[go: up one dir, main page]

JP2007012378A - Conductive particulate - Google Patents

Conductive particulate Download PDF

Info

Publication number
JP2007012378A
JP2007012378A JP2005190255A JP2005190255A JP2007012378A JP 2007012378 A JP2007012378 A JP 2007012378A JP 2005190255 A JP2005190255 A JP 2005190255A JP 2005190255 A JP2005190255 A JP 2005190255A JP 2007012378 A JP2007012378 A JP 2007012378A
Authority
JP
Japan
Prior art keywords
fine particles
conductive fine
compression
conductive
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005190255A
Other languages
Japanese (ja)
Inventor
Kazuhiko Takahashi
和彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Kasei Co Ltd
Original Assignee
Fujikura Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Kasei Co Ltd filed Critical Fujikura Kasei Co Ltd
Priority to JP2005190255A priority Critical patent/JP2007012378A/en
Publication of JP2007012378A publication Critical patent/JP2007012378A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide conductive particulates in which individual particles develop sufficient conductivity and in which unevenness in liquid crystal images is not generated when used in the connection between electrodes. <P>SOLUTION: This is the conductive particulates of which a conductive layer is formed at the surface of resin particulates, of which K value defined by a formula (1) is 500 kgf/mm<SP>2</SP>or less at 20°C and of which a recovery rate after compression deformation is 5-25% at 20°C. Here, in the formula (1), F and S are load value (kgf) in 10% compression deformation of the conductive particulates and compression displacement (mm) respectively, and R is the radius (mm) of the conductive particulates. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液晶表示素子における微細な電極間の接続に好適に使用される導電性微粒子に関する。   The present invention relates to conductive fine particles suitably used for connection between fine electrodes in a liquid crystal display element.

液晶表示素子においては、対をなす電極間を電気的に接続するために、樹脂粒子やガラス粒子の表面に金属層が形成された導電性微粒子が使用されている。このような導電性微粒子としては、例えば特許文献1に、球体の硬さを表す値であるK値が特定の範囲にあり、かつ、圧縮変形後の回復率が特定の範囲であるものが開示されている。
特公平7−95165号公報
In the liquid crystal display element, conductive fine particles in which a metal layer is formed on the surface of resin particles or glass particles are used in order to electrically connect the paired electrodes. As such conductive fine particles, for example, Patent Document 1 discloses one in which the K value, which is a value representing the hardness of a sphere, is in a specific range, and the recovery rate after compression deformation is in a specific range. Has been.
Japanese Examined Patent Publication No. 7-95165

しかしながら、特許文献1に開示の導電性微粒子を用いた従来の液晶表示素子においては、個々の導電性微粒子の電気抵抗が大きいために、一定の導電性を達成するためには多数の導電性微粒子を使用する必要があった。このように多数の導電性微粒子を使用することはコスト的に有利ではないし、導電性微粒子の配置密度が高まるために粒子同士が凝集して電気的にショートしやすくなり、液晶表示素子の製造歩留まりが低下するなどのおそれもあった。
さらに、特許文献1に開示の導電性微粒子を使用した液晶表示素子では、液晶画像にムラが生じやすいという問題もあった。
However, in the conventional liquid crystal display element using the conductive fine particles disclosed in Patent Document 1, since the electric resistance of each conductive fine particle is large, in order to achieve a certain level of conductivity, a large number of conductive fine particles Had to be used. The use of such a large number of conductive fine particles is not advantageous in terms of cost, and since the arrangement density of the conductive fine particles is increased, the particles are likely to aggregate to easily cause an electrical short, resulting in a manufacturing yield of the liquid crystal display element. There was also a risk of lowering.
Furthermore, the liquid crystal display element using the conductive fine particles disclosed in Patent Document 1 has a problem that unevenness is likely to occur in the liquid crystal image.

本発明は上記事情に鑑みてなされたもので、電極間の接続に使用した際に個々の粒子が十分な導電性を発現し、しかも液晶画像にムラを生じさせることもない導電性微粒子を提供することを課題とする。   The present invention has been made in view of the above circumstances, and provides conductive fine particles in which individual particles exhibit sufficient conductivity when used for connection between electrodes and also do not cause unevenness in a liquid crystal image. The task is to do.

本発明者は鋭意検討した結果、個々の導電性微粒子は、約30%の圧縮変形率で変形した状態で電極間に挟まれた際に、非常に高い導電性を発現することを見出した。また、高い導電性を発現させるべく、導電性微粒子をこのように変形させた状態で電極間に配置した際には、導電性微粒子の圧縮変形後の回復率を低く制御することが、液晶画像のムラを低減するために重要であることも見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventor has found that individual conductive fine particles exhibit very high conductivity when sandwiched between electrodes in a state of being deformed at a compression deformation rate of about 30%. In addition, when the conductive fine particles are arranged between the electrodes in such a deformed state in order to develop high conductivity, the recovery rate after compression deformation of the conductive fine particles can be controlled to be low. It has also been found to be important for reducing the unevenness of the present invention, and the present invention has been completed.

本発明の導電性微粒子は、樹脂微粒子の表面に導電層が形成され、下記式(1)で定義されるK値が20℃において500kgf/mm以下であって、かつ、圧縮変形後の回復率が20℃において5〜25%であることを特徴とする。

Figure 2007012378
(式(1)中、F、Sはそれぞれ導電性微粒子の10%圧縮変形における荷重値(kgf)、圧縮変位(mm)であり、Rは導電性微粒子の半径(mm)である。)
前記K値が20℃において100〜450kgf/mmであって、かつ、前記回復率が20℃において5〜20%であることが好ましい。
粒径は2.5〜7.5μmであることが好ましい。
サンプル数300以上の場合における粒径の標準偏差Sと粒径の平均値Davとが下記式(2)を満たすことが好ましい。
S≦Dav×0.05・・・(2)
前記樹脂微粒子は、ビニル系単量体を乳化重合して得られたシード粒子に、さらにビニル系単量体をラジカル重合させたものであることが好ましい。 In the conductive fine particles of the present invention, a conductive layer is formed on the surface of the resin fine particles, the K value defined by the following formula (1) is 500 kgf / mm 2 or less at 20 ° C., and recovery after compression deformation The rate is 5 to 25% at 20 ° C.
Figure 2007012378
(In Formula (1), F and S are respectively the load value (kgf) and compression displacement (mm) in 10% compression deformation of conductive fine particles, and R is the radius (mm) of conductive fine particles.)
The K value is preferably 100 to 450 kgf / mm 2 at 20 ° C., and the recovery rate is preferably 5 to 20% at 20 ° C.
The particle size is preferably 2.5 to 7.5 μm.
It is preferable that the standard deviation S of particle diameters and the average value D av of particle diameters satisfy the following formula (2) when the number of samples is 300 or more.
S ≦ D av × 0.05 (2)
It is preferable that the resin fine particles are obtained by radical polymerization of a vinyl monomer to seed particles obtained by emulsion polymerization of a vinyl monomer.

本発明によれば、電極間の接続に使用した際に個々の粒子が十分な導電性を発現し、しかも液晶画像にムラを生じさせることもない導電性微粒子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, when using for the connection between electrodes, the electroconductive fine particles which individual particle | grains express sufficient electroconductivity and do not produce a nonuniformity in a liquid crystal image can be provided.

以下、本発明を詳細に説明する。
本発明の導電性微粒子は、下記式(1)で定義されるK値が20℃において500kgf/mm以下であって、かつ、圧縮変形後の回復率が20℃において5〜25%のものである。

Figure 2007012378
式(1)中、F、Sはそれぞれ導電性微粒子の10%圧縮変形における荷重値(kgf)、圧縮変位(mm)であり、Rは導電性微粒子の半径(mm)である。 Hereinafter, the present invention will be described in detail.
The conductive fine particles of the present invention have a K value defined by the following formula (1) of 500 kgf / mm 2 or less at 20 ° C. and a recovery rate after compression deformation of 5 to 25% at 20 ° C. It is.
Figure 2007012378
In Formula (1), F and S are the load value (kgf) and compression displacement (mm) in 10% compressive deformation of conductive fine particles, respectively, and R is the radius (mm) of conductive fine particles.

ここでK値とは、例えば、ランダウーリフシッツ理論物理学教程「弾性理論」(東京図書1972年発行)などに記載されているように、球体の硬さを表す値であって、硬い球体ほど大きな値となる。
このK値が20℃において500kgf/mm以下である導電性微粒子を、液晶表示素子の電極間の接続に使用すると、各導電性微粒子は十分な導電性を発現する。そのため、多数の導電性微粒子を使用しなくても一定の導電性を確保でき、コスト的に有利である。また、導電性微粒子の配置密度を低くできるために粒子同士の凝集が抑制され、電気的なショートも起こりにくくなり、液晶表示素子の製造歩留まりが低下することもない。導電性微粒子のより好ましい20℃でのK値は、100〜450kgf/mmである。
Here, the K value is a value representing the hardness of a sphere, as described in, for example, the Landauri-Fuchsitz theory physics course “elasticity theory” (published in Tokyo Book 1972). Large value.
When conductive fine particles having a K value of 500 kgf / mm 2 or less at 20 ° C. are used for connection between electrodes of a liquid crystal display element, each conductive fine particle exhibits sufficient conductivity. Therefore, a certain level of conductivity can be ensured without using a large number of conductive fine particles, which is advantageous in terms of cost. In addition, since the arrangement density of the conductive fine particles can be lowered, the aggregation of the particles is suppressed, electrical short-circuiting hardly occurs, and the manufacturing yield of the liquid crystal display element does not decrease. The more preferable K value of the conductive fine particles at 20 ° C. is 100 to 450 kgf / mm 2 .

このように20℃でのK値が500kgf/mm以下である導電性微粒子が十分な導電性を発現する理由は、次のように考えられる。
すなわち、本発明者らは、電極間に挟まれた状態の各導電性微粒子の電気抵抗は、導電性微粒子の圧縮変形率に伴って図1のように変化し、圧縮変形率30%付近で電気抵抗が最小となることを見出した。よって、導電性微粒子は、圧縮変形率が30%程度となる程度に圧縮変形した状態で電極間に配置されることが、導電性の点から好適であることが明らかとなった。K値が20℃で500kgf/mm以下の導電性微粒子であれば、容易に30%程度まで圧縮変形でき、高い導電性を発現できると考えられる。
なお、導電性微粒子の電気抵抗は圧縮変形率30%付近で最小となるが、それは、圧縮変形率30%付近までは、圧縮変形されるに従って導電性微粒子と電極との接触面積が増すために導電性が向上し電気抵抗が低下していくが、圧縮変形率がそれよりも大きくなると、粒子表面の導電層に亀裂が生じ、その結果、電気抵抗が増加し始めるためと考えられる。
The reason why the conductive fine particles having a K value at 20 ° C. of 500 kgf / mm 2 or less exhibits sufficient conductivity is considered as follows.
That is, the present inventors change the electric resistance of each conductive fine particle sandwiched between the electrodes as shown in FIG. 1 along with the compressive deformation rate of the conductive fine particle, and the compressive deformation rate is around 30%. It has been found that the electrical resistance is minimized. Therefore, it has become clear from the viewpoint of conductivity that the conductive fine particles are preferably disposed between the electrodes in a state of being compressed and deformed so that the compression deformation rate is about 30%. Conductive fine particles having a K value of 500 kgf / mm 2 or less at 20 ° C. can be easily compressed and deformed to about 30% and can exhibit high conductivity.
The electrical resistance of the conductive fine particles is minimized when the compressive deformation rate is about 30%, because the contact area between the conductive fine particles and the electrode increases as the compressive deformation rate is about 30%. The electrical conductivity is improved and the electrical resistance is lowered. However, when the compressive deformation rate is larger than that, the conductive layer on the particle surface is cracked, and as a result, the electrical resistance starts to increase.

ここで仮に、20℃でのK値が500kgf/mmを超える導電性微粒子を圧縮変形率30%程度まで圧縮変形させようとすると、非常に高いプレス圧が必要となり液晶表示素子の生産性に劣るうえ、導電性微粒子を挟んでいる電極を傷付けてしまうおそれがある。また、電極間の距離(ギャップ)が不均一となり、液晶表示にムラが生じやすくなる。 Here, if it is attempted to compressively deform conductive fine particles having a K value at 20 ° C. exceeding 500 kgf / mm 2 to a compression deformation rate of about 30%, a very high press pressure is required, which increases the productivity of the liquid crystal display element. In addition, the electrodes sandwiching the conductive fine particles may be damaged. Further, the distance (gap) between the electrodes becomes non-uniform, and the liquid crystal display tends to be uneven.

導電性微粒子のK値は、次のようにして求められる。
まず、微小圧縮試験機を使用して、1つの導電性微粒子に対して圧縮荷重を加えていくとともにその際の圧縮変位を検出して、圧縮荷重−圧縮変位曲線を作製する。ついで、この曲線から10%圧縮変形における荷重値F、圧縮変位Sをそれぞれ求める。そして、これらの値と、導電性微粒子の半径Rとを式(1)に代入することにより、K値が求められる。
微小圧縮試験機では、圧縮荷重を電磁力として、圧縮変位を作動トランスによる変位として電気的に検出することができる。このような微小圧縮試験機としては、例えば島津製作所製のPCT−200型などがあり、この試験機は、対象物を圧縮する手段として、直径50μmのダイヤモンド製の円柱を備えている。なお、圧縮は定負荷速度圧縮方式で行い、荷重を増加させる割合は毎秒0.27gfとし、試験荷重は最大で10gfとした。
The K value of the conductive fine particles is obtained as follows.
First, a compressive load is applied to one conductive fine particle using a micro-compression tester, and a compressive displacement at that time is detected to create a compressive load-compressive displacement curve. Next, a load value F and a compression displacement S in 10% compression deformation are obtained from this curve. And K value is calculated | required by substituting these values and the radius R of electroconductive fine particles for Formula (1).
In a micro compression tester, a compression load can be electrically detected as a displacement by an operating transformer, with a compression load as an electromagnetic force. An example of such a micro-compression tester is a PCT-200 model manufactured by Shimadzu Corporation. This tester includes a diamond cylinder having a diameter of 50 μm as means for compressing an object. The compression was performed by a constant load speed compression method, the rate of increasing the load was 0.27 gf per second, and the test load was 10 gf at the maximum.

また、本発明の導電性微粒子は、圧縮変形後の回復率が20℃において5〜25%のものである。
ここでいう圧縮変形後の回復率とは、導電性微粒子に対して1gfまでの圧縮荷重を加えて圧縮変形させた後、圧縮荷重を0.1gfまで減らした際の回復率であって、荷重の基点(原点荷重値)を0.1gf、最大荷重(反転荷重値)を1gfとした際の回復率である。
具体的な測定方法としては、K値を求める際と同様に微小圧縮試験機を使用して、1つの導電性微粒子に対して1gfまで圧縮荷重を加えていき、その後、荷重を0.1gfまで減らしていく。その際の圧縮変位を検出することで、図2のような圧縮荷重−圧縮変位曲線を作製する。図2中、(a)が圧縮荷重を増加させた際の曲線で、(b)が圧縮荷重を減少させた際の曲線である。そして、圧縮荷重を増加させた際の最大荷重までの変位Lと、圧縮荷重を減少させた際の荷重の基点までの変位Lとの比(L/L)を%で表したものが回復率となる。
The conductive fine particles of the present invention have a recovery rate after compression deformation of 5 to 25% at 20 ° C.
Here, the recovery rate after compression deformation is the recovery rate when the conductive fine particles are compressed and deformed by applying a compression load of up to 1 gf and then the compression load is reduced to 0.1 gf. Recovery rate when the base point (origin load value) is 0.1 gf and the maximum load (reverse load value) is 1 gf.
As a specific measurement method, a compressive load is applied to one conductive fine particle up to 1 gf using a micro compression tester as in the case of obtaining the K value, and then the load is reduced to 0.1 gf. Reduce. By detecting the compression displacement at that time, a compression load-compression displacement curve as shown in FIG. 2 is produced. In FIG. 2, (a) is a curve when the compression load is increased, and (b) is a curve when the compression load is decreased. The ratio (L 2 / L 1 ) between the displacement L 1 up to the maximum load when the compressive load is increased and the displacement L 2 up to the base point of the load when the compressive load is reduced is expressed in%. Things are the recovery rate.

圧縮変形後の回復率が20℃で5〜25%である導電性微粒子を電極間の接続に使用すると、液晶画像のムラや接触不良などがない高品質の液晶表示素子を製造できる。また、導電性微粒子が変形回復することにより電極を傷付けてしまうおそれもない。
ここで圧縮変形後の回復率が25%を超える導電性微粒子では、導電性微粒子が変形回復することで電極間の距離(ギャップ)が不均一となり、液晶画像のムラが生じやすいとともに、導電性微粒子が電極を傷付ける可能性がある。一方、5%未満では、導電性微粒子と電極との間に隙間が生じやすく、接触不良を起こすおそれがある。すなわち、導電性微粒子は、通常、熱硬化性樹脂に分散したペーストの状態で電極間に充填され、その後熱硬化性樹脂が硬化することで電極間を接続する。この際、熱硬化性樹脂は、硬化時の加熱により膨張し、室温への冷却により収縮するため、体積が変動する。一方、その間、回復率が5%未満の導電性微粒子はほとんど変形回復しない。よって、導電性微粒子と電極との間に隙間が生じ、接触不良となりやすい。導電性微粒子のより好ましい回復率は5〜20%である。
When conductive fine particles having a recovery rate after compression deformation of 5 to 25% at 20 ° C. are used for the connection between the electrodes, a high-quality liquid crystal display element free from unevenness of liquid crystal images and poor contact can be produced. Further, there is no possibility that the electrode is damaged by the deformation and recovery of the conductive fine particles.
Here, in the case of conductive fine particles having a recovery rate of more than 25% after compressive deformation, the distance (gap) between the electrodes becomes non-uniform due to the deformation recovery of the conductive fine particles, and liquid crystal image unevenness is likely to occur. Fine particles can damage the electrode. On the other hand, if it is less than 5%, a gap is likely to occur between the conductive fine particles and the electrode, which may cause a contact failure. That is, the conductive fine particles are usually filled between electrodes in a paste state dispersed in a thermosetting resin, and then the electrodes are connected by curing the thermosetting resin. At this time, the thermosetting resin expands by heating at the time of curing and contracts by cooling to room temperature, so that the volume fluctuates. On the other hand, in the meantime, the conductive fine particles having a recovery rate of less than 5% hardly recover from deformation. Therefore, a gap is generated between the conductive fine particles and the electrode, and contact failure tends to occur. A more preferable recovery rate of the conductive fine particles is 5 to 20%.

導電性微粒子としては、上述したようなK値と圧縮変形後の回復率とを共に備え、樹脂微粒子の表面に導電層が形成されたものであればその材質には制限はないが、樹脂微粒子としては、ビニル系単量体を乳化重合して得られたシード粒子に、さらにビニル系単量体をラジカル重合させたものであることが好ましい。また、樹脂微粒子の材質としては、ジビニルベンゼンとスチレンとの共重合体が好ましい。このような共重合体からなる樹脂微粒子の製造方法としては、まず、スチレンを主成分とするビニル系単量体を乳化重合してシード粒子を得て、ついで、このシード粒子に、ジビニルベンゼンとスチレンからなるビニル系単量体をラジカル重合する方法が好適である。
共重合体を製造する際のジビニルベンゼンとスチレンとのモル比は、ジビニルベンゼン1molに対して8mol以下が好ましく、より好ましくは0.5〜4.0molである。このような範囲であると、上述のK値と回復率とを備えた導電性微粒子が得られやすい。
The conductive fine particles are not limited as long as the conductive fine particles have both the above-described K value and the recovery rate after compression deformation, and a conductive layer is formed on the surface of the resin fine particles. It is preferable that the seed particles obtained by emulsion polymerization of a vinyl monomer are further obtained by radical polymerization of a vinyl monomer. The material of the resin fine particles is preferably a copolymer of divinylbenzene and styrene. As a method for producing resin fine particles made of such a copolymer, first, a vinyl monomer containing styrene as a main component is emulsion-polymerized to obtain seed particles, and then the seed particles are mixed with divinylbenzene. A method of radical polymerization of a vinyl monomer composed of styrene is preferable.
The molar ratio of divinylbenzene and styrene in producing the copolymer is preferably 8 mol or less, more preferably 0.5 to 4.0 mol, relative to 1 mol of divinylbenzene. Within such a range, it is easy to obtain conductive fine particles having the above-described K value and recovery rate.

樹脂微粒子の表面に形成される導電層としては特に制限はないが、ニッケルメッキからなる内層と金メッキからなる外層とから構成されていると、より安定な導電性を発現できる。このような導電層は、無電解ニッケルメッキを実施した後、金置換反応を行うことによって形成できる。
その他の導電層としては、ニッケル、金、銀、銅、コバルト錫、インジウムや、これらを主成分とする合金から形成されたものなどが例示でき、その形成方法としては、無電解メッキ方法の他、金属微粉を含むペーストを樹脂微粒子にコーティングする方法、真空蒸着法、イオンプレーディング法、イオンスパッタリング法などの物理的蒸着法などが挙げられる。
Although there is no restriction | limiting in particular as a conductive layer formed in the surface of resin fine particle, If comprised from the inner layer which consists of nickel plating, and the outer layer which consists of gold plating, more stable electroconductivity can be expressed. Such a conductive layer can be formed by performing a gold substitution reaction after performing electroless nickel plating.
Examples of other conductive layers include nickel, gold, silver, copper, cobalt tin, indium, and those formed from alloys containing these as the main components. Examples of the formation method include electroless plating methods. Examples thereof include a method of coating a paste containing metal fine powder on resin fine particles, a physical vapor deposition method such as a vacuum vapor deposition method, an ion plating method, and an ion sputtering method.

導電性微粒子の粒径としては特に制限はなく、用途に応じて適宜設定できるが、2.5〜7.5μmの範囲内であると、薄型の液晶表示素子における電極間の接続に好適に使用できる。
また、サンプル数を300以上とした場合における粒径の標準偏差Sと粒径の平均値Davとが下記式(2)を満たすものであれば、粉体としての粒径の均一性に優れ、液晶表示素子の電極間の接続により好適に使用できる。なお、各導電性微粒子の粒径としては、その電子顕微鏡写真から測定した値を採用する。
S≦Dav×0.05・・・(2)
また、導電性微粒子における樹脂微粒子と導電層との比率にも制限はないが、導電性微粒子中における導電層の含有割合は、通常、30〜80質量%の範囲である。
The particle size of the conductive fine particles is not particularly limited and can be appropriately set according to the use. However, when it is in the range of 2.5 to 7.5 μm, it is suitably used for connection between electrodes in a thin liquid crystal display element. it can.
In addition, when the number of samples is 300 or more and the standard deviation S of particle diameters and the average value D av of particle diameter satisfy the following formula (2), the particle diameter uniformity as a powder is excellent. The liquid crystal display element can be suitably used for connection between the electrodes. In addition, the value measured from the electron micrograph is employ | adopted as a particle size of each electroconductive fine particle.
S ≦ D av × 0.05 (2)
Moreover, although there is no restriction | limiting in the ratio of the resin fine particle and conductive layer in electroconductive fine particles, the content rate of the conductive layer in electroconductive fine particles is the range of 30-80 mass% normally.

このような導電性微粒子を電極間の接続に使用する場合には、例えば次のようにすればよい。
まず、熱硬化性樹脂からなる絶縁性のバインダーに数質量%程度の濃度となるように導電性微粒子を加え、均一に分散させる。この分散体を、対を成している電極の一方の表面に塗布する。塗布は、スクリーン印刷法などの印刷方法やディスペンサーを用いた方法などで行えばよい。ついで、分散体が塗布された表面に他方の電極を重ね合わせ、これらを加圧する。ここでの加圧は、導電性微粒子が圧縮変形率30%程度まで圧縮変形するように行うことが導電性の点から好適である。ついで、導電性微粒子の圧縮変形状態を維持したまま加熱し、バインダーを硬化させる。このような方法により、電極間を導電性微粒子で電気的に接続することができる。
When such conductive fine particles are used for connection between electrodes, for example, the following may be performed.
First, conductive fine particles are added to an insulating binder made of a thermosetting resin so as to have a concentration of about several mass% and dispersed uniformly. This dispersion is applied to one surface of a pair of electrodes. The application may be performed by a printing method such as a screen printing method or a method using a dispenser. Next, the other electrode is superimposed on the surface coated with the dispersion, and these are pressed. It is preferable from the viewpoint of conductivity that the pressurization is performed so that the conductive fine particles are compressed and deformed to a compression deformation rate of about 30%. Next, the binder is cured by heating while maintaining the compression deformation state of the conductive fine particles. By such a method, the electrodes can be electrically connected with conductive fine particles.

このような方法で接続される電極の種類としては特に制限はなく、ガラス板上にITO薄膜やアルミニウム薄膜などが形成された電極、プラスチックフィルム上に銅シートが貼り付けられた後エッチングして得られた電極、プラスチックフィルム上に銀ペーストやカーボンブラックなどを印刷して得られた電極などが挙げられる。
以上説明した導電性微粒子は、電極間の接続に使用した際に個々の粒子が十分な導電性を発現し、しかも液晶画像にムラを生じさせることもないので、液晶表示素子をはじめとした電子部品における電極間の接続に好適に使用できる。
There are no particular restrictions on the type of electrodes connected in this way, electrodes obtained by forming an ITO thin film or aluminum thin film on a glass plate, or etching after a copper sheet is attached on a plastic film. And an electrode obtained by printing a silver paste or carbon black on a plastic film.
The conductive fine particles described above have sufficient conductivity when used for connection between electrodes, and do not cause unevenness in the liquid crystal image. It can be suitably used for connection between electrodes in a component.

以下、本発明について実施例を挙げて具体的に説明する。なお、以下「部」、「%」とあるのは、いずれも質量基準である。
[製造例]
(シード粒子の製造)
攪拌機、温度計、窒素導入管、還流冷却器を備えた4つ口フラスコに、スチレン19.5部、アクリル酸0.5部、純水80部、過硫酸カリウム0.2部を入れ、窒素気流下において80℃で6時間重合を行った。
得られた重合混合物を水酸化アンモニウムで中和後、200メッシュの濾布でろ過し、ろ液としてエマルションを得た。
一方、メタクリル酸ラウリル5部、ラウリル硫酸ナトリウム5部、純水250部をIKA社製の高圧ホモジナイザーで分散させた後、先に得られたエマルション25部を加え、一昼夜撹拌してシード粒子を含む混合液を得た。
Hereinafter, the present invention will be specifically described with reference to examples. Hereinafter, “parts” and “%” are based on mass.
[Production example]
(Manufacture of seed particles)
In a four-necked flask equipped with a stirrer, a thermometer, a nitrogen inlet tube, and a reflux condenser, 19.5 parts of styrene, 0.5 part of acrylic acid, 80 parts of pure water, and 0.2 part of potassium persulfate are placed. Polymerization was carried out at 80 ° C. for 6 hours under an air stream.
The obtained polymerization mixture was neutralized with ammonium hydroxide and then filtered through a 200 mesh filter cloth to obtain an emulsion as a filtrate.
On the other hand, 5 parts of lauryl methacrylate, 5 parts of sodium lauryl sulfate, and 250 parts of pure water were dispersed with a high-pressure homogenizer manufactured by IKA, and then 25 parts of the previously obtained emulsion was added and stirred all day and night to contain seed particles. A mixture was obtained.

[実施例1]
(導電性微粒子の製造)
攪拌機、温度計、窒素導入管、還流冷却器を備えた4つ口フラスコに、ジビニルベンゼン420部、スチレン580部、75%過酸化ベンゾイル3.3部、アゾビスイソバレロニトリル3部、水2300部、ラウリル硫酸ナトリウム20部、シード粒子を含む混合液67部を入れ、一昼夜撹拌した。
ついで、さらに亜硫酸ナトリウム4部、硫酸ナトリウム10部、5%ポリビニルアルコール水溶液500部、水500部を加え、窒素気流下において65℃で3時間、80℃で1時間、90℃で1時間重合を行った。
その後、これを洗浄、乾燥後、分級して、粒径の平均値が7.03μm、標準偏差が0.29μmの樹脂微粒子を得た。
そして、この樹脂微粒子に無電解ニッケルメッキを行った後、金置換反応を行い、ニッケルメッキ層、金メッキ層が表面に順次形成された導電性微粒子を得た。
この導電性微粒子について電子顕微鏡写真を撮り、サンプル数300として粒径の平均値Davと標準偏差Sを求めたところ、Dav=7.21μm、S=0.29μmであった。
[Example 1]
(Manufacture of conductive fine particles)
In a four-necked flask equipped with a stirrer, thermometer, nitrogen inlet tube and reflux condenser, 420 parts of divinylbenzene, 580 parts of styrene, 3.3 parts of 75% benzoyl peroxide, 3 parts of azobisisovaleronitrile, water 2300 Part, 20 parts of sodium lauryl sulfate, and 67 parts of a mixed solution containing seed particles were stirred for a whole day and night.
Next, 4 parts of sodium sulfite, 10 parts of sodium sulfate, 500 parts of 5% polyvinyl alcohol aqueous solution and 500 parts of water were added, and polymerization was performed at 65 ° C. for 3 hours, 80 ° C. for 1 hour, and 90 ° C. for 1 hour in a nitrogen stream. went.
Thereafter, this was washed, dried and classified to obtain resin fine particles having an average particle size of 7.03 μm and a standard deviation of 0.29 μm.
Then, after electroless nickel plating was performed on the resin fine particles, a gold substitution reaction was performed to obtain conductive fine particles in which a nickel plating layer and a gold plating layer were sequentially formed on the surface.
An electron micrograph was taken of the conductive fine particles, and the average value D av and standard deviation S of the particle diameters were determined for 300 samples. D av = 7.21 μm and S = 0.29 μm.

(導電性微粒子の分析)
この導電性微粒子を分析したところ、金含有量は25.0質量%、ニッケル含有量は20.0質量%であり、導電性微粒子中における導電層の含有割合は45.0質量%であった。
また、微小圧縮試験機として島津製作所製のPCT−200型を使用し、得られた導電性微粒子から無作為に選択した1つの導電性微粒子に対して圧縮荷重を加えていくとともにその際の圧縮変位を検出して、圧縮荷重−圧縮変位曲線を作製し、ついで、この曲線から10%圧縮変形における荷重値F:2.35×10−4kgf、圧縮変位S:7.21×10−4mmを得て、これらの値と、導電性微粒子の半径Rとを式(1)に代入することにより、K値=429kgf/mmを得た。なお、圧縮は定負荷速度圧縮方式で行い、荷重を増加させる割合は毎秒0.27gfとし、試験荷重は最大で10gfとした。
また、同じ微小圧縮試験機を使用して、同様に1つの導電性微粒子に対して1gfまで圧縮荷重を加えていき、その後、荷重を0.1gfまで減らしていった際の圧縮変位を検出することで、図2のような圧縮荷重−圧縮変位曲線を作製して、圧縮荷重を増加させた際の最大荷重までの変位L:3.10μmと、圧縮荷重を減少させた際の荷重の基点までの変位L:0.56μmとの比(L/L)を求め、%で表し、回復率18%を得た。
(Analysis of conductive fine particles)
When the conductive fine particles were analyzed, the gold content was 25.0% by mass, the nickel content was 20.0% by mass, and the content of the conductive layer in the conductive fine particles was 45.0% by mass. .
In addition, using a PCT-200 model manufactured by Shimadzu Corporation as a micro-compression tester, a compressive load is applied to one conductive fine particle randomly selected from the obtained conductive fine particles, and compression is performed at that time. The displacement is detected, and a compression load-compression displacement curve is prepared. Then, a load value F: 2.35 × 10 −4 kgf and a compression displacement S: 7.21 × 10 −4 at 10% compression deformation from the curve. By obtaining mm and substituting these values and the radius R of the conductive fine particles into the formula (1), K value = 429 kgf / mm 2 was obtained. The compression was performed by a constant load speed compression method, the rate of increasing the load was 0.27 gf per second, and the test load was 10 gf at the maximum.
Also, using the same micro-compression tester, a compressive load is similarly applied to one conductive fine particle up to 1 gf, and then the compression displacement is detected when the load is reduced to 0.1 gf. Thus, a compression load-compression displacement curve as shown in FIG. 2 was prepared, and the displacement L 1 up to the maximum load when the compression load was increased: 3.10 μm, and the load when the compression load was decreased The ratio (L 2 / L 1 ) with the displacement L 2 to the base point: 0.56 μm was determined and expressed in%, and a recovery rate of 18% was obtained.

(導電性微粒子の電気抵抗と圧縮変形率との関係)
このようにして得られた導電性微粒子について、種々の圧縮変形率で圧縮変形した際の導電性微粒子1つ当たりの電気抵抗をそれぞれ求めた。圧縮変形率、電気抵抗を表1に示す。
具体的には、まず、導電性微粒子0.001g、エポキシ樹脂1g、ガラスロッドスペーサー0.2g、硬化剤0.64gを良く混合してペーストを製造した。ついで、幅Wが0.5mm、厚さTが0.5μmの金線が片面に形成されたガラス板を2枚用意し、これら2枚のガラス板を金線が形成された面が対向し、かつ、金線が直交するように配置した。そして、金線の間に上述のペーストを充填し、500gの荷重をかけて熱板上で200℃、120秒の条件で硬化させ、テストピースを作製した。
(Relationship between electrical resistance of conductive fine particles and compressive deformation rate)
With respect to the conductive fine particles obtained in this way, the electrical resistance per one conductive fine particle when compressed and deformed at various compression deformation rates was determined. Table 1 shows the compression deformation rate and electrical resistance.
Specifically, first, 0.001 g of conductive fine particles, 1 g of epoxy resin, 0.2 g of glass rod spacer, and 0.64 g of a curing agent were mixed well to produce a paste. Next, two glass plates with a gold wire having a width W of 0.5 mm and a thickness T of 0.5 μm formed on one side are prepared, and the surfaces on which the gold wires are formed face each other. And it arrange | positioned so that a gold wire might orthogonally cross. And the above-mentioned paste was filled between the gold wires, applied with a load of 500 g, and cured on a hot plate under the conditions of 200 ° C. and 120 seconds to prepare a test piece.

この際、使用するガラスロッドスペーサーの直径を変化させることにより、導電性微粒子の圧縮変形率を調整した。すなわち、ガラスロッドスペーサーは500gの荷重により圧縮変形しないので、ガラスロッドスペーサーとして直径dのものを使用すると、金線の間隔がdのテストピースを作製することができ、その場合、金線間に挟まれた導電性微粒子の圧縮変形率は、下記式(3)により求められる。なお、このテストピースの作製に際しては、ペースト中における導電性微粒子の濃度は0.05%と極少なく設定されているため、ペーストを硬化した後に導電性微粒子が形状回復して金線の間隔を押し広げることはないと見なすことができる。
圧縮変形率[%]=(2R−d)×100/2R・・・(3)
At this time, the compression deformation rate of the conductive fine particles was adjusted by changing the diameter of the glass rod spacer to be used. That is, since the glass rod spacer is not compressed and deformed by a load of 500 g, if a glass rod spacer having a diameter of d g is used, a test piece with a gold wire interval of d g can be produced. The compressive deformation rate of the conductive fine particles sandwiched between them is obtained by the following formula (3). In the preparation of this test piece, the concentration of the conductive fine particles in the paste is set to a very small value of 0.05%. Therefore, after the paste is cured, the shape of the conductive fine particles recovers and the interval between the gold wires is reduced. It can be regarded as not spreading.
Compression deformation rate [%] = (2R−d g ) × 100 / 2R (3)

そして、このテストピースに電流を流して、硬化したペースト全体としての電気抵抗Aを求めた。
一方、金線が形成されていないガラス板を使用した以外は上記テストピースの作製と同じ工程により参照用ピースを得て、このペーストにおける導電性微粒子の単位面積あたりの配置密度Bを測定した。
そして、テストピースにおけるペースト中の導電性微粒子の配置密度として、参照用ピースにおけるペースト中の導電性微粒子の配置密度Bを採用するとともに、テストピースにおけるペーストの接合面積Cを実測し、下記式(4)により導通に関与する導電性微粒子の数Nを求め、さらに下記式(5)から、導電性微粒子1つ当たりの電気抵抗Aを算出した。
N=C×B・・・(4)
=N×A・・・(5)
Then, an electric current was passed through the test piece to determine the electrical resistance A as the entire cured paste.
On the other hand, a reference piece was obtained by the same process as the production of the test piece except that a glass plate on which no gold wire was formed was used, and the arrangement density B per unit area of the conductive fine particles in this paste was measured.
Then, as the arrangement density of the conductive fine particles in the paste in the test piece, the arrangement density B of the conductive fine particles in the paste in the reference piece is adopted, and the bonding area C of the paste in the test piece is measured, and the following formula ( The number N of conductive fine particles involved in conduction was obtained by 4), and the electrical resistance A 1 per conductive fine particle was calculated from the following formula (5).
N = C × B (4)
A 1 = N × A (5)

Figure 2007012378
Figure 2007012378

表1に示すように、導電性微粒子1つ当たりの電気抵抗Aはガラスロッドスペーサーの直径dに依存し、特にd=5μmの場合に最小となることが明らかとなった。d=5μmの場合、導電性微粒子の圧縮変形率=30.7[%]である。
このことから、導電性微粒子1つ当たりの電気抵抗Aはその圧縮変形率に応じて変化し、圧縮変形率が30%程度の際に最小となることが示された。
As shown in Table 1, it became clear that the electric resistance A 1 per one conductive fine particle depends on the diameter d g of the glass rod spacer, and is minimized particularly when d g = 5 μm. When d g = 5 μm, the compression deformation rate of the conductive fine particles = 30.7 [%].
Therefore, the electrical resistance A 1 per one conductive particles varies according to the pressure change rate, the compression deformation ratio is shown to be minimized in the order of 30%.

[実施例2〜3および比較例1〜2]
ジビニルベンゼンとスチレンの使用量を表2のように変えた以外は実施例1と同様にして樹脂微粒子を調製し、粒径の標準偏差が粒径の平均値の5%以下になるように分級し、さらに同様に導電層を形成して、表2に示すような導電性微粒子を得た。
ついで、得られた導電性微粒子を使用して、実施例1と同様にしてテストピースを作製した。ただし、ここでは、ガラスロッドスペーサーとしてd=5μmのものを使用した1種類のテストピースのみを作製した。
[Examples 2-3 and Comparative Examples 1-2]
Resin fine particles were prepared in the same manner as in Example 1 except that the amounts of divinylbenzene and styrene used were changed as shown in Table 2, and classified so that the standard deviation of the particle size was 5% or less of the average particle size. Further, a conductive layer was formed in the same manner to obtain conductive fine particles as shown in Table 2.
Subsequently, a test piece was produced in the same manner as in Example 1 using the obtained conductive fine particles. However, here, only one type of test piece using a glass rod spacer with d g = 5 μm was produced.

以上各例で得られた導電性微粒子、テストピースについて、以下の評価を行った。
[信頼性評価]
各例でd =5μmのガラスロットスペーサーを使用して得られたテストピースについて、それぞれ下記の信頼性評価(耐湿試験および耐熱試験)を実施した。
耐湿試験:テストピースを65℃、相対湿度90%の環境に500時間保存し、その前後の導電性微粒子1つ当たりの電気抵抗を測定した。実測値を表3に示す。試験後の電気抵抗が試験前の1.2倍以下である場合に耐湿信頼性良好と判定し、表4中○で示した。1.2倍を超える場合は×とした。
耐熱試験:テストピースを110℃の環境に500時間保存し、その前後の導電性微粒子1つ当たりの電気抵抗を測定した。実測値を表3に示す。試験後の電気抵抗が試験前の1.2倍以下である場合に耐熱信頼性良好と判定し、表4中○で示した。1.2倍を超える場合は×とした。
The following evaluations were performed on the conductive fine particles and test pieces obtained in the above examples.
[Reliability evaluation]
In each example, the following reliability evaluations (humidity resistance test and heat resistance test) were performed on the test pieces obtained by using glass lot spacers with d g = 5 μm.
Humidity resistance test: The test piece was stored in an environment of 65 ° C. and a relative humidity of 90% for 500 hours, and the electrical resistance per one conductive fine particle before and after the test piece was measured. The measured values are shown in Table 3. When the electrical resistance after the test was 1.2 times or less that before the test, it was determined that the moisture resistance reliability was good, and the result was shown by ○ in Table 4. When it exceeded 1.2 times, it was set as x.
Heat resistance test: The test piece was stored in an environment of 110 ° C. for 500 hours, and the electric resistance per one conductive fine particle before and after the test piece was measured. The measured values are shown in Table 3. When the electrical resistance after the test was 1.2 times or less that before the test, it was determined that the heat resistance reliability was good, and the result was shown by ○ in Table 4. When it exceeded 1.2 times, it was set as x.

[プレス生産性評価]
各例で得られた導電性微粒子0.055g、エポキシ樹脂1g、d =5μmのガラスロッドスペーサー0.2g、硬化剤0.64gを良く混合してペーストを製造し、2枚のガラス板の間に挟み、プレス圧1kg/cm、150℃、30分の条件で硬化させた。
冷却後、2枚のガラス板の間隔を測定し、その値が5.05μm以下の場合にプレス生産性良好と判定し、表4中○で示した。一方、その値が5.05μmを超える場合は、圧縮変形率30%程度まで圧縮変形させるにはより高いプレス圧力が必要であると判断できるため、その場合にはプレス生産性不良と判定し×で示した。
[Press productivity evaluation]
Conductive fine particles 0.055 g obtained in each example, epoxy resin 1 g, d g = 5 μm glass rod spacer 0.2 g, and curing agent 0.64 g were mixed well to produce a paste, and between two glass plates It was sandwiched and cured under conditions of a press pressure of 1 kg / cm 2 and 150 ° C. for 30 minutes.
After cooling, the distance between the two glass plates was measured, and when the value was 5.05 μm or less, it was determined that the press productivity was good, and indicated by ○ in Table 4. On the other hand, when the value exceeds 5.05 μm, it can be determined that a higher press pressure is necessary for compressive deformation to a compression deformation rate of about 30%. In this case, it is determined that the press productivity is poor. It showed in.

[液晶画像のムラ]
各例で得られた導電性微粒子0.055部、エポキシ樹脂1部、d=5μmのガラスロッドスペーサー0.2部、硬化剤0.64部をよく混合してペーストを製造し、液晶表示素子における電極間の接続に使用した。そして、得られた液晶表示素子における画像ムラの有無を目視で判定した。結果を表4に示す。なお、その際、電極としては、配向膜が形成されたITO薄膜−ガラス板からなるものを用いた。また、液晶の封入、偏光フィルターの配置、バックライトのマウントを常法により実施した。
[Unevenness of LCD image]
Conductive fine particles 0.055 parts obtained in each example, epoxy resin 1 part, d g = 5 μm glass rod spacer 0.2 part, curing agent 0.64 part are mixed well to produce a paste, and a liquid crystal display It used for the connection between the electrodes in an element. And the presence or absence of the image nonuniformity in the obtained liquid crystal display element was determined visually. The results are shown in Table 4. At that time, an electrode made of an ITO thin film-glass plate with an alignment film formed thereon was used. In addition, liquid crystal sealing, polarizing filter arrangement, and backlight mounting were carried out by conventional methods.

Figure 2007012378
Figure 2007012378

Figure 2007012378
Figure 2007012378

Figure 2007012378
Figure 2007012378

このように各実施例で得られた導電性微粒子は、耐湿試験前および耐熱試験前における1つあたりの電気抵抗(初期の電気抵抗)が比較例のものより小さく、高い導電性を備えていた。また、導電性微粒子と電極との接触面積が大きいまま維持されるためか、耐湿信頼性および耐熱信頼性が優れていた。さらに、各実施例で得られた導電性微粒子は低いプレス圧でも圧縮変形するためにプレス生産性が良好であるうえ、液晶表示素子に使用した場合にも液晶画像のムラが認められなかった。
一方、比較例1のものでは、圧縮変形後の回復率が小さいため、導電性微粒子と電極との間に隙間が生じ接触不良を起こしたと考えられ、初期の電気抵抗が悪く、また、耐熱信頼性が非常に悪かった。
また、比較例2のものでは、K値が大きいために、圧縮変形させようとすると高いプレス圧が必要となりプレス生産性に劣ることが示唆された。なお、プレス生産性評価の際に、ペースト硬化後のガラス板の間隔は5.08μmであった。また、初期の電気抵抗が大きいとともに、耐湿信頼性および耐熱信頼性も悪かった。これは、圧縮変形後の回復率が大きいために、導電性微粒子が徐々に変形回復してしまった結果と推測できる。さらに、液晶表示にはムラが生じたが、これはK値および圧縮変形後の回復率がともに大きいために、電極間の距離が不均一になったためと考えられる。
As described above, the conductive fine particles obtained in each Example had a high electrical conductivity per one (initial electrical resistance) before the moisture resistance test and before the heat resistance test, which was smaller than that of the comparative example. . In addition, the moisture resistance reliability and the heat resistance reliability are excellent because the contact area between the conductive fine particles and the electrode is maintained large. Furthermore, since the conductive fine particles obtained in each example were compressed and deformed even at a low pressing pressure, the press productivity was good, and even when used in a liquid crystal display element, no unevenness in the liquid crystal image was observed.
On the other hand, in the case of Comparative Example 1, since the recovery rate after compressive deformation is small, it is considered that a gap was generated between the conductive fine particles and the electrode, resulting in poor contact, initial electrical resistance was poor, and heat resistance Sex was very bad.
Moreover, in the thing of the comparative example 2, since K value was large, when trying to compress-deform, a high press pressure was needed and it was suggested that it is inferior to press productivity. In the press productivity evaluation, the distance between the glass plates after the paste was cured was 5.08 μm. Further, the initial electrical resistance was high, and the moisture resistance reliability and heat resistance reliability were also poor. This can be presumed to be a result of the conductive fine particles gradually deforming and recovering because the recovery rate after compression deformation is large. Furthermore, the liquid crystal display was uneven, which is considered to be because the distance between the electrodes became non-uniform because both the K value and the recovery rate after compression deformation were large.

導電性微粒子の電気抵抗と圧縮変形率との関係を示すグラフである。It is a graph which shows the relationship between the electrical resistance of electroconductive fine particles, and a compressive deformation rate. 導電性微粒子の圧縮荷重と圧縮変位との関係を示すグラフである。It is a graph which shows the relationship between the compressive load and conductive displacement of electroconductive fine particles.

Claims (5)

樹脂微粒子の表面に導電層が形成され、下記式(1)で定義されるK値が20℃において500kgf/mm以下であって、かつ、圧縮変形後の回復率が20℃において5〜25%であることを特徴とする導電性微粒子。
Figure 2007012378
(式(1)中、F、Sはそれぞれ導電性微粒子の10%圧縮変形における荷重値(kgf)、圧縮変位(mm)であり、Rは導電性微粒子の半径(mm)である。)
A conductive layer is formed on the surface of the resin fine particles, the K value defined by the following formula (1) is 500 kgf / mm 2 or less at 20 ° C., and the recovery rate after compression deformation is 5 to 25 at 20 ° C. % Conductive fine particles, characterized by
Figure 2007012378
(In Formula (1), F and S are respectively the load value (kgf) and compression displacement (mm) in 10% compression deformation of conductive fine particles, and R is the radius (mm) of conductive fine particles.)
前記K値が20℃において100〜450kgf/mmであって、かつ、前記回復率が20℃において5〜20%であることを特徴とする請求項1に記載の導電性微粒子。 2. The conductive fine particle according to claim 1, wherein the K value is 100 to 450 kgf / mm 2 at 20 ° C., and the recovery rate is 5 to 20% at 20 ° C. 3. 粒径が2.5〜7.5μmであることを特徴とする請求項1または2に記載の導電性微粒子。   3. The conductive fine particles according to claim 1, wherein the particle diameter is 2.5 to 7.5 μm. サンプル数300以上の場合における粒径の標準偏差Sと粒径の平均値Davとが下記式(2)を満たすことを特徴とする請求項1ないし3のいずれかに記載の導電性微粒子。
S≦Dav×0.05・・・(2)
4. The conductive fine particle according to claim 1, wherein the standard deviation S of the particle diameter and the average value D av of the particle diameter satisfy the following formula (2) when the number of samples is 300 or more.
S ≦ D av × 0.05 (2)
前記樹脂微粒子は、ビニル系単量体を乳化重合して得られたシード粒子に、さらにビニル系単量体をラジカル重合させたものであることを特徴とする請求項1ないし4のいずれかに記載の導電性微粒子。








5. The resin fine particles according to any one of claims 1 to 4, wherein the resin particles are obtained by radical polymerization of vinyl monomers on seed particles obtained by emulsion polymerization of vinyl monomers. The electroconductive fine particles as described.








JP2005190255A 2005-06-29 2005-06-29 Conductive particulate Pending JP2007012378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005190255A JP2007012378A (en) 2005-06-29 2005-06-29 Conductive particulate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005190255A JP2007012378A (en) 2005-06-29 2005-06-29 Conductive particulate

Publications (1)

Publication Number Publication Date
JP2007012378A true JP2007012378A (en) 2007-01-18

Family

ID=37750596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005190255A Pending JP2007012378A (en) 2005-06-29 2005-06-29 Conductive particulate

Country Status (1)

Country Link
JP (1) JP2007012378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063827A1 (en) * 2007-11-12 2009-05-22 Hitachi Chemical Company, Ltd. Circuit connecting material and structure for connecting circuit member
JP2014081928A (en) * 2012-09-25 2014-05-08 Sekisui Chem Co Ltd Conductive particle for touch panel, conductive material for touch panel, and connection structure for touch panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241054A (en) * 1997-10-28 1999-09-07 Sony Chem Corp Anisotropically conductive adhesive and film for adhesion
JP2000322936A (en) * 1999-05-12 2000-11-24 Sekisui Chem Co Ltd Conductive micro particle and conductive connection structure
JP2002033022A (en) * 2000-07-13 2002-01-31 Mitsui Takeda Chemicals Inc Conductive multilayer structure resin particles and anisotropic conductive adhesive using the same
JP2002373751A (en) * 2001-06-14 2002-12-26 Sekisui Chem Co Ltd Method for arranging particulates in micro-hole, thin layer element with conductive particulates arranged, and conductive laminate structure
JP2005126658A (en) * 2003-01-07 2005-05-19 Sekisui Chem Co Ltd Curable resin composition, adhesive epoxy resin paste, adhesive epoxy resin sheet, electroconductive connecting paste, electroconductive connecting sheet and electronic parts-connected body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241054A (en) * 1997-10-28 1999-09-07 Sony Chem Corp Anisotropically conductive adhesive and film for adhesion
JP2000322936A (en) * 1999-05-12 2000-11-24 Sekisui Chem Co Ltd Conductive micro particle and conductive connection structure
JP2002033022A (en) * 2000-07-13 2002-01-31 Mitsui Takeda Chemicals Inc Conductive multilayer structure resin particles and anisotropic conductive adhesive using the same
JP2002373751A (en) * 2001-06-14 2002-12-26 Sekisui Chem Co Ltd Method for arranging particulates in micro-hole, thin layer element with conductive particulates arranged, and conductive laminate structure
JP2005126658A (en) * 2003-01-07 2005-05-19 Sekisui Chem Co Ltd Curable resin composition, adhesive epoxy resin paste, adhesive epoxy resin sheet, electroconductive connecting paste, electroconductive connecting sheet and electronic parts-connected body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063827A1 (en) * 2007-11-12 2009-05-22 Hitachi Chemical Company, Ltd. Circuit connecting material and structure for connecting circuit member
JP2014081928A (en) * 2012-09-25 2014-05-08 Sekisui Chem Co Ltd Conductive particle for touch panel, conductive material for touch panel, and connection structure for touch panel

Similar Documents

Publication Publication Date Title
JP3542611B2 (en) Conductive fine particles, electrode connection structure, and method of manufacturing the same
JP5584468B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP4863988B2 (en) Conductive fine particles and anisotropic conductive material
JP2008521963A (en) Polymer resin fine particles, conductive fine particles, and anisotropic conductive connecting material containing the same
TW201903000A (en) Resin particles, conductive particles, conductive materials, adhesives, connection structures, and liquid crystal display elements
JP2015079586A (en) Anisotropic conductive film
JP4950451B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
CN106233397A (en) Metal covering resin granule and use its conductive adhesive
JP2004296322A (en) Conductive particulate and liquid crystal display element
JP3241276B2 (en) Conductive microsphere and liquid crystal display device
JP2007012378A (en) Conductive particulate
JP4642286B2 (en) Synthetic resin fine particles, conductive fine particles, and anisotropic conductive material composition
JP3027115B2 (en) Anisotropic conductive adhesive film
JP5973015B2 (en) Conductive particles and conductive materials containing conductive particles
JP3766123B2 (en) Conductive connection method between electrodes and conductive fine particles
JP2004095561A (en) Conductive fine particle, electrode connecting structure, and its manufacturing method
JP2005327509A (en) Conductive fine particle and anisotropic conductive material
JP2006107881A (en) Conductive fine particle and anisotropic conductive material
JP2007035574A (en) Conductive particulates, anisotropic conductive material, and connection structural body
JP3653244B2 (en) Electrode connection structure and manufacturing method thereof
JP2004146261A (en) Insulating coating conductive particulate and conductive connection structure
JPH05190014A (en) Conductive micro sphere for connecting electrode
JP5421982B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
CN101047062B (en) Electronic component, production method of electronic component, mounted structure of electronic component, and evaluation method of electronic component
JP2011165320A (en) Circuit connecting member

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080310

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Effective date: 20100928

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124