[go: up one dir, main page]

JP2007017263A - Sensing element, vacuum gauge and vacuum tube - Google Patents

Sensing element, vacuum gauge and vacuum tube Download PDF

Info

Publication number
JP2007017263A
JP2007017263A JP2005198744A JP2005198744A JP2007017263A JP 2007017263 A JP2007017263 A JP 2007017263A JP 2005198744 A JP2005198744 A JP 2005198744A JP 2005198744 A JP2005198744 A JP 2005198744A JP 2007017263 A JP2007017263 A JP 2007017263A
Authority
JP
Japan
Prior art keywords
temperature sensing
heater
resistor
heat
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005198744A
Other languages
Japanese (ja)
Other versions
JP4970751B2 (en
Inventor
Junji Manaka
順二 間中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005198744A priority Critical patent/JP4970751B2/en
Priority to US11/481,097 priority patent/US7360416B2/en
Publication of JP2007017263A publication Critical patent/JP2007017263A/en
Priority to US12/073,013 priority patent/US7574910B2/en
Application granted granted Critical
Publication of JP4970751B2 publication Critical patent/JP4970751B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensing element, a vacuum gauge and a vacuum tube which can catch heat diffused 3-dimensionally with a 3-dimensional temperature sensing part, catch the 3-dimensional isothermal contour with the temperature sensing part, to arrange the distance between the heater and the sensing part closer than the distance between the heater and a substrate and to relate to a phenomenon concerning a solid space having heat in the element. <P>SOLUTION: The sensing element comprises a substrate 10 having a penetration hole and a hollow 11, a heater part 13 provided so as to bridge the penetration hole or the hollow 11 having a heating electrode 13-1 having a shape of a bent cantilever and electing into a space, and temperature sensing part 14 and 15 having temperature sensing electrodes 14-1 and 15-1 having a shape of a bent cantilever on the penetration hole or a hollow and erecting into a space. The sensing element measures heat transported from the heater part with the temperature sensing part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は検知素子、真空計及び真空管に関し、詳細には気体の流速、流量の測定に用いる熱式流量計に関する。   The present invention relates to a sensing element, a vacuum gauge, and a vacuum tube, and more particularly, to a thermal flow meter used for measurement of gas flow velocity and flow rate.

従来より、流体の流速・流量や雰囲気の成分・濃度を測定する手段として、流体に運ばれる熱や雰囲気に伝播する熱を検出して測定する方法がある。この方法を用いた熱式流量計における検出部であるセンサは、気体の流れの上流側に発熱源であるヒータを、下流側に感温部を設けて、下流側に伝達する熱量(温度変化量)あるいは伝達する所要時間として流速・流量を測定する。また、湿度計やガスクロマトグラフにおける検出部であるセンサは、雰囲気の中で発熱源であるヒータから雰囲気の成分や濃度に応じて与えられる熱伝導率により伝播する熱量(温度変化量)あるいは伝達する所要時間として湿度や気体成分・濃度を測定する。この場合、検出部であるセンサにおける発熱源のヒータや感温部の熱容量を小さくすることによって、かつ極近接させることによって、熱応答を早め、急変動や微少な流速・流量、微量成分や微量濃度を検出することができる。このセンサは、集積回路をつくる微細加工技術の手段によって実現されている。このようなセンサは、フローセンサ又は流速センサ、熱伝導式湿度センサや熱伝導式ガスセンサと呼ばれ、従来からいくつか提案されている。   Conventionally, as a means for measuring the flow velocity / flow rate of a fluid and the components / concentrations of an atmosphere, there is a method of detecting and measuring the heat carried to the fluid or the heat propagated to the atmosphere. The sensor, which is a detection unit in a thermal flow meter using this method, has a heater as a heat source upstream of the gas flow, a temperature sensing unit downstream, and the amount of heat transmitted to the downstream side (temperature change) Measure the flow velocity and flow rate as the amount) or the time required for transmission. In addition, a sensor that is a detection unit in a hygrometer or a gas chromatograph transmits or transmits the amount of heat (temperature change amount) that is propagated by the thermal conductivity that is given according to the components and concentration of the atmosphere from a heater that is a heat source in the atmosphere. Measure humidity, gas composition and concentration as required time. In this case, the thermal response is accelerated by reducing the heat capacity of the heating source and the temperature sensing part of the sensor, which is the detection part, and by bringing them in close proximity, thereby causing rapid fluctuations, minute flow rates / flow rates, trace components, and trace amounts. The concentration can be detected. This sensor is realized by means of microfabrication technology for producing an integrated circuit. Such a sensor is called a flow sensor or a flow velocity sensor, a heat-conducting humidity sensor, or a heat-conducting gas sensor, and some have been conventionally proposed.

その一つとしての特許文献1のフローセンサは、貫通孔もしくは空洞を有する基板と、貫通孔もしくは空洞上に両持ち梁式もしくは片持ち梁式に橋架された膜ヒータ部と膜検出部を有し、更にはヒータ部と検出部とは被測定流体の流れ方向に沿って2層又は3層以上に積層され、かつ各層間に空間を有している。この空間を膜厚で形成することによって、微小間隔に、しかも高精度で形成することができ、膜ヒータ部と膜検出部の間の空間距離を小さくし、高速度応答、高精度、微少流量、高効率化をめざしている。   As one of them, the flow sensor of Patent Document 1 has a substrate having a through hole or a cavity, a film heater unit and a film detection unit bridged in a doubly-supported or cantilever type on the through-hole or the cavity. Furthermore, the heater part and the detection part are laminated in two or more layers along the flow direction of the fluid to be measured, and have a space between the layers. By forming this space with a film thickness, it can be formed at a very small interval and with high accuracy, and the spatial distance between the film heater unit and the film detection unit is reduced, resulting in high speed response, high accuracy, and minute flow rate. Aiming for high efficiency.

また、特許文献2には、ヒータ線の形状を円形にしてヒータ線が発生する熱による温度分布の等温曲線を同心円形状にし、ヒータ線の円形形状に伴い、その両側に設けられる2つの温度センサ線の形状も円形にし、流体の移動方向が如何なる方向であっても、それに伴い発生する等温曲線の拡がり形状は常にヒータ線と温度センサ線に対して均一になり、検出値及び検出感度に流体の移動方向の依存性はなくなり、流体の移動方向の依存性なく流速または流量を検出することができるフローセンサが記載されている。詳細には、ヒータと感温部が平面上に隣接して並べてあり、上流側のヒータ発熱と流量に応じて暖められた気体の熱、すなわち運ばれる熱量を、下流平面側の感温部の温度上昇として捕らえ、更に温度センサ線はヒータ線からの熱の温度分布の等温線の形状に応じた形状を有するフローセンサが記載されている。このような構成を有する特許文献2によれば、ヒータ線が発生する熱による温度分布の等温線の形状に応じた形状を温度センサ線が有するので、流量や流速のわずかな変化による等温線のわずかな移動を、温度センサ線のほぼ全体の領域で検出することができ、より高感度のフローセンサを提供することができる。   Patent Document 2 discloses that the shape of the heater wire is circular and the isothermal curve of the temperature distribution due to the heat generated by the heater wire is concentric, and two temperature sensors are provided on both sides of the circular shape of the heater wire. The shape of the line is also circular, and regardless of the direction of fluid movement, the spread shape of the isothermal curve that occurs is always uniform with respect to the heater wire and the temperature sensor wire. There is described a flow sensor that can detect the flow velocity or flow rate without dependence on the movement direction of the fluid, and without dependence on the movement direction of the fluid. Specifically, the heater and the temperature sensing unit are arranged adjacent to each other on the plane, and the heat of the gas heated in accordance with the upstream heater heat generation and the flow rate, that is, the amount of heat transferred is measured by the temperature sensing unit on the downstream plane side. A flow sensor is described in which the temperature sensor line has a shape corresponding to the shape of the isothermal line of the temperature distribution of the heat from the heater line. According to Patent Document 2 having such a configuration, since the temperature sensor line has a shape corresponding to the shape of the isothermal line of the temperature distribution due to the heat generated by the heater line, A slight movement can be detected in almost the entire region of the temperature sensor line, and a more sensitive flow sensor can be provided.

以上の特許文献1、2により立体的に拡散した熱を感温部で捕らえるためには、感温部を立体形成してヒータを感温部で囲えばよく、かつ基板表面の影響を受けにくい場所の流れを検知する必要があるので、基板から離れた場所に感温部を形成すればよいことがわかる。更には立体的な感温部構造が必要であることがわかる。   In order to capture the three-dimensionally diffused heat according to Patent Documents 1 and 2 described above, the temperature-sensitive part may be formed in three dimensions and the heater surrounded by the temperature-sensitive part, and is not easily affected by the substrate surface. Since it is necessary to detect the flow of the place, it can be seen that the temperature sensing part may be formed at a place away from the substrate. Furthermore, it turns out that a three-dimensional temperature-sensitive part structure is required.

そのために必要な立体化技術として特許文献3が提案されている。この特許文献3によれば、低いプラズマガス圧ではスパッタ蒸着膜応力が圧縮性であり、このプラズマガス圧が増加すると蒸着副層内の膜応力は引張応力に対して変化する。また、多くのスパッタ薄膜の固有応力は材料を蒸着する周囲圧に左右され、スパッタ中に圧力を変えることにより、得られた薄膜は基板−膜界面付近では圧縮応力(引張力)がかかり、また膜表面では引張応力(圧縮力)がかかる。更に、下部金層は解放されたときにコイルの外皮を形成し、リース層は湿式アンダーカットエッチングにより除去される。また、Siリリース層に対して可能なエッチャントはKOH(湿式処理)が施され、リリース窓口を除去した場合、弾性部材の固有応力プロファイルにより弾性部材は自らグルグル巻くことになる。このような技術を用いて新しい種類の高Qバリキャップを製造できる。これらのバリキャップは上述の同じマイクロバネ技術を使用し、必要な静電容量値を持ち、更にチップ上に集積化される。マイクロバネに基づくバリキャップ構造により抜けているオンチップRF受動素子、インダクタ及びバリキャップを同じプロセス技術により作製できる。これらのマイクロバネバリキャップは平行板MEMSコンデンサより低いバイアス電圧を必要とする追加の利点をもつ。フォトリソグラフィックパターン形成コンデンサの第二電極としてバネを用いること、および固定板とバネの間の電圧を変えることにより、バリキャップ構造の静電容量が変わる。
特許第3,049,122号明細書 特開平11−118553号公報 特表2003−533897号公報
For this purpose, Patent Document 3 has been proposed as a three-dimensional technique required. According to Patent Document 3, the sputter deposition film stress is compressive at a low plasma gas pressure, and the film stress in the deposition sublayer changes with respect to the tensile stress when the plasma gas pressure increases. In addition, the intrinsic stress of many sputtered thin films depends on the ambient pressure at which the material is deposited. By changing the pressure during sputtering, the obtained thin film is subjected to compressive stress (tensile force) near the substrate-film interface. A tensile stress (compressive force) is applied on the film surface. Furthermore, the lower gold layer forms the outer skin of the coil when released, and the lease layer is removed by wet undercut etching. Further, KOH (wet process) is applied to the etchant that can be applied to the Si release layer, and when the release window is removed, the elastic member is rolled up by itself due to the inherent stress profile of the elastic member. A new kind of high Q varicap can be manufactured using such a technique. These varicaps use the same microspring technology described above, have the required capacitance values, and are further integrated on the chip. An on-chip RF passive element, inductor, and varicap that are missing due to a microspring-based varicap structure can be fabricated by the same process technology. These microspring varicaps have the added advantage of requiring a lower bias voltage than parallel plate MEMS capacitors. By using a spring as the second electrode of the photolithographic patterning capacitor and changing the voltage between the fixed plate and the spring, the capacitance of the varicap structure is changed.
Patent No. 3,049,122 Japanese Patent Laid-Open No. 11-118553 Special table 2003-533897 gazette

しかしながら、特許文献1によれば、上流側のヒータの熱は下流側に向けて立体的に拡散するが流路が狭く絞られているため流れの立体的な拡散がない分、熱は感温部に運ばれやすいが、流路が流体より熱伝導率が大きい固体なので、流路を狭めたことにより内壁への熱伝導がより多く、感温部ではその流路熱伝導成分が加わり、正確な測定が困難となっていた。また、熱容量も大きいため基板に蓄熱し、その蓄熱からの熱放散が流れに加わることになり、下流の感温部への影響がある。更に、高精度に近接して形成しているため、比較的影響が少ない場合もあるが、ヒータと感温部と基板の配置関係について、ヒータと感温部との距離はヒータと基板との距離より近く、かつヒータ及び感温部は基板からできるだけ遠距離である必要となる。   However, according to Patent Document 1, the heat of the upstream heater diffuses three-dimensionally toward the downstream side, but the flow is narrowed so that there is no three-dimensional diffusion of the flow. However, since the flow path is a solid with higher thermal conductivity than the fluid, the heat flow to the inner wall is increased by narrowing the flow path. Measurement was difficult. In addition, since the heat capacity is large, heat is stored in the substrate, and heat dissipation from the heat storage is added to the flow, which affects the downstream temperature sensing part. In addition, since it is formed in close proximity with high accuracy, there may be a relatively small effect. However, with regard to the positional relationship between the heater, the temperature sensing part, and the substrate, the distance between the heater and the temperature sensing part is the It is necessary that the heater and the temperature sensing unit be as far as possible from the substrate.

また、特許文献2では、センサの検知する流れは基板表面であって、計測しなければならない流れの中ではない。より正確には、基板表面の影響を受けにくい場所の流れを検知する必要がある。基板の表面に近づくほど気体の粘性により流れにくくなるので、基板から距離が近いほどその干渉分は大きくなり、微少流量が計測できない。粘性の高い流体が計測しにくく、粘性の高くなる温度領域においては計測しにくい。ヒータと感温部が平面上に隣接して並べてあり、上流側のヒータ発熱と流量に応じて暖められた気体の熱、すなわち運ばれる熱量を、下流平面側の感温部の温度上昇として捕らえることにおいて、温度センサ線は、ヒータ線からの熱の温度分布の等温線の形状に応じた形状を有することを特徴として示しているが、同一平面上にヒータと感温部が並べてあり、上流側のヒータの熱は、下流側に向けて立体的に拡散するので感温部ではその熱拡散成分の一平面成分しか捕らえられないことになり、伝達効率が低く感度も小さくなるので低雑音高分解能の信号処理回路を必要とする。また、乱流要素があると影響が大きいため、立体的に拡散した熱を立体的な等温線を感温部で捕らえる必要がある。   Moreover, in patent document 2, the flow detected by the sensor is the substrate surface, not the flow that must be measured. More precisely, it is necessary to detect a flow in a place that is not easily affected by the substrate surface. The closer to the surface of the substrate, the more difficult it is to flow due to the viscosity of the gas. Therefore, the closer the distance from the substrate, the greater the interference and the minute flow rate cannot be measured. It is difficult to measure a highly viscous fluid, and it is difficult to measure in a temperature range where the viscosity becomes high. The heater and the temperature sensing part are arranged adjacent to each other on the plane, and the heat of the gas heated according to the upstream heater heat generation and flow rate, that is, the amount of heat carried is captured as the temperature rise of the temperature sensing part on the downstream plane side. The temperature sensor line is characterized by having a shape corresponding to the shape of the isothermal line of the temperature distribution of the heat from the heater line, but the heater and the temperature sensing part are arranged on the same plane, and the upstream Since the heat of the heater on the side diffuses three-dimensionally toward the downstream side, only one plane component of the thermal diffusion component can be captured in the temperature sensing part, and the transmission efficiency is low and the sensitivity is also low, resulting in low noise and high noise. A resolution signal processing circuit is required. In addition, since there is a great influence if there is a turbulent element, it is necessary to capture the three-dimensional isotherm at the temperature sensing part.

更に、特許文献3は、チップ上の立体構造コイルが開示されているが、可変コンデンサ、電磁コイルや接点用途であり、熱輸送機構のためのヒータと感温部ではない。このように機能が違うので材料や形状や配置が異なるが、熱輸送機構に基づいたヒータと感温部に関しては、新たな構成を加える必要がある。流体の流速や配管内を流れる流量を、熱輸送機構によって測定するセンサとしては、ヒータと感温部との距離はヒータと基板との距離より近く、ヒータ及び感温部は基板からできるだけ遠距離である必要がある。できるだけ、立体的に拡散した熱を立体的な等温線を感温部で捕らえる必要がある。   Furthermore, Patent Document 3 discloses a three-dimensional structure coil on a chip, but it is used for a variable capacitor, an electromagnetic coil, and a contact, and is not a heater and a temperature sensitive part for a heat transport mechanism. Since the functions are different as described above, the materials, shapes, and arrangements are different, but a new configuration needs to be added to the heater and the temperature sensing unit based on the heat transport mechanism. As a sensor that measures the flow rate of fluid and the flow rate in the pipe using a heat transport mechanism, the distance between the heater and the temperature sensing unit is closer than the distance between the heater and the substrate, and the heater and the temperature sensing unit are as far as possible from the substrate. Need to be. As much as possible, it is necessary to capture the three-dimensional isotherm in the temperature-sensitive part from the three-dimensionally diffused heat.

本発明はこれらの問題点を解決するためのものであり、立体的に拡散した熱を立体的な感温部で捕らえ、立体的な等温線を感温部で捕らえ、ヒータ部と感温部の距離はヒータ部と基板の距離より近くでき、熱を要素にもつ立体空間に関する現象に関与可能な、検知素子、真空計及び真空管を提供することを目的とする。   The present invention is for solving these problems, and the three-dimensional temperature sensing part captures three-dimensionally diffused heat, the three-dimensional isotherm catches by the temperature sensing part, and the heater part and the temperature sensing part. It is an object of the present invention to provide a sensing element, a vacuum gauge, and a vacuum tube that can be closer to the distance between the heater part and the substrate and can participate in a phenomenon related to a three-dimensional space having heat as an element.

前記問題点を解決するために、本発明の検知素子は、貫通孔又は空洞を有する基板と、貫通孔又は空洞上に橋架するように設けられ、反り曲がり片持ち梁の形状をなすと共に空間に起立する発熱電極を有するヒータ部と、貫通孔又は空洞上に反り曲がり片持ち梁の形状をなすと共に空間に起立する感温電極を有する感温部とを具備している。そして、本発明の検知素子は、ヒータ部から輸送される熱量を感温部により計測する。よって、立体的に拡散した熱量を立体的な感温部で捕らえられることにより、立体的な等温線を感温部で捕らえることができ、またヒータ部と感温部の距離はヒータ部と基板の距離より近くできる。   In order to solve the above problems, the sensing element of the present invention is provided so as to be bridged on a substrate having a through hole or a cavity and a through hole or a cavity, and is formed into a curved and cantilever shape and in a space. A heater part having a heating electrode standing up and a temperature sensing part having a temperature sensing electrode standing in the space while being bent and cantilevered on a through hole or cavity. And the detection element of this invention measures the heat amount conveyed from a heater part by a temperature sensing part. Therefore, the amount of heat diffused three-dimensionally can be captured by the three-dimensional temperature sensing unit, so that a three-dimensional isotherm can be captured by the temperature sensing unit, and the distance between the heater unit and the temperature sensing unit is the heater unit and the substrate. Can be closer than the distance.

また、ヒータ部と感温部が隣接配列され、流体の流速・流量又は雰囲気の熱伝導率に応じてヒータ部から流体によって輸送される熱量を感温部により計測することにより、基板上のパターンを並列配置して平面加工により製造可能にすると共に、流体の流速・流量を計測するためのフローセンサとして利用できる。   In addition, the heater part and the temperature sensitive part are arranged adjacent to each other, and the amount of heat transported by the fluid from the heater part according to the flow rate / flow rate of the fluid or the thermal conductivity of the atmosphere is measured by the temperature sensitive part. Can be manufactured by plane processing by arranging them in parallel, and can be used as a flow sensor for measuring the flow velocity and flow rate of the fluid.

更に、ヒータ部から感温部の間の距離と、流体の流速・流量又は雰囲気の熱伝導率に応じてヒータ部から流体によって輸送される熱伝達する時間とにより、流速を計測する。よって、熱伝達時間を計測し流速を算出可能なセンサを提供できる。   Furthermore, the flow velocity is measured by the distance between the heater portion and the temperature sensing portion and the heat transfer time transported by the fluid from the heater portion in accordance with the flow velocity / flow rate of the fluid or the thermal conductivity of the atmosphere. Therefore, it is possible to provide a sensor capable of measuring the heat transfer time and calculating the flow velocity.

また、発熱電極及び感温電極は、パイプ形状の曲面に沿った形状をなすことが好ましい。   Moreover, it is preferable that the heating electrode and the temperature-sensitive electrode have a shape along a pipe-shaped curved surface.

更に、流体の流れに沿ってヒータ部が感温部の内側に配列されていることにより、微少検出のためにヒータ部と感温部との距離をより一層近接させることができる。   Furthermore, since the heater part is arranged inside the temperature sensing part along the flow of the fluid, the distance between the heater part and the temperature sensing part can be made closer for fine detection.

また、流体の流れを横切る方向に沿ってヒータ部が感温部の内側に配列されていることにより、流体の流れの方向を検出できる。   Moreover, the direction of the fluid flow can be detected by arranging the heater unit inside the temperature sensing unit along the direction crossing the fluid flow.

更に、感温部の感温電極が円環状に配列され、ヒータ部の発熱電極が円環状の感温部の中心に配置されていることにより、流れ方向の角度の偏移があっても変動が少なく、かつ乱流条件下で計測することができる。   Furthermore, the temperature sensing electrode of the temperature sensing part is arranged in an annular shape, and the heating electrode of the heater part is arranged at the center of the annular temperature sensing part, so that it fluctuates even if there is a deviation in the angle of the flow direction. And can be measured under turbulent flow conditions.

また、ヒータ部を空洞領域に配置した第1の基板と、感温部を空洞領域に配置した第2の基板とを、互いの空洞領域を対向させて一体的に接合することにより、構造や形状の自由度が高い検知素子を提供できる。   In addition, the first substrate in which the heater part is disposed in the cavity region and the second substrate in which the temperature sensing unit is disposed in the cavity region are integrally joined with the cavity regions facing each other, thereby providing a structure or A sensing element having a high degree of freedom in shape can be provided.

更に、本発明の検知素子は、貫通孔又は空洞を有する基板と、貫通孔又は空洞上に橋架するように設けられ、反り曲がり片持ち梁の形状をなすと共に空間に起立する電極を有する抵抗体を具備している。そして、発熱タイミングに抵抗体に発熱用電流を流して抵抗体を発熱させ、検出タイミングに抵抗体に検出用電流を流して、発熱時の抵抗体の抵抗値から検出時の抵抗体の抵抗値を減算した減算値に基づいて輸送される熱量を算出する。よって、熱の授受によるロスが少なく、かつヒータ部及び感温部は流れに広がった形状にあるので、特に流れがx−y面、z−y面で角度θの範囲で偏移しても影響が少なく許容範囲は広くなる。   Furthermore, the sensing element of the present invention includes a substrate having a through-hole or a cavity, and a resistor having an electrode that is provided so as to bridge over the through-hole or the cavity, has a curved and cantilever shape, and stands in space. It has. Then, a heating current is supplied to the resistor at the heating timing to cause the resistor to generate heat, and a detection current is supplied to the resistor at the detection timing to change the resistance value of the resistor at the time of detection from the resistance value of the resistor at the time of heating. The amount of heat transported is calculated based on the subtraction value obtained by subtracting. Therefore, there is little loss due to heat transfer, and the heater part and the temperature sensing part are in a shape that spreads in the flow, so even if the flow shifts in the range of angle θ on the xy plane and the zy plane. There is little influence and the tolerance is wide.

また、本発明の検知素子は、貫通孔又は空洞を有する基板と、貫通孔又は空洞上に橋架するように設けられ、傾斜形状をなす電極を有する抵抗体を具備している。そして、発熱タイミングに抵抗体に発熱用電流を流して抵抗体を発熱させ、検出タイミングに抵抗体に検出用電流を流して、発熱時の抵抗体の抵抗値から検出時の抵抗体の抵抗値を減算した減算値に基づいて輸送される熱量を算出する。よって、熱の授受によるロスが少ない。   In addition, the sensing element of the present invention includes a substrate having a through hole or a cavity, and a resistor that is provided so as to bridge over the through hole or the cavity and has an electrode having an inclined shape. Then, a heating current is supplied to the resistor at the heating timing to cause the resistor to generate heat, and a detection current is supplied to the resistor at the detection timing to change the resistance value of the resistor at the time of detection from the resistance value of the resistor at the time of heating. The amount of heat transported is calculated based on the subtraction value obtained by subtracting. Therefore, there is little loss due to heat exchange.

更に、本発明の検知素子は、貫通孔又は空洞を有する基板と、貫通孔又は空洞上に橋架するように設けられ、傾斜形状をなす電極を有する第1の抵抗体と、貫通孔又は空洞上に橋架するように設けられ、傾斜形状をなす電極を有する第2の抵抗体とを具備している。そして、第1の抵抗体から輸送される熱量を第2の抵抗体により計測し、あるいは第2の抵抗体から輸送される熱量を第1の抵抗体により計測する。よって、熱の授受によるロスが少なく、流れの方向に対応して計測できる。   Furthermore, the sensing element of the present invention includes a substrate having a through hole or a cavity, a first resistor having an inclined electrode provided so as to be bridged on the through hole or the cavity, and the through hole or the cavity. And a second resistor having an electrode having an inclined shape. Then, the amount of heat transported from the first resistor is measured by the second resistor, or the amount of heat transported from the second resistor is measured by the first resistor. Therefore, there is little loss due to heat transfer, and measurement can be performed according to the direction of flow.

また、別の発明としての真空計は、上記記載の検知素子を真空容器に封入し、ヒータ部及び感温部の各電極パッドから真空容器外部へ配線を引き出して、真空容器の内部における気体の熱伝導率の圧力依存性を感温部から得られる温度変動分として真空度に換算する。よって、熱伝導度検出型の、圧力、真空度計測ができる。   Further, a vacuum gauge as another invention encloses the above-described sensing element in a vacuum container, and draws a wire from each electrode pad of the heater part and the temperature sensing part to the outside of the vacuum container, so that the gas inside the vacuum container is drawn. The pressure dependency of the thermal conductivity is converted to a degree of vacuum as the temperature fluctuation obtained from the temperature sensitive part. Therefore, the thermal conductivity detection type pressure and vacuum degree can be measured.

更に、別の発明としての真空管は、上記記載の検知素子を真空容器に封入し、ヒータ部及び感温部の各電極パッド及び基板から真空容器外部へ配線を引き出して、ヒータ部をフィラメント、感温部をグリッド及び基板をコレクタとし、フィラメントとコレクタ間に流れる電流を計測し、真空度に換算する。よって、発熱温度を下げても効率良く熱電子を捕獲できる三極真空管などを提供できる。   Furthermore, a vacuum tube as another invention encloses the above-described sensing element in a vacuum vessel, draws wiring from each electrode pad and substrate of the heater portion and the temperature sensing portion to the outside of the vacuum vessel, makes the heater portion a filament, Using the grid as the hot part and the substrate as the collector, the current flowing between the filament and the collector is measured and converted into a degree of vacuum. Therefore, it is possible to provide a triode vacuum tube that can efficiently capture thermoelectrons even when the heat generation temperature is lowered.

本発明の検知素子よれば、ヒータ部は反り曲がり片持ち梁の形状をなすと共に空間に起立する発熱電極を有し、基板に設けられた貫通孔又は空洞上に橋架するように設けられている。また、感温部は貫通孔又は空洞上に反り曲がり片持ち梁の形状をなすと共に空間に起立する感温電極を有し、基板に設けられた貫通孔又は空洞上に橋架するように設けられている。そして、本発明の検知素子は、ヒータ部から輸送される熱量を感温部により計測する。   According to the detection element of the present invention, the heater section has a heating electrode that is bent and cantilevered and has a heating electrode that stands in the space, and is provided so as to bridge over a through-hole or a cavity provided in the substrate. . In addition, the temperature-sensing part has a temperature-sensing electrode which is bent and cantilevered on the through-hole or cavity, and has a temperature-sensitive electrode standing in the space, and is provided so as to be bridged on the through-hole or cavity provided in the substrate ing. And the detection element of this invention measures the heat amount conveyed from a heater part by a temperature sensing part.

図1は本発明の第1の実施の形態例に係る検知素子の構成を示す斜視図である。同図に示す本実施の形態例の検知素子100は、基板10と、当該基板10に設けられた空洞11を橋架するように設けられたブリッジ12上にそれぞれ配置されたヒータ部13及び2つの感温部14,15とを含んで構成されている。そして、2つの感温部14,15はヒータ部13を挟んで両側に並列して配置されており、また感温部14,15を構成する感温電極14−1、15−1はパイプ形状の曲面に沿った形状を成し、互いに対向して形成されている。また、ヒータ部13の発熱電極13−1には、給電リード線13−2がそれぞれ接続され、各給電リード線13−2には電極パッド13−3がそれぞれ設けられ、ヒータ部13は電極パッド13−3からの電力供給によりジュール発熱する。更に、感温部14,15を構成する感温電極14−1、15−1の各端子には検出リード線14−2、15−2がそれぞれ接続され、各検出リード線14−2、15−2には電極パッド14−3、15−3がそれぞれ設けられている。また、感温部14,15は近傍の空間から熱伝導により温度依存性の特性を有する。x軸に沿った流れにおいて、上流に設置したヒータ部13の熱が流速に応じて空間に拡散、それをパイプ形状の曲面に沿った感温部14,15で捕らえる。感温電極14−1、15−1により形成されたパイプ形状の感温部14,15の各内部を流れる流体の流速、流量を計測する。熱拡散の方向はx軸方向への流れに沿うだけではなく、3次元方向に発散する。x軸に沿った流れではヒータ部13に対して感温部14,15は3次元に配置されていることになるので、感温部14,15はヒータ部13からの熱拡散を立体空間で捕らえるので熱伝達効率が大きい。流体は摩擦により基板表面付近では表面から遠い場所よりも流速は遅いが、ヒータ部13と感温部14,15が基板10上に起立し基板表面から離れているため、基板10の表面上に配置されている場合に比べ、微流速であっても測定でき、一方流速の早い場合であっても表面からの流れの剥離による乱流の影響も少ない。この微小流速を測定する際に基板表面から離れることが有利である点について説明すると、基板端面からの基板表面に沿った距離と基板表面から離れる距離における空気の流速測定特性を示す図2からわかるように、空気の流速を測定するためには基板表面から離れる必要があり、境界層の厚さより小さい流速測定箇所では流体の物性値や基板構造などの依存性が複雑に影響し合い、真の流速を求めるためには測定値を補正する必要が生じ、そのための不確定さが加わるので、微小流速を測定するためには基板表面から離れることがより一層有利となる。なお、ストークスの法則に従って、層流速度が壁の摩擦抵抗を受ける境界層の厚さδ≠5*(vx/U)^(1/2)で得られる。但し、v=η/ρ、η:動粘性係数、ρ:密度、x:端面からの距離、U:流速、である。   FIG. 1 is a perspective view showing a configuration of a sensing element according to the first embodiment of the present invention. The sensing element 100 according to the present embodiment shown in the figure includes a substrate 10 and a heater unit 13 and two elements disposed on a bridge 12 provided to bridge the cavity 11 provided in the substrate 10. The temperature sensing units 14 and 15 are included. The two temperature sensing parts 14 and 15 are arranged in parallel on both sides of the heater part 13, and the temperature sensing electrodes 14-1 and 15-1 constituting the temperature sensing parts 14 and 15 are pipe-shaped. Are formed along the curved surface and are opposed to each other. The heating electrode 13-1 of the heater unit 13 is connected to a power supply lead wire 13-2, and each power supply lead wire 13-2 is provided with an electrode pad 13-3. The heater unit 13 is an electrode pad. Joule heat is generated by power supply from 13-3. Further, the detection lead wires 14-2 and 15-2 are connected to the terminals of the temperature sensing electrodes 14-1 and 15-1 constituting the temperature sensing portions 14 and 15, respectively. -2 are provided with electrode pads 14-3 and 15-3, respectively. Further, the temperature sensitive parts 14 and 15 have temperature-dependent characteristics due to heat conduction from a nearby space. In the flow along the x-axis, the heat of the heater unit 13 installed upstream is diffused into the space according to the flow velocity, and is captured by the temperature sensing units 14 and 15 along the pipe-shaped curved surface. The flow velocity and flow rate of the fluid flowing through each of the pipe-shaped temperature sensitive portions 14 and 15 formed by the temperature sensitive electrodes 14-1 and 15-1 are measured. The direction of thermal diffusion not only follows the flow in the x-axis direction but diverges in a three-dimensional direction. In the flow along the x-axis, the temperature sensitive parts 14 and 15 are three-dimensionally arranged with respect to the heater part 13, so that the temperature sensitive parts 14 and 15 perform heat diffusion from the heater part 13 in a three-dimensional space. Since it is captured, heat transfer efficiency is large. Although the fluid has a lower flow velocity near the substrate surface due to friction than a location far from the surface, the heater unit 13 and the temperature sensitive units 14 and 15 stand on the substrate 10 and are separated from the substrate surface. Compared with the case where it is arranged, it is possible to measure even at a very low flow rate, while there is less influence of turbulent flow due to separation of the flow from the surface even at a high flow rate. The point that it is advantageous to move away from the substrate surface when measuring this minute flow velocity will be explained. FIG. 2 shows the air flow velocity measurement characteristics at a distance along the substrate surface from the substrate end surface and at a distance away from the substrate surface. Thus, in order to measure the flow velocity of air, it is necessary to move away from the substrate surface, and at the flow velocity measurement location that is smaller than the boundary layer thickness, the dependency of the physical property value of the fluid and the substrate structure affect each other in a complex manner. In order to obtain the flow velocity, it is necessary to correct the measurement value, and uncertainty for that is added. Therefore, in order to measure the minute flow velocity, it is more advantageous to move away from the substrate surface. In accordance with Stokes' law, the laminar velocity is obtained by the boundary layer thickness δ ≠ 5 * (vx / U) ^ (1/2) that receives the frictional resistance of the wall. However, v = η / ρ, η: kinematic viscosity coefficient, ρ: density, x: distance from the end face, U: flow velocity.

また、ヒータ部13より上流の感温部14は、感温材料の温度特性を利用するに当たり、流体の最初の温度情報を捕らえるものであり、あるいは流れが逆向きになった場合のための測定手段であるが、感温部14はヒータ部13からの熱拡散を立体空間で捕らえることができる。基板表面上に配置されている場合では、流れに対して角度が変わると感度が敏感に影響を受け、1方向しか最大感度が得られないが、本実施の形態例のように、感温部14,15がヒータ部13に対して立体配置されていると流れに対する角度調整値に余裕があり、x軸に沿った流れに角度がついても立体で捕らえられるので流れの軸とセンサ配置の合わせが容易となる。更に、上向きと下向きとの姿勢についてはでは熱の流れは大きく違いがある。暖められた気体は上昇するので基板が下面向きであると空洞に熱だまりを生じ、基板が上面向きであると空洞に熱だまりを生じないのでこの姿勢の影響があるが、ヒータ部13と感温部14,15が基板10上に起立し基板の表面から離れているため、基板10の影響は少なく取り付け場所が増える。   In addition, the temperature sensing unit 14 upstream of the heater unit 13 captures the first temperature information of the fluid when using the temperature characteristics of the temperature sensing material, or measurement for the case where the flow is reversed. Although it is a means, the temperature sensing part 14 can catch the thermal diffusion from the heater part 13 in three-dimensional space. In the case of being arranged on the substrate surface, if the angle changes with respect to the flow, the sensitivity is sensitively affected, and the maximum sensitivity can be obtained only in one direction. 14 and 15 are three-dimensionally arranged with respect to the heater unit 13, there is a margin in the angle adjustment value for the flow, and even if the flow along the x axis is angled, it can be captured in three dimensions, so the alignment of the flow axis and sensor arrangement Becomes easy. Furthermore, the heat flow differs greatly between the upward and downward postures. Since the warmed gas rises, if the substrate is directed to the lower surface, heat accumulation is generated in the cavity, and if the substrate is directed to the upper surface, heat accumulation is not generated in the cavity. Since the warm parts 14 and 15 stand on the substrate 10 and are separated from the surface of the substrate, the influence of the substrate 10 is small, and the number of mounting locations increases.

次に、ヒータ部13や感温部14,15は立体構造であっても平面加工により製造でき、その製造方法について製造工程図である図3〜図5に従って説明する。図3及び図4の(a)並びに図5の(a)は平面図、図4の(b)は側面図、図5の(b)は図5の(a)のA−A’線断面図、図5の(c)は図5の(a)のB−B’線断面図である。なお、図1と同じ参照符号は同じ構成要素を示す。
先ず、図3に示すように、基板10上にヒータ部13の発熱電極13−1と給電リード線13−2、感温部14,15の感温電極14−1、15−1、検出リード線14−2,15−2、電極パッド14−3,15−3の導電材料膜をパターン形成する。ここで、ヒータ部13や感温部14,15は抵抗温度係数の大きな材料としてPt、W等の金属材料を用いる。また、給電リード線13−2、検出リード線14−2,15−2も同材料で形成するので同時形成でき簡便である。そして、給電リード線13−2、検出リード線14−2,15−2は熱を発生させないように電気抵抗値を低くしなければならないので、電流を流す方向に対して巾を広く、熱容量を増やすために基板10上に配置する。なお、感温部14,15はゼーベック効果を有する熱電材料で形成してもよい。この熱電材料の場合冷接点は基板10上の空洞のない領域に配置する。
Next, even if the heater part 13 and the temperature sensitive parts 14 and 15 are three-dimensional structures, they can be manufactured by plane processing, and the manufacturing method will be described with reference to FIGS. 3 to 5 which are manufacturing process diagrams. 3 (a) and 5 (a) are plan views, FIG. 4 (b) is a side view, and FIG. 5 (b) is a cross-sectional view taken along line AA ′ of FIG. 5 (a). FIG. 5C is a cross-sectional view taken along the line BB ′ of FIG. The same reference numerals as those in FIG. 1 denote the same components.
First, as shown in FIG. 3, on the substrate 10, the heating electrode 13-1 and the power supply lead 13-2 of the heater unit 13, the temperature sensing electrodes 14-1 and 15-1 of the temperature sensing units 14 and 15, and the detection lead The conductive material films of the lines 14-2 and 15-2 and the electrode pads 14-3 and 15-3 are patterned. Here, the heater part 13 and the temperature sensitive parts 14 and 15 use a metal material such as Pt or W as a material having a large resistance temperature coefficient. Further, since the power supply lead wire 13-2 and the detection lead wires 14-2 and 15-2 are also formed of the same material, they can be formed simultaneously and are simple. And since the electric resistance value of the power supply lead wire 13-2 and the detection lead wires 14-2 and 15-2 must be lowered so as not to generate heat, the width is wide in the direction in which the current flows and the heat capacity is reduced. It arrange | positions on the board | substrate 10 in order to increase. In addition, you may form the temperature sensitive parts 14 and 15 with the thermoelectric material which has a Seebeck effect. In the case of this thermoelectric material, the cold junction is arranged in a region without a cavity on the substrate 10.

そして、図4の(a)に示すように、基板10上のヒータ部13の発熱電極13−1、感温部14,15の感温電極14−1,15−1の領域の絶縁層をエッチング除去すると、図4の(b)に示すようにヒータ部13と感温部14,15は下部層の密着がなくなり、片持ち梁になるので、反り曲がり効果で曲面を形成し基板10上に起立する。なお、この絶縁層のエッチングにおいては、各パターンの下部の絶縁層に対して、絶縁層の縁からヒータ部13と感温部14,15のパターン巾の1/2の距離まで回り込んでアンダーカットエッチングすることにより、ヒータ部13と感温部14,15が反り曲がり片持ち梁にできる。   And as shown to (a) of FIG. 4, the insulating layer of the area | region of the heat generating electrode 13-1 of the heater part 13 on the board | substrate 10 and the temperature sensitive electrodes 14-1 and 15-1 of the temperature sensitive parts 14 and 15 is formed. When the etching is removed, as shown in FIG. 4B, the heater portion 13 and the temperature sensitive portions 14 and 15 are cantilevered because the lower layer is not in close contact with each other. To stand up. In this etching of the insulating layer, the insulating layer below each pattern wraps around from the edge of the insulating layer to a distance that is ½ of the pattern width of the heater 13 and the temperature sensitive parts 14 and 15. By performing the cut etching, the heater part 13 and the temperature sensitive parts 14 and 15 can be bent and cantilevered.

更に、図5の(a)に示すように、絶縁層のエッチング除去された基板面の露出する領域だけをエッチングし空洞11を形成する。図4の(b)からわかるように、基板10上に起立するので、その構造でもよいが、図5の(b),(c)に示す構造であれば、図4の(b)に比べてヒータ部13と感温部14,15は熱容量の大きい基板10から更に遠ざかるので、流体の熱伝達に、基板10からの熱影響はより小さくなり、さらに効果がある。公知の技術を用い基板10のエッチングによって、図中破線で示す絶縁層のふちの内側までエッチングが進行するので、空洞11上にブリッジ12が形成され、片持ち梁の感温部14,15はブリッジ12の両持ち梁によって支えられることになる。   Further, as shown in FIG. 5A, only the exposed region of the substrate surface where the insulating layer has been removed by etching is etched to form the cavity 11. As can be seen from (b) of FIG. 4, the structure stands up on the substrate 10 and may have the structure. However, the structure shown in (b) and (c) of FIG. 5 is compared with (b) of FIG. Since the heater unit 13 and the temperature sensing units 14 and 15 are further away from the substrate 10 having a large heat capacity, the influence of heat from the substrate 10 becomes smaller and more effective in the heat transfer of the fluid. By etching the substrate 10 using a known technique, the etching proceeds to the inside of the edge of the insulating layer indicated by a broken line in the figure, so that a bridge 12 is formed on the cavity 11 and the temperature sensing parts 14 and 15 of the cantilever are It will be supported by the doubly supported beams of the bridge 12.

ここで、感温部を立体形成する方法について図6を用いて説明する。例えば、Si、Al、Cu、Ni、Cr、ステンレス、コバール、Mo、W、Al、SiO、ガラス、セラミック、エポキシ樹脂、ポリイミド樹脂等の耐熱性基板20上に、まず下部層21としてSiO、MgO、Al、Ta、TiO等の電気絶縁性材料を0.3〜3μm程度、蒸着、スパッタリング、CVD等の成膜法を用いて形成する。この成膜時においては真空度を10-6〜10-3Torr以下にすることが望ましく、後述する焼締め処理において密度が増し収縮しないように、高真空度雰囲気中で成膜し、できるだけ空孔率を減じて高密度にさせておく必要がある。次に、上部層22として発熱体層および取出し電極等を構成するNiCr、Ir、Pt、Ir−Pt合金、SiC、TaN、カンタル合金等の導電性抵抗発熱材料を0.1〜3μm程度、蒸着、スパッタリング等により成膜する。この上部層22を所定の形状にフォトエッチングしパターン形成する。更に、保護被覆層23を積層する場合においては、下部層21と同等の電気絶縁性材料を使用し同等の条件にて成膜すれば良い。ここで、上部層22及び保護被覆層23は下部層21から引続き成膜されるため、表面状態のあらさや段差が増し、また膜厚が増すほど粒度が大きくなり、空孔や欠陥を多く含むため焼締め処理後においては下部層よりさらに収縮させることが可能となり、梁部の反り曲がりが形成できる。また、上部層22及び保護被覆層23の成膜時においては、下部層の成膜時の場合よりも真空度を下げて10-4〜10-2Torr程度にしておけば、空孔を多く含む膜質が得られ、やはり焼締め処理後において収縮させることもできる。次に、基板20に空洞部24をエッチングによって形成すると下部層21、上部層22からなる梁部あるいは下部層21、上部層22、保護被覆層23からなる梁部ができる。更に、これを350〜800℃で焼締めを行えば所定の反り曲がり形状が得られる。なお、空洞部24を形成する前に焼締めを行っても空洞部形成後に上部層22、保護被覆層23の収縮しようとする力により基板20から束縛されていた力が無くなるため、やはり反り曲がり形状が得られる。従って、焼締め処理と空洞部24の形成の順序は特定しなくても可能である。 Here, a method of forming a three-dimensional temperature sensing portion will be described with reference to FIG. For example, the lower layer 21 is first formed on the heat-resistant substrate 20 such as Si, Al, Cu, Ni, Cr, stainless steel, Kovar, Mo, W, Al 2 O 3 , SiO 2 , glass, ceramic, epoxy resin, polyimide resin or the like. As an insulating material such as SiO 2 , MgO, Al 2 O 3 , Ta 2 O 5 , and TiO 2 , the film is formed by using a film forming method such as vapor deposition, sputtering, CVD, or the like at about 0.3 to 3 μm. In this film formation, the degree of vacuum is preferably 10 −6 to 10 −3 Torr or less, and the film is formed in a high vacuum atmosphere so that the density does not increase and shrink in the baking process described later, and the film is as empty as possible. It is necessary to reduce the porosity so as to increase the density. Next, a conductive resistance heating material such as NiCr, Ir, Pt, Ir—Pt alloy, SiC, TaN, and Kanthal alloy constituting the heating element layer and the extraction electrode as the upper layer 22 is deposited by about 0.1 to 3 μm. The film is formed by sputtering or the like. The upper layer 22 is photoetched into a predetermined shape to form a pattern. Furthermore, when the protective coating layer 23 is laminated, an electrical insulating material equivalent to that of the lower layer 21 may be used and the film may be formed under the same conditions. Here, since the upper layer 22 and the protective coating layer 23 are continuously formed from the lower layer 21, the roughness of the surface state and the level difference increase, and the particle size increases as the film thickness increases, and it contains many holes and defects. Therefore, it is possible to further shrink from the lower layer after the baking treatment, and the beam portion can be bent. Further, when the upper layer 22 and the protective coating layer 23 are formed, if the degree of vacuum is lowered to about 10 −4 to 10 −2 Torr than when the lower layer is formed, the number of holes is increased. A film quality can be obtained, which can also be shrunk after baking. Next, when the cavity portion 24 is formed in the substrate 20 by etching, a beam portion composed of the lower layer 21 and the upper layer 22 or a beam portion composed of the lower layer 21, the upper layer 22, and the protective coating layer 23 is formed. Furthermore, if this is baked at 350-800 degreeC, a predetermined curvature curve shape will be obtained. Even if baking is performed before the cavity 24 is formed, the force constrained from the substrate 20 by the force to shrink the upper layer 22 and the protective coating layer 23 after the cavity is formed disappears. A shape is obtained. Therefore, the order of the baking process and the formation of the cavity portion 24 is possible without specifying.

次に、流体の流量を測定する方法として、サーマルトレーサ法があるがこれについて概説しておく。例えば特開昭60−186714号公報に記載されているように、流体を通流する配管の内部に、所定の熱パルスを発生して流体に与えるヒータを設け、そのヒータより所定距離離れた下流位置に温度検出部を設けた流量測定装置がある。これは、流れている流体に熱パルスを与え、流れにのって移動してきた熱分布の最大温度を所定の位置で検出する。そして、その熱パルスを与えた時点から、最大温度を検出した時点までの時間を用いて、流体の流量を求めるようにしたものである。   Next, as a method for measuring the flow rate of the fluid, there is a thermal tracer method, which will be outlined. For example, as described in Japanese Patent Application Laid-Open No. 60-186714, a heater that generates a predetermined heat pulse and applies the fluid to a fluid is provided in a pipe through which the fluid flows, and is downstream at a predetermined distance from the heater. There is a flow rate measuring device provided with a temperature detector at a position. This gives a heat pulse to the flowing fluid, and detects the maximum temperature of the heat distribution that has moved along the flow at a predetermined position. Then, the flow rate of the fluid is obtained using the time from when the heat pulse is applied to when the maximum temperature is detected.

図7は本発明の第2の実施の形態例に係る検知素子の構成を示す平面図である。同図において図1と同じ参照符号は同じ構成要素を示す。同図に示す第2の実施の形態例の検知素子200は、感温部15を複数並列に配列し、ヒータ部13を時間間欠で加熱することにより、熱波が所定の距離のそれぞれの感温部15に到達する時間を捕らえて流速を計測するものである。   FIG. 7 is a plan view showing the configuration of the sensing element according to the second embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 denote the same components. In the detection element 200 of the second embodiment shown in the figure, a plurality of temperature sensing parts 15 are arranged in parallel and the heater part 13 is heated intermittently, so that the heat waves are sensed at a predetermined distance. The time to reach the warm section 15 is captured and the flow velocity is measured.

次に、図8は本発明の第3の実施の形態例に係る検知素子の構成を示す斜視図である。同図に示す第3の実施の形態例の検知素子300は、基板10上に起立している2つの感温部14,15の各内部のx軸位置にヒータ部13を配置して構成されている。図中の流れ成分はx軸に沿うよう導かれ、ヒータ部13から熱が加わる。熱拡散の方向は流れに沿うだけではなく、3次元方向に発散するので、感温部14,15はヒータ部13の熱拡散を立体空間で捕らえることができる。この場合、ヒータ部13の発熱部は感温部14,15よりも流れの内部にあるため、x軸に沿った流れに角度がついても、立体で捕らえられるので流れの軸とセンサ配置の合わせが容易である。第1及び第2の実施の形態例のようなヒータ部13と感温部14,15が並列のフローセンサ構造より、更にヒータ部13と感温部14,15を近接させられるため、微少流量の検出に効果が高い。   Next, FIG. 8 is a perspective view showing a configuration of a sensing element according to the third embodiment of the present invention. The detection element 300 of the third embodiment shown in the figure is configured by disposing a heater unit 13 at the x-axis position inside each of the two temperature sensing units 14 and 15 standing on the substrate 10. ing. The flow component in the figure is guided along the x-axis, and heat is applied from the heater unit 13. Since the direction of thermal diffusion not only follows the flow but also diverges in a three-dimensional direction, the temperature sensing units 14 and 15 can capture the thermal diffusion of the heater unit 13 in a three-dimensional space. In this case, since the heat generating part of the heater unit 13 is located inside the flow more than the temperature sensing units 14 and 15, even if the flow along the x axis is angled, it can be captured in three dimensions, so the flow axis and the sensor arrangement are aligned. Is easy. Since the heater unit 13 and the temperature sensing units 14 and 15 as in the first and second embodiments can be made closer to each other than the parallel flow sensor structure, the minute flow rate is reduced. Highly effective in detecting

ここで、第3の実施の形態例の検知素子の製造工程について当該製造工程を示す図9及び図10に従って説明する。なお、図9及び図10の(a)は平面図、図10の(b)は図10の(a)のC−C’線断面図である。   Here, the manufacturing process of the sensing element of the third embodiment will be described with reference to FIGS. 9 and 10 showing the manufacturing process. 9 and 10A are plan views, and FIG. 10B is a cross-sectional view taken along the line C-C ′ of FIG.

図9に示すように、感温部14,15の上部にヒータ部13が重なる構造であるため、犠牲層を用いてヒータ部13を次工程で形成する必要がある。そこで、先ず基板10上に感温部14,15の感温電極14−1,15−1、検出リード線14−2,15−2、電極パッド14−3,15−3の導電材料膜をパターン形成する。ヒータ部13や感温部14,15は抵抗温度係数の大きな材料としてPt、W等の金属材料を用いる。次に、ヒータ部13となる領域に後に選択エッチング除去できる犠牲層、例えばNi等をパターン形成する。次に、ヒータ部13の発熱電極13−1、給電リード線13−2、電極パッド13−3の導電材料膜をパターン形成する。そして、基板10上のヒータ部13の領域の犠牲層と、ヒータ部13、感温部14,15の領域の絶縁層をエッチング除去し、基板面の露出する領域だけをエッチングし空洞11を形成する。図10に示すように、ヒータ部13と感温部14,15は下部層の密着がなくなり、片持ち梁になるので、反り曲がり効果で曲面を形成し基板10上に起立する。感温部14,15の軸位置にあるヒータ部13の熱が捕らえられる。なお、図10の(b)に示すように、ヒータ部13は片持ち梁構造をつなぐ両持ち梁構造なので、両持ち梁構造の部分は反り曲がり効果は小さく、直線に近い。   As shown in FIG. 9, since the heater unit 13 is superposed on the temperature sensitive units 14 and 15, the heater unit 13 needs to be formed in the next process using a sacrificial layer. Therefore, first, the conductive material films of the temperature sensitive electrodes 14-1, 15-1, the detection lead wires 14-2, 15-2, and the electrode pads 14-3, 15-3 of the temperature sensitive parts 14, 15 are formed on the substrate 10. Form a pattern. The heater part 13 and the temperature sensitive parts 14 and 15 use a metal material such as Pt or W as a material having a large resistance temperature coefficient. Next, a sacrificial layer, such as Ni, that can be selectively etched away later is formed in a pattern in a region to be the heater portion 13. Next, the conductive material films of the heating electrode 13-1, the power supply lead wire 13-2, and the electrode pad 13-3 of the heater section 13 are formed in a pattern. Then, the sacrificial layer in the region of the heater unit 13 on the substrate 10 and the insulating layer in the region of the heater unit 13 and the temperature sensitive units 14 and 15 are removed by etching, and only the exposed region of the substrate surface is etched to form the cavity 11. To do. As shown in FIG. 10, the heater unit 13 and the temperature sensitive units 14, 15 are not cantilevered in the lower layer and become cantilever beams, so that a curved surface is formed by the warping and bending effect and stands on the substrate 10. The heat of the heater unit 13 at the axial position of the temperature sensitive units 14 and 15 is captured. As shown in FIG. 10 (b), the heater unit 13 is a double-supported beam structure that connects the cantilever beam structures, so the portion of the double-supported beam structure has little warping and bending effect and is close to a straight line.

図11は本発明の第4の実施の形態例に係る検知素子の構成を示す斜視図である。この第4の実施の形態例に係る検知素子400は、図8に示す第3の実施の形態例の検知素子3と同様に感温部40の内部にヒータ部41が配置されたフローセンサ構造であるが動作は異なり、流れをy−z面に導き、パイプ形状の感温部40とヒータ部41に対し概ね直角に流す。ヒータ部41はパイプ軸位置にあるので、特に流れがz−y面で角度θの範囲で偏移しても影響が少ない。x−y面での角度偏移は感温部40が横広がりなので許容範囲は広くなる。また、感温部40が串歯形状になっているので整流作用があり、乱流条件下でも安定した出力が得られ整流素子が不要である。   FIG. 11 is a perspective view showing a configuration of a sensing element according to the fourth embodiment of the present invention. The sensing element 400 according to the fourth embodiment has a flow sensor structure in which a heater portion 41 is arranged inside the temperature sensing portion 40, similarly to the sensing element 3 according to the third embodiment shown in FIG. However, the operation is different, and the flow is guided to the yz plane, and is caused to flow substantially perpendicularly to the pipe-shaped temperature sensing unit 40 and the heater unit 41. Since the heater portion 41 is located at the pipe shaft position, there is little influence even if the flow shifts in the range of the angle θ on the zy plane. The allowable range of the angle shift in the xy plane is wide since the temperature sensing unit 40 is laterally expanded. Further, since the temperature sensing portion 40 has a skewer shape, there is a rectifying action, a stable output can be obtained even under turbulent conditions, and a rectifying element is unnecessary.

ここで、第4の実施の形態例の検知素子の製造工程について当該製造工程を示す図12に従って説明する。なお、同図の(a)は平面図、同図の(b)は同図の(a)のD−D’線断面図、同図の(b)は同図の(a)のE−E’線断面図である。図8の第3の実施の形態例の検知素子の製造工程では、感温部14,15の上部にヒータ部13が重なる構造であったため、犠牲層を用いてヒータ部13を次工程で形成する必要があった。しかし、基板10上に起立した時点で感温部14,15の内側にヒータ部13があればよいので、反り曲がり効果を利用して平面加工により形成できる。そこで、図12に示すように、基板10上で感温部40に重ならないように、感温電極40−1の間にヒータ部41の発熱電極41−1のパターンを配置し、片持ちによって感温部40とヒータ部41のパターンが反り曲がり、感温部40の内側にヒータ部41を形成できる。このように、感温部40のパターンを2対、対向させて、その間の隙間にヒータ部41のパターンを設けることにより、犠牲層が不要で製造でき、Pt材料層の成膜は1回で簡便になる。   Here, the manufacturing process of the sensing element of the fourth embodiment will be described with reference to FIG. 12 showing the manufacturing process. 1A is a plan view, FIG. 1B is a cross-sectional view taken along the line DD ′ of FIG. 1A, and FIG. 2B is an E-line of FIG. It is E 'line sectional drawing. In the manufacturing process of the sensing element of the third embodiment shown in FIG. 8, the heater part 13 is superposed on the temperature sensitive parts 14 and 15, so the heater part 13 is formed in the next process using a sacrificial layer. There was a need to do. However, since it is sufficient that the heater portion 13 is provided inside the temperature sensitive portions 14 and 15 at the time of standing on the substrate 10, it can be formed by plane processing using the warping and bending effect. Therefore, as shown in FIG. 12, a pattern of the heating electrode 41-1 of the heater section 41 is arranged between the temperature sensing electrodes 40-1 so as not to overlap the temperature sensing section 40 on the substrate 10, and cantilevered. The pattern of the temperature sensing part 40 and the heater part 41 is warped and the heater part 41 can be formed inside the temperature sensing part 40. In this way, by providing two pairs of patterns of the temperature sensing part 40 and providing the pattern of the heater part 41 in the gap between them, a sacrificial layer can be dispensed with, and the Pt material layer can be formed once. It becomes simple.

次に、図13は本発明の第5の実施の形態例に係る検知素子の構成を示す斜視図である。同図に示す本実施の形態例の検知素子500は、図11に示す第4の実施の形態例の検知素子400と同様に、感温部の内部にヒータ部が配置されたフローセンサ構造図である。本実施の形態例の検知素子5では、感温部50の感温電極50−1が円環状に配列されている。円環状に配列された感温部50の感温電極50−1と同様に、検出リード線50−2、ヒート部51の給電リード線51−2、電極パッド50−3,51−3は、図13中半分のみ記載しているが、放射状に配列されている。また、感温部50の感温電極50−1とヒータ部51の発熱電極51−1は反り曲がった際に向き合うように互いに逆向きの配置にする。本実施の形態例の検知素子5によれば、流れをx−y面に導き、ヒータ部51は感温部50で囲まれる曲面の中心にあるので、流れはz軸に多少偏移しても影響が少ない。よって、x−y面に沿った流れの全ての方向を検出することができる。また、感温部50が串歯形状になっているので整流作用があり、乱流条件下でも安定した出力が得られ整流素子が不要である。   Next, FIG. 13 is a perspective view showing a configuration of a detection element according to a fifth embodiment of the present invention. The sensing element 500 of the present embodiment shown in the same figure is a flow sensor structure diagram in which a heater portion is arranged inside the temperature sensing section, similarly to the sensing element 400 of the fourth embodiment shown in FIG. It is. In the detection element 5 of the present embodiment, the temperature sensing electrodes 50-1 of the temperature sensing unit 50 are arranged in an annular shape. Similarly to the temperature sensing electrode 50-1 of the temperature sensing unit 50 arranged in an annular shape, the detection lead wire 50-2, the power supply lead wire 51-2 of the heat unit 51, and the electrode pads 50-3 and 51-3 are: Although only half are shown in FIG. 13, they are arranged radially. Further, the temperature sensing electrode 50-1 of the temperature sensing unit 50 and the heating electrode 51-1 of the heater unit 51 are arranged in opposite directions so as to face each other when they are bent. According to the detection element 5 of the present embodiment, the flow is guided to the xy plane, and the heater unit 51 is located at the center of the curved surface surrounded by the temperature sensing unit 50. Therefore, the flow is slightly shifted to the z axis. Is less affected. Therefore, all directions of the flow along the xy plane can be detected. Further, since the temperature sensing part 50 has a skewer shape, there is a rectifying action, and a stable output can be obtained even under turbulent conditions, and a rectifying element is unnecessary.

ここで、第5の実施の形態例の検知素子の製造工程について当該製造工程を示す図14及び図15に従って説明する。なお、図14及び図15の(a)は平面図、図15の(b)は図15の(a)のF−F’線断面図である。図14に示すように、基板10上に感温部50の感温電極50−1と検出リード線50−2、ヒータ部51の発熱電極51−1と給電リード線51−2、電極パッド50−3,51−3の導電材料膜をパターン形成する。そして、図15の(a),(b)に示すように、基板10上の感温部50の感温電極50−1とヒータ部51の発熱電極51−1の領域の絶縁層をエッチング除去すると、感温部50とヒータ部51は下部層の密着がなくなり、片持ち梁になるので、反り曲がり効果で曲面を形成し基板10上に起立する。また、基板面の露出する領域だけを更にエッチングして空洞52を形成する。   Here, the manufacturing process of the sensing element of the fifth embodiment will be described with reference to FIGS. 14 and 15 showing the manufacturing process. 14A and 14A are plan views, and FIG. 15B is a cross-sectional view taken along the line F-F ′ in FIG. As shown in FIG. 14, the temperature sensing electrode 50-1 and the detection lead wire 50-2 of the temperature sensing unit 50, the heating electrode 51-1 and the feeding lead wire 51-2 of the heater unit 51, and the electrode pad 50 are formed on the substrate 10. The conductive material film of −3, 51-3 is patterned. Then, as shown in FIGS. 15A and 15B, the insulating layers in the regions of the temperature sensing electrode 50-1 of the temperature sensing unit 50 and the heating electrode 51-1 of the heater unit 51 on the substrate 10 are removed by etching. Then, the temperature-sensitive part 50 and the heater part 51 are not cantilevered in the lower layer and become a cantilever, so that a curved surface is formed by the warping and bending effect and stands on the substrate 10. Further, only the exposed area of the substrate surface is further etched to form the cavity 52.

次に、図16は本発明の第6の実施の形態例に係る検知素子におけるヒータ部の構成を示す図である。また、図17は本実施の形態例の検知素子における感温部の構成を示す図である。更に、図18は本実施の形態例の検知素子の全体構成を示す図である。なお、図16の(a)及び図17の(a)は平面図、図16の(b)は図16の(a)のG−G’線断面図、図17の(b)は図17の(a)のH−H’線断面図、図18の(a)は断面図、図18の(b)は図18の(a)のI−I’線断面図である。図18に示す本実施の形態例の検知素子600は、図16のヒータ部60を形成された基板と、図17の感温部61を形成された基板を組み合わせて、基板間の空洞62に流体を流す構造を有している。従来技術ではヒータ部から感温部へ熱輸送される前に、基板壁面との熱交換による影響があるが、基板壁面に到達する前の場所に感温部があるので、影響が小さくできる。1枚の基板よりも組み合わせの工程や、組み合わせ精度に負担が増す反面、微細構造が基板にはさまれているため、基板に起立する構造が露出していないので、破壊されにくいため取り扱いが容易である。   Next, FIG. 16 is a diagram showing the configuration of the heater portion in the detection element according to the sixth embodiment of the present invention. FIG. 17 is a diagram showing the configuration of the temperature sensing unit in the sensing element of the present embodiment. Further, FIG. 18 is a diagram showing the overall configuration of the detection element of the present embodiment. 16 (a) and 17 (a) are plan views, FIG. 16 (b) is a cross-sectional view taken along the line GG ′ of FIG. 16 (a), and FIG. 17 (b) is FIG. FIG. 18A is a cross-sectional view taken along the line HH ′ of FIG. 18A, FIG. 18B is a cross-sectional view, and FIG. 18B is a cross-sectional view taken along the line II ′ of FIG. The sensing element 600 of the present embodiment shown in FIG. 18 combines the substrate on which the heater unit 60 in FIG. 16 is formed with the substrate on which the temperature sensing unit 61 in FIG. It has a structure for flowing fluid. In the prior art, there is an influence due to heat exchange with the substrate wall surface before heat transport from the heater part to the temperature sensing part, but the influence can be reduced because the temperature sensing part exists in a place before reaching the substrate wall surface. The process of combination and the accuracy of combination increase compared to a single substrate, but the fine structure is sandwiched between the substrates, so the structure that stands on the substrate is not exposed, so it is hard to break and easy to handle. It is.

図19は本発明の第7の実施の形態例に係る検知素子におけるヒータ部の構成を示す図である。また、図20は本実施の形態例の検知素子における感温部の構成を示す図である。更に、図21は本実施の形態例の検知素子の全体構成を示す断面図である。なお、図19の(a)及び図20の(a)は平面図、図19の(b)は図19の(a)のJ−J’線断面図、図20の(b)は図20の(a)のK−K’線断面図である。本実施の形態例の検知素子700は、上述したように感温部71の内側にヒータ部70があればよいので、図19に示すようにヒータ部70は両持ち梁にして反り曲がり形状ではなく、図20に示すように感温部71は反り曲がり、図21に示すように感温部71の内側にヒータ部70を形成できる。   FIG. 19 is a diagram showing the configuration of the heater section in the detection element according to the seventh embodiment of the present invention. FIG. 20 is a diagram illustrating a configuration of a temperature sensing unit in the detection element of the present embodiment. Further, FIG. 21 is a cross-sectional view showing the entire configuration of the sensing element of the present embodiment. 19 (a) and 20 (a) are plan views, FIG. 19 (b) is a cross-sectional view taken along line JJ ′ of FIG. 19 (a), and FIG. 20 (b) is FIG. It is KK 'sectional view taken on the line of (a). As described above, the detection element 700 according to the present embodiment is only required to have the heater unit 70 inside the temperature sensing unit 71. Therefore, as shown in FIG. 20, the temperature sensing portion 71 is bent and the heater portion 70 can be formed inside the temperature sensing portion 71 as shown in FIG. 21.

次に、図22は本発明の第8の実施の形態例に係る検知素子の構成を示す斜視図であり、図23の(a)は本実施の形態例の検知素子を示す平面図、図23の(b)は図23の(a)のL−L’線断面図である。図22及び図23に示す本実施の形態例の検知素子800は、基板10上に配設され、串歯形状の単一の抵抗体80を反り曲がり片持ち梁の形状で形成し、この抵抗体80はヒータ部と感温部を兼用している。更に、抵抗体80には当該抵抗体を加熱しない程度の小電流を流して又は小電圧を印加され、また大電流を流して又は大電圧を印加して抵抗体80を発熱させる。そして、図示していない抵抗値検出手段により小電流の供給又は小電圧の印加時における抵抗体80の第1の抵抗値を検出し、また大電流の供給又は大電圧の印加時における抵抗体80の第2の抵抗値を検出する。検出した第2の抵抗値から第1の抵抗値を減算して、この減算値に基づいて流量を算出できる。   Next, FIG. 22 is a perspective view showing the configuration of the sensing element according to the eighth embodiment of the present invention, and FIG. 23A is a plan view showing the sensing element of the present embodiment. FIG. 23B is a cross-sectional view taken along the line LL ′ of FIG. The sensing element 800 of the present embodiment shown in FIGS. 22 and 23 is disposed on the substrate 10, and a single skewer-shaped resistor 80 is formed in the shape of a curved cantilever, and this resistance The body 80 serves both as a heater part and a temperature sensing part. Further, a small current that does not heat the resistor is applied to the resistor 80 or a small voltage is applied, and a large current is applied or a large voltage is applied to cause the resistor 80 to generate heat. Then, the first resistance value of the resistor 80 when a small current is supplied or a small voltage is applied is detected by a resistance value detection unit (not shown), and the resistor 80 when a large current is supplied or a large voltage is applied. The second resistance value is detected. The first resistance value is subtracted from the detected second resistance value, and the flow rate can be calculated based on this subtraction value.

図24は本発明の第9の実施の形態例に係る検知素子の構成を示す斜視図であり、図25の(a)は本実施の形態例の検知素子を示す平面図、図25の(b)は図25の(a)のM−M’線断面図である。図24及び図25に示す本実施の形態例の検知素子900は、第8の実施の形態例の検知素子8と同様に、ヒータ部と感温部を兼ねた単一の抵抗体90を傾斜形状に形成したものであり、この抵抗体90は空洞91を架橋するように設けられている。動作は第8の実施の形態例の検知素子800と同様であるので省略する。   FIG. 24 is a perspective view showing the configuration of the sensing element according to the ninth embodiment of the present invention. FIG. 25A is a plan view showing the sensing element of the present embodiment, and FIG. FIG. 25B is a sectional view taken along line MM ′ in FIG. The sensing element 900 of the present embodiment shown in FIGS. 24 and 25 tilts a single resistor 90 serving as both a heater part and a temperature sensing part, similar to the sensing element 8 of the eighth embodiment. The resistor 90 is formed so as to bridge the cavity 91. Since the operation is the same as that of the sensing element 800 of the eighth embodiment, a description thereof will be omitted.

次に、図26は本発明の第10の実施の形態例に係る検知素子の構成を示す図であり、同図の(a)は本実施の形態例の検知素子を示す平面図、同図の(b)は同図の(a)のN−N’線断面図である。同図に示す本実施の形態例の検知素子1000は、ヒータ部100と感温部101をそれぞれ傾斜形状に形成して独立に設け、ヒータ部100と感温部101は空洞102を架橋するように設けられている。このように、ヒータ部100と感温部101を基板10の表面から離れた空間に、基板10の表面の電極パッド103とヒータ部100や感温部101のある高さの異なるステップを越えて連続した電気配線104のパターンを設け、ヒータ部100や感温部101が形成される領域に空洞102を設けるにあたり、ステップを急崚ではなく緩やかな傾斜角度にしている。なお、Si異方性エッチング手段では、基板面を(1 0 0)面にすれば、SiOの部分マスクを用いてKOHなどのアルカリ水溶液のSi異方性エッチング液により傾斜角54.74度の(1 1 1)面などの高精度の傾斜形状が得られ、それらが利用できる。 Next, FIG. 26 is a diagram showing the configuration of the sensing element according to the tenth embodiment of the present invention. FIG. 26A is a plan view showing the sensing element of the present embodiment. (B) of FIG. 5 is a cross-sectional view taken along line NN ′ of FIG. In the detection element 1000 of the present embodiment shown in the figure, the heater unit 100 and the temperature sensing unit 101 are each formed in an inclined shape and provided independently, and the heater unit 100 and the temperature sensing unit 101 bridge the cavity 102. Is provided. In this way, the heater unit 100 and the temperature sensing unit 101 are separated from the surface of the substrate 10, and the electrode pads 103 on the surface of the substrate 10, the heater unit 100, and the temperature sensing unit 101 have different height steps. In providing the pattern of the continuous electric wiring 104 and providing the cavity 102 in the region where the heater unit 100 and the temperature sensing unit 101 are formed, the steps are not abrupt but a gentle inclination angle. In the Si anisotropic etching means, if the substrate surface is a (1 0 0) plane, the tilt angle is 54.74 degrees with a Si anisotropic etching solution of an alkaline aqueous solution such as KOH using a partial mask of SiO 2. High-precision inclined shapes such as the (1 1 1) plane are obtained and can be used.

ここで、第10の実施の形態例の検知素子の製造工程について製造工程断面図である図27に従って以下に説明する。先ず、同図の(a)に示すように、Si基板1001上に下部絶縁層1002のSiO層を形成する。なお、Ni、CuやAlの金属材料やポリイミド、エポキシなどの樹脂材料でもよい。ただし、金属材料であれば導電性があるので、後述する導電抵抗膜を形成する工程の前にSiOなどの絶縁膜を積層しておく必要がある。そして、同図の(b)に示すように、フォトレジストパターンをマスクして、下部絶縁層1002のSiO層を部分エッチングする。マスク周辺のエッチング速度を低下する効果を利用し傾斜形状も形成する。ここで、形成された傾斜形状部を含む凸部が後述する工程において除去され、図26のヒータ部100と感温部101の構造を形成するための犠牲になる。そして、同図の(c)に示すように、図26の電極パッド103、電気配線104、ヒータ部100と感温部101となる導電抵抗膜1003のPt膜を積層する。次に、同図の(d)に示すように、導電抵抗膜1003のPt膜のパターンを形成する。そして、同図の(e)に示すように、上部保護膜1004のSiO膜を積層するが、この膜は有っても無くてもよい。次に、同図の(f)に示すように、図26のヒータ部100、感温部101の領域と電極面の上部保護膜1004のSiO膜をエッチング除去する。また、同図の(g)に示すように、図26のヒータ部100、感温部101の領域のSi基板をエッチング除去し図26の空洞102を形成して完成とする。 Here, the manufacturing process of the sensing element of the tenth embodiment will be described below with reference to FIG. 27 which is a manufacturing process sectional view. First, as shown in FIG. 3A, an SiO 2 layer of the lower insulating layer 1002 is formed on the Si substrate 1001. A metal material such as Ni, Cu or Al, or a resin material such as polyimide or epoxy may be used. However, since there is a conductive if a metal material, it is necessary to laminate an insulating film such as SiO 2 before the step of forming a conductive resistor layer which will be described later. Then, as shown in FIG. 5B, the SiO 2 layer of the lower insulating layer 1002 is partially etched using the photoresist pattern as a mask. An inclined shape is also formed by utilizing the effect of reducing the etching rate around the mask. Here, the formed convex part including the inclined shape part is removed in a process described later, and is sacrificed to form the structure of the heater part 100 and the temperature sensitive part 101 in FIG. 26C, the electrode pad 103, the electric wiring 104, the heater part 100, and the Pt film of the conductive resistance film 1003 that becomes the temperature sensitive part 101 are laminated. Next, as shown in FIG. 5D, a Pt film pattern of the conductive resistance film 1003 is formed. Then, as shown in FIG. 5E, the SiO 2 film of the upper protective film 1004 is laminated, but this film may or may not be present. Next, as shown in FIG. 6F, the regions of the heater unit 100 and the temperature sensing unit 101 in FIG. 26 and the SiO 2 film of the upper protective film 1004 on the electrode surface are removed by etching. Also, as shown in (g) of the figure, the Si substrate in the regions of the heater unit 100 and the temperature sensing unit 101 of FIG. 26 is removed by etching to form the cavity 102 of FIG.

また、更に別の製造工程について製造工程断面図である図28に従って以下に説明する。先ず、同図の(a)に示すように、Si基板1001上に下部絶縁層1002のSiO膜を積層し、同図の(b)に示すように、下部絶縁層1002のSiO膜を部分エッチングする。そして、同図の(c)に示すように、下部絶縁層1002のSiO膜の領域を残してSi基板1001上をエッチングし、傾斜形状も形成する。この場合上記のSi異方性エッチングを用いる。そして、同図の(d)に示すように、下部絶縁層1002のSiO膜を全面に形成する。次に、同図の(e)に示すように、導電抵抗膜1003のPt膜を積層する。次に、同図の(f)に示すように、導電抵抗膜1003のPt膜のパターンを形成する。そして、同図の(g)に示すように、上部保護膜1004のSiO膜を積層する。次に、同図の(h)に示すように、図26のヒータ部100、感温部101の領域と電極パッド103の領域における上部保護膜1004のSiO膜をエッチング除去する。そして、同図の(i)に示すように、図26のヒータ部100、感温部101の領域のSi基板1001をエッチング除去し図26の空洞102を形成して完成とする。 Further, another manufacturing process will be described below with reference to FIG. 28 which is a manufacturing process sectional view. First, as shown in (a) of the figure, a SiO 2 film of the lower insulating layer 1002 is laminated on the Si substrate 1001, and as shown in (b) of the same figure, the SiO 2 film of the lower insulating layer 1002 is formed. Partially etch. Then, as shown in FIG. 6C, the Si substrate 1001 is etched leaving the SiO 2 film region of the lower insulating layer 1002 to form an inclined shape. In this case, the above Si anisotropic etching is used. Then, as shown in FIG. 4D, the SiO 2 film of the lower insulating layer 1002 is formed on the entire surface. Next, as shown in FIG. 5E, a Pt film of the conductive resistance film 1003 is laminated. Next, as shown in FIG. 5F, a Pt film pattern of the conductive resistance film 1003 is formed. And as shown in (g) of the figure, the SiO 2 film of the upper protective film 1004 is laminated. Next, as shown in (h) of FIG. 26, the SiO 2 film of the upper protective film 1004 in the region of the heater unit 100, the temperature sensitive unit 101 and the region of the electrode pad 103 in FIG. Then, as shown in (i) of the figure, the Si substrate 1001 in the regions of the heater unit 100 and the temperature sensing unit 101 in FIG. 26 is removed by etching to form the cavity 102 in FIG.

次に、図29は別の発明の一実施の形態例に係る真空計の構成を示す斜視図である。同図に示す別の発明の真空計2000は熱伝導型の真空計であり、例えば第4の実施の形態例の検知素子400を真空容器2001に封入し、各電極パッドから容器外部へ配線を繋げ、ヒータ部41への加熱電力供給を行い、ヒータ部41から空間へ熱伝導する熱量を感温部40で捕らえる。感温部40の検出出力は空間の真空度に対応する。ヒータ部41から空間へ熱伝導する場合、立体的に拡散するので、反り曲がりの感温部40で囲まれることにより効率よく高出力が得られるとともに、感温部40の外側からの影響も少なくなる。   Next, FIG. 29 is a perspective view showing a configuration of a vacuum gauge according to an embodiment of another invention. A vacuum gauge 2000 of another invention shown in the figure is a heat conduction type vacuum gauge. For example, the sensing element 400 of the fourth embodiment is enclosed in a vacuum vessel 2001, and wiring from each electrode pad to the outside of the vessel is performed. The heating power is supplied to the heater unit 41 and the amount of heat conducted from the heater unit 41 to the space is captured by the temperature sensing unit 40. The detection output of the temperature sensing unit 40 corresponds to the degree of vacuum in the space. When heat is transferred from the heater unit 41 to the space, it diffuses in three dimensions, so that it is possible to efficiently obtain a high output by being surrounded by the curved temperature sensing unit 40, and there is little influence from the outside of the temperature sensing unit 40. Become.

図30は別の発明の一実施の形態例に係る真空管の構成を示す斜視図である。同図に示す別の発明の真空管3000は3極管型電離真空管であり、例えば第4の実施の形態例の検知素子400と同じ構成の素子を真空容器3001に封入したものである。なお、第4の実施の形態例の検知素子400における感温部40はグリッド3002、ヒータ部41はフィラメント3003、空洞の底面の基板10はコレクタ3004となる。よって、フィラメント3003から空間へ(熱)電子放出する場合、立体的に拡散するので、反り曲がりのグリッド3002で囲まれることにより効率よく高出力が得られるとともに、外側からの影響も少なくなる。コレクタ3004となる基板の空洞はフィラメント3003、グリッド3002に対応する凹部形状になっているので都合よい。グリッド3002のアシストにより引き出されたフィラメント3003の(熱)電子はコレクタ3004の基板との間に流れる電流であり、真空度に対応する。   FIG. 30 is a perspective view showing a configuration of a vacuum tube according to an embodiment of another invention. The vacuum tube 3000 of another invention shown in the figure is a triode type ionization vacuum tube, and for example, an element having the same configuration as the detection element 400 of the fourth embodiment is enclosed in a vacuum vessel 3001. In the sensing element 400 of the fourth embodiment, the temperature sensing unit 40 is a grid 3002, the heater unit 41 is a filament 3003, and the substrate 10 on the bottom surface of the cavity is a collector 3004. Therefore, when (thermal) electrons are emitted from the filament 3003 to the space, it is three-dimensionally diffused, and therefore, by being surrounded by the curved grid 3002, a high output can be obtained efficiently and the influence from the outside is reduced. The cavity of the substrate to be the collector 3004 has a concave shape corresponding to the filament 3003 and the grid 3002, which is convenient. The (thermal) electrons of the filament 3003 drawn out with the assistance of the grid 3002 are currents flowing between the collector 3004 and the substrate, and correspond to the degree of vacuum.

なお、本発明は上記実施の形態例に限定されるものではなく、特許請求の範囲内の記載であれば多種の変形や置換可能であることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications and substitutions are possible as long as they are described within the scope of the claims.

本発明の第1の実施の形態例に係る検知素子の構成を示す斜視図である。It is a perspective view which shows the structure of the detection element which concerns on the 1st Example of this invention. 基板端面からの基板表面に沿った距離と基板表面から離れる距離における空気の流速測定特性図である。It is a flow velocity measurement characteristic view of air at a distance along the substrate surface from the substrate end surface and a distance away from the substrate surface. 第1の実施の形態例の検知素子の製造工程図である。It is a manufacturing-process figure of the detection element of the example of 1st Embodiment. 第1の実施の形態例の検知素子の製造工程図である。It is a manufacturing-process figure of the detection element of the example of 1st Embodiment. 第1の実施の形態例の検知素子の製造工程図である。It is a manufacturing-process figure of the detection element of the example of 1st Embodiment. 感温部を立体形成する方法を説明する断面図である。It is sectional drawing explaining the method of forming a three-dimensional temperature sensing part. 本発明の第2の実施の形態例に係る検知素子の構成を示す平面図である。It is a top view which shows the structure of the detection element which concerns on the 2nd Example of this invention. 本発明の第3の実施の形態例に係る検知素子の構成を示す斜視図である。It is a perspective view which shows the structure of the detection element which concerns on the 3rd Embodiment of this invention. 第3の実施の形態例の検知素子の製造工程を示す平面図である。It is a top view which shows the manufacturing process of the sensing element of the example of 3rd Embodiment. 第3の実施の形態例の検知素子の製造工程を示す図である。It is a figure which shows the manufacturing process of the detection element of the example of 3rd Embodiment. 本発明の第4の実施の形態例に係る検知素子の構成を示す斜視図である。It is a perspective view which shows the structure of the detection element which concerns on the 4th Example of this invention. 第4の実施の形態例の検知素子の製造工程を示す図である。It is a figure which shows the manufacturing process of the detection element of the example of 4th Embodiment. 本発明の第5の実施の形態例に係る検知素子の構成を示す斜視図である。It is a perspective view which shows the structure of the detection element which concerns on the 5th example of embodiment of this invention. 第5の実施の形態例に係る検知素子の構成を示す平面図である。It is a top view which shows the structure of the detection element which concerns on the example of 5th Embodiment. 第5の実施の形態例の検知素子の製造工程を示す図である。It is a figure which shows the manufacturing process of the detection element of the example of 5th Embodiment. 本発明の第6の実施の形態例に係る検知素子におけるヒータ部の構成を示す図である。It is a figure which shows the structure of the heater part in the detection element which concerns on the 6th Example of this invention. 第6の実施の形態例の検知素子における感温部の構成を示す図である。It is a figure which shows the structure of the temperature sensing part in the detection element of the example of 6th Embodiment. 第6の実施の形態例の検知素子の全体構成を示す図である。It is a figure which shows the whole structure of the detection element of the example of 6th Embodiment. 本発明の第7の実施の形態例に係る検知素子におけるヒータ部の構成を示す図である。It is a figure which shows the structure of the heater part in the detection element which concerns on the 7th Example of this invention. 第7の実施の形態例の検知素子における感温部の構成を示す図である。It is a figure which shows the structure of the temperature sensing part in the detection element of the example of 7th Embodiment. 第7の実施の形態例の検知素子の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the detection element of the example of 7th Embodiment. 本発明の第8の実施の形態例に係る検知素子の構成を示す斜視図である。It is a perspective view which shows the structure of the detection element which concerns on the 8th Embodiment of this invention. 第8の実施の形態例の検知素子の構成を示す図である。It is a figure which shows the structure of the detection element of the example of 8th Embodiment. 本発明の第9の実施の形態例に係る検知素子の構成を示す斜視図である。It is a perspective view which shows the structure of the detection element which concerns on the 9th Embodiment of this invention. 第9の実施の形態例の検知素子の構成を示す図である。It is a figure which shows the structure of the detection element of the example of 9th Embodiment. 本発明の第10の実施の形態例に係る検知素子の構成を示す図である。It is a figure which shows the structure of the detection element which concerns on the 10th Embodiment of this invention. 第10の実施の形態例の検知素子の別の製造工程を示す製造工程断面図である。It is manufacturing process sectional drawing which shows another manufacturing process of the detection element of 10th Embodiment. 第10の実施の形態例の検知素子の更に別の製造工程を示す製造工程断面図である。It is manufacturing process sectional drawing which shows another manufacturing process of the detection element of 10th Embodiment. 別の発明の一実施の形態例に係る真空計の構成を示す斜視図である。It is a perspective view which shows the structure of the vacuum gauge which concerns on one embodiment of another invention. 別の発明の一実施の形態例に係る真空管の構成を示す斜視図である。It is a perspective view which shows the structure of the vacuum tube which concerns on one embodiment of another invention.

符号の説明Explanation of symbols

10;基板、11;空洞、12;ブリッジ、13;ヒータ部、
14,15;感温部、
100,200,300,400,500,600,700,800,900,1000;検知素子、
2000;真空計、3000;真空管。
10; Substrate, 11; Cavity, 12; Bridge, 13; Heater part,
14, 15; temperature sensing part,
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000; sensing element,
2000; vacuum gauge, 3000; vacuum tube.

Claims (13)

貫通孔又は空洞を有する基板と、前記貫通孔又は空洞上に橋架するように設けられ、反り曲がり片持ち梁の形状をなすと共に空間に起立する発熱電極を有するヒータ部と、前記貫通孔又は空洞上に反り曲がり片持ち梁の形状をなすと共に空間に起立する感温電極を有する感温部とを具備し、前記ヒータ部から輸送される熱量を前記感温部により計測することを特徴とする検知素子。   A substrate having a through hole or a cavity, a heater portion provided so as to be bridged on the through hole or the cavity, having a shape of a warped and cantilever and having a heating electrode standing in the space, and the through hole or the cavity And a temperature sensing part having a temperature sensing electrode which is bent and bent in the shape of a cantilever and rises in the space, and the amount of heat transported from the heater part is measured by the temperature sensing part. Sensing element. 前記ヒータ部と前記感温部とが隣接配列され、流体の流速・流量又は雰囲気の熱伝導率に応じて前記ヒータ部から流体によって輸送される熱量を前記感温部により計測する請求項1記載の検知素子。   The heater unit and the temperature sensing unit are arranged adjacent to each other, and the amount of heat transported by the fluid from the heater unit according to the flow rate / flow rate of the fluid or the thermal conductivity of the atmosphere is measured by the temperature sensing unit. Sensing element. 前記ヒータ部から前記感温部の間の距離と、流体の流速・流量又は雰囲気の熱伝導率に応じて前記ヒータ部から流体によって輸送される熱伝達する時間とにより、流速を計測する請求項1又は2に記載の検知素子。   The flow velocity is measured by a distance between the heater portion and the temperature sensing portion and a heat transfer time transported by the fluid from the heater portion according to a flow velocity / flow rate of the fluid or a thermal conductivity of the atmosphere. The sensing element according to 1 or 2. 前記発熱電極及び前記感温電極は、パイプ形状の曲面に沿った形状をなす請求項1〜3のいずれかに記載の検知素子。   The sensing element according to claim 1, wherein the heating electrode and the temperature-sensitive electrode have a shape along a pipe-shaped curved surface. 流体の流れに沿って前記ヒータ部が前記感温部の内側に配列されている請求項1記載の検知素子。   The sensing element according to claim 1, wherein the heater section is arranged inside the temperature sensing section along a fluid flow. 流体の流れを横切る方向に沿って、前記ヒータ部が前記感温部の内側に配列されている請求項1記載の検知素子。   The sensing element according to claim 1, wherein the heater section is arranged inside the temperature sensing section along a direction crossing a fluid flow. 前記感温部の前記感温電極が円環状に配列され、前記ヒータ部の前記発熱電極が円環状の前記感温部の中心に配置されている請求項1記載の検知素子。   The sensing element according to claim 1, wherein the temperature sensing electrodes of the temperature sensing portion are arranged in an annular shape, and the heating electrode of the heater portion is arranged at the center of the annular temperature sensing portion. 前記ヒータ部を空洞領域に配置した第1の基板と、前記感温部を空洞領域に配置した第2の基板とを、互いの空洞領域を対向させて一体的に接合する請求項1〜7のいずれかに記載の検知素子。   The first substrate in which the heater portion is disposed in the cavity region and the second substrate in which the temperature sensing portion is disposed in the cavity region are integrally joined with the cavity regions facing each other. The sensing element according to any one of the above. 貫通孔又は空洞を有する基板と、前記貫通孔又は空洞上に橋架するように設けられ、反り曲がり片持ち梁の形状をなすと共に空間に起立する電極を有する抵抗体を具備し、発熱タイミングに前記抵抗体に発熱用電流を流して前記抵抗体を発熱させ、検出タイミングに前記抵抗体に検出用電流を流して、発熱時の前記抵抗体の抵抗値から検出時の前記抵抗体の抵抗値を減算した減算値に基づいて輸送される熱量を算出することを特徴とする検知素子。   A substrate having a through hole or a cavity, and a resistor provided to bridge over the through hole or the cavity, having a warped and bent cantilever shape and having an electrode standing in the space, are provided at the timing of heat generation. A heating current is supplied to the resistor to cause the resistor to generate heat, and a detection current is supplied to the resistor at a detection timing to change the resistance value of the resistor at the time of detection from the resistance value of the resistor at the time of heating. A sensing element that calculates the amount of heat transported based on a subtracted value obtained by subtraction. 貫通孔又は空洞を有する基板と、前記貫通孔又は空洞上に橋架するように設けられ、傾斜形状をなす電極を有する抵抗体を具備し、発熱タイミングに前記抵抗体に発熱用電流を流して前記抵抗体を発熱させ、検出タイミングに前記抵抗体に検出用電流を流して、発熱時の前記抵抗体の抵抗値から検出時の前記抵抗体の抵抗値を減算した減算値に基づいて輸送される熱量を算出することを特徴とする検知素子。   A substrate having a through-hole or a cavity and a resistor having an inclined electrode provided so as to be bridged on the through-hole or the cavity are provided, and a heating current is passed through the resistor at a heat generation timing. The resistor is heated, and a detection current is passed through the resistor at detection timing, and transported based on a subtraction value obtained by subtracting the resistance value of the resistor at the time of detection from the resistance value of the resistor at the time of heat generation. A sensing element that calculates the amount of heat. 貫通孔又は空洞を有する基板と、前記貫通孔又は空洞上に橋架するように設けられ、傾斜形状をなす電極を有する第1の抵抗体と、前記貫通孔又は空洞上に橋架するように設けられ、傾斜形状をなす電極を有する第2の抵抗体とを具備し、前記第1の抵抗体から輸送される熱量を前記第2の抵抗体により計測し、あるいは前記第2の抵抗体から輸送される熱量を前記第1の抵抗体により計測することを特徴とする検知素子。   A substrate having a through-hole or cavity, a first resistor having an inclined electrode provided to bridge over the through-hole or cavity, and provided to bridge over the through-hole or cavity. And a second resistor having an electrode having an inclined shape, and the amount of heat transported from the first resistor is measured by the second resistor, or transported from the second resistor. A sensing element, wherein the amount of heat to be measured is measured by the first resistor. 請求項1〜12のいずれかに記載の検知素子を真空容器に封入し、前記ヒータ部及び前記感温部の各電極パッドから真空容器外部へ配線を引き出して、真空容器の内部における気体の熱伝導率の圧力依存性を前記感温部から得られる温度変動分として真空度に換算することを特徴とする真空計。   The detection element according to any one of claims 1 to 12 is enclosed in a vacuum vessel, and wiring is drawn out from each electrode pad of the heater unit and the temperature sensing unit to the outside of the vacuum vessel, so that the heat of gas inside the vacuum vessel A vacuum gauge characterized by converting the pressure dependency of conductivity into a degree of vacuum as a temperature fluctuation obtained from the temperature sensing part. 請求項1〜12のいずれかに記載の検知素子を真空容器に封入し、前記ヒータ部及び前記感温部の各電極パッド及び前記基板から真空容器外部へ配線を引き出して、前記ヒータ部をフィラメント、前記感温部をグリッド及び前記基板をコレクタとし、前記フィラメントと前記コレクタ間に流れる電流を計測し、真空度に換算することを特徴とする真空管。

The detection element according to any one of claims 1 to 12 is enclosed in a vacuum vessel, wiring is drawn out from each electrode pad and the substrate of the heater unit and the temperature sensing unit to the outside of the vacuum vessel, and the heater unit is a filament. A vacuum tube characterized in that the temperature sensing part is a grid and the substrate is a collector, and a current flowing between the filament and the collector is measured and converted into a degree of vacuum.

JP2005198744A 2005-07-07 2005-07-07 Sensing element, vacuum gauge and vacuum tube Expired - Lifetime JP4970751B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005198744A JP4970751B2 (en) 2005-07-07 2005-07-07 Sensing element, vacuum gauge and vacuum tube
US11/481,097 US7360416B2 (en) 2005-07-07 2006-07-06 Non-contact condensation detecting apparatus
US12/073,013 US7574910B2 (en) 2005-07-07 2008-02-28 Non-contact condensation detecting method and non-contact condensation detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005198744A JP4970751B2 (en) 2005-07-07 2005-07-07 Sensing element, vacuum gauge and vacuum tube

Publications (2)

Publication Number Publication Date
JP2007017263A true JP2007017263A (en) 2007-01-25
JP4970751B2 JP4970751B2 (en) 2012-07-11

Family

ID=37754552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198744A Expired - Lifetime JP4970751B2 (en) 2005-07-07 2005-07-07 Sensing element, vacuum gauge and vacuum tube

Country Status (1)

Country Link
JP (1) JP4970751B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527436A (en) * 2010-04-12 2013-06-27 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Sub-millimeter size heat ray sensor and associated manufacturing method
EP2936081B1 (en) * 2012-12-21 2022-02-02 Innovative Sensor Technology IST AG Sensor for determining a process value of a medium
CN114235267A (en) * 2021-12-17 2022-03-25 江苏创芯海微科技有限公司 Pirani vacuum gauge with integrated temperature and humidity sensor and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103996A (en) * 1993-10-06 1995-04-21 Oki Electric Ind Co Ltd Gas flow sensor and method for forming the same
JPH0862011A (en) * 1994-06-13 1996-03-08 Yazaki Corp Heat propagation time measurement type flow sensor and manufacturing method thereof
JPH1151729A (en) * 1997-08-06 1999-02-26 Mazda Motor Corp Fluid detecting sensor
JPH11118553A (en) * 1997-10-09 1999-04-30 Tokyo Gas Co Ltd Flow sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103996A (en) * 1993-10-06 1995-04-21 Oki Electric Ind Co Ltd Gas flow sensor and method for forming the same
JPH0862011A (en) * 1994-06-13 1996-03-08 Yazaki Corp Heat propagation time measurement type flow sensor and manufacturing method thereof
JPH1151729A (en) * 1997-08-06 1999-02-26 Mazda Motor Corp Fluid detecting sensor
JPH11118553A (en) * 1997-10-09 1999-04-30 Tokyo Gas Co Ltd Flow sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527436A (en) * 2010-04-12 2013-06-27 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Sub-millimeter size heat ray sensor and associated manufacturing method
EP2936081B1 (en) * 2012-12-21 2022-02-02 Innovative Sensor Technology IST AG Sensor for determining a process value of a medium
CN114235267A (en) * 2021-12-17 2022-03-25 江苏创芯海微科技有限公司 Pirani vacuum gauge with integrated temperature and humidity sensor and preparation method thereof

Also Published As

Publication number Publication date
JP4970751B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
US8130072B2 (en) Vanadium oxide thermal microprobes
US4888988A (en) Silicon based mass airflow sensor and its fabrication method
US7360416B2 (en) Non-contact condensation detecting apparatus
JP5683192B2 (en) Thermal flow sensor
Völklein et al. Optimized MEMS Pirani sensor with increased pressure measurement sensitivity in the fine and high vacuum regime
JP2006258520A (en) Probe for electronic clinical thermometer
CN104482971A (en) Thermal flow sensor on basis of MEMS (micro-electromechanical systems) technology
JP6669957B2 (en) Flow sensor
JP2016170014A (en) Temperature difference measurement device
CN109211342B (en) Airflow flowmeter, MEMS silicon-based temperature-sensitive chip and preparation method thereof
JP2009300381A (en) Heat conduction type vacuum gage, and pressure measuring method
KR101743668B1 (en) Micromachined convective accelerometer and a method for manufacturing the same
KR100544772B1 (en) A thermosensitive flow rate detecting element and method for the manufacture thereof
JP4970751B2 (en) Sensing element, vacuum gauge and vacuum tube
Kaltsas et al. A novel microfabrication technology on organic substrates–application to a thermal flow sensor
CN110274649B (en) A kind of thermal temperature difference flow sensor based on MEMS technology and preparation method thereof
JP6951225B2 (en) Humidity sensor
CN113324697A (en) Miniature Pirani vacuum sensor and manufacturing method thereof
TWI664396B (en) Thermal Barometric Altimeter
JP2020064071A (en) Flow sensor
JPH11344369A (en) Flow-rate detecting element and flow-rate sensor
JP2011209035A (en) Sensor
TW201432228A (en) Radiant heat detector with columnar structure absorber for thermal short circuit
JP5248218B2 (en) Pressure measuring device, pressure measuring method
JPH0593732A (en) Flow sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4970751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150