[go: up one dir, main page]

JP2007012912A - 熱伝導性部材および該熱伝導性部材を用いた冷却構造 - Google Patents

熱伝導性部材および該熱伝導性部材を用いた冷却構造 Download PDF

Info

Publication number
JP2007012912A
JP2007012912A JP2005192437A JP2005192437A JP2007012912A JP 2007012912 A JP2007012912 A JP 2007012912A JP 2005192437 A JP2005192437 A JP 2005192437A JP 2005192437 A JP2005192437 A JP 2005192437A JP 2007012912 A JP2007012912 A JP 2007012912A
Authority
JP
Japan
Prior art keywords
heat
elastic body
heat conductive
diffusion sheet
conductive elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005192437A
Other languages
English (en)
Other versions
JP4440838B2 (ja
Inventor
Jun Yamazaki
潤 山▲崎▼
Mitsuru Ota
充 太田
Motoki Ozawa
元樹 小沢
Kikuo Fujiwara
紀久夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OTSUKA DENKI KK
Polymatech Co Ltd
Original Assignee
OTSUKA DENKI KK
Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OTSUKA DENKI KK, Polymatech Co Ltd filed Critical OTSUKA DENKI KK
Priority to JP2005192437A priority Critical patent/JP4440838B2/ja
Priority to EP06253252A priority patent/EP1739742A1/en
Priority to US11/474,236 priority patent/US20070000642A1/en
Priority to TW095123122A priority patent/TWI309461B/zh
Priority to CNB2006101001401A priority patent/CN100499985C/zh
Priority to KR1020060059471A priority patent/KR100787278B1/ko
Publication of JP2007012912A publication Critical patent/JP2007012912A/ja
Application granted granted Critical
Publication of JP4440838B2 publication Critical patent/JP4440838B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

【課題】 熱源からの熱による局所的な発熱を防止するとともに、そのような熱を効率良く放散させる。
【解決手段】 本発明の熱伝導性部材は、開口を有する熱拡散シートと、前記開口を貫通して設けられた熱伝導性弾性体とを備える。熱伝導性弾性体は前記開口と係合する係合部と、係合部に連結され、熱拡散シートの表面から突出する突出部とを有する。熱伝導性弾性体の突出部の横断面は、拡散シートの開口より大きい面積を有することが好ましい。熱拡散シートは、グラファイトシートおよびグラファイトシートの表面にアルミニウム箔が積層された複合シートのいずれかであることが好ましい。開口を有する熱拡散シートと、前記開口を貫通して設けられた熱伝導性弾性体と、熱伝導性弾性体に密着される冷却部材とからなる冷却構造も提供される。
【選択図】 図3

Description

本発明はグラファイトシートを備えた熱伝導性部材、および該熱伝導性部材を用いた冷却構造に関する。
最近では、例えば、ノートブック型パソコンや携帯電話やデジタルスチールカメラなどの電子機器の軽量化、薄型化、および小型化が益々進行すると同時に、それらの電子機器において、高機能化や情報記録容量の増大、並びに情報処理能力の高速化も進んでいる。それに伴い、電子機器内のIC、CPU等の精密電子部品から発生する熱の問題が深刻化している。
そのような熱によって引き起こされる第1の問題としては、熱源となり得る精密電子部品の温度が上昇することによる故障や誤動作、あるいは電子機器内部の温度上昇による熱源以外の部品への悪影響が挙げられる。従来、このような問題に対しては、一例として、図1に示すような対策がとられている。
図1を参照すると、電子機器内において、基板1bの上面に熱源となる電子部品2a〜2dが搭載されており、基板1aの下面に電子部品2eが搭載されている。この例においては、例えば、電子部品2dからの熱を装置内に放散させるため、電子部品2d上にヒートシンク5が設けられている。さらに、電子部品2cと電子機器の筐体6との間、および電子部品2dに対向する基板1aの上面と筐体6との間には、それぞれ熱伝導性部材4が設けられている。この熱伝導性部材4は、熱源である電子部品2c,2eと、冷却部材として作用する筐体6とを接続して、電子部品2c,2eからの熱、並びに電子機器内部の熱を、筐体6を介して電子機器外部へ放散する。このような、熱伝導性部材としては、熱源の凹凸や積み上げ寸法公差、熱による各部品の膨張を吸収することを目的として、柔軟な熱伝導性シートを用いる場合が多い。この方法によると、ある程度の放熱効果は得られるが、例えば図1中の電子部品2a,2bのようにヒートシンクを設置したり、熱伝導性部材4によって筐体と接続したりすることが難しい部位には対処できない。また、電子部品2eのように、基板1bを介して、熱伝導性部材4によって筐体6と接続される場合には、その放熱効果はかなり低いものとなる。従って、このような発熱に対して対処が不可能であるか、あるいは不十分な対処しかできない部位の熱が上昇し、熱源となっている電子部品の寿命や演算等処理能力の低下を引き起こすことになる。さらに、このように、個々の熱源に放熱シートまたはヒートシンクを設けるには多くの工数を必要とし、生産性にも大きく支障を及ぼす。
熱によって引き起こされる第2の問題としては、ノートブック型パソコンや携帯電話やデジタルスチールカメラなど、使用者に触れる機会が多い電子機器において、それら電子機器から発生する熱が使用者に不快感を与える可能性があることが挙げられる。第2の問題に対する代表的な対策例を示す断面図を図2に示す。この例においては、電子機器内において、基板1bの上面に搭載された電子部品2a〜2dおよび基板1aの下面に搭載された電子部品2eに対向するように熱拡散シート7が設けられている。この構成によれば、熱源である電子部品2a〜2eからの熱が熱拡散シート7に伝わることにより、シート7の表面に沿って熱の拡散が進み、局部的な温度の上昇を防止することができる。この目的のためには、熱拡散シート7としては、マグネシウム、アルミニウム、銅などの比較的熱伝導率が高い金属製シートを用いることも可能であるが、シートの表面に平行な方向において高い熱伝導率を有するグラファイトシートが特に好ましい。そのようなグラファイトシートとして、例えば、特許文献1には、グラファイトシートの表面に薄い絶縁膜層を
設けた熱伝導性シートが開示されている。しかしながら、グラファイトシートは、一般に高分子材料から形成される放熱シートに比べて柔軟性が低いため、熱源表面との接触抵抗を十分下げることができない。熱源である電子部品との接触抵抗を下げる為に、過剰な荷重を電子部品に与えると、電子部品の故障につながることもある。また、柔軟性の低いグラファイトシートは、熱源となる電子部品の高さのばらつきを補償することができない。例えば、電子部品2cのように、他の電子部品と比べて低い高さを有する電子部品に対しては、図2に示すように、グラファイトシートと電子部品との間に隙間が生じてしまい、電子部品から発生する熱がグラファイトシートに効率よく伝わらないこともある。そのような問題に対処するものとして、特許文献2には、取り付け対象部品に対する密着性を向上するために、シート状のグラファイト層の片面または両面に接着層を介してシリコーンエラストマー層を設けた熱伝導性シートが開示されている。
しかしながら、このようなグラファイトシートを熱拡散シートとして用いた場合、図2に示すように、電子部品2a〜2dから発生した熱は、熱拡散シート内部および熱拡散シートを介した装置の内部空間へ拡散される。そのため、電子機器内部の熱が飽和状態に達した場合には熱の逃げ場がなくなり、電子機器を長時間使用した場合には機器全体の温度が上昇し、電子機器の故障や誤動作や動作速度低下などの不具合に繋がることがある。また、グラファイトシートの厚さ方向における熱伝導性は、その表面に沿う方向における熱伝導性に比べて低いものとなる。
特許文献2のシートのように、グラファイトシートの表面に上記のようなエラストマー層が設けられている場合、そのエラストマー層からグラファイトシートへの熱の伝導方向は、グラファイトシートの厚さ方向に一致する。そのため、エラストマー層からグラファイトシートへの熱の伝導は効率的ではなく、熱源からの熱をエラストマー層を介してグラファイトシートに十分に吸収することができないことが問題となっている。
また、強制冷却方式として冷却ファンやペルチエ素子を用いることもあるが、電子機器の大型化や消費電力の増加や機器自体のコストアップに繋がることになる。
特開2001−287299号公報 特開2004−243650号公報
したがって、電子機器において、電子部品などの熱源からの熱による局所的な発熱を防止するとともに、そのような熱を筐体などの冷却部材に効果的に伝導することによって、熱を電子機器外部に効率良く放散させることができる熱伝導性部材、およびそのような熱伝導性部材を用いた冷却構造が必要とされている。
上記問題点を解決するために、請求項1に記載の発明は、開口を有する熱拡散シートと、前記開口を貫通して設けられた熱伝導性弾性体とを備える熱伝導性部材であって、前記熱伝導性弾性体は前記開口と係合する係合部と、前記係合部に連結され、前記熱拡散シートの表面から突出する突出部とを有することを要旨とする。
請求項2に記載の発明は、請求項1に記載の熱伝導性部材において、前記熱伝導性弾性体の突出部の横断面は、前記拡散シートの開口より大きい面積を有することを要旨とする。
請求項3に記載の発明は、請求項1または2に記載の熱伝導性部材において、前記熱拡散シートが、グラファイトシートおよびグラファイトシートの表面にアルミニウム箔が積
層された複合シートのいずれかであることを要旨とする。
請求項4に記載の発明は、請求項1乃至3のいずれか1項に記載の熱伝導性部材において、前記熱伝導性弾性体が電気絶縁性であることを要旨とする。
請求項5に記載の発明は、請求項1乃至4のいずれか1項に記載の熱伝導性部材において、前記熱伝導性弾性体は、炭素繊維、炭素ナノチューブ、金属窒化物、金属酸化物、金属炭化物、金属水酸化物より選ばれる少なくとも1種の熱伝導性充填材を含有することを要旨とする。
請求項6に記載の発明は、前記熱伝導性弾性体中において、前記熱伝導性充填材が一定方向に配向されていることにより、前記熱拡散シートの表面に直交する方向における熱伝導性弾性体の熱伝導率が、前記熱拡散シートの表面に平行な方向における熱伝導性弾性体の熱伝導率よりも大きくなるように設定されていることを特徴とする請求項5記載のことを要旨とする。
請求項7に記載の発明は、開口を有する熱拡散シートと、前記開口を貫通して設けられ、前記開口と係合する係合部と、前記係合部に連結され、前記熱拡散シートの表面から突出する突出部とを有する熱伝導性弾性体と、前記熱伝導性弾性体の突出部の上面に密着される冷却部材とからなることを要旨とする。
請求項8に記載の発明は、請求項7に記載の冷却構造において、前記冷却部材は、当該冷却構造が搭載される装置の筐体であることを要旨とする。
本発明の熱伝導性部材によれば、電子部品などの熱源からの熱による局所的な発熱を防止するとともに、そのような熱を筐体などの冷却部材に効果的に伝導することができる。また、本発明の冷却構造によれば、電子部品などの熱源からの熱による局所的な発熱を防止するとともに、そのような熱を電子機器外部に効率良く放散させることができる。
以下、本発明の一実施形態に関して図3、図4、および図8を参照しながら以下に説明する。
図3に示す熱伝導性部材100は、開口20を有する熱拡散シート10と、前記開口20を貫通して設けられた熱伝導性弾性体30とを備える。
熱伝導性弾性体30は、図8に示すように、電子部品2cなどの熱源と、装置の筐体などの冷却部材40との双方に密着するように配置され、熱源からの熱を熱拡散シート10に伝えるとともに、そのような熱を前記冷却部材40にも伝導する。また、熱伝導性弾性体30を熱源および冷却部材と密着させる際には、熱伝導性弾性体30に荷重をかけて弾性変形させてもよい。それにより、熱伝導性弾性体30と熱源および冷却部材との密着を保証することができる。
熱拡散シート10は、熱伝導性弾性体30から伝えられた熱を、熱拡散シート10内において、その表面と平行な方向に拡散させる機能を有する。そのため、熱拡散シート10は、その表面に平行な方向における熱伝導率が、該シートの厚み方向における熱伝導率より高いことが好ましい。
図4に示すように、本実施形態の熱伝導性弾性体30は、熱拡散シート10の開口20と係合する係合部30cと、該係合部30cに連結され、熱拡散シート10の上面10aおよび下面10bからそれぞれ突出する一対の突出部30a,30bとを有する。熱伝導
性弾性体30の突出部30a,30bは、開口20から外方へ向かって、熱拡散シート10の上面10aおよび下面10bの上にそれぞれ延出している。従って、突出部30a,30bの横断面は開口20より大きな面積を有する。熱拡散シート10の開口20および該開口20に対応する熱伝導性弾性体30の係合部30cは、熱源の形状や表面積、並びに熱拡散シート10の強度を考慮して、様々な大きさおよび形状に形成することができる。
図3の実施形態においては、開口20および係合部30cの断面形状は矩形である。しかしながら、開口20および係合部30cの断面形状は任意の形状であってよく、図5に示すように円形であってもよい。また、開口20のおよび係合部30cの数は特に制限されるものではなく、図6に示すように熱拡散シート10が複数の開口20を有していてもよい。その場合、熱伝導性弾性体30は開口20の個数に対応する個数の係合部30cを有する。熱伝導性弾性体30の突出部30a,30bは、熱源およびヒートシンクや筐体などの熱を外部に放散させる冷却部材との接触面積を考慮して設計されることが望ましく、特に熱源や冷却部材との接触面積よりも大きな面積を有することが好ましい。
本実施形態の熱伝導性部材100は、電子機器内において、熱伝導性弾性体30の突出部30bが電子部品などの熱源と密着し、突出部30aが電子機器の筐体などの冷却部材と密着するように配置される。
図3の熱伝導性部材100において、熱伝導性弾性体30を熱拡散シート10の開口20を貫通して設けることにより、熱伝導性弾性体30が熱拡散シート10の開口20の内周面と接触するように構成されている。そのため、熱源から熱伝導性弾性体30に伝えられた熱は、開口20の内周面を介して熱拡散シート10に伝導され、さらに熱拡散シート10内に迅速に拡散される。これにより、熱源に対向する位置において、局部的に高い温度を有する部分、いわゆるヒートスポットの発生を防止することができる。
図3の熱伝導性弾性体30から熱拡散シート10への熱の伝導は、上述のように、開口20の内周面を介して行なわれるため、前記熱の伝導方向は熱拡散シート10の表面に平行な方向と一致する。従って、熱拡散シート10として、その厚み方向におけるよりも、その表面に平行な方向において高い熱伝導率を有する熱拡散シートを用いた場合には、熱伝導性弾性体30から熱拡散シート10への熱の伝導をより効率的に行なうことができる。
また、熱伝導性弾性体30は熱拡散シート10を貫通して設けられている。これにより、熱伝導性弾性体30は、例えば突出部30bに接する熱源からの熱を効率良く吸収して、上述のように熱拡散シート10に伝えるとともに、熱を、さらに突出部30aを介して冷却部材に効果的に伝導することができる。
このように、本実施形態の熱伝導性部材100によれば、熱源からの熱を効果的に拡散すると同時に、それらの熱を冷却部材に効果的に伝導することができる。この場合、熱源からの熱の一部は、上述のように熱拡散シート10内に迅速に拡散するため、冷却部材として電子機器の筐体が使用されている場合においても、熱源から熱伝導性弾性体30を介して筐体に伝導される熱によってヒートスポットが生じ難い。
熱伝導性弾性体30を熱源および冷却部材と密着させる際に、熱伝導性弾性体30に荷重をかけることによって熱伝導性弾性体30を弾性変形させることができる。これにより、熱伝導性弾性体30と熱伝導性弾性体30を熱源および冷却部材との密着性を保証することができる。
図3〜図7に示すように、熱伝導性弾性体30が、熱拡散シート10の両面のそれぞれにおいて、開口20の面積より大きい断面積を有する突出部30a,30bを有する場合には、熱伝導性弾性体30が熱拡散シート10から脱落することを防止することができる。
図7に示すように、熱伝導性弾性体30の突出部30bを省略してもよい。この場合、開口20内に位置する熱伝導性弾性体30の下面が熱源と接するように配置される。この構成によれば、上記実施形態の効果に加え、電子機器内においてより狭い実装空間内に配置することができる。
図8は、図3および図4に示す熱伝導性部材100を用いた冷却構造200が、電子部品2a〜2dを備える基板1a,1b上に配置されている様子を示す。冷却構造200は、図3に示す熱伝導性部材100と、冷却部材40とから構成される。より詳細には、冷却構造200は、開口20を有する熱拡散シート10と、前記開口20を貫通して設けられた熱伝導性弾性体30と、熱伝導性弾性体30に接する冷却部材40とを備える。冷却部材40は、熱伝導性弾性体30の突出部30aの上面に接するように設けられている。冷却部材40は、熱伝導性弾性体30から伝わる熱を外部に放散させる機能を有する部材であり、図8の冷却構造200においては、冷却構造200が搭載される電子機器の筐体である。しかしながら、冷却部材40は、ヒートシンクなどの従来の冷却装置であってもよい。本実施形態においては、冷却構造200は、熱伝導性弾性体30の突出部30bの下面が、特に発熱量が大きい半導体素子などの電子部品2cの上面に密着し、熱拡散シート10が、その他の電子部品2a,2b,2d,2eに接するように、基板1a,1bに対向して配置されている。電子部品2cから発生した熱は、熱伝導性弾性体30を介して熱拡散シート10内に拡散されるとともに、熱伝導性弾性体30から冷却部材40に伝えられ、さらに冷却部材40から外部に放散される。また、電子部品2a,2b,2d,2eから発生する熱は、直接、熱拡散シート10に伝わり、該熱拡散シート10内に拡散されるだけでなく、熱拡散シート10から熱伝導性弾性体30を介して冷却部材40に伝導され、冷却部材40から外部へ放散されることも可能である。
上記実施形態の冷却構造200は、熱伝導性部材100による効果に加え、以下の効果を有する。
上記の冷却構造200においては、熱伝導性弾性体30が熱拡散シート10を貫通して設けられており、熱伝導性弾性体30には冷却部材40が密着して設けられている。このような構造によって、熱伝導性弾性体30が突出部30bに接する熱源からの熱を効率良く吸収して、上述のように熱拡散シート10に伝えて拡散させるとともに、熱を突出部30aを介して冷却部材に効果的に伝導し、さらに冷却部材から外部に効率よく放散させることができる。
以下、本発明の熱伝導性部材の各構成要素について詳述する。
<熱拡散シート>
熱拡散シート10は、熱拡散シート10内において、その表面と平行な方向に熱を拡散し、さらにその熱を該シートの辺縁および表面から外部に放散させる機能を有する。そのような熱拡散機能を確保するために、熱拡散シート10は、その表面に平行な方向において、100W/m・K以上の熱伝導率を有する必要があり、より好ましくは、150〜900W/m・Kの熱伝導率を有する。また、熱拡散シート10は、その表面に平行な方向における熱伝導率が、該シートの厚み方向における熱伝導率より高いことが好ましい。
一般に、銅やアルミニウムなどの金属単体からなる金属シートは比較的高い熱伝導率(銅:400W/m・K程度、アルミニウム:180〜200W/m・K)を有するが、その熱伝導性は等方的である。そのような金属シートを熱拡散シートとして用いた場合、そ
のような熱拡散シートは、例えば、図8の電子部品2a,2b,2dなどの熱源に対向する部分において、その熱を表面に平行な方向に拡散させるだけでなく、厚み方向にも効率よく伝えてしまう。その結果、前記熱源に対向する部分の温度が局所的に上昇してしまい、ヒートスポットを生じてしまうことがある。
これに対し、グラファイトシートは、一般に、厚み方向と比較して、表面に平行な方向に極めて高い熱伝導率(100〜800W/m・K)有する。そのため、グラファイトシートは、厚み方向よりも表面に平行な方向に熱を迅速に伝えて拡散させることができる。従って、本発明の熱伝導性部材に用いる熱拡散シート10としては、グラファイトシートが特に好ましい。
また、熱拡散シート10として、表面に平行な方向に高い熱伝導性を有するグラファイトシートと、等方的に優れた熱伝導性を有するアルミニウム箔とを積層した複合シートを用いることも有効である。その場合、アルミニウム箔は、グラファイトシートの片面のみに積層されてもよいし、両面に積層されてもよい。また、アルミニウム箔は、グラファイトシートの表面の一部に積層されてもよいし、全面に積層されてもよい。そのような複合シートを熱拡散シート10として用いた場合には、熱拡散シート10の表面に設けられたアルミニウム箔が、熱伝導性弾性体30からの熱を、熱拡散シート10の内部に設けられたグラファイトシートへ効率良く伝導する。また、アルミニウム箔はグラファイトシート内に拡散された熱をその表面から外部に放散させることもできる。また、グラファイトシートにアルミニウム箔を積層することによって、グラファイト単体のシートと比べて、シートの機械的強度および形状保持性が改善される。
上述したようにグラファイトシートはその厚み方向におけるよりも、その表面に平行な方向において極めて高い熱伝導率を有する。一方、熱伝導性弾性体30から熱拡散シート10への熱伝導は、開口20の内周面を介して行なわれるため、前記熱伝導の方向は、熱拡散シート10の表面に平行な方向と一致する。そのため、上記のようなグラファイトシートまたはグラファイトシートとアルミニウム箔との複合シートを熱拡散シート10として用いた場合、熱伝導性弾性体30から熱拡散シート10への熱伝導は、熱拡散シート10の表面を介する場合に比べて、極めて効率がよいものとなる。
熱拡散シート10の厚さは、特に限定するものではないが、電子機器の限られた実装空間内に搭載されることを考慮すると、10〜550μmの範囲にあることが好ましい。熱拡散シート10厚さが5μmよりも小さいと、脆くて破壊しやすく、熱容量も小さいので好ましくない。熱拡散シート10の厚さが550μmよりも大きくなると、該シートの剛性が大きなるため作業性に劣り、さらに経済的にも好ましくない。
<熱伝導性弾性体>
熱伝導性弾性体30は、高分子基材中に熱伝導性充填材が配合された組成物から形成される。
熱伝導性弾性体30の熱伝導性は等方的であってもよいし、異方性を有していてもよい。熱伝導性弾性体30の熱伝導性が異方性を有する場合には、熱拡散シート10の表面にほぼ直交する方向(例えば、図3のZ軸方向)における熱伝導率が、同表面に平行な方向(例えば、図3のX方向またはY方向)の熱伝導率よりも大きくなるように設定されていることが好ましい。それにより、熱伝導性弾性体30は、突出部30bに接する熱源からの熱をより効率良く吸収して、迅速に熱拡散シート10に伝えるとともに、熱を、さらに突出部30aを介して、突出部30aに接する冷却部材により効率良く伝導することができる。
熱伝導性弾性体の硬度(JIS K6253に準拠してタイプAデュロメータで測定した値)が、50以下であると、熱源および冷却部材の接触面に対して追従性が良好となるため好ましい。
熱伝導性弾性体30は、電気絶縁性を有していてもよい。これは、冷却部材が良電気伝導体であるなど、熱源部と電気的不具合が発生する可能性がある場合には、特に有効である。
<熱伝導性弾性体中の熱伝導性充填材>
熱伝導性弾性体30に含有される熱伝導性充填材は、炭素繊維、炭素ナノチューブ、金属窒化物、金属酸化物、金属炭化物、金属水酸化物より選ばれる少なくとも1種であることが好ましい。
また、上記熱伝導性充填材は、その熱伝導性に関して等方性を有してもよいし、異方性を有してもよい。上記熱伝導性充填材が熱伝導性に関して異方性を有する場合、そのような熱伝導性充填材を、熱伝導性弾性体中において一定方向に配向させることによって、得られる熱伝導性弾性体の特定方向における熱伝導性を高めることができる。例えば、炭素繊維は、繊維の直径方向よりも軸線方向において高い熱伝導率を有する。そのような炭素繊維を、熱伝導性弾性体中においてその軸線方向が図3のZ軸方向と平行になるように配向させることによって、熱拡散シート10の表面にほぼ直交する方向における熱伝導性弾性体30の熱伝導率が、同表面に平行な方向の熱伝導率よりも大きくなるように容易に設定することができる。
熱伝導性弾性体中において、熱伝導性充填材を配向させる方法としては、流動場又はせん断場を利用する方法、磁場を利用する方法、電場を利用する方法等が挙げられる。その中でも、熱伝導性充填材が炭素繊維、炭素ナノチューブ、金属窒化物、金属酸化物、金属炭化物、金属水酸化物より選ばれる少なくとも1種から選ばれる場合には、それらの熱伝導性充填材に固有な磁気異方性を利用し、前記熱伝導性高分子組成物に外部から磁場を印加して熱伝導性充填材を磁力線と平行或いは垂直に配向させる方法が、効率的で、かつ配向方向を任意に制御できることから好ましい。
炭素繊維の繊維直径は、好ましくは5〜20μm、より好ましくは5〜15μm、特に好ましくは8〜12μmである。繊維直径が5μmよりも小さいか、または20μmよりも大きいと、炭素繊維の生産性が低下するため好ましくない。炭素繊維の平均長さは、好ましくは5〜500μm、より好ましくは15〜100μm、特に好ましくは15〜45μmである。平均長さが5μmよりも小さいと、炭素繊維同士の接触が少なくなって熱の伝導経路が不十分になるために、熱伝導性弾性体30の熱伝導性が低下する。逆に、平均長さが500μmよりも大きいと、炭素繊維が嵩高くなるために高分子基材中に高濃度で充填させることが困難となる。尚、炭素繊維の平均長さの値は、レーザー回折方式による粒度分布から算出することができる。
炭素繊維は、電解酸化などによる酸化処理によって、あるいはカップリング剤やサイジング剤で処理することによって、表面が改質されていてもよい。そのような表面改質によって、高分子基材に対する濡れ性や充填性を向上させたり、高分子基材との界面の剥離強度を改良したりすることができる。また、無電解メッキ法、電解メッキ法、真空蒸着、スパッタリング、イオンプレーティングなどの物理的蒸着法、化学的蒸着法、塗装、浸漬、微細粒子を機械的に固着させるメカノケミカル法などの方法によって、金属やセラミックスにより表面を被覆した炭素繊維を用いることもできる。
また、金属窒化物としては、窒化ケイ素、窒化アルミニウム、窒化ケイ素等があり、金
属酸化物としては、酸化アルミニウム、酸化ケイ素、酸化亜鉛、酸化マグネシウム等があり、金属炭化物としては、炭化ケイ素、金属水酸化物としては、水酸化アルミニウム、水酸化マグネシウム等が挙げられる。熱伝導性充填材としてこれらの金属窒化物、金属酸化物、金属炭化物、金属水酸化物を用いることにより、熱伝導性弾性体を電気絶縁性とすることができる。
熱伝導性弾性体中における熱伝導性充填材の充填量は、少なくとも30vol%以上、特に30vol%から55vol%であることが好ましい。そのような範囲の熱伝導性充填材を充填することによって、熱伝導性弾性体の柔軟性を損なうことなく、熱伝導性弾性体の熱伝導性を向上することが可能である。
<熱伝導性弾性体中の高分子基材>
熱伝導性弾性体30中の高分子基材は、特に制限されるものではなく、得られる熱伝導性弾性体に要求される、耐熱性、耐薬品性、生産性、電気絶縁性および屈曲性などの特性に応じて適宜選択することができる。そのような高分子基材としては、例えば、熱可塑性エラストマー、および架橋ゴムが挙げられる。
熱可塑性エラストマーとしては、スチレン−ブタジエン共重合体及びスチレン−イソプレンブロック共重合体とそれらの水添物、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等が挙げられる。
架橋ゴムとしては、天然ゴム、ブタジエンゴム、イソプレンゴム、スチレン−ブタジエン共重合ゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレン−プロピレン共重合ゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレン、ブチルゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、シリコーンゴム等が挙げられる。
本発明の熱伝導性部材を製造する方法としては、まず、基材の高分子基材に熱伝導性充填材を配合した組成物を調製し、該組成物と開口20を有する熱拡散シート10とをインサート成形してもよい。また、予め前記組成物から所定形状の熱伝導性弾性体30を形成し、その熱伝導性弾性体30と、開口20を有する熱拡散シート10とを組み付けてもよい。
上記実施形態を以下のように変更することも可能である。
・熱伝導性弾性体30の突出部30a,30bの断面積は、熱拡散シート10の開口20の面積と同一であってもよい。
以下に、本発明の熱伝導性部材およびそれを用いた冷却構造の具体的な実施例を示す。
(実施例1)
熱伝導性充填材として、黒鉛化炭素繊維(日本グラファイトファイバー株式会社製)70重量部と酸化アルミニウム粉末(昭和電工株式会社製)150重量部とを、高分子基材として液状シリコーンゴム(GE東芝シリコーン株式会社製)100重量部に混合し、真空脱泡して熱伝導性高分子組成物を調製した。
厚さが0.13mm×縦30mm×横60mmのグラファイトシート(グラフテック製、厚み方向及び表面に平行な方向における熱伝導率が、それぞれ7W/m・K、240W/m・K)からなる熱拡散シート10に、熱伝導性弾性体30の配置位置に応じて、縦6mm×横6mmの開口20を形成した。その熱拡散シート10を、所定の金型のキャビティ内に設置し、上記の熱伝導性高分子組成物を金型のキャビティ内に注入し、前記組成物
を加熱硬化させた。これにより、厚み0.4mm×縦10mm×横10mmの板状の熱伝導性弾性体30(硬度40)が、熱拡散シート10の開口20を覆い塞ぐように一体的に形成され、図3の熱伝導性部材100を得た。
得られた熱伝導性部材100において、熱拡散シート10の表面に直交する方向および同表面に平行な方向における熱伝導性弾性体30の熱伝導率を測定したところ、いずれも3.8W/m・Kであった。
得られた熱伝導性部材100の熱伝導性弾性体30の突出部30aの上面を冷却部材40としてアルミニウム板(Al−Mg系5052 厚さ:0.5mm)からなる筐体と密着させて冷却構造200を構成した。この冷却構造200を、熱源としてセラミックヒータ(マイクロセラミックヒータ MS−3 坂口電熱株式会社製、発熱量:9W)の上に、熱伝導性弾性体30の突出部30bの下面が前記セラミックヒータに密着するように配置した。この状態において、前記セラミックヒータに通電し、10分後のセラミックヒータの上面の中心部(突出部30bとの界面)の温度t1と、熱拡散シート10の周縁部の温度t2(温度t1、t2の測定位置の間の間隔:40mm)とを測定したところ、温度t1は72.1℃、温度t2は29.6℃であった。
(実施例2)
熱伝導性充填材として黒鉛化炭素繊維(日本グラファイトファイバー株式会社製)70重量部と酸化アルミニウム粉末(昭和電工株式会社製)150重量部とを、高分子基材として液状シリコーンゴム(GE東芝シリコーン株式会社製)100重量部に混合し、真空脱泡して熱伝導性高分子組成物を調製した。
厚さが0.13mm×縦30mm×横60mmのグラファイトシート(グラフテック製、厚み方向及び表面に平行な方向の熱伝導率がそれぞれ7W/m・K、240W/m・K)からなる熱拡散シート10に、熱伝導性弾性体30を設ける位置に縦6mm×横6mmの開口20を形成した。その熱拡散シート10を所定の金型のキャビティ内に設置した。続いて、前記熱伝導性高分子組成物を金型のキャビティ内に注入し、磁力線の向きが熱拡散シート10の表面にほぼ直交する磁場(磁束密度10テスラ)を印加して、熱伝導性高分子組成物中の黒鉛化炭素繊維を、その長手軸線が熱拡散シート10の表面とほぼ直交するように配向させた後、前記組成物を加熱硬化させた。これにより、厚み0.4mm×縦10mm×横10mmの板状の熱伝導性弾性体(硬度40)が、熱拡散シート10の開口20を覆い塞ぐように一体的に形成された、図3の熱伝導性部材を得たの熱伝導性弾性体30中の黒鉛化炭素繊維は、熱拡散シート10の表面に直交する方向(図3のZ軸方向)に揃って配向していた。
得られた熱伝導性部材において、熱拡散シート10の表面に直交する方向および同表面に平行な方向における熱伝導性弾性体30の熱伝導率を測定したところ、それぞれ5.7W/m・K、2.2W/m・Kであった。
得られた熱伝導性部材100の熱伝導性弾性体30の突出部30aの上面を冷却部材40としてアルミニウム板(Al−Mg系5052 厚さ:0.5mm)からなる筐体と密着させて冷却構造200を構成した。この冷却構造200を、熱源としてセラミックヒータ(マイクロセラミックヒータ MS−3 坂口電熱株式会社製、発熱量:9W)の上に、熱伝導性弾性体30の突出部30bの下面が前記セラミックヒータに密着するように配置した。この状態において、前記セラミックヒータに通電し、10分後のセラミックヒータの上面の中心部(突出部30bとの界面)の温度t1と、熱拡散シート10の周縁部の温度t2(温度t1、t2の測定位置の間の間隔:40mm)とを測定したところ、温度t1は64.2℃、温度t2は35.1℃であった。
(実施例3)
熱伝導性充填材として黒鉛化炭素繊維(日本グラファイトファイバー株式会社製)70重量部と酸化アルミニウム粉末(昭和電工株式会社製)150重量部とを、高分子基材として液状シリコーンゴム(GE東芝シリコーン株式会社製)100重量部に混合し、真空脱泡して、熱伝導性高分子組成物を調製した。
厚さが0.13mm×縦30mm×横60mmのグラファイトシート(グラフテック製、厚み方向及び表面に平行な方向の熱伝導率がそれぞれ7W/m・K、240W/m・K)の両面に厚さ0.015mmのアルミニウム箔が積層された熱拡散シート10に、熱伝導性弾性体30の配置位置に応じて縦6mm×横6mmの開口20を形成した。その熱拡散シート10を、所定の金型のキャビティ内に設置した。続いて、上記の熱伝導性高分子組成物を金型のキャビティ内に注入し、磁力線の向きが熱拡散シート10の表面に直交するように磁場(磁束密度10テスラ)を印加して熱伝導性高分子組成物中の黒鉛化炭素繊維を熱拡散シート10の表面に直交する方向に配向させた後、前記組成物を加熱硬化させた。それにより、厚み0.4mm×縦10mm×横10mmの板状の熱伝導性弾性体(硬度40)が熱拡散シート10の開口20を覆い塞ぐように形成された、図3の熱伝導性部材を得た。
得られた熱伝導性部材の熱伝導性弾性体30中の黒鉛化炭素繊維は、熱拡散シート10の表面に直交する方向(図3のZ軸方向)に揃って配向していた。得られた熱伝導性部材において、熱拡散シート10の表面に直交する方向および同表面に平行な方向における熱伝導性弾性体30の熱伝導率を測定したところ、それぞれ5.7W/m・K、2.2W/m・Kであった。
得られた熱伝導性部材100の熱伝導性弾性体30の突出部30aの上面を冷却部材40としてアルミニウム板(Al−Mg系5052 厚さ:0.5mm)からなる筐体と密着させて冷却構造200を構成した。この冷却構造200を、熱源としてセラミックヒータ(マイクロセラミックヒータ MS−3 坂口電熱株式会社製、発熱量:9W)の上に、熱伝導性弾性体30の突出部30bの下面が前記セラミックヒータに密着するように配置した。この状態において、前記セラミックヒータに通電し、10分後のセラミックヒータの上面の中心部(突出部30bとの界面)の温度t1と、熱拡散シート10の周縁部の温度t2(温度t1、t2の測定位置の間の間隔:40mm)とを測定したところ、温度t1は60.9℃、温度t2は38.8℃であった。
(実施例4)
厚さが0.13mm×縦30mm×横60mmのグラファイトシート(グラフテック製、厚み方向及び表面に平行な方向の熱伝導率がそれぞれ7W/m・K、240W/m・K)からなる熱拡散シート10に、熱伝導性弾性体30を設ける位置に縦6mm×横6mmの開口20を形成した。
黒鉛化炭素繊維(日本グラファイトファイバー株式会社製)70重量部と酸化アルミニウム粉末(昭和電工株式会社製)150重量部とを、液状シリコーンゴム(GE東芝シリコーン株式会社製)100重量部に混合し真空脱泡して熱伝導性高分子組成物を調製した。続いて、前記熱伝導性高分子組成物を所望のシート形状に対応する金型のキャビティ内に注入し、磁力線の向きがシートの厚み方向に一致する磁場(磁束密度10テスラ)を印加して、熱伝導性高分子組成物中の黒鉛化炭素繊維をシートの厚み方向に配向させた後、前記組成物を加熱硬化させた。それにより、厚み0.4mm×縦10mm×横10mmの板状であり、側方に係合部30cに対応するスリットが形成された熱伝導性弾性体30(硬度40)を得た。この熱伝導性弾性体30を上記の熱拡散シート10に組みつけて、図3の熱伝導性部材を得た。
得られた熱伝導性部材の熱伝導性弾性体30中の黒鉛化炭素繊維は、熱拡散シート10の表面に直交する方向(図3のZ軸方向)に揃って配向していた。
得られた熱伝導性部材において、熱拡散シート10の表面に直交する方向および同表面に平行な方向における熱伝導性弾性体30の熱伝導率を測定したところ、それぞれ5.7W/m・K、2.2W/m・Kであった。
尚、実施例4において得られた熱伝導性部材は、熱伝導性部材の製造方法は異なるものの、使用したグラファイトシートの種類、熱伝導性弾性体の組成、および熱伝導性充填材の配向条件が実施例2と同様であるため、実施例2において得られた熱伝導性部材と同一のものとなった。従って、放熱評価は省略した。
(比較例1)
厚さが0.13mm×縦30mm×横60mmのグラファイトシート(グラフテック製、厚み方向及び面方向の熱伝導率がそれぞれ7W/m・K、240W/m・K)からなる熱拡散シート7に、アクリル樹脂系粘着剤を厚さ5μmで塗布して、熱源としてセラミックヒータ(マイクロセラミックヒータ MS−3 坂口電熱株式会社製、発熱量:9W)の上に載置した。さらに、前記熱拡散シート7の上面を冷却部材としてアルミニウム板(Al−Mg系5052 厚さ:0.5mm)からなる筐体に直接接触させて、冷却構造を構成した。この場合、実施例1の熱伝導性弾性体は使用していない。この状態において、前記セラミックヒータに通電し、10分後の前記セラミックヒータの上面の中心部(突出部30bとの界面)の温度t1と、熱拡散シート7の周縁部の温度t2(温度t1、t2の測定位置の間の間隔:40mm)を測定したところ、温度t1は88.0℃、温度t2は25.5℃であった。これは、熱源であるセラミックヒータと熱拡散シートとの密着性に乏しいことに加えて、セラミックヒータから熱拡散シートへの熱の伝導が熱拡散シートの表面を介するために熱伝導効率が劣り、セラミックヒータから熱拡散シートへの十分な熱の伝導および拡散が行なわれなかったためと考えられる。
上記実施形態から把握される技術的思想を以下に示す。
請求項1乃至5のいずれか1項に記載の熱伝導性部材において、熱拡散シートの表面に平行な方向における熱拡散シートの熱伝導率が、その厚み方向における熱拡散シートの熱伝導率よりも高いことを特徴とする熱伝導性部材。
請求項1乃至6のいずれか1項に記載の熱伝導性部材において、熱伝導性弾性体が熱伝導性充填材を含有し、熱伝導性弾性体中の熱伝導性充填材の含有量が30vol%以上であることを特徴とする熱伝導性部材。
開口を有する熱拡散シートと、前記開口を貫通して設けられた熱伝導性弾性体とを備える熱伝導性部材を製造する方法であって、
熱拡散シートに開口を形成する工程と、
高分子基材と熱伝導性充填材とを含有する組成物を調製する工程と、
前記熱拡散シートの開口内に前記組成物により熱伝導性弾性体をインサート成形する工程とからなる熱伝導性部材の製造方法。
上記製造方法において、前記インサート成形する工程において、前記組成物に磁場を印加することにより、前記組成物中の熱伝導性充填材を一定方向に配向させる工程をさらに有する製造方法。
開口を有する熱拡散シートと、前記開口を貫通して設けられた熱伝導性弾性体とを備える熱伝導性部材を製造する方法であって、
熱拡散シートに開口を形成する工程と、
高分子基材と熱伝導性充填材とを含有する組成物を調製する工程と、
前記組成物を所定形状に成形して前記熱伝導性弾性体を形成する工程と、
前記熱拡散シートの開口に、前記熱伝導性弾性体を組み付ける工程とからなる製造方法。
上記製造方法において、前記組成物を所定形状に成形する際に、前記組成物に磁場を印加することにより、前記組成物中の熱伝導性充填材を一定方向に配向させる工程をさらに有する製造方法。
従来の熱対策を示す図。 別の従来の熱対策を示す図。 本発明の一実施形態における熱伝導性部材を示す斜視図。 本発明の一実施形態における熱伝導性部材を示す断面図。 熱伝導性部材の変形例を示す斜視図。 熱伝導性部材の変形例を示す斜視図。 熱伝導性部材の変形例を示す斜視図。 本発明の冷却構造を示す断面図。
符号の説明
10…熱拡散シート、10a…上面、20…開口、30…熱伝導性弾性体、30a,30b…突出部、30c…係合部、40…冷却部材、100…熱伝導性部材、200…冷却構造。

Claims (8)

  1. 開口を有する熱拡散シートと、前記開口を貫通して設けられた熱伝導性弾性体とを備える熱伝導性部材であって、前記熱伝導性弾性体は前記開口と係合する係合部と、前記係合部に連結され、前記熱拡散シートの表面から突出する突出部とを有することを特徴とする熱伝導性部材。
  2. 前記熱伝導性弾性体の突出部の横断面は、前記拡散シートの開口より大きい面積を有することを特徴とする請求項1に記載の熱伝導性部材。
  3. 前記熱拡散シートが、グラファイトシートおよびグラファイトシートの表面にアルミニウム箔が積層された複合シートのいずれかであることを特徴とする請求項1または2に記載の熱伝導性部材。
  4. 前記熱伝導性弾性体が電気絶縁性である請求項1乃至3のいずれか1項に記載の熱伝導性部材。
  5. 前記熱伝導性弾性体は、炭素繊維、炭素ナノチューブ、金属窒化物、金属酸化物、金属炭化物、金属水酸化物より選ばれる少なくとも1種の熱伝導性充填材を含有することを特徴とする請求項1乃至4のいずれか1項に記載の熱伝導性部材。
  6. 前記熱伝導性弾性体中において、前記熱伝導性充填材が一定方向に配向されていることにより、前記熱拡散シートの表面に直交する方向における熱伝導性弾性体の熱伝導率が、前記熱拡散シートの表面に平行な方向における熱伝導性弾性体の熱伝導率よりも大きくなるように設定されていることを特徴とする請求項5記載の熱伝導性部材。
  7. 開口を有する熱拡散シートと、
    前記開口を貫通して設けられ、前記開口と係合する係合部と、前記係合部に連結され、前記熱拡散シートの表面から突出する突出部とを有する熱伝導性弾性体と、
    前記熱伝導性弾性体の突出部の上面に密着される冷却部材とからなることを特徴とする冷却構造。
  8. 前記冷却部材は、当該冷却構造が搭載される装置の筐体であることを特徴とする請求項7に記載の冷却構造。
JP2005192437A 2005-06-30 2005-06-30 熱伝導性部材および該熱伝導性部材を用いた冷却構造 Expired - Fee Related JP4440838B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005192437A JP4440838B2 (ja) 2005-06-30 2005-06-30 熱伝導性部材および該熱伝導性部材を用いた冷却構造
EP06253252A EP1739742A1 (en) 2005-06-30 2006-06-22 Thermally conductive member and cooling system using the same
US11/474,236 US20070000642A1 (en) 2005-06-30 2006-06-23 Thermally conductive member and cooling system using the same
TW095123122A TWI309461B (en) 2005-06-30 2006-06-27 Thermally conductive member and cooling system using the same
CNB2006101001401A CN100499985C (zh) 2005-06-30 2006-06-29 导热件和采用该导热件的冷却系统
KR1020060059471A KR100787278B1 (ko) 2005-06-30 2006-06-29 열전도성 부재 및 이를 사용한 냉각 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005192437A JP4440838B2 (ja) 2005-06-30 2005-06-30 熱伝導性部材および該熱伝導性部材を用いた冷却構造

Publications (2)

Publication Number Publication Date
JP2007012912A true JP2007012912A (ja) 2007-01-18
JP4440838B2 JP4440838B2 (ja) 2010-03-24

Family

ID=37026978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005192437A Expired - Fee Related JP4440838B2 (ja) 2005-06-30 2005-06-30 熱伝導性部材および該熱伝導性部材を用いた冷却構造

Country Status (6)

Country Link
US (1) US20070000642A1 (ja)
EP (1) EP1739742A1 (ja)
JP (1) JP4440838B2 (ja)
KR (1) KR100787278B1 (ja)
CN (1) CN100499985C (ja)
TW (1) TWI309461B (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038470A (ja) * 2008-08-06 2010-02-18 Kaneka Corp 暖房床構造および床暖房パネル
KR100981480B1 (ko) 2007-05-16 2010-09-10 가부시끼가이샤 도시바 열전도체
WO2013057889A1 (ja) 2011-10-19 2013-04-25 日東電工株式会社 熱伝導性シート、led実装用基板およびledモジュール
JP2014166676A (ja) * 2014-02-24 2014-09-11 Fujitsu Ltd 炭素構造体の成長方法並びにシート状構造体及び半導体装置の製造方法
JP2015122499A (ja) * 2013-12-23 2015-07-02 華為技術有限公司Huawei Technologies Co.,Ltd. 配向可撓性熱伝導材料、及びその形成方法及び用途
KR20150140071A (ko) * 2014-06-05 2015-12-15 삼성전자주식회사 휴대 장치
CN106476393A (zh) * 2016-09-12 2017-03-08 广东威士达智能设备科技有限公司 导热石墨片的制作方法
CN106476394A (zh) * 2016-09-12 2017-03-08 广东威士达智能设备科技有限公司 导热石墨片的制作方法
US9699886B2 (en) 2014-11-18 2017-07-04 Fujitsu Limited Electronic device
CN106993394A (zh) * 2017-06-06 2017-07-28 苏州工业园区高泰电子有限公司 一种高导热效率石墨复合片的制作方法
JP2017132650A (ja) * 2016-01-27 2017-08-03 明智セラミックス株式会社 高熱伝導異方性黒鉛材料及びその製造方法
JP2018014428A (ja) * 2016-07-21 2018-01-25 レノボ・シンガポール・プライベート・リミテッド 電子機器
WO2020188760A1 (ja) * 2019-03-19 2020-09-24 株式会社ソニー・インタラクティブエンタテインメント ヘッドマウントディスプレイ
US10892091B2 (en) 2015-03-23 2021-01-12 Kabushiki Kaisha Toshiba Permanent magnet, motor, and generator
JP7634244B2 (ja) 2019-02-08 2025-02-21 パナソニックIpマネジメント株式会社 熱伝導シートおよびこれを用いた電子機器

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843419B2 (ja) * 2005-10-13 2011-12-21 ポリマテック株式会社 キーシート
US7447033B2 (en) * 2006-11-01 2008-11-04 Apple Inc. Embedded thermal-electric cooling modules for surface spreading of heat
US20100009174A1 (en) * 2008-07-10 2010-01-14 Reis Bradley E Heat Dissipation For Low Profile Devices
US20100050658A1 (en) * 2008-08-29 2010-03-04 Apple Inc. Methods and apparatus for cooling electronic devices using thermoelectric cooling components
TW201103381A (en) * 2009-07-03 2011-01-16 qi-rui Cai High heat dissipation circuit board and fabrication method thereof
KR101250449B1 (ko) * 2009-09-07 2013-04-08 한국전자통신연구원 솔리드형 방열 장치
CN102098886B (zh) * 2009-12-14 2013-09-25 和硕联合科技股份有限公司 机壳及其制作方法
JP5573601B2 (ja) * 2010-10-29 2014-08-20 アイシン・エィ・ダブリュ株式会社 基板の結露防止構造
US8537553B2 (en) * 2011-02-14 2013-09-17 Futurewei Technologies, Inc. Devices having anisotropic conductivity heatsinks, and methods of making thereof
EP2696575B1 (en) * 2011-04-05 2018-10-10 Panasonic Intellectual Property Management Co., Ltd. Solid-state image pickup device, and method for manufacturing solid-state image pickup device
JP2013004783A (ja) * 2011-06-17 2013-01-07 Sony Corp 放熱構造および表示装置
EP2727445A4 (en) * 2011-06-28 2015-04-15 Ericsson Telefon Ab L M ELECTRONIC DEVICE HAVING A HEAT DISSIPATION STRUCTURE
CN103172044B (zh) 2011-12-21 2015-07-01 清华大学 碳纳米管纸的制备方法
CN103178026B (zh) 2011-12-21 2016-03-09 清华大学 散热结构及应用该散热结构的电子设备
CN103178027B (zh) * 2011-12-21 2016-03-09 清华大学 散热结构及应用该散热结构的电子设备
CN102548368A (zh) * 2012-02-13 2012-07-04 中兴通讯股份有限公司 散热结构、电子设备及散热方法
JP5978457B2 (ja) * 2012-03-19 2016-08-24 パナソニックIpマネジメント株式会社 熱伝導体
KR101438909B1 (ko) 2012-09-24 2014-09-16 황용신 태양전지 모듈의 냉각장치
KR101425785B1 (ko) * 2012-11-07 2014-08-05 조인셋 주식회사 열 전달부재
CN103075719A (zh) * 2013-02-04 2013-05-01 山西山地新源科技有限公司 一种包覆石墨的铝散热器及其制作工艺
JP6240212B2 (ja) * 2013-11-01 2017-11-29 公立大学法人大阪府立大学 導電性シート、その製造方法、カーボン複合ペーストの製造方法、カーボン複合フィラーの製造方法、導電性樹脂材料の製造方法、および導電性ゴム材料の製造方法
CN104754913B (zh) * 2013-12-27 2018-06-05 华为技术有限公司 导热复合材料片及其制作方法
US20160081226A1 (en) * 2014-09-11 2016-03-17 Asia Vital Components Co., Ltd. Heat dissipation structure for mobile device
US11335621B2 (en) * 2016-07-19 2022-05-17 International Business Machines Corporation Composite thermal interface objects
US11950509B2 (en) * 2018-11-30 2024-04-02 Technology Applications, Inc. Woven graphite fiber heat exchanger
JP2020123415A (ja) * 2019-01-30 2020-08-13 株式会社東芝 ディスク装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3035749A1 (de) * 1980-09-22 1982-05-06 Siemens AG, 1000 Berlin und 8000 München Waermeableitende leiterplatten
US4689110A (en) * 1983-12-22 1987-08-25 Trw Inc. Method of fabricating multilayer printed circuit board structure
US4849858A (en) * 1986-10-20 1989-07-18 Westinghouse Electric Corp. Composite heat transfer means
FR2616997B1 (fr) * 1987-06-16 1989-08-25 Thomson Csf Support pour circuit imprime, formant drain thermique a dilatation controlee, et procede de fabrication
US5262922A (en) * 1990-07-26 1993-11-16 Fujitsu, Limited Heat radiation structure for semiconductor device
JPH05262922A (ja) * 1992-03-18 1993-10-12 Kagakuhin Kensa Kyokai ゴム配合剤
US5467251A (en) 1993-10-08 1995-11-14 Northern Telecom Limited Printed circuit boards and heat sink structures
JP4461584B2 (ja) * 1999-11-16 2010-05-12 パナソニック株式会社 ヒートシンク装置
US6392890B1 (en) * 2000-12-20 2002-05-21 Nortel Networks Limited Method and device for heat dissipation in an electronics system
JP4714371B2 (ja) 2001-06-06 2011-06-29 ポリマテック株式会社 熱伝導性成形体及びその製造方法
US6712621B2 (en) 2002-01-23 2004-03-30 High Connection Density, Inc. Thermally enhanced interposer and method
US7002800B2 (en) * 2002-01-25 2006-02-21 Lockheed Martin Corporation Integrated power and cooling architecture
US6918437B2 (en) * 2002-03-21 2005-07-19 Delphi Technologies, Inc. Heatsink buffer configuration
JP4068983B2 (ja) 2003-02-13 2008-03-26 株式会社タイカ 熱伝導性シート
JP2006278941A (ja) * 2005-03-30 2006-10-12 Fujitsu Ltd 放熱装置及びプラグインユニット

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100981480B1 (ko) 2007-05-16 2010-09-10 가부시끼가이샤 도시바 열전도체
JP2010038470A (ja) * 2008-08-06 2010-02-18 Kaneka Corp 暖房床構造および床暖房パネル
WO2013057889A1 (ja) 2011-10-19 2013-04-25 日東電工株式会社 熱伝導性シート、led実装用基板およびledモジュール
US9153761B2 (en) 2011-10-19 2015-10-06 Nitto Denko Corporation Thermally-conductive sheet, LED mounting substrate, and LED module
JP2015122499A (ja) * 2013-12-23 2015-07-02 華為技術有限公司Huawei Technologies Co.,Ltd. 配向可撓性熱伝導材料、及びその形成方法及び用途
JP2014166676A (ja) * 2014-02-24 2014-09-11 Fujitsu Ltd 炭素構造体の成長方法並びにシート状構造体及び半導体装置の製造方法
KR102191523B1 (ko) * 2014-06-05 2020-12-15 삼성전자주식회사 휴대 장치
KR20150140071A (ko) * 2014-06-05 2015-12-15 삼성전자주식회사 휴대 장치
US9699886B2 (en) 2014-11-18 2017-07-04 Fujitsu Limited Electronic device
US10892091B2 (en) 2015-03-23 2021-01-12 Kabushiki Kaisha Toshiba Permanent magnet, motor, and generator
JP2017132650A (ja) * 2016-01-27 2017-08-03 明智セラミックス株式会社 高熱伝導異方性黒鉛材料及びその製造方法
JP2018014428A (ja) * 2016-07-21 2018-01-25 レノボ・シンガポール・プライベート・リミテッド 電子機器
CN106476394A (zh) * 2016-09-12 2017-03-08 广东威士达智能设备科技有限公司 导热石墨片的制作方法
CN106476393A (zh) * 2016-09-12 2017-03-08 广东威士达智能设备科技有限公司 导热石墨片的制作方法
CN106993394A (zh) * 2017-06-06 2017-07-28 苏州工业园区高泰电子有限公司 一种高导热效率石墨复合片的制作方法
JP7634244B2 (ja) 2019-02-08 2025-02-21 パナソニックIpマネジメント株式会社 熱伝導シートおよびこれを用いた電子機器
JPWO2020188760A1 (ja) * 2019-03-19 2020-09-24
WO2020188760A1 (ja) * 2019-03-19 2020-09-24 株式会社ソニー・インタラクティブエンタテインメント ヘッドマウントディスプレイ
JP7279151B2 (ja) 2019-03-19 2023-05-22 株式会社ソニー・インタラクティブエンタテインメント ヘッドマウントディスプレイ
US12117618B2 (en) 2019-03-19 2024-10-15 Sony Interactive Entertainment Inc. Head-mounted display

Also Published As

Publication number Publication date
JP4440838B2 (ja) 2010-03-24
KR20070003627A (ko) 2007-01-05
CN100499985C (zh) 2009-06-10
US20070000642A1 (en) 2007-01-04
EP1739742A1 (en) 2007-01-03
TWI309461B (en) 2009-05-01
KR100787278B1 (ko) 2007-12-20
TW200715506A (en) 2007-04-16
CN1893806A (zh) 2007-01-10

Similar Documents

Publication Publication Date Title
JP4440838B2 (ja) 熱伝導性部材および該熱伝導性部材を用いた冷却構造
KR100787268B1 (ko) 방열 부재 및 이의 제조 방법
KR100822114B1 (ko) 방열 시트 및 방열 구조
US11839060B2 (en) Thermal-control system of a video-recording doorbell and associated video-recording doorbells
EP2509403B1 (en) Assemblies and methods for dissipating heat from handheld electronic devices
JP2003168882A (ja) 熱伝導性シート
JP2008192697A (ja) 熱拡散シート及び熱拡散シートの位置決め方法
JP6432918B1 (ja) 回路基板収納筐体
JP2020057507A (ja) 放熱構造体およびバッテリー
JP2020109791A (ja) 熱伝導構造体、熱拡散装置
JP2951327B1 (ja) 放熱材
JP3216215U (ja) 多層複合熱伝導構成体
JP4525460B2 (ja) モバイル機器
JP6629689B2 (ja) 熱伝導コネクタおよびそれを備えた電子機器
JP2002319652A (ja) 電気電子器具の内部構造
JP2014192520A (ja) ヒートスプレッダ、放熱部品及び実装体
JP6025614B2 (ja) 発熱部品の放熱構造およびこれを用いたオーディオ装置
JP2007049053A (ja) 伝熱シート
JP4882108B2 (ja) 基板の放熱構造
CN215011276U (zh) 散热装置以及电子设备组件
KR20220140295A (ko) 차량용 전장품 및 방열구조체
JP2017212254A (ja) 半導体装置
JP4339753B2 (ja) 熱伝導スペーサ
CN112399773A (zh) 散热装置以及散热装置的制造方法
JP2004079827A (ja) 電子回路装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees