの平均粒子直径が短径1〜1000nm、長径5〜10000nmであることを特徴とする、項8〜10のいずれかに記載のシステム。
12. 測定対象のウイルスがインフルエンザウイルスであることを特徴とする、項8〜11のいずれかに記載のシステム。
That is, the present invention is as follows.
1. In a sample, including a step of preparing a sample solution by mixing a fluorescently labeled or fluorescent virus-binding substance with a sample, and measuring a time course of a fluorescence signal of the sample solution using a confocal optical system And / or a virus-related substance derived from a virus-infected cell.
2. Item 2. The method according to Item 1, wherein the virus-binding substance is selected from the group consisting of sugars, antibodies, proteins, peptides, nucleic acids, lipids, and low-molecular chemical substances.
3. Item 2. The method according to Item 1, wherein the virus is in a particle state and binds to a fluorescent labeling substance on the surface of the virus.
4). Item 2. The method according to Item 1, wherein part or all of the virus particles are physically or chemically disrupted in advance.
5. Item 5. The method according to any one of Items 1 to 4, further comprising a pretreatment step for extraction and purification of a virus in the sample.
6). Item 6. The method according to any one of Items 1 to 5, wherein the virus has an average particle diameter of 1 to 1000 nm in the minor axis and 5 to 10,000 nm in the major axis.
7). Item 7. The method according to any one of Items 1 to 6, wherein the virus is an influenza virus.
8). A detection system for a virus or / and a virus-related substance derived from a virus-infected cell, comprising a fluorescently labeled or fluorescent virus-binding substance and a confocal optical system.
9. Item 9. The system according to Item 8, wherein the virus-binding substance is selected from the group consisting of sugars, antibodies, proteins, peptides, nucleic acids, lipids, and low-molecular chemical substances.
10. The fluorescence wavelength of the fluorescently labeled or fluorescent virus-binding substance is 350 to 800 nm, the molecular weight is 120 or more, and the confocal region of the confocal optical system is 10 −16 to 10 −10 liter. 10. The system according to item 8 or 9.
11. Item 11. The system according to any one of Items 8 to 10, wherein the virus has an average particle diameter of 1 to 1000 nm in the minor axis and 5 to 10,000 nm in the major axis.
12 Item 12. The system according to any one of Items 8 to 11, wherein the virus to be measured is an influenza virus.

本発明の測定対象となるウイルスとしては、アデノウイルス(ヒトおよびサル、ウシ、ブタ、イヌ、マウス、トリなどの動物アデノウイルス)、ヘルペスウイルス(単純ヘルペスウイルス、サイトメガロウイルス、水痘帯状疱疹ウイルス、EBウイルス、ヒトヘルペスウイルス6,7,8型、ウシ、ウマ、ヒツジ、ヤギ、コイなどの動物ヘルペスウイルスなど)、ポックスウイルス(痘瘡ウイルス、牛痘ウイルス、ワクシニアウイルス、サル痘ウイルス、伝染性軟属腫ウイルスなど)、ポリオーマウイルス(BKウイルス、JCウイルスなど)、パピローマウイルス(ヒトおよびウシ、ウマ、ヒツジなどの動物パピローマウイルス)、パルボウイルス(ヒトおよび動物パルボウイルス、アデノ随伴ウイルスなど)、肝炎ウイルス(A、B、C、D、E、FおよびG型肝炎ウイルス、TTウイルスなど)、ピコルナウイルス(ポリオウイルス、コクサッキーウイルス、エコーウイルス、エンテロウイルス、ライノウイルスなど)、カリシウイルス(ノロ(小型球形)ウイルスなど)、アストロウイルス(ヒトおよび動物のアストロウイルスなど)、トガウイルス(風疹ウイルス、チクングニヤウイルス、西部ウマ脳炎ウイルス、東部ウマ脳炎ウイルス、ベネズエラウマ脳炎ウイルスなど)、フラビウイルス(日本脳炎ウイルス、西ナイル熱ウイルス、デングウイルス、黄熱ウイルスなど)、インフルエンザウイルス(ヒトA、BおよびC型インフルエンザウイルス、ブタ、ウマ、トリなどの動物インフルエンザウイルス)、パラミキソウイルス(パラインフルエンザウイルス、麻疹ウイルス、ムンプスウイルス、RSウイルス、牛疫ウイルス、イヌジステンパーウイルス、ニューカッスル病ウイルス、ヘンドラウイルス、ニパウイルスなど)、ラブドウイルス(狂犬病ウイルス、水泡性口内炎ウイルスなど)、フィロウイルス(エボラウイルス、マールブルグウイルスなど)、コロナウイルス(SARS(重症急性呼吸器症候群)ウイルス、ヒトおよびウシ、ブタ、ウマ、ニワトリなどのコロナウイルス)、アルテリウイルス、ブニヤウイルス(ハンタウイルスなど)、アレナウイルス(ラッサウイルス、リンパ球性脈絡髄膜炎ウイルスなど)、ボルナウイルス、レオウイルス(ロタウイルス、オルソレオウイルスなど)、レトロウイルス(HTLV(ヒトTリンパ球向性ウイルス、HIV(ヒト免疫不全ウイルス)、SIV(サル免疫不全ウイルス)、ラウス肉腫ウイルス、動物レトロウイルスなど)、昆虫ウイルス(ポックスウイルス、イリドウイルス、パルボウイルス、バキュロウイルス)、植物ウイルス、バクテリオファージなどが挙げられる。 Examples of viruses to be measured in the present invention include adenoviruses (human and monkeys, animal adenoviruses such as cows, pigs, dogs, mice, and birds), herpes viruses (herpes simplex virus, cytomegalovirus, varicella-zoster virus, EB virus, human herpesvirus type 6,7,8, animal herpesviruses such as bovine, horse, sheep, goat, carp, etc., poxvirus (decubitus virus, cowpox virus, vaccinia virus, monkeypox virus, infectious genus ), Polyomavirus (BK virus, JC virus, etc.), papillomavirus (human and animal papillomaviruses such as horse, sheep), parvovirus (human and animal parvovirus, adeno-associated virus, etc.), hepatitis Virus (A, B, C, D, E, F and G liver Viruses, TT viruses, etc.), picornaviruses (polioviruses, coxsackie viruses, echoviruses, enteroviruses, rhinoviruses, etc.), caliciviruses (noro (small spherical) viruses, etc.), astroviruses (human and animal astroviruses, etc.), Togavirus (rubella virus, chikungunya virus, western equine encephalitis virus, eastern equine encephalitis virus, Venezuelan equine encephalitis virus, etc.), flavivirus (Japanese encephalitis virus, West Nile fever virus, dengue virus, yellow fever virus, etc.), influenza virus (human) A, B and C influenza viruses, animal influenza viruses such as swine, horses and birds), paramyxovirus (parainfluenza virus, measles virus, mumps virus, RS virus) , Rinderpest virus, canine distemper virus, Newcastle disease virus, Hendra virus, Nipah virus, etc., rhabdovirus (rabies virus, vesicular stomatitis virus, etc.), filovirus (Ebola virus, Marburg virus etc.), coronavirus (SARS (SARS) Severe acute respiratory syndrome) virus, human and bovine, porcine, equine, chicken and other coronaviruses), arterivirus, bunyavirus (such as hantavirus), arenavirus (such as Lassa virus, lymphocytic choriomeningitis virus), Bornavirus, reovirus (rotavirus, orthoreovirus, etc.), retrovirus (HTLV (human T lymphocyte tropic virus, HIV (human immunodeficiency virus), SIV (monkey immunodeficiency virus), rous sarcoma virus, animal virus) Etc. b virus), insect virus (poxvirus, iridoviruses, parvoviruses, baculoviruses), plant viruses, such as bacteriophage and the like.

ウイルスまたは/およびウイルス感染細胞由来ウイルス関連物質を含む可能性のある試料としては、血液、血清、血漿、唾液、脳脊髄液、尿、便、糞、リンパ液、涙液、および各種臓器などの哺乳類(ヒト、ウシ、ウマ、ブタ、イノシシ、ヒツジ、ウサギ、特にヒト)、鳥類(ニワトリ、アヒル、ウズラ、七面鳥、カモ、キジなど)、無脊椎動物(昆虫;カイコ、ハチ、アリ、クワガタ、カブトムシなど、甲殻類;エビ、カニなど)、植物(桑、小豆、ソラマメ、トマト、ナス、キュウリ、メロン、タバコ、菊、ユリ、バラなど)の生体由来の試料、食品(卵、牛乳、大豆、小麦、米などの穀類、魚介類、或いは加工食品など)、河川、土壌などの環境由来の試料が例示される。
ウイルス結合性物質は、ウイルスに特異的に結合するものであれば特に限定されず、糖、抗体、タンパク質(糖蛋白を含む)、ペプチド、核酸、脂質(糖脂質を含む)、低分子化学物質などが広く例示される。例えば、インフルエンザウイルスの検出には、ウイルス結合性物質としてフェチュインが好ましく使用できる。好ましいウイルス結合性物質は、ウイルスに特異的な抗体、或いはフェチュインなどのタンパク質、ガングリオシドLysoGM3などの糖脂質が挙げられる。
Samples that may contain viruses or / and virus-related substances derived from virus-infected cells include mammals such as blood, serum, plasma, saliva, cerebrospinal fluid, urine, feces, feces, lymph, tears, and various organs (Humans, cows, horses, pigs, wild boars, sheep, rabbits, especially humans), birds (chicken, ducks, quail, turkeys, ducks, pheasants, etc.), invertebrates (insects; silkworms, bees, ants, stag beetles, beetles) , Crustaceans; shrimp, crabs, etc.), plants (mulberry, red beans, broad beans, tomatoes, eggplant, cucumbers, melons, tobacco, chrysanthemums, lilies, roses, etc.) biological samples, foods (eggs, milk, soybeans, Examples include samples derived from the environment such as cereals such as wheat and rice, seafood, processed foods, rivers, and soils.
The virus-binding substance is not particularly limited as long as it specifically binds to the virus. Sugar, antibody, protein (including glycoprotein), peptide, nucleic acid, lipid (including glycolipid), low molecular chemical substance Etc. are widely exemplified. For example, fetuin can be preferably used as a virus-binding substance for detection of influenza virus. Preferred virus-binding substances include antibodies specific for viruses, proteins such as fetuin, and glycolipids such as ganglioside LysoGM3.

具体的なウイルスとウイルス結合性物質の組み合わせを以下に例示する:
もっとも好ましいウイルス結合性物質は、各ウイルスの特異抗体および各ウイルスのレセプター様物質である。レセプターが以下に示すような蛋白質の場合、ウイルスとの結合部位を含む完全長の蛋白質、部分長蛋白質あるいはペプチドでも構わない。ポリオウイルスに対するCD155、麻疹ウイルスに対するCD46およびCD150、牛疫ウイルスおよびイヌジステンパーウイルスに対するCD155、シンドビスウイルスに対するラミニンレセプター、ラッサ熱ウイルスおよびリンパ球性脈絡髄膜炎ウイルスに対するa-ジストログリカン、コクサッキーウイルスに対するCAR、CD55およびavb3インテグリン、エコーウイルスに対するCD55およびa2 b1インテグリン、ヒトコロナウイルスに対するアミノペプチダーゼN、マウス肝炎ウイルスに対するBgp1、HIVおよびSIVに対するCD4、ケモカインレセプター(CXCR4およびCCR3など)およびガラクトシルセラミド、トリ白血病ウイルスに対するTVAおよびTVB、マウス白血病ウイルスに対するMCAT-1およびPiT-2、ネコ白血病ウイルスおよびサル肉腫ウイルスに対するPiT-1、単純ヘルペスウイルスに対するHveA、HveB、HveC、Prr1およびPrr2、ヒトヘルペスウイルス6型に対するCD46、ヒトヘルペスウイルス7型に対するCD4、EBウイルスに対するCR2、ライノウイルスに対するICAM-1およびLDLR、アデノウイルスに対するCAR、avb3インテグリンおよびavb5インテグリンなどが挙げられる。また、糖鎖をレセプターとするウイルスでは、該当の糖鎖を含有する糖蛋白質、糖脂質あるいは遊離の糖鎖自身がウイルスに結合する。例えば、インフルエンザウイルスAおよびB型、パラインフルエンザウイルス、レオウイルス3型、マウスポリオーマウイルス、イヌパルボウイルスおよびアデノウイルスではシアル酸が、インフルエンザウイルスC型では9-O-アセチルシアル酸が、ヒトおよびウシコロナウイルスでは、N-アセチル-9-O-アセチルシアル酸が、HIVではガラクトシルセラミドが、単純ヘルペスウイルスおよびヒトサイトメガロウイルスでは硫酸ヘパリンがレセプターとして機能する。
Specific combinations of viruses and virus-binding substances are exemplified below:
The most preferable virus-binding substance is a specific antibody of each virus and a receptor-like substance of each virus. When the receptor is a protein as shown below, it may be a full-length protein, a partial-length protein or a peptide containing a binding site with a virus. CD155 for poliovirus, CD46 and CD150 for measles virus, CD155 for rinderpest virus and canine distemper virus, laminin receptor for Sindbis virus, a-dystroglycan for Lassa fever virus and lymphocytic choriomeningitis virus, CAR for coxsackie virus, CD55 and avb3 integrin, CD55 and a2 b1 integrin for echovirus, aminopeptidase N for human coronavirus, Bgp1 for mouse hepatitis virus, CD4 for HIV and SIV, chemokine receptors (such as CXCR4 and CCR3) and galactosylceramide, for avian leukemia virus TVA and TVB, MCAT-1 and PiT-2 for murine leukemia virus, PiT-1 for feline leukemia virus and simian sarcoma virus, herpes simplex virus HveA, HveB, HveC, Prr1 and Prr2, against CD46 against human herpesvirus 6, CD4 against human herpesvirus 7, CR2 against EB virus, ICAM-1 and LDLR against rhinovirus, CAR against adenovirus, avb3 integrin and avb5 Examples include integrins. In addition, in a virus having a sugar chain as a receptor, a glycoprotein, glycolipid or free sugar chain containing the corresponding sugar chain is bound to the virus. For example, sialic acid for influenza viruses A and B, parainfluenza virus, reovirus 3, mouse polyoma virus, canine parvovirus and adenovirus, 9-O-acetylsialic acid for influenza virus C, human and N-acetyl-9-O-acetylsialic acid functions as a receptor in bovine coronavirus, galactosylceramide in HIV, and heparin sulfate functions as a receptor in herpes simplex virus and human cytomegalovirus.

また、ウイルス結合性物質として抗ウイルス薬が挙げられる。インフルエンザウイルスに対するザナミビルやリン酸オセルタミビルなどのノイラミダーゼ阻害剤および塩酸アマンタジンや塩酸リマンタジンなどのウイルスイオンチャンネル阻害剤、多様なウイルスに対するウイルス特異的DNAまたはRNAポリメラーゼ阻害剤およびその生体内代謝産物、例えば、単純ヘルペスウイルスに対しアシクロビルおよびビダラビンなど、サイトメガロウイルスに対しガンシクロビルなど、HIVに対しジドブジン、ジダノシン、ザルシタビン、サニルブジンおよびラミブジンなど、B型肝炎ウイルスに対しラミブジンなど、レトロウイルスに対する逆転写酵素阻害剤、例えばHIVに対しエファビレンツ、ネビラピンおよびメシル酸デラビルジンなど、あるいは、HIVに対するプロテアーゼインヒビター、例えばメシル酸サキナビル、リトナビル、インジナビル、メシル酸ネルフィナビルおよびアンプレナビルなどが挙げられるが、これに限定されるものではなく、またウイルスに対する結合を強め、または蛍光標識を行うために化学的修飾をされた誘導体も含まれ、また将来的に開発される抗ウイルス薬も含まれる。また、ウイルス表面の糖鎖構造と結合するレクチン類、例えばHIVとコンカナバリンAが挙げられる。また、ウイルスDNAまたはRNAに結合する相補的な配列を有するDNA、RNA、ペプチドヌクレイックアシッドといった核酸配列結合物質が挙げられる。   Moreover, an antiviral agent is mentioned as a virus binding substance. Neuramidase inhibitors such as zanamivir and oseltamivir phosphate for influenza viruses and viral ion channel inhibitors such as amantadine hydrochloride and rimantadine hydrochloride, virus-specific DNA or RNA polymerase inhibitors for various viruses and their in vivo metabolites such as simple Reverse transcriptase inhibitors for retroviruses such as acyclovir and vidarabine for herpes virus, ganciclovir for cytomegalovirus, zidovudine, didanosine, zalcitabine, sanylvudine and lamivudine for HIV, lamivudine for hepatitis B virus, etc. Efavirenz, nevirapine and delavirdine mesylate for HIV, or protease inhibitors for HIV, such as mesyl Examples include, but are not limited to, saquinavir, ritonavir, indinavir, nelfinavir mesylate, and amprenavir, and derivatives that have been chemically modified to enhance binding to viruses or to perform fluorescent labeling. Also included are antiviral drugs that are included and will be developed in the future. Further, lectins that bind to the sugar chain structure on the surface of the virus, such as HIV and concanavalin A, can be mentioned. In addition, nucleic acid sequence binding substances such as DNA, RNA, and peptide nucleic acid having a complementary sequence that binds to viral DNA or RNA can be mentioned.

ウイルス結合物質は、単独で使用して蛍光標識されてもよく、ウイルス結合物質をポリマー(例えば、キトサン、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸などの親水性ポリマー)あるいは微粒子(例えば量子ドットなどのナノ粒子)に多数結合して高分子/のウイルス結合物質とし、該ポリマーあるいはポリマー/微粒子に結合されたウイルス結合物質をさらに蛍光標識してもよい。このような構成とすることで、複数の隣接するウイルス結合物質にウイルスを構成する蛋白質等のウイルス由来の複数の物質が結合し、さらに感度を高めることもできる。微粒子は、一定時間懸濁可能である限り、大きさは特に限定されず、また微粒子の素材も、ポリマー微粒子のような有機微粒子、あるいは量子ドットなどの無機微粒子のいずれでもよい。ウイルス結合物質は、ポリマー、微粒子に吸着させてもよく、必要に応じてスペーサーを介して共有結合により連結してもよい。   The virus-binding substance may be used alone and fluorescently labeled. The virus-binding substance may be a polymer (for example, a hydrophilic polymer such as chitosan, polyvinyl alcohol, polyacrylic acid, or polymethacrylic acid) or fine particles (for example, quantum dots). In this case, the polymer / virus binding substance may be further bonded to the polymer or the polymer / microparticle. By adopting such a configuration, a plurality of virus-derived substances such as proteins constituting the virus bind to a plurality of adjacent virus-binding substances, and the sensitivity can be further increased. The size of the fine particles is not particularly limited as long as they can be suspended for a certain period of time, and the material of the fine particles may be either organic fine particles such as polymer fine particles or inorganic fine particles such as quantum dots. The virus-binding substance may be adsorbed on a polymer or fine particles, and may be linked by a covalent bond via a spacer as necessary.

また、2種以上のウイルス結合物質を組み合わせて使用して、類似するウイルスのタイプを決定することも可能である。例えば、ヒトインフルエンザウイルスとトリインフルエンザウイルスの各々に選択的なウイルス結合物質(2,6-、あるいは2,3-結合様式の末端シアル酸を有する糖鎖)を必要に応じてポリマーあるいは担体に結合し、これらを用いてウイルス含有検体を検査することにより、ウイルスの種類/型をより確実に検出することができる。   It is also possible to use a combination of two or more virus-binding substances to determine similar virus types. For example, a virus-binding substance (a sugar chain having a terminal sialic acid in 2,6- or 2,3-linked mode) that is selective for human influenza virus or avian influenza virus is bound to a polymer or carrier as required. By using these to inspect a virus-containing specimen, the type / type of virus can be detected more reliably.

蛍光標識としては、蛍光強度が強く安定したものが好ましい。例えばAlexa,ローダミン各種(ローダミン6G,ローダミングリーン、TMR,TAMRA)、Bodipy、Cy5、R6G、FAM、JOE、ROX、EDANS、などが好ましく使用できるが、これらに限定されない。蛍光標識は、常法に従いウイルス結合性物質に結合される。   As the fluorescent label, one having strong and stable fluorescence intensity is preferable. For example, Alexa, various types of rhodamine (rhodamine 6G, rhodamine green, TMR, TAMRA), Bodipy, Cy5, R6G, FAM, JOE, ROX, EDANS, and the like can be preferably used, but are not limited thereto. The fluorescent label is bound to a virus-binding substance according to a conventional method.

蛍光標識試薬の蛍光波長は、350〜800nm程度が例示される。蛍光標識試薬の分子量は特に規定されないが、20000以下が好ましく、より好ましくは120〜80000である。   The fluorescence wavelength of the fluorescent labeling reagent is exemplified by about 350 to 800 nm. The molecular weight of the fluorescent labeling reagent is not particularly defined, but is preferably 20000 or less, more preferably 120 to 80,000.

本発明で使用する共焦点光学系は、従来より顕微鏡(共焦点顕微鏡)に用いられている技術であり、蛍光相関分光分析(FCS)法などに応用されている。FCSは、蛍光分子を励起するレーザ部、共焦点光学系、蛍光検出部、演算と解析を行うデジタル相関器の4つの部分を有する。FCSは、抗原−抗体反応、SNPタイピング、DNA−タンパク質相互作用、低分子−タンパク質相互作用などの低分子物質の検出に応用された例はあるが、タンパク質や核酸などよりはるかに大きなウイルスの検出に応用できることは全く知られていなかった。
共焦点光学系として、共焦点(レーザ)顕微鏡が使用できるが、レーザをスキャンする機能は必ずしも必要なく、溶液中の1点(例えばサブフェムトリットル領域)の蛍光強度を相関法により計測できればよい。
The confocal optical system used in the present invention is a technique conventionally used for a microscope (confocal microscope), and is applied to a fluorescence correlation spectroscopy (FCS) method and the like. The FCS has four parts: a laser unit that excites fluorescent molecules, a confocal optical system, a fluorescence detection unit, and a digital correlator that performs calculation and analysis. Although FCS has been applied to the detection of low molecular weight substances such as antigen-antibody reactions, SNP typing, DNA-protein interactions, and small molecule-protein interactions, it can detect viruses that are much larger than proteins and nucleic acids. It was not known at all that it could be applied to.
As the confocal optical system, a confocal (laser) microscope can be used, but the function of scanning the laser is not necessarily required, and it is only necessary to measure the fluorescence intensity at one point (for example, the sub-femtoliter region) in the solution.

共焦点光学系(FCS)による測定は、以下の手順(i)〜(v)で行うことができる。
(i)試料中のウイルス結合性物質を予め蛍光標識する、ただしウイルス結合性物質が蛍光性を有する場合はこの操作を省くことも出来る。
(ii)レーザ光を対物レンズでフェムトリットル以下の領域まで焦点を絞る。
(iii)分子がレーザの焦点領域を通過するミリ秒以下の時間内に、数百〜数千個のフォトンが発生する。
(iv)溶液中の蛍光標識されたウイルス結合性物質がウイルスと結合することにより分子サイズが大きくなるために、溶液中の移動速度が遅くなる。
(v)移動速度の変化と蛍光強度を自己相関法で解析し、分子間相互作用を観測する。
The measurement by the confocal optical system (FCS) can be performed by the following procedures (i) to (v).
(i) The virus-binding substance in the sample is fluorescently labeled in advance. However, this operation can be omitted when the virus-binding substance has fluorescence.
(ii) Focus the laser beam to an area below femtoliter with an objective lens.
(iii) Hundreds to thousands of photons are generated within a millisecond or less during which the molecules pass through the focal region of the laser.
(iv) The fluorescence-labeled virus-binding substance in the solution increases the molecular size due to binding with the virus, so that the moving speed in the solution becomes slow.
(v) Analyze the change in movement speed and fluorescence intensity by autocorrelation method and observe the intermolecular interaction.

共焦点光学系の共焦点領域は、10−16〜10−10リットル程度、好ましくは10−16〜10−13リットル程度が好ましく使用できる。 The confocal region of the confocal optical system is preferably about 10 −16 to 10 −10 liter, preferably about 10 −16 to 10 −13 liter.

ウイルスを含む試料は、超音波処理、界面活性剤処理などにより破砕後にウイルス測定に供してもよい。このようにすることで、ウイルスの測定感度を向上させることが可能である。
ウイルスまたはその破砕物の平均粒子直径は、短径1〜1000nm、長径5〜10000nm程度、好ましくは短径10〜200nm、長径10〜1000nm程度である。ウイルスまたはその破砕物の平均粒子直径が小さすぎると検出感度が低下し、大きすぎると検出が困難になる。
A sample containing virus may be subjected to virus measurement after crushing by ultrasonic treatment, surfactant treatment, or the like. By doing in this way, it is possible to improve the measurement sensitivity of a virus.
The average particle diameter of the virus or its crushed material is about 1 to 1000 nm in the minor axis and about 5 to 10,000 nm in the major axis, preferably about 10 to 200 nm in the minor axis and about 10 to 1000 nm in the major axis. If the average particle diameter of the virus or its crushed material is too small, the detection sensitivity decreases, and if it is too large, detection becomes difficult.

試料溶液中のウイルス量は、特に制限はなく、例えば1×10〜1×1015pfu/ml程度が例示される。 The amount of virus in the sample solution is not particularly limited, and for example, about 1 × 10 5 to 1 × 10 15 pfu / ml is exemplified.

以下に実施例を挙げて、本発明をより具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.

本実施例にて用いたウイルス液の調製法、ウイルスの感染力価の測定法、ウイルスの部分精製法、ウイルス粒子の破砕法は以下の通りである。
<ウイルス液の調製法>
A/New Caledonia/20/99 (H1N1)およびA/Hyogo/73/2002 (H1N1)株について、組織培養細胞を用いてウイルス液を調製した。MDCK(Madin-Darby canine kidney)細胞の単層培養にウイルスをMultiplicity of Infection (M.O.I.)が0.01(計算上0.1%の細胞が感染する)になるよう接種し、5μg/mlトリプシン(Sigma製)添加、血清非添加Minimum Essential Medium(MEM、Sigma製)で34℃、3〜5日間培養した。培養上清を2,500gで10分間遠心し、上清をウイルス液として-80℃で保存した。
A/Puerto Rico/8/34 (H1N1)について、発育鶏卵を用いてウイルス液を調製した。種ウイルスを1x103〜104倍希釈して(感染価にして1x103〜104CIU/ml)発育鶏卵10日卵の漿尿膜腔へ200μl接種し、34℃で転卵しながら2〜3日培養した。採取した漿尿液を2,500gで10分間遠心し、上清をウイルス液として-80℃で保存した。
The virus solution preparation method, virus infectivity titer measurement method, virus partial purification method, and virus particle crushing method used in this example are as follows.
<Preparation method of virus solution>
For A / New Caledonia / 20/99 (H1N1) and A / Hyogo / 73/2002 (H1N1) strains, virus solutions were prepared using tissue culture cells. MDCK (Madin-Darby canine kidney) cell monolayer culture is inoculated with virus so that the Multiplicity of Infection (MOI) is 0.01 (0.1% of cells are infected by calculation), and 5μg / ml trypsin (manufactured by Sigma) is added. The cells were cultured in serum-free Minimum Essential Medium (MEM, manufactured by Sigma) at 34 ° C. for 3 to 5 days. The culture supernatant was centrifuged at 2,500 g for 10 minutes, and the supernatant was stored as a virus solution at −80 ° C.
About A / Puerto Rico / 8/34 (H1N1), the virus liquid was prepared using the growing chicken egg. Seed virus is diluted 1x10 3 to 10 4 times (infectivity titer is 1x10 3 to 10 4 CIU / ml) and 200 μl is inoculated into the chorioallantoic cavity of 10-day-old eggs, and 2 to Cultured for 3 days. The collected chorioallantoic fluid was centrifuged at 2,500 g for 10 minutes, and the supernatant was stored as a viral fluid at -80 ° C.

CIU(Cell Infecting Unit)は感染性ウイルス粒子の数の単位で、1CIUは、理論上1感染性粒子に等しい。
<感染力価の測定法>
MDCK細胞に4倍段階希釈したウイルス液を接種、34℃で14時間培養し、エタノールで感染細胞を固定した。一次抗体として抗インフルエンザウイルスウサギポリクローナル抗体(大阪府立公衆衛生研究所、奥野良信博士より分与)、続いて二次抗体としてFITC結合抗ウサギIgGヤギ血清(医学生物学研究所製)を用いた間接蛍光抗体法で感染細胞を標識した後、蛍光顕微鏡(Zeiss製)で観察し、画像解析により計数して感染力価を算出した。
結果:
A/New Caledonia/20/99 (H1N1):3.9x106 CIU/ml
A/Hyogo/73/2002 (H1N1):5.6x107CIU/ml
A/Puerto Rico/8/34 (H1N1):1.1x108 CIU/ml
<ウイルスの部分精製法>
A/New Caledonia/20/99 (H1N1)について、部分精製ウイルスを作製した。上記方法にて調製したウイルス液を、60%グリセロールphosphate buffered saline(PBS)に20%グリセロールPBSを積み重ねた上に重層し、113,000g、4℃で1時間遠心(日立製超遠心機使用)した。60%グリセロールPBSと20%グリセロールPBSの間のウイルス層を採取し、100%グリセロールクッションの上に重層、113,000g、4℃で1時間遠心(日立製超遠心機使用)して濃縮し、部分精製ウイルスとした。この操作により、ウイルス液を約100倍の濃度に精製濃縮した。
<ウイルス粒子の破砕法>
A/New Caledonia/20/99 (H1N1)のウイルス液を超音波(日本精機製作所)で5秒間処理、あるいは、等量の1% polyoxyethylene(10) octylphenol ether(Triton X-100、和光純薬)と混合し(最終濃度0.5%)、ウイルス粒子を破砕した。
[実施例1]蛍光標識糖タンパク質プローブによるインフルエンザウイルスの検出
糖タンパク質の一種であるフェチュインは、インフルエンザウイルスが結合しうる糖鎖構造を表面に複数持つことが一般的に知られている。インフルエンザウイルス(ニューカレドニア株)とフェチュインを混合し、遠心操作でインフルエンザウイルス粒子を沈殿させると、ウイルス粒子に結合したフェチュインが共沈することから、溶液中でウイルス粒子とフェチュインが複合体を形成することからもこれは明らかである(図1)。
CIU (Cell Infecting Unit) is a unit of the number of infectious virus particles, and 1 CIU is theoretically equal to one infectious particle.
<Measurement method of infection titer>
MDCK cells were inoculated with 4-fold serially diluted virus solution, cultured at 34 ° C. for 14 hours, and infected cells were fixed with ethanol. Indirect using anti-influenza virus rabbit polyclonal antibody as primary antibody (distributed by Dr. Yoshinobu Okuno, Osaka Prefectural Public Health Research Institute), followed by FITC-conjugated anti-rabbit IgG goat serum (manufactured by Medical Biology Institute) as secondary antibody Infected cells were labeled by the fluorescent antibody method, observed with a fluorescence microscope (manufactured by Zeiss), counted by image analysis, and the infectious titer was calculated.
result:
A / New Caledonia / 20/99 (H1N1): 3.9x10 6 CIU / ml
A / Hyogo / 73/2002 (H1N1): 5.6x10 7 CIU / ml
A / Puerto Rico / 8/34 (H1N1): 1.1x10 8 CIU / ml
<Partial virus purification method>
A partially purified virus was produced for A / New Caledonia / 20/99 (H1N1). The virus solution prepared by the above method was layered on 60% glycerol phosphate buffered saline (PBS) stacked with 20% glycerol PBS, and centrifuged at 113,000g for 1 hour at 4 ° C (using Hitachi ultracentrifuge). . Collect a viral layer between 60% glycerol PBS and 20% glycerol PBS, layer on a 100% glycerol cushion, centrifuge at 113,000g, 4 ° C for 1 hour (using Hitachi ultracentrifuge), and concentrate. Purified virus. By this operation, the virus solution was purified and concentrated to a concentration of about 100 times.
<Virus particle crushing method>
Treat A / New Caledonia / 20/99 (H1N1) virus solution with ultrasound (Nippon Seiki Seisakusho) for 5 seconds, or 1% polyoxyethylene (10) octylphenol ether (Triton X-100, Wako Pure Chemicals) And the virus particles were crushed.
[Example 1] Detection of influenza virus with fluorescently labeled glycoprotein probe It is generally known that fetuin, a kind of glycoprotein, has a plurality of sugar chain structures on the surface to which influenza virus can bind. When influenza virus (New Caledonia strain) and fetuin are mixed and influenza virus particles are precipitated by centrifugation, the virus particles and fetuin form a complex in solution because fetuin bound to the virus particles co-precipitates. This is clear from the fact (FIG. 1).

そこで、フェチュインに蛍光色素ローダミンを導入し、蛍光相関分光を用いたインフルエンザウイルス検出プローブとすることとした。フェチュインは、精製されたものが市販されている(例えば和光純薬)。フェチュインの蛍光基の導入には、ローダミン−N−ヒドロキシスクシンイミドエステル誘導体を用いた。ローダミン−N−ヒドロキシスクシンイミドエステル誘導体は、既知の方法により調製でき、また市販もされている(例えば、モレキュラープローブ社)。ローダミン−N−ヒドロキシスクシンイミドエステル誘導体5mg/ml濃度でDMSOに溶解し、80μlを10mg/ml濃度のフェチュイン400μlと混合し、次いで1M重炭酸ナトリウム溶液を40μlを加えた。1時間室温で攪拌したのち、ゲルろ過法により反応後のフェチュインから過剰の蛍光標識試薬の除去を行った。蛍光基の導入量は、紫外可視光分光光度計により波長570nmの吸収を測定することにより確認した。   Therefore, a fluorescent dye rhodamine was introduced into fetuin to form an influenza virus detection probe using fluorescence correlation spectroscopy. A purified fetuin is commercially available (for example, Wako Pure Chemicals). A rhodamine-N-hydroxysuccinimide ester derivative was used for introducing the fluorescent group of fetuin. Rhodamine-N-hydroxysuccinimide ester derivatives can be prepared by known methods and are also commercially available (for example, Molecular Probe). Rhodamine-N-hydroxysuccinimide ester derivative was dissolved in DMSO at a concentration of 5 mg / ml, 80 μl was mixed with 400 μl of 10 mg / ml fetuin, then 40 μl of 1M sodium bicarbonate solution was added. After stirring at room temperature for 1 hour, excess fluorescent labeling reagent was removed from the fetuin after the reaction by gel filtration. The introduction amount of the fluorescent group was confirmed by measuring absorption at a wavelength of 570 nm with an ultraviolet-visible light spectrophotometer.

ローダミン標識フェチュインをインフルエンザウイルス(ニューカレドニア株)とリン酸バッファー生理食塩水(PBS)中で混合し、1時間のインキュベーションの後、混合液30μlを用いてFCS−101(FCS測定装置; 東洋紡製)により微小空間蛍光強度を測定した。その結果、蛍光ポリスチレンビーズの場合と類似した蛍光強度変動パターンが認められた(図2)。ウイルス力価と、蛍光強度変動シグナルの頻度の関係を検討したところ相関関係が認められ、検出限界は1×10pfu/mlであった(図3A)。 Rhodamine-labeled fetuin was mixed with influenza virus (New Caledonia strain) in phosphate buffer saline (PBS), and after 1 hour incubation, FCS-101 (FCS measurement apparatus; manufactured by Toyobo) was used with 30 μl of the mixture. Was used to measure the micro-space fluorescence intensity. As a result, a fluorescence intensity fluctuation pattern similar to that of fluorescent polystyrene beads was observed (FIG. 2). When the relationship between the virus titer and the frequency of the fluorescence intensity fluctuation signal was examined, a correlation was observed, and the detection limit was 1 × 10 4 pfu / ml (FIG. 3A).

同様に蛍光強度変動を観測することにより、インフルエンザウイルス感染培養細胞の培養上清中の増殖ウイルスも検出できることが示された。この培養上清には1×10pfu/ml程度のインフルエンザウイルスが含まれ、検出限界はおよそ2×10 pfu/ml(4倍希釈液)であることが示された。したがって、精製されたウイルス溶液と感染細胞培養上清の両者においてFCS−101による検出を行うことが可能である(図3B)。
(実施例2)蛍光標識糖鎖を利用したインフルエンザウイルスの検出
ヒト型あるいはトリ型かを区別するためには、2-6結合型シアル酸および2-3結合型シアル酸を有する蛍光標識糖鎖をプローブとして用いることができる。2-3結合型シアル酸を有する蛍光標識糖鎖の作製のために、糖脂質であるガングリオシドLysoGM3にローダミンを導入した(図4)。
Similarly, it was shown that proliferating virus in the culture supernatant of influenza virus-infected cultured cells can also be detected by observing fluctuations in fluorescence intensity. This culture supernatant contained influenza virus of about 1 × 10 7 pfu / ml, and the detection limit was shown to be about 2 × 10 6 pfu / ml (4-fold dilution). Therefore, it is possible to detect with FCS-101 in both the purified virus solution and the infected cell culture supernatant (FIG. 3B).
(Example 2) Detection of influenza virus using fluorescently labeled sugar chains In order to distinguish between human and avian type, fluorescently labeled sugar chains having 2-6 linked sialic acid and 2-3 linked sialic acid Can be used as a probe. Rhodamine was introduced into ganglioside LysoGM3, which is a glycolipid, for the production of fluorescently labeled sugar chains having 2-3 linked sialic acid (FIG. 4).

ジメチルホルムアミド溶媒40μl中でローダミン−N−ヒドロキシスクシンイミドエステル誘導体 130nmol、ガングリオシドLysoGM3 65nmol、および終濃度0.1%トリエチルアミンを混合した。一晩室温で反応させた後、逆相高速液体クロマトグラフィーで精製し、蛍光標識されたガングリオシドLysoGM3を得た。飛行時間型質量分析計およびNMR測定により構造を確認した。   In 40 μl of dimethylformamide solvent, 130 nmol of rhodamine-N-hydroxysuccinimide ester derivative, 65 nmol of ganglioside LysoGM3, and a final concentration of 0.1% triethylamine were mixed. After reacting at room temperature overnight, purification was performed by reversed-phase high performance liquid chromatography to obtain fluorescently labeled ganglioside LysoGM3. The structure was confirmed by a time-of-flight mass spectrometer and NMR measurement.

2-3結合型シアル酸に結合するインフルエンザPR8株、および2-6結合型シアル酸に結合するインフルエンザHyogo株に関して、2-3結合型シアル酸蛍光糖鎖プローブを用いてFCS―101による検出感度について検討した。一定濃度のローダミン標識2-3結合型シアル酸プローブを、鶏卵中で培養したインフルエンザウイルス(PR8株およびHyogo株)の希釈液とリン酸バッファー生理食塩水(PBS)中で混合し、直ちにその混合液30μlを用いてFCS−101により微小空間蛍光強度を測定した。2-3結合型シアル酸蛍光糖鎖プローブによりインフルエンザPR8株の検出限界は1.5 × 10 pfu/mlに対し、インフルエンザHyogo株の検出限界は2.5 × 10 pfu/mlであり、1桁異なる結果が得られた。このことは、PR8株は2-3結合型シアル酸に対して高親和性であるという既知の事実と一致する(図5)。以上の結果から、シアル酸蛍光糖鎖プローブを用いて種特異性を識別し、高感度にインフルエンザウイルスを検出できることが示された。 Detection sensitivity by FCS-101 using 2-3 linked sialic acid fluorescent sugar chain probes for influenza PR8 strain that binds to 2-3 linked sialic acid and influenza Hygo strain that binds to 2-6 linked sialic acid Was examined. A fixed concentration of rhodamine labeled 2-3 conjugated sialic acid probe was mixed with a diluted solution of influenza virus (PR8 and Hygo strains) cultured in chicken eggs in phosphate buffered saline (PBS) and immediately mixed. Microspace fluorescence intensity was measured by FCS-101 using 30 μl of the solution. The detection limit of influenza PR8 strain with a 2-3-linked sialic acid fluorescent sugar chain probe is 1.5 × 10 5 pfu / ml, whereas the detection limit of influenza Hyogo strain is 2.5 × 10 6 pfu / ml, The result was an order of magnitude different. This is consistent with the known fact that the PR8 strain has a high affinity for 2-3 linked sialic acid (FIG. 5). From the above results, it was shown that species specificity can be identified using a sialic acid fluorescent sugar chain probe and influenza virus can be detected with high sensitivity.

比較例Comparative example

インフルエンザウィルス迅速診断キットの感度試験
1. 試料
使用したインフルエンザウイルス
・ A/New Caledpnia/20/99(H1N1)
2. 試験方法
評価対象
・ エスプラインインフルエンザA,B-N(富士レビオ製)
・ キャピリアFluA,B(タウンズ製)
各インフルエンザウイルス迅速診断キットの操作方法(製造者のプロトコール)に従って行った。
3. 試験結果
キャピリアFluA,B、エスプラインインフルエンザA,B-Nの検出感度は、どちらも1.0×10 pfu/mlと1.0×10 pfu/mlの間であった。
Sensitivity test of influenza virus rapid diagnosis kit
1. Sample Influenza virus used ・ A / New Caledpnia / 20/99 (H1N1)
2. Test method Evaluation target ・ Espline influenza A, BN (Fujirebio)
・ Capilia FluA, B (Towns)
It was performed according to the operation method (manufacturer's protocol) of each influenza virus rapid diagnosis kit.
3. Test Results The detection sensitivities of Capilia FluA, B and Esprine influenza A, BN were both between 1.0 × 10 6 pfu / ml and 1.0 × 10 7 pfu / ml.

Figure 2007020565
Figure 2007020565

(実施例3)糖鎖ポリマー型蛍光標識プローブによるインフルエンザウイルスの検出
検出感度、シグナル強度をさらに向上させるために、文献(Y. Makimuraら, Chemoenzymatic synthesis and application of a sialoglycopolymer with a chitosan backbone as a potent inhibitor of human influenza virus hemagglutination., Carbohydrate Research, 2006年, May 20)にしたがい、ウイルスに結合するシアル酸を末端に持つ糖鎖をタンデムに親水性ポリマーに多数固定した物質に蛍光官能基を導入し、ウイルス検出用プローブとした。該蛍光プローブを用いることにより、複数の隣接する糖鎖構造にウイルス粒子表面を構成する複数のタンパク質が結合し、高い親和性をもたらすものと期待された。該蛍光プローブの構造を、図6に示す。親水性ポリマーとしては、キトサンを使用した。
(Example 3) In order to further improve detection sensitivity and signal intensity of influenza virus with a sugar chain polymer type fluorescently labeled probe , the literature (Y. Makimura et al., Chemoenzymatic synthesis and application of a sialoglycopolymer with a chitosan backbone as a potent In accordance with inhibitor of human influenza virus hemagglutination., Carbohydrate Research, 2006, May 20) A virus detection probe was used. By using the fluorescent probe, it was expected that a plurality of proteins constituting the surface of the virus particle were bound to a plurality of adjacent sugar chain structures, resulting in high affinity. The structure of the fluorescent probe is shown in FIG. Chitosan was used as the hydrophilic polymer.

まず、2-6型結合様式の末端シアル酸を有する糖鎖をタンデムに固定した蛍光標識ポリマー(Rho-SGP α2-6 type, SGP: sialoglycopeptide)を用いて、2-6型末端シアル酸を認識するインフルエンザウイルスHyogo株、および2-3型末端シアル酸を認識するインフルエンザウイルスPR8株の検出を、実施例1、実施例2と同様に本発明の方法により行った。その結果を図7に示す。該蛍光プローブの検出感度は、両株共1×10pfu/mlの検出限界であり、また、シグナルであるピーク数が増大した。低分子型糖鎖蛍光プローブに比較し、ポリマー化により期待された検出感度、シグナル強度の向上を確認することができた。一方で、Hyogo株はPR8株よりも5倍のシグナル強度を示すことから、Hyogo株が2-6型末端シアル酸により高い親和性を示すことを反映した。 First, 2-6 type terminal sialic acid is recognized using a fluorescently labeled polymer (Rho-SGP α2-6 type, SGP: sialoglycopeptide) in which a sugar chain having terminal sialic acid of type 2-6 is fixed in tandem The influenza virus strain Hyogo and the influenza virus PR8 strain that recognizes type 2-3 terminal sialic acid were detected by the method of the present invention in the same manner as in Examples 1 and 2. The result is shown in FIG. The detection sensitivity of the fluorescent probe was a detection limit of 1 × 10 5 pfu / ml in both strains, and the number of peaks as a signal increased. Compared with the low-molecular-weight sugar chain fluorescent probe, the improvement in detection sensitivity and signal intensity expected by polymerization was confirmed. On the other hand, since the Hyogo strain showed a signal intensity five times that of the PR8 strain, it reflected that the Hyogo strain showed higher affinity for the 2-6 type terminal sialic acid.

次に、2-3型結合様式の末端シアル酸を有する糖鎖をタンデムに固定した蛍光標識ポリマー(Rho-SGP α2-3 type)を用いて、2-6型末端シアル酸を認識するインフルエンザウイルスHyogo株、および2-3型末端シアル酸を認識するインフルエンザウイルスPR8株の検出を、実施例1、実施例2と同様に本発明の方法により行った。その結果を図8に示す。該蛍光プローブの検出感度はRho-SGP α2-6 typeと同等であり、シグナル強度はさらに向上した。一方で、Hyogo株のシグナル強度はPR8株の1.5倍で、2-6型認識と2-3型認識で逆転はしなかったが、その差が大きく減じた。これは、PR8株が2-3型末端シアル酸により高い親和性を示すことを反映しているものと考えられた。このことから、Rho-SGP α2-6 typeおよびRho-SGP α2-3 typeの蛍光プローブを併用し、シグナル強度を比較することにより、インフルエンザウイルスの高感度検出と、ヒト型、トリ型の識別が可能であると考えられる。   Next, an influenza virus that recognizes type 2-6 terminal sialic acid using a fluorescently labeled polymer (Rho-SGP α2-3 type) in which a sugar chain having terminal type sialic acid of type 2-3 binding is fixed in tandem Detection of the Hyogo strain and the influenza virus PR8 strain that recognizes type 2-3 terminal sialic acid was carried out by the method of the present invention in the same manner as in Examples 1 and 2. The result is shown in FIG. The detection sensitivity of the fluorescent probe was equivalent to that of Rho-SGP α2-6 type, and the signal intensity was further improved. On the other hand, the signal intensity of the Hyogo strain was 1.5 times that of the PR8 strain, and there was no reversal between 2-6 type recognition and 2-3 type recognition, but the difference was greatly reduced. This was considered to reflect that the PR8 strain showed higher affinity for the 2-3 type terminal sialic acid. Therefore, by using the fluorescent probes of Rho-SGP α2-6 type and Rho-SGP α2-3 type together and comparing the signal intensity, high-sensitivity detection of influenza virus and discrimination between human and avian types are possible. It is considered possible.

フェチュインをインフルエンザウイルス(ニューカレドニア株)と混合し、遠心操作によりウイルス粒子を沈殿させ、沈殿物にふくまれるフェチュインを、抗フェチュイン抗体により検出した結果。Results of mixing fetuin with influenza virus (New Caledonia strain), precipitating virus particles by centrifugation, and detecting fetuin contained in the precipitate with anti-fetuin antibody. 蛍光標識糖タンパク質(フェチュイン)とインフルエンザウイルスを混合した場合の蛍光強度の時間変動。Variation in fluorescence intensity over time when fluorescently labeled glycoprotein (fetuin) and influenza virus are mixed. 蛍光標識糖タンパク質(フェチュイン)によるインフルエンザウイルスのFCS検出。Detection of influenza virus FCS by fluorescently labeled glycoprotein (fetuin). 2-3結合型シアル酸蛍光糖鎖プローブの構造Structure of 2-3-linked sialic acid fluorescent sugar chain probe 2-3結合型シアル酸蛍光糖鎖プローブ(トリ型糖鎖)を用いてインフルエンザPR8株(トリ型認識)、Hyogo株(ヒト型認識)をFCS検出した結果。Results of FCS detection of influenza PR8 strain (bird-type recognition) and Hygo strain (human-type recognition) using a 2-3-linked sialic acid fluorescent sugar chain probe (bird-type sugar chain). 糖鎖ポリマー型蛍光標識プローブの構造Structure of sugar chain polymer type fluorescent labeled probe 糖鎖ポリマー型蛍光標識プローブ(Rho-SGP α2-6 type)を用いてインフルエンザPR8株、Hyogo株を検出した結果。The result of detecting influenza PR8 strain and Hygo strain using a sugar chain polymer type fluorescent labeled probe (Rho-SGP α2-6 type). 糖鎖ポリマー型蛍光標識プローブ(Rho-SGP α2-3 type)を用いてインフルエンザPR8株、Hyogo株を検出した結果。The result of detecting influenza PR8 strain and Hygo strain using a sugar chain polymer type fluorescent labeled probe (Rho-SGP α2-3 type).

Claims (12)

蛍光標識されたあるいは蛍光性を持つウイルス結合性物質と試料を混合して試料溶液を調製する工程、共焦点光学系を用いて該試料溶液の蛍光信号の時間経過を計測する工程を含む、試料中のウイルスまたは/およびウイルス感染細胞由来ウイルス関連物質を検出する方法。 A sample comprising a step of mixing a fluorescently labeled or fluorescent virus-binding substance and a sample to prepare a sample solution, and measuring a time course of a fluorescence signal of the sample solution using a confocal optical system A method for detecting a virus-related substance derived from a virus or / and a virus-infected cell. 前記ウイルス結合性物質が、糖、抗体、タンパク質、ペプチド、核酸、脂質、低分子化学物質からなる群から選ばれる請求項1に記載の方法。 The method according to claim 1, wherein the virus-binding substance is selected from the group consisting of sugars, antibodies, proteins, peptides, nucleic acids, lipids, and low-molecular chemical substances. ウイルスが粒子状態であり、ウイルス表層にて蛍光物質と結合することを特徴とする、請求項1記載の方法。 The method according to claim 1, wherein the virus is in a particle state and binds to a fluorescent substance on the surface of the virus. あらかじめウイルス粒子の一部または全部を物理的または化学的に破砕することを特徴とする、請求項1記載の方法。 The method according to claim 1, wherein a part or all of the virus particles are physically or chemically disrupted in advance. 試料中のウイルスの抽出および精製のための前処理工程をさらに含むことを特徴とする、請求項1〜4のいずれかに記載の方法。 The method according to claim 1, further comprising a pretreatment step for extraction and purification of the virus in the sample. ウイルスの平均粒子直径が、短径1〜1000nm、長径5〜10000nmであることを特徴とする、請求項1〜5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein the average particle diameter of the virus is 1 to 1000 nm in the minor axis and 5 to 10,000 nm in the major axis. ウイルスがインフルエンザウイルスであることを特徴とする、請求項1〜6のいずれかに記載の方法。 The method according to claim 1, wherein the virus is an influenza virus. 蛍光標識されたあるいは蛍光性を持つウイルス結合性物質と共焦点光学系を含む、ウイルスまたは/およびウイルス感染細胞由来ウイルス関連物質の検出システム。 A detection system for a virus or a virus-related substance derived from a virus-infected cell, comprising a fluorescently labeled or fluorescent virus-binding substance and a confocal optical system. 前記ウイルス結合性物質が、糖、抗体、タンパク質、ペプチド、核酸、脂質、低分子化学物質からなる群から選ばれる請求項8に記載のシステム。 The system according to claim 8, wherein the virus-binding substance is selected from the group consisting of sugars, antibodies, proteins, peptides, nucleic acids, lipids, and low-molecular chemical substances. 蛍光標識されたあるいは、蛍光性を持つウイルス結合性物質の蛍光波長が350〜800nm、分子量が120以上、共焦点光学系の共焦点領域が10−16〜10−10リットルであることを特徴とする、請求項8または9に記載のシステム。 The fluorescence wavelength of a fluorescently-labeled or fluorescent virus-binding substance is 350 to 800 nm, the molecular weight is 120 or more, and the confocal region of the confocal optical system is 10 −16 to 10 −10 liter. The system according to claim 8 or 9. ウイルスの平均粒子直径が短径1〜1000nm、長径5〜10000nmであることを特徴とする、請求項8〜10のいずれかに記載のシステム。 The system according to any one of claims 8 to 10, wherein the average particle diameter of the virus is 1 to 1000 nm in the minor axis and 5 to 10,000 nm in the major axis. 測定対象のウイルスがインフルエンザウイルスであることを特徴とする、請求項8〜11のいずれかに記載のシステム。 The system according to any one of claims 8 to 11, wherein the virus to be measured is an influenza virus.
JP2006163071A 2005-06-13 2006-06-13 Method and system for detecting viruses in a sample Expired - Fee Related JP4757103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006163071A JP4757103B2 (en) 2005-06-13 2006-06-13 Method and system for detecting viruses in a sample

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005172434 2005-06-13
JP2005172434 2005-06-13
JP2006163071A JP4757103B2 (en) 2005-06-13 2006-06-13 Method and system for detecting viruses in a sample

Publications (2)

Publication Number Publication Date
JP2007020565A true JP2007020565A (en) 2007-02-01
JP4757103B2 JP4757103B2 (en) 2011-08-24

Family

ID=37782151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006163071A Expired - Fee Related JP4757103B2 (en) 2005-06-13 2006-06-13 Method and system for detecting viruses in a sample

Country Status (1)

Country Link
JP (1) JP4757103B2 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108369A1 (en) 2010-03-01 2011-09-09 オリンパス株式会社 Optical analysis device, optical analysis method, and computer program for optical analysis
WO2012032981A1 (en) 2010-09-10 2012-03-15 オリンパス株式会社 Optical analysis method using optical intensity of single light-emitting particle
WO2012032955A1 (en) 2010-09-10 2012-03-15 オリンパス株式会社 Optical analysis method using optical measurement in multiple wavelength bands
WO2012039352A1 (en) 2010-09-21 2012-03-29 オリンパス株式会社 Photometric analysis method using single light-emitting particle detection
WO2012050011A1 (en) 2010-10-13 2012-04-19 オリンパス株式会社 Method for measuring diffusion characteristic value of particle by detecting single light-emitting particle
WO2012053355A1 (en) 2010-10-19 2012-04-26 オリンパス株式会社 Optical analysis device for observing polarisation characteristics of single light-emitting particle, optical analysis method and optical analysis computer program therefor
WO2012070414A1 (en) 2010-11-25 2012-05-31 オリンパス株式会社 Photometric analysis device and photometric analysis method using wavelength characteristic of light emitted from single illuminant particle
WO2012099234A1 (en) 2011-01-20 2012-07-26 オリンパス株式会社 Photoanalysis method and photoanalysis device using detection of light from single light-emitting particle
WO2012102260A1 (en) 2011-01-26 2012-08-02 オリンパス株式会社 Method for identifying polymorphism of nucleic acid molecule
WO2012102326A1 (en) 2011-01-26 2012-08-02 オリンパス株式会社 Method for identifying polymorphism of nucleic acid molecule
WO2012133292A1 (en) 2011-03-29 2012-10-04 オリンパス株式会社 Photometric analysis device, photometric analysis method, and computer program for photometric analysis, using single light-emitting particle detection
WO2012141019A1 (en) 2011-04-13 2012-10-18 オリンパス株式会社 Photoanalysis device using single light emitting particle detection, method for photoanalysis, and computer program for photoanalysis
WO2012144485A1 (en) 2011-04-20 2012-10-26 オリンパス株式会社 Method for detecting nucleic acid molecule in biosample
WO2012144528A1 (en) 2011-04-18 2012-10-26 オリンパス株式会社 Quantitative determination method for target particles, photometric analysis device, and computer program for photometric analysis
WO2013002261A1 (en) 2011-06-27 2013-01-03 オリンパス株式会社 Method for detecting target particles
WO2013021687A1 (en) 2011-08-11 2013-02-14 オリンパス株式会社 Method for detecting target particles
WO2013024650A1 (en) 2011-08-15 2013-02-21 オリンパス株式会社 Photometric analysis device using single light emitting particle detection, photometric analysis method and computer program for photometric analysis,
WO2013024637A1 (en) 2011-08-12 2013-02-21 オリンパス株式会社 Method for detecting fluorescent particles
WO2013031643A1 (en) 2011-08-30 2013-03-07 オリンパス株式会社 Method for detecting target particles in biosample containing pancreatic juice
WO2013031439A1 (en) 2011-08-26 2013-03-07 オリンパス株式会社 Optical analyzer using single light-emitting particle detection, optical analysis method, and computer program for optical analysis
WO2013031309A1 (en) 2011-08-26 2013-03-07 オリンパス株式会社 Single-particle detector using optical analysis, single-particle detection method using same, and computer program for single-particle detection
WO2013069504A1 (en) 2011-11-10 2013-05-16 オリンパス株式会社 Spectroscopy device, spectroscopy method, and computer program for spectroscopy, employing individual light-emitting particle detection
WO2013121905A1 (en) 2012-02-17 2013-08-22 オリンパス株式会社 Optical analysis device using single particle detection technique, optical analysis method and computer program for optical analysis
WO2013157319A1 (en) 2012-04-18 2013-10-24 オリンパス株式会社 Single-particle detection device using photoanalysis, single-particle detection method, and computer program for single-particle detection
WO2014020967A1 (en) 2012-08-02 2014-02-06 オリンパス株式会社 Spectral analysis device using confocal microscope or multiphoton microscope optical system, spectral analysis method, and spectral analysis computer program
WO2015052965A1 (en) 2013-10-07 2015-04-16 オリンパス株式会社 Photometric analysis device employing single light-emitting particle detection, photometric analysis method, and computer program for photometric analysis
JP5877155B2 (en) * 2010-07-26 2016-03-02 オリンパス株式会社 Method for detecting dilute particles in solution using luminescent probe
WO2016036145A1 (en) * 2014-09-02 2016-03-10 광주과학기술원 Norovirus detecting sensor and electrochemical sensing method using same
US9428796B2 (en) 2012-02-22 2016-08-30 Olympus Corporation Method for detecting a target particle
US9528923B2 (en) 2011-08-30 2016-12-27 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
US9575060B2 (en) 2012-04-18 2017-02-21 Olympus Corporation Method for detecting a target particle
US9696307B2 (en) 2009-02-05 2017-07-04 Biogen Ma Inc. Methods for the detection of JC polyoma virus
US9771612B2 (en) 2012-03-21 2017-09-26 Olympus Corporation Method for detecting a target nucleic acid molecule
US9841418B2 (en) 2011-08-30 2017-12-12 Olympus Corporation Method for detecting target particle
US10310245B2 (en) 2013-07-31 2019-06-04 Olympus Corporation Optical microscope device, microscopic observation method and computer program for microscopic observation using single light-emitting particle detection technique
CN111381026A (en) * 2018-12-29 2020-07-07 深圳市帝迈生物技术有限公司 Multiple detection immunoassay reagent, preparation method, kit, system and application thereof
CN112433048A (en) * 2020-11-17 2021-03-02 深圳上泰生物工程有限公司 Kit for chemiluminescence immunoassay, and preparation method and application thereof
US11016026B2 (en) 2015-12-09 2021-05-25 Olympus Corporation Optical analysis method and optical analysis device using single light-emitting particle detection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621118B (en) * 2012-03-18 2013-11-06 吉林大学 Early warning method of greenhouse vegetable diseases and insect pests

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272404A (en) * 2000-03-27 2001-10-05 Olympus Optical Co Ltd Antigen/antibody reaction by fluorescent correlation spectroscopy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272404A (en) * 2000-03-27 2001-10-05 Olympus Optical Co Ltd Antigen/antibody reaction by fluorescent correlation spectroscopy

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9696307B2 (en) 2009-02-05 2017-07-04 Biogen Ma Inc. Methods for the detection of JC polyoma virus
US8471220B2 (en) 2010-03-01 2013-06-25 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis
US8541759B2 (en) 2010-03-01 2013-09-24 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis
US8710413B2 (en) 2010-03-01 2014-04-29 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis
WO2011108370A1 (en) 2010-03-01 2011-09-09 オリンパス株式会社 Optical analysis device, optical analysis method, and computer program for optical analysis
WO2011108371A1 (en) 2010-03-01 2011-09-09 オリンパス株式会社 Optical analysis device, optical analysis method, and computer program for optical analysis
WO2011108369A1 (en) 2010-03-01 2011-09-09 オリンパス株式会社 Optical analysis device, optical analysis method, and computer program for optical analysis
US9395357B2 (en) 2010-07-26 2016-07-19 Olympus Corporation Method of detecting sparse particles in a solution using a light-emitting probe
JP5877155B2 (en) * 2010-07-26 2016-03-02 オリンパス株式会社 Method for detecting dilute particles in solution using luminescent probe
WO2012032955A1 (en) 2010-09-10 2012-03-15 オリンパス株式会社 Optical analysis method using optical measurement in multiple wavelength bands
US8958066B2 (en) 2010-09-10 2015-02-17 Olympus Corporation Optical analysis method using measurement of light of two or more wavelength bands
WO2012032981A1 (en) 2010-09-10 2012-03-15 オリンパス株式会社 Optical analysis method using optical intensity of single light-emitting particle
US8785886B2 (en) 2010-09-10 2014-07-22 Olympus Corporation Optical analysis method using the light intensity of a single light-emitting particle
WO2012039352A1 (en) 2010-09-21 2012-03-29 オリンパス株式会社 Photometric analysis method using single light-emitting particle detection
US8680485B2 (en) 2010-09-21 2014-03-25 Olympus Corporation Optical analysis method using the detection of a single light-emitting particle
WO2012050011A1 (en) 2010-10-13 2012-04-19 オリンパス株式会社 Method for measuring diffusion characteristic value of particle by detecting single light-emitting particle
US8681332B2 (en) 2010-10-13 2014-03-25 Olympus Corporation Method of measuring a diffusion characteristic value of a particle
US8803106B2 (en) 2010-10-19 2014-08-12 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis for observing polarization characteristics of a single light-emitting particle
WO2012053355A1 (en) 2010-10-19 2012-04-26 オリンパス株式会社 Optical analysis device for observing polarisation characteristics of single light-emitting particle, optical analysis method and optical analysis computer program therefor
US9103718B2 (en) 2010-11-25 2015-08-11 Olympus Corporation Optical analysis device and optical analysis method using a wavelength characteristic of light of a single light-emitting particle
WO2012070414A1 (en) 2010-11-25 2012-05-31 オリンパス株式会社 Photometric analysis device and photometric analysis method using wavelength characteristic of light emitted from single illuminant particle
US9863806B2 (en) 2011-01-20 2018-01-09 Olympus Corporation Optical analysis method and optical analysis device using the detection of light from a single light-emitting particle
WO2012099234A1 (en) 2011-01-20 2012-07-26 オリンパス株式会社 Photoanalysis method and photoanalysis device using detection of light from single light-emitting particle
WO2012102326A1 (en) 2011-01-26 2012-08-02 オリンパス株式会社 Method for identifying polymorphism of nucleic acid molecule
US8900812B2 (en) 2011-01-26 2014-12-02 Olympus Corporation Method for identifying polymorphism of nucleic acid molecules
WO2012102260A1 (en) 2011-01-26 2012-08-02 オリンパス株式会社 Method for identifying polymorphism of nucleic acid molecule
US8911944B2 (en) 2011-01-26 2014-12-16 Olympus Corporation Method for identifying polymorphism of nucleic acid molecules
US9435727B2 (en) 2011-03-29 2016-09-06 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
WO2012133292A1 (en) 2011-03-29 2012-10-04 オリンパス株式会社 Photometric analysis device, photometric analysis method, and computer program for photometric analysis, using single light-emitting particle detection
WO2012141019A1 (en) 2011-04-13 2012-10-18 オリンパス株式会社 Photoanalysis device using single light emitting particle detection, method for photoanalysis, and computer program for photoanalysis
US9068944B2 (en) 2011-04-13 2015-06-30 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
US9116127B2 (en) 2011-04-18 2015-08-25 Olympus Corporation Quantitative determination method for target particles, photometric analysis device, and computer program for photometric analysis
WO2012144528A1 (en) 2011-04-18 2012-10-26 オリンパス株式会社 Quantitative determination method for target particles, photometric analysis device, and computer program for photometric analysis
WO2012144485A1 (en) 2011-04-20 2012-10-26 オリンパス株式会社 Method for detecting nucleic acid molecule in biosample
WO2013002261A1 (en) 2011-06-27 2013-01-03 オリンパス株式会社 Method for detecting target particles
US9354176B2 (en) 2011-08-11 2016-05-31 Olympus Corporation Method for detecting a target particle
WO2013021687A1 (en) 2011-08-11 2013-02-14 オリンパス株式会社 Method for detecting target particles
WO2013024637A1 (en) 2011-08-12 2013-02-21 オリンパス株式会社 Method for detecting fluorescent particles
WO2013024650A1 (en) 2011-08-15 2013-02-21 オリンパス株式会社 Photometric analysis device using single light emitting particle detection, photometric analysis method and computer program for photometric analysis,
US9423349B2 (en) 2011-08-15 2016-08-23 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
WO2013031439A1 (en) 2011-08-26 2013-03-07 オリンパス株式会社 Optical analyzer using single light-emitting particle detection, optical analysis method, and computer program for optical analysis
US9488578B2 (en) 2011-08-26 2016-11-08 Olympus Corporation Single particle detection device, single particle detection method, and computer program for single particle detection, using optical analysis
US10371631B2 (en) 2011-08-26 2019-08-06 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
WO2013031309A1 (en) 2011-08-26 2013-03-07 オリンパス株式会社 Single-particle detector using optical analysis, single-particle detection method using same, and computer program for single-particle detection
US9841418B2 (en) 2011-08-30 2017-12-12 Olympus Corporation Method for detecting target particle
WO2013031643A1 (en) 2011-08-30 2013-03-07 オリンパス株式会社 Method for detecting target particles in biosample containing pancreatic juice
US9528923B2 (en) 2011-08-30 2016-12-27 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
US9329117B2 (en) 2011-11-10 2016-05-03 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
WO2013069504A1 (en) 2011-11-10 2013-05-16 オリンパス株式会社 Spectroscopy device, spectroscopy method, and computer program for spectroscopy, employing individual light-emitting particle detection
US9494779B2 (en) 2012-02-17 2016-11-15 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single particle detection
WO2013121905A1 (en) 2012-02-17 2013-08-22 オリンパス株式会社 Optical analysis device using single particle detection technique, optical analysis method and computer program for optical analysis
US9428796B2 (en) 2012-02-22 2016-08-30 Olympus Corporation Method for detecting a target particle
US9771612B2 (en) 2012-03-21 2017-09-26 Olympus Corporation Method for detecting a target nucleic acid molecule
US9575060B2 (en) 2012-04-18 2017-02-21 Olympus Corporation Method for detecting a target particle
US9188535B2 (en) 2012-04-18 2015-11-17 Olympus Corporation Single particle detection device, single particle detection method, and computer program for single particle detection, using optical analysis
WO2013157319A1 (en) 2012-04-18 2013-10-24 オリンパス株式会社 Single-particle detection device using photoanalysis, single-particle detection method, and computer program for single-particle detection
WO2014020967A1 (en) 2012-08-02 2014-02-06 オリンパス株式会社 Spectral analysis device using confocal microscope or multiphoton microscope optical system, spectral analysis method, and spectral analysis computer program
US10310245B2 (en) 2013-07-31 2019-06-04 Olympus Corporation Optical microscope device, microscopic observation method and computer program for microscopic observation using single light-emitting particle detection technique
WO2015052965A1 (en) 2013-10-07 2015-04-16 オリンパス株式会社 Photometric analysis device employing single light-emitting particle detection, photometric analysis method, and computer program for photometric analysis
US9739698B2 (en) 2013-10-07 2017-08-22 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
WO2016036145A1 (en) * 2014-09-02 2016-03-10 광주과학기술원 Norovirus detecting sensor and electrochemical sensing method using same
US11016026B2 (en) 2015-12-09 2021-05-25 Olympus Corporation Optical analysis method and optical analysis device using single light-emitting particle detection
CN111381026A (en) * 2018-12-29 2020-07-07 深圳市帝迈生物技术有限公司 Multiple detection immunoassay reagent, preparation method, kit, system and application thereof
CN112433048A (en) * 2020-11-17 2021-03-02 深圳上泰生物工程有限公司 Kit for chemiluminescence immunoassay, and preparation method and application thereof

Also Published As

Publication number Publication date
JP4757103B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4757103B2 (en) Method and system for detecting viruses in a sample
Bhalla et al. Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: COVID-19
JP5473202B2 (en) Method and system for detecting fluorescent material in a sample
Singh Surface plasmon resonance: A boon for viral diagnostics
EP1660638B1 (en) Lipoparticles comprising proteins, methods of making, and using the same
US6893814B2 (en) Influenza sensor
Madu et al. Heparan sulfate is a selective attachment factor for the avian coronavirus infectious bronchitis virus Beaudette
JP2009537128A (en) How to detect influenza virus
Ziegler et al. Type-and subtype-specific detection of influenza viruses in clinical specimens by rapid culture assay
US11249083B1 (en) Covid-19 spike-ACE2 binding assay for drug and antibody screening
Thete et al. Conformational changes required for reovirus cell entry are sensitive to pH
JP2016528486A (en) Virion display array for profiling the functions and interactions of human membrane proteins
Shang et al. Paired immunoglobulin-like receptor B is an entry receptor for mammalian orthoreovirus
McClelland et al. Imaging flow cytometry and confocal immunofluorescence microscopy of virus-host cell interactions
CN101477117B (en) Visible protein chip for detecting poultry disease serum antibody, its preparation method and application
KR20170063000A (en) Method of Detecting Virus Using Virus Specific Nucleic Acid Aptamer-Nanoparticle Complex
Park et al. Membrane Rigidity‐Tunable Fusogenic Nanosensor for High Throughput Detection of Fusion‐Competent Influenza A Virus
Okamatsu et al. Fluorescence polarization-based assay using N-glycan-conjugated quantum dots for screening in hemagglutinin blockers for influenza A viruses
Deng et al. Discrimination between functional and non-functional cellular gag complexes involved in HIV-1 assembly
Ludwig et al. The 3D structure of the fusion primed Sendai F‐protein determined by electron cryomicroscopy
WO2008072503A1 (en) Method for detection of abnormal prion
JP2008249433A (en) Method for measuring bonding affinity of probe to test material, and its utilization
KR102265441B1 (en) Composition for detecting avian influenza virus based on chemiluminescence and use thereof
Rudenko et al. Bluetongue Virus Detection Using Microspheres Conjugated with Monoclonal Antibodies against Group-Specific Protein Vp7 by Flow Virometry
Li et al. Functional analysis of the N-linked glycans within the fusion protein of respiratory syncytial virus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110531

R150 Certificate of patent or registration of utility model

Ref document number: 4757103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees