[go: up one dir, main page]

JP2007010556A - Optical range finding sensor, and equipment provided therewith - Google Patents

Optical range finding sensor, and equipment provided therewith Download PDF

Info

Publication number
JP2007010556A
JP2007010556A JP2005193785A JP2005193785A JP2007010556A JP 2007010556 A JP2007010556 A JP 2007010556A JP 2005193785 A JP2005193785 A JP 2005193785A JP 2005193785 A JP2005193785 A JP 2005193785A JP 2007010556 A JP2007010556 A JP 2007010556A
Authority
JP
Japan
Prior art keywords
light receiving
light
measured
measuring sensor
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005193785A
Other languages
Japanese (ja)
Inventor
Kazuhiro Mizuo
和洋 水尾
Shinya Kawanishi
信也 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005193785A priority Critical patent/JP2007010556A/en
Publication of JP2007010556A publication Critical patent/JP2007010556A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical range finding sensor capable of preventing measuring precision of a distance from getting worse along with a measured object getting distant, without bringing size enlargement and cost increase. <P>SOLUTION: Near infrared wavelength of rays emitted from an LED 1 are brought into a parallel beam by a light emitting side lens 2 to be projected to the measured object 10. A reflected beam by the measured object 10 gets incident into a PSD 5 via a photoreception side lens 3 and a prism 4. Since the prism 4 has a refractive characteristic of making a ratio of a variation of an emission angle to a variation of an incident angle get large along with the incident angle of the beam getting small, the variation of the emission angle of the emission beam from the prism 4 can be made substantially equal between the case where the measured object 10 is located in a near distance position and the case where the measured object 10 is located in a distant position, when the position of the measured object 10 is changed. The measuring precision when the measured object 10 is located in the distant position is thereby made substantially equal to that when the measured object 10 is located in the near distance position. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、測定可能範囲内の被測定物の存在と、この被測定物までの距離とを検出する光学式測距センサに関する。   The present invention relates to an optical distance measuring sensor that detects the presence of a measurement object within a measurable range and the distance to the measurement object.

従来より、三角測量方式の光学式測距センサとしては、光を出射する発光素子と、この発光素子からの出射光を平行にして外部に出射する発光側レンズと、この発光側レンズから出射されて被測定物に照射された光のうち、この被測定物で反射された反射光を集光する受光側レンズと、この受光側レンズで集光された光を検出する受光素子とを備えたものがある(例えば、特開平4−256807号公報:特許文献1参照)。この受光素子は、受光面における光の照射位置を示す信号を出力するPSD(Position Sensitive Photo Detector:位置検出素子)であり、このPSDの出力信号に基づいて、三角測量の原理を用いて信号処理回路で演算を行うことにより、被測定物までの距離を算出している。   Conventionally, as a triangulation optical distance measuring sensor, a light emitting element that emits light, a light emitting side lens that emits light from the light emitting element in parallel, and the light emitted from the light emitting side lens are emitted. A light receiving side lens for collecting the reflected light reflected by the object to be measured and a light receiving element for detecting the light collected by the light receiving side lens. (For example, refer to Japanese Patent Laid-Open No. 4-256807: Patent Document 1). This light receiving element is a PSD (Position Sensitive Photo Detector: position detecting element) that outputs a signal indicating the light irradiation position on the light receiving surface. Based on this PSD output signal, signal processing is performed using the principle of triangulation. By calculating with a circuit, the distance to the object to be measured is calculated.

上記従来の光学式測距センサでは、被測定物に対する距離とPSDの出力値とが反比例になる距離―出力特性を有する。この特性により、被測定物の位置の変化量に対するPSDの出力の変化量の割合が、被測定物までの距離が小さい場合と大きい場合とで異なる。詳しくは、被測定物までの距離が小さい場合は、この被測定物の位置の変化量に対するPSD出力の変化量の割合が大きく、被測定物までの距離が大きい場合は、この被測定物の位置の変化量に対するPSD出力の変化量の割合が小さくなる。したがって、被測定物が光学式測距センサから遠ざかるにつれて、距離の測定値の分解能が低くなって、距離の測定精度が低下するという問題がある。   The conventional optical distance measuring sensor has a distance-output characteristic in which the distance to the object to be measured and the output value of the PSD are inversely proportional. Due to this characteristic, the ratio of the change amount of the PSD output to the change amount of the position of the object to be measured differs depending on whether the distance to the object to be measured is small or large. Specifically, when the distance to the object to be measured is small, the ratio of the change amount of the PSD output to the amount of change in the position of the object to be measured is large, and when the distance to the object to be measured is large, The ratio of the change amount of the PSD output to the change amount of the position becomes small. Therefore, as the object to be measured moves away from the optical distance measuring sensor, there is a problem that the resolution of the distance measurement value is lowered and the distance measurement accuracy is lowered.

このような問題を解決する方法として、光学式測距センサの測定可能範囲を拡大することにより、測定精度が高い範囲を拡大する方法がある。   As a method of solving such a problem, there is a method of expanding a range with high measurement accuracy by expanding a measurable range of the optical distance measuring sensor.

しかしながら、光学式測距センサの測定可能範囲を拡大するためには、発光側レンズと受光側レンズとの間の距離や、発光素子とPSDとの間の距離や、受光側レンズとPSDとの間の距離を増大する必要がある。また、発光側レンズ及び受光側レンズの大型化や、発光素子の出力の増大や、PSDの大型化が必要になる。したがって、光学式測距センサの大型化やコストアップを招くという問題がある。
特開平4−256807号公報
However, in order to expand the measurable range of the optical distance measuring sensor, the distance between the light emitting side lens and the light receiving side lens, the distance between the light emitting element and the PSD, the distance between the light receiving side lens and the PSD, There is a need to increase the distance between. In addition, it is necessary to increase the size of the light emitting side lens and the light receiving side lens, increase the output of the light emitting element, and increase the size of the PSD. Therefore, there is a problem in that the optical ranging sensor is increased in size and cost.
JP-A-4-256807

そこで、本発明の課題は、大型化やコストアップを招くことなく、被測定物が遠ざかるにつれて距離の測定精度が低下することを防止できる光学式測距センサを提供することにある。   Therefore, an object of the present invention is to provide an optical distance measuring sensor that can prevent the measurement accuracy of the distance from decreasing as the object to be measured moves away without causing an increase in size and cost.

上記課題を解決するため、本発明の光学式測距センサは、光を出射する発光素子と、
上記発光素子からの出射光が透過する発光側レンズと、
上記発光側レンズを透過して被測定物に照射され、この被測定物で反射された反射光が入射する受光側レンズと、
上記受光側レンズで集光された光を受ける受光面を有し、この受光面における受光位置に応じた信号を出力する受光素子と、
上記受光素子からの出力信号に基づいて、上記被測定物に対する距離を算出する距離算出回路とを備え、
上記受光素子は、上記被測定物の位置の変化量に対する出力の変化量の割合が、上記被測定物が上記発光側レンズに近い近距離位置にある場合と、上記被測定物が上記発光側レンズから遠い遠距離位置にある場合との間で、互いに略同じであることを特徴としている。
In order to solve the above problems, an optical distance measuring sensor of the present invention includes a light emitting element that emits light,
A light-emitting side lens through which light emitted from the light-emitting element passes,
A light-receiving side lens through which the light to be measured passes through the light-emitting side lens and is irradiated on the object to be measured, and the reflected light reflected by the object to be measured enters;
A light receiving element that receives light collected by the light receiving side lens and outputs a signal corresponding to a light receiving position on the light receiving surface;
A distance calculation circuit for calculating a distance to the object to be measured based on an output signal from the light receiving element;
In the light receiving element, the ratio of the change amount of the output to the change amount of the position of the object to be measured is such that the object to be measured is in a short distance position close to the light emitting side lens, and the object to be measured is the light emitting side. It is characterized by being substantially the same between the case where the lens is located at a long distance from the lens.

上記構成によれば、上記発光素子から出射された出射光が、上記発光側レンズを透過して被測定物に照射され、この被測定物で反射された反射光が上記受光側レンズに入射する。この受光側レンズで集光された光が、上記受光素子の受光面に入射する。この受光素子からの出力に基づいて、上記距離算出回路によって、上記被測定物に対する距離が算出される。上記受光素子は、上記被測定物が上記近距離位置にある場合と遠距離位置にある場合とで、上記被測定物の位置の変化量に対する出力の変化量の割合が略同じである。したがって、上記被測定物が遠距離位置にある場合においても、この被測定物について測定される距離の分解能は、近距離位置にある場合と略同じになる。これにより、上記被測定物が遠距離位置にある場合と近距離位置にある場合とで、互いに略同じ測定精度が得られる。その結果、従来のような大型化やコストアップを招くことなく、被測定物が遠ざかるにつれて距離の測定精度が低下することを防止できる。   According to the above configuration, the emitted light emitted from the light emitting element is transmitted through the light emitting side lens and irradiated to the object to be measured, and the reflected light reflected by the object to be measured is incident on the light receiving side lens. . The light condensed by the light receiving side lens enters the light receiving surface of the light receiving element. Based on the output from the light receiving element, the distance to the device under test is calculated by the distance calculation circuit. In the light receiving element, the ratio of the change amount of the output to the change amount of the position of the object to be measured is substantially the same when the object to be measured is at the short distance position and when the object is at the far distance position. Therefore, even when the object to be measured is at a long distance position, the resolution of the distance measured for the object to be measured is substantially the same as that at the short distance position. Thereby, substantially the same measurement accuracy can be obtained when the object to be measured is located at a long distance position and when it is located at a short distance position. As a result, it is possible to prevent the distance measurement accuracy from deteriorating as the object to be measured moves away without causing an increase in size and cost as in the prior art.

なお、近距離位置とは、被測定物の測定が可能な測定可能範囲内において、上記発光側レンズに可能な限り近い位置をいい、遠距離位置とは、上記測定可能範囲内において、上記発光側レンズから可能な限り遠い位置をいう。   The short distance position means a position as close as possible to the light emitting side lens within the measurable range where the measurement object can be measured, and the long distance position means the light emission within the measurable range. A position as far as possible from the side lens.

従来、受光面における受光位置を検出する受光素子からの出力に基づいて、三角測量の原理を用いて被測定物までの距離を算出する光学式測距センサでは、被測定物が遠ざかっても測定精度が低下しないものは無かった。本発明者は、被測定物が遠ざかるにつれて測定精度が低下する原因が、被測定物の位置の変化量に対する受光素子の出力の変化量の割合が、上記被測定物が近距離位置にある場合よりも、上記被測定物が遠距離位置にある場合のほうが小さい点にあることを見出し、これに基づいて本発明に至ったものである。   Conventional optical distance measuring sensors that calculate the distance to the object to be measured using the principle of triangulation based on the output from the light receiving element that detects the light receiving position on the light receiving surface. There was nothing that accuracy did not decrease. The present inventor found that the measurement accuracy decreases as the object to be measured moves away when the ratio of the amount of change in the output of the light receiving element to the amount of change in the position of the object to be measured is that the object to be measured is at a short distance position. It has been found that the object to be measured is located at a far distance rather than a smaller point, and the present invention has been achieved based on this.

一実施形態の光学式測距センサは、上記被測定物が上記近距離位置にある場合と、上記被測定物が上記遠距離位置にある場合とで、上記被測定物の位置の変化量に対する上記受光素子の受光面における受光位置の移動量が、互いに略同じである。   In one embodiment, the optical distance measuring sensor is configured to detect the amount of change in the position of the measurement object when the measurement object is at the short distance position and when the measurement object is at the long distance position. The amount of movement of the light receiving position on the light receiving surface of the light receiving element is substantially the same.

上記実施形態によれば、上記被測定物が近距離位置にある場合と遠距離位置にある場合とで、この被測定物の位置の変化量に対する上記受光素子の受光面における受光位置の移動量が互いに略同じであることにより、上記被測定物の位置の変化量に対する受光素子からの出力の変化量の割合を互いに略同じにできる。   According to the embodiment, the amount of movement of the light receiving position on the light receiving surface of the light receiving element with respect to the amount of change in the position of the object to be measured when the object to be measured is at a short distance position and when the object is at a long distance position. Are substantially the same, the ratio of the change amount of the output from the light receiving element to the change amount of the position of the object to be measured can be made substantially the same.

一実施形態の光学式測距センサは、上記被測定物が上記近距離位置にある場合と、上記被測定物が上記遠距離位置にある場合とで、上記被測定物の位置の変化量に対する上記受光素子の受光面における受光位置の移動量の割合を互いに略同じにする光学素子を、上記受光側レンズと受光素子との間に備える。   In one embodiment, the optical distance measuring sensor is configured to detect the amount of change in the position of the measurement object when the measurement object is at the short distance position and when the measurement object is at the long distance position. An optical element is provided between the light-receiving side lens and the light-receiving element so that the ratio of the movement amount of the light-receiving position on the light-receiving surface of the light-receiving element is substantially the same.

上記実施形態によれば、上記光学素子によって、上記被測定物の位置の変化量に対する上記受光素子の受光面における受光位置の移動量の割合が、上記被測定物が近距離位置にある場合と遠距離位置にある場合とで、互いに略同じになる。したがって、上記被測定物の位置の変化量に対する受光素子からの出力の変化量の割合を、上記被測定物が近距離位置にある場合と遠距離位置にある場合とで互いに略同じにできる。   According to the embodiment, the ratio of the amount of movement of the light receiving position on the light receiving surface of the light receiving element to the amount of change in the position of the object to be measured by the optical element is such that the object to be measured is at a short distance position. In the case of being in the far distance position, they are substantially the same. Therefore, the ratio of the change amount of the output from the light receiving element to the change amount of the position of the object to be measured can be made substantially the same when the object to be measured is at the short distance position and when it is at the far distance position.

一実施形態の光学式測距センサは、上記受光側レンズは、入射する光の入射角が大きい場合と小さい場合とで、上記入射角の変化量に対する上記受光素子の受光面への集光位置の移動量が、互いに略同じである。   In one embodiment, the light receiving side lens has a condensing position on the light receiving surface of the light receiving element with respect to a change amount of the incident angle depending on whether the incident angle of incident light is large or small. Are substantially the same.

上記実施形態によれば、上記被測定物が近距離位置にある場合と遠距離位置にある場合とに対応して、上記受光側レンズに入射する光の入射角が大きい場合と小さい場合とが生じる。上記受光側レンズは、入射する光の入射角が大きい場合と小さい場合とで、上記入射角の変化量に対する上記受光素子の受光面への集光位置の移動量が、互いに略同じである。したがって、上記被測定物が近距離位置にある場合と遠距離位置にある場合とで、上記被測定物の位置の変化量に対する受光素子からの出力の変化量の割合を互いに略同じにできる。   According to the embodiment, the incident angle of the light incident on the light receiving side lens is large and small, corresponding to the case where the object to be measured is at a short distance position and the case where the object to be measured is at a long distance position. Arise. In the light receiving side lens, when the incident angle of incident light is large and small, the amount of movement of the condensing position on the light receiving surface of the light receiving element with respect to the amount of change in the incident angle is substantially the same. Therefore, the ratio of the change amount of the output from the light receiving element to the change amount of the position of the measurement object can be made substantially the same between the case where the measurement object is located at the short distance position and the case where the measurement object is located at the long distance position.

一実施形態の光学式測距センサは、上記受光素子は、上記受光面の法線が上記発光側レンズの光軸に対して略直角を向くと共に、上記受光面が上記発光素子側を向くように配置されている。   In the optical distance measuring sensor according to one embodiment, the light receiving element is configured such that a normal line of the light receiving surface is substantially perpendicular to an optical axis of the light emitting side lens and the light receiving surface faces the light emitting element side. Is arranged.

上記実施形態によれば、上記受光面の法線が上記発光側レンズの光軸に対して略直角を向くと共に、上記受光面が上記発光素子側を向くように上記受光素子が配置されることにより、この受光素子は、上記被測定物が上記測定可能範囲内の近距離位置にある場合と遠距離位置にある場合とで、上記被測定物の位置の変化量に対する出力の変化量の割合を略同じにできる。   According to the embodiment, the light receiving element is arranged such that the normal line of the light receiving surface is substantially perpendicular to the optical axis of the light emitting side lens and the light receiving surface faces the light emitting element side. Therefore, the light receiving element has a ratio of a change amount of an output to a change amount of the position of the object to be measured when the object to be measured is at a short distance position and a long distance position within the measurable range. Can be made substantially the same.

一実施形態の光学式測距センサは、上記受光素子を搭載するフレームを備え、
上記フレームの上記受光素子を搭載する部分は、フォーミング金型によって他の部分に対して略直角に屈曲されている。
An optical distance sensor according to an embodiment includes a frame on which the light receiving element is mounted.
A portion of the frame on which the light receiving element is mounted is bent at a substantially right angle with respect to other portions by a forming mold.

上記実施形態によれば、電子部品の製造工程で広く用いられているフォーミング金型を用いることにより、簡単かつ安価にフレームを屈曲して、上記受光素子が、受光面の法線が上記発光側レンズの光軸に対して略直角を向くと共に、上記受光面が上記発光素子側を向くように配置可能になる。   According to the above embodiment, the frame is bent easily and inexpensively by using a forming mold widely used in the manufacturing process of electronic components, and the light receiving element has a normal to the light receiving surface on the light emitting side. It is possible to arrange the lens so that it is substantially perpendicular to the optical axis of the lens and the light receiving surface faces the light emitting element.

一実施形態の光学式測距センサは、上記受光素子は、上記受光面の単位面積あたりの電気抵抗値が、近距離位置にある被測定物の反射光が入射する位置よりも、遠距離位置にある被測定物の反射光が入射する位置のほうが大きい。   In the optical distance measuring sensor according to one embodiment, the light receiving element has an electrical resistance value per unit area of the light receiving surface at a position far away from a position where the reflected light of the object to be measured is incident at a short distance. The position where the reflected light of the object to be measured enters is larger.

上記実施形態によれば、上記受光素子からの出力の変化量の割合を、上記被測定物が近距離位置にある場合と遠距離位置にある場合とで互いに略同じにできる。   According to the embodiment, the ratio of the amount of change in the output from the light receiving element can be made substantially the same when the object to be measured is at a short distance position and when it is at a long distance position.

一実施形態の光学式測距センサは、上記受光側レンズは、光軸に関して非対称の表面形状を有する。   In one embodiment, the light receiving side lens has a surface shape that is asymmetric with respect to the optical axis.

上記実施形態によれば、上記光軸に関して非対称の表面形状を有する受光側レンズによって、上記被測定物が近距離位置にある場合と遠距離位置にある場合とで、上記被測定物の位置の変化量に対する上記受光素子の受光面への集光位置の移動量を、互いに略同じにできる。これにより、上記被測定物が近距離位置にある場合と遠距離位置にある場合とで、上記被測定物の位置の変化量に対する受光素子からの出力の変化量の割合を互いに略同じにできる。   According to the embodiment, the light receiving side lens having an asymmetric surface shape with respect to the optical axis determines the position of the object to be measured between the case where the object to be measured is at a short distance position and the case where the object is at a long distance position. The amount of movement of the light collecting position on the light receiving surface of the light receiving element with respect to the amount of change can be made substantially the same. Thereby, the ratio of the change amount of the output from the light receiving element to the change amount of the position of the measurement object can be made substantially the same between the case where the measurement object is located at the short distance position and the case where the measurement object is located at the long distance position. .

一実施形態の光学式測距センサは、上記受光側レンズは、光軸に関して非対称の屈折率分布形状を有する。   In one embodiment, the light receiving side lens has a refractive index distribution shape that is asymmetric with respect to the optical axis.

上記実施形態によれば、上記光軸に関して非対称の屈折率分布形状を有する受光側レンズによって、上記被測定物が近距離位置にある場合と遠距離位置にある場合とで、上記被測定物の位置の変化量に対する上記受光素子の受光面への集光位置の移動量を、互いに略同じにできる。これにより、上記被測定物が近距離位置にある場合と遠距離位置にある場合とで、上記被測定物の位置の変化量に対する受光素子からの出力の変化量の割合を互いに略同じにできる。   According to the embodiment, the light receiving side lens having an asymmetric refractive index distribution shape with respect to the optical axis causes the object to be measured to be in a short distance position and a long distance position. The amount of movement of the light collecting position on the light receiving surface of the light receiving element with respect to the amount of change in position can be made substantially the same. Thereby, the ratio of the change amount of the output from the light receiving element to the change amount of the position of the measurement object can be made substantially the same between the case where the measurement object is located at the short distance position and the case where the measurement object is located at the long distance position. .

一実施形態の光学式測距センサは、上記受光素子は、この受光素子の長手方向の寸法よりも大きい寸法の搭載領域を有するフレームに搭載されている。   In one embodiment of the optical distance measuring sensor, the light receiving element is mounted on a frame having a mounting area having a size larger than the length of the light receiving element in the longitudinal direction.

上記実施形態によれば、上記受光素子の上記フレームの搭載位置を、このフレームの搭載領域内で、この受光素子の長手方向の所望の位置に調節できる。したがって、同一のフレーム及び受光素子を用いて、異なる測定可能範囲を有する光学式測距センサを低コストに作製できる。   According to the embodiment, the mounting position of the frame of the light receiving element can be adjusted to a desired position in the longitudinal direction of the light receiving element within the mounting area of the frame. Therefore, an optical distance measuring sensor having different measurable ranges can be manufactured at low cost using the same frame and light receiving element.

本発明の機器は、上記光学式測距センサを備える。   The apparatus of the present invention includes the optical distance measuring sensor.

上記構成によれば、被測定物が遠ざかるにつれて距離の測定精度が低下することを防止できる光学式測距センサを備えるので、大型化やコストアップを防止しつつ、高精度に動作可能な機器が得られる。   According to the above configuration, the optical distance measuring sensor that can prevent the measurement accuracy of the distance from decreasing as the object to be measured moves away is provided, so that an apparatus that can operate with high accuracy while preventing an increase in size and cost is provided. can get.

なお、上記被測定物とは、物のみに限られず、人をも意味し、光学式測距センサからの距離を測定すべき対象であれば、いかなるものをも包含する。   The object to be measured is not limited to an object, but also means a person, and includes any object as long as it is an object whose distance from an optical distance measuring sensor is to be measured.

また、上記光とは、可視域波長の光に限られず、上記被測定物に照射されて反射するものであれば、例えば赤外域波長や紫外域波長等の他の波長の電磁波をも包含する。   The light is not limited to light having a visible wavelength, and includes electromagnetic waves having other wavelengths such as an infrared wavelength and an ultraviolet wavelength as long as the light is irradiated and reflected on the object to be measured. .

以上のように、本発明の光学式測距センサは、被測定物が測定可能範囲内の近距離位置にある場合と遠距離位置にある場合とで、上記被測定物の位置の変化量に対する出力の変化量の割合が略同じである受光素子を備えるので、上記被測定物が遠距離位置にある場合においても、近距離位置にある場合と略同じ測定精度が得られるから、大型化やコストアップを招くことなく、被測定物が遠ざかるにつれて距離の測定精度が低下することを防止できる。   As described above, the optical distance measuring sensor of the present invention corresponds to the amount of change in the position of the object to be measured depending on whether the object to be measured is at a short distance position or a long distance position within the measurable range. Since it includes a light receiving element whose output change rate is substantially the same, even when the object to be measured is located at a long distance, the same measurement accuracy as that at a short distance can be obtained. Without incurring an increase in cost, it is possible to prevent the measurement accuracy of the distance from decreasing as the object to be measured moves away.

以下、本発明を図示の実施の形態により詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

(第1実施形態)
図1は、本発明の第1実施形態としての光学式測距センサを模式的に示した縦断面図であり、図2は、上記光学式測距センサを模式的に示した平断面図である。
(First embodiment)
FIG. 1 is a longitudinal sectional view schematically showing an optical distance measuring sensor as a first embodiment of the present invention, and FIG. 2 is a plan sectional view schematically showing the optical distance measuring sensor. is there.

この光学式測距センサは、近赤外波長の光を出射する発光素子としてのLED(発光ダイオード)1と、このLED1からの出射光を平行光にする発光側レンズ2と、被測定物からの反射光を集光する受光側レンズ3と、この受光側レンズ3で集光された光を受ける受光素子としてのPSD(位置検出素子)5を備える。上記受光側レンズ3とPSD5との間に、光学素子としてのプリズム4を配置している。このプリズム4は、光の入射角が小さい程、この入射角の変化量に対する出射角の変化量の割合が大きい屈折特性を有する。なお、図2では、発光側及び受光側レンズ2,3とプリズム4は図示していない。   The optical distance measuring sensor includes an LED (light emitting diode) 1 as a light emitting element that emits light of a near infrared wavelength, a light emitting side lens 2 that converts emitted light from the LED 1 into parallel light, and a measured object. And a PSD (position detecting element) 5 as a light receiving element that receives the light collected by the light receiving side lens 3. A prism 4 as an optical element is disposed between the light receiving side lens 3 and the PSD 5. The prism 4 has a refractive characteristic in which the smaller the incident angle of light, the larger the ratio of the change amount of the exit angle to the change amount of the incident angle. In FIG. 2, the light emitting side and light receiving side lenses 2 and 3 and the prism 4 are not shown.

上記PSD5は、表面側から厚み方向に順に、半導体のP層、I層及びN層を有するシリコンフォトダイオードであり、上記P層の表面が、平面視において長方形の受光面になっている。この受光面に光が照射され、光電変換によって生成された光電流が、上記受光面の長手方向の両端に設けられた電極から出力されるようになっている。このPSD5からの電流は、上記LED1とPSD5との間に配置された測距IC(集積回路)6に入力され、この測距IC6によって、上記受光面における照射光の長手方向位置を算出するようになっている。そして、この受光面上の照射光の位置に基づいて、三角測量の原理を用いて被測定物までの距離を算出するようになっている。上記PSD5は、長手方向を上記LED1に向けて配置している。   The PSD 5 is a silicon photodiode having a semiconductor P layer, an I layer, and an N layer in order from the surface side in the thickness direction, and the surface of the P layer is a rectangular light receiving surface in plan view. The light receiving surface is irradiated with light, and a photocurrent generated by photoelectric conversion is output from electrodes provided at both ends in the longitudinal direction of the light receiving surface. The current from the PSD 5 is input to a distance measuring IC (integrated circuit) 6 disposed between the LED 1 and the PSD 5, and the distance IC 6 calculates the longitudinal position of the irradiation light on the light receiving surface. It has become. Based on the position of the irradiated light on the light receiving surface, the distance to the object to be measured is calculated using the principle of triangulation. The PSD 5 is arranged with its longitudinal direction facing the LED 1.

上記LED1、プリズム4、PSD5及び測距IC6は、導電性のケーシング8内に収容しており、上記発光側及び受光側レンズ2,3は、上記ケーシング8の上側面に固定している。   The LED 1, the prism 4, the PSD 5, and the distance measuring IC 6 are accommodated in a conductive casing 8, and the light emitting side and light receiving side lenses 2 and 3 are fixed to the upper side surface of the casing 8.

この光学式測距センサは、被測定物の距離の測定が可能な測定可能範囲が、上記発光側レンズ2の近傍から光の出射方向に約6m離れた位置までの間である。   In this optical distance measuring sensor, the measurable range in which the distance of the object to be measured can be measured is from the vicinity of the light emitting side lens 2 to a position about 6 m away in the light emitting direction.

上記構成の光学式測距センサは、以下のように動作する。   The optical distance measuring sensor having the above configuration operates as follows.

まず、上記LED1から出射された近赤外線が、上記発光側レンズ2で平行光にされてケーシング8の外に出射される。この発光側レンズ2からの出射光が被測定物10に照射され、この照射光のうち被測定物10で反射された反射光が、上記受光側レンズ3に入射する。この受光側レンズ3に入射した反射光は集光され、上記プリズム4で屈折されて、PSD5の受光面上に照射される。このPSD5から、上記受光面における反射光の照射位置に応じた値の電流が出力される。この電流を受けた測距IC6は、上記電流値からPSD5の受光面上の受光位置(反射光の照射位置)を算出し、この受光位置に基づいて、三角測量の原理を用いて上記被測定物10までの距離を算出する。   First, the near infrared ray emitted from the LED 1 is converted into parallel light by the light emitting side lens 2 and emitted outside the casing 8. The light emitted from the light-emitting side lens 2 is irradiated on the object to be measured 10, and the reflected light reflected by the object to be measured 10 is incident on the light-receiving side lens 3. The reflected light incident on the light receiving side lens 3 is condensed, refracted by the prism 4 and irradiated onto the light receiving surface of the PSD 5. A current having a value corresponding to the irradiation position of the reflected light on the light receiving surface is output from the PSD 5. Upon receiving this current, the distance measuring IC 6 calculates a light receiving position (irradiated position of reflected light) on the light receiving surface of the PSD 5 from the current value, and based on this light receiving position, uses the principle of triangulation to measure the above measured object. The distance to the object 10 is calculated.

上記プリズム4は、光の入射角が小さい程、この入射角の変化量に対する出射角の変化量の割合が大きい屈折特性を有する。これにより、上記被測定物10の距離の測定値の精度を、遠距離位置にある場合と近距離位置にある場合とで略同じにできる。   The prism 4 has a refractive characteristic such that the smaller the incident angle of light, the larger the ratio of the change amount of the exit angle to the change amount of the incident angle. Thereby, the accuracy of the measured value of the distance of the object to be measured 10 can be made substantially the same between the case of being at a long distance position and the case of being at a short distance position.

詳しくは、図1に示すように、被測定物10が発光側レンズ2の近傍の近距離位置にある場合、この被測定物10で反射された反射光Bn1は、Bn2で示すように受光側レンズ3で集光されて、Bn3で示すように大きい入射角でプリズム4に入射する。一方、被測定物10が測定可能範囲の限界近傍の遠距離位置にある場合、すなわち、発光側レンズ2から約6mの距離にある場合、この被測定物10で反射された反射光Bf1は、Bf2で示すように小さい入射角で受光側レンズ3で集光されて、Bf3で示すように小さい入射角でプリズム4に入射する。   Specifically, as shown in FIG. 1, when the device under test 10 is in a short distance position near the light emitting side lens 2, the reflected light Bn1 reflected by the device under test 10 is received on the light receiving side as shown by Bn2. The light is condensed by the lens 3 and enters the prism 4 at a large incident angle as indicated by Bn3. On the other hand, when the DUT 10 is at a long distance near the limit of the measurable range, that is, when it is at a distance of about 6 m from the light-emitting side lens 2, the reflected light Bf1 reflected by the DUT 10 is The light is collected by the light-receiving side lens 3 at a small incident angle as indicated by Bf2, and is incident on the prism 4 at a small incident angle as indicated by Bf3.

ここで、近距離位置にある被測定物10の位置と、遠距離位置にある被測定物10の位置が、上記発光側レンズ2からの光の出射方向に、各々単位長さだけ変化したとする。この場合、上記被測定物10からの反射光Bf1,Bn1は受光側レンズ3への入射角が互いに異なるので、この受光側レンズ3からの出射角の変化量は、上記遠距離位置からの反射光Bn1の方が近距離位置からの反射光Bf1よりも小さくなる。したがって、上記プリズム4への入射角の変化量は、遠距離位置にある被測定物10の反射光Bf2の方が、近距離位置にある被測定物10の反射光Bn2よりも小さくなる。しかしながら、上記プリズム4は、光の入射角が小さい程、この入射角の変化量に対する出射角の変化量の割合が大きい屈折特性を有するから、上記プリズム4からの出射角の変化量が、遠距離位置からの反射光Bf3と、近距離位置からの反射光Bn3との間で略同じに補正される。したがって、上記PSD5の受光面における照射光の移動量が、上記被測定物10が遠距離位置にある場合と近距離位置にある場合とで略同じになる。その結果、上記被測定物10の位置の変化量に対して、上記PSD5の出力電流値の変化量が、上記被測定物10が遠距離位置にある場合と近距離位置にある場合とで略同じになる。これにより、上記PSD5の出力値から算出される上記被測定物10の距離の値の分解能を、遠距離位置にある場合と近距離位置にある場合とで略同じにできる。したがって、上記被測定物10の距離の測定値の精度を、遠距離位置にある場合においても、近距離位置にある場合と略同じにできるのである。   Here, the position of the device under test 10 at the short distance position and the position of the device under test 10 at the long distance position each change by the unit length in the light emission direction from the light emitting side lens 2. To do. In this case, the reflected lights Bf1 and Bn1 from the object to be measured 10 have different incident angles to the light receiving side lens 3, so that the amount of change in the emission angle from the light receiving side lens 3 is reflected from the far distance position. The light Bn1 is smaller than the reflected light Bf1 from the short distance position. Therefore, the amount of change in the incident angle to the prism 4 is smaller for the reflected light Bf2 of the object 10 to be measured at the long distance position than for the reflected light Bn2 of the object 10 to be measured at the short distance position. However, since the prism 4 has a refractive characteristic that the ratio of the change amount of the exit angle to the change amount of the incident angle is larger as the incident angle of light is smaller, the change amount of the exit angle from the prism 4 is farther. The reflected light Bf3 from the distance position and the reflected light Bn3 from the short distance position are corrected to be substantially the same. Therefore, the amount of movement of the irradiation light on the light receiving surface of the PSD 5 is substantially the same when the object to be measured 10 is at a long distance position and when it is at a short distance position. As a result, the amount of change in the output current value of the PSD 5 with respect to the amount of change in the position of the device under test 10 is approximately when the device under test 10 is at a long distance position and when it is at a short distance position. Be the same. As a result, the resolution of the distance value of the device under test 10 calculated from the output value of the PSD 5 can be made substantially the same between the case of being at a long distance position and the case of being at a short distance position. Therefore, the accuracy of the measured value of the distance of the object to be measured 10 can be made substantially the same when it is at a long distance position as when it is at a short distance position.

ここで、従来の光学式測距センサを説明することにより、本実施形態の光学式測距センサに対する比較を行う。   Here, a comparison with the optical distance measuring sensor of the present embodiment will be made by describing a conventional optical distance measuring sensor.

図3は、従来の光学式測距センサを模式的に示す縦断面図である。図3において、図1の光学式測距センサの構成部分と同一の構成部分には、同一の参照番号を付して詳細な説明は省略する。   FIG. 3 is a longitudinal sectional view schematically showing a conventional optical distance measuring sensor. 3, the same components as those of the optical distance measuring sensor of FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図3に示すように、従来の光学式測距センサは、ケーシング8内にLED1、プリズム4、PSD5及び測距IC6が収容されており、上記ケーシング8の光出射側の天板に、発光側及び受光側レンズ2,3が固定されている。   As shown in FIG. 3, the conventional optical distance measuring sensor includes an LED 1, a prism 4, a PSD 5, and a distance measuring IC 6 housed in a casing 8, and a light emitting side on the top plate on the light emitting side of the casing 8. The light receiving side lenses 2 and 3 are fixed.

上記PSD5には、上記受光側レンズ3で集光された被測定物10の反射光が、本実施形態のプリズム4を介さずに直接入射するので、このPSD5の出力値は、上記被測定物10の距離に関して反比例の関係を有する。図4は、上記被測定物10の距離と、上記PSD5の出力との関係である距離−出力特性を模式的に示したグラフである。図4において、横軸は、発光側レンズ2から被測定物10までの距離であり、縦軸は、PSD5の出力である。横軸および縦軸のいずれも、最大距離および最大出力で各々規定した無次元量である。   Since the reflected light of the device under test 10 collected by the light receiving side lens 3 directly enters the PSD 5 without passing through the prism 4 of the present embodiment, the output value of the PSD 5 It has an inversely proportional relationship with respect to 10 distances. FIG. 4 is a graph schematically showing a distance-output characteristic that is a relationship between the distance of the DUT 10 and the output of the PSD 5. In FIG. 4, the horizontal axis is the distance from the light emitting side lens 2 to the DUT 10, and the vertical axis is the output of the PSD 5. Both the horizontal axis and the vertical axis are dimensionless quantities respectively defined by the maximum distance and the maximum output.

従来の光学式測距センサにおいて、図4のような距離−出力特性となる理由を、図5を用いて説明する。図5は、光学式測距センサにおける三角測量の原理を模式的に示した図である。   The reason why the conventional optical distance measuring sensor has the distance-output characteristic as shown in FIG. 4 will be described with reference to FIG. FIG. 5 is a diagram schematically showing the principle of triangulation in the optical distance measuring sensor.

図5において、被測定物10が遠距離位置Fにある場合、発光側レンズ2の中心C2から被測定物10までの距離L19と、受光側レンズ3の中心C3からPSD5の受光面上における反射光の照射位置までの距離L22とについて、下記の式(1)のような関係が成立する。
L22=α・L20・L21/L19・・・(1)
ここで、αは比例定数であり、L20は発光側レンズ2の中心C2と、受光側レンズ3の中心C3との間の距離であり、L21は受光側レンズ3の焦点距離である。
In FIG. 5, when the object to be measured 10 is at a long distance position F, the distance L19 from the center C2 of the light emitting side lens 2 to the object to be measured 10 and the reflection on the light receiving surface of the PSD 5 from the center C3 of the light receiving side lens 3. With respect to the distance L22 to the light irradiation position, the following relationship (1) is established.
L22 = α · L20 · L21 / L19 (1)
Here, α is a proportional constant, L20 is the distance between the center C2 of the light emitting side lens 2 and the center C3 of the light receiving side lens 3, and L21 is the focal length of the light receiving side lens 3.

なお、図5において、L18は発光側レンズ2から近距離位置Nにある被測定物10までの距離であり、L23は近距離位置Nにある被測定物10について、受光側レンズ3の中心C3からPSD5の受光面上における反射光の照射位置までの距離である。   In FIG. 5, L18 is the distance from the light-emitting side lens 2 to the device under test 10 at the short distance position N, and L23 is the center C3 of the light receiving side lens 3 for the device under test 10 at the short distance position N. To the irradiation position of the reflected light on the light receiving surface of PSD5.

上記式(1)によれば、被測定物10の距離に対して、PSD5の受光面上における照射位置の距離が反比例の関係を有する。ここで、上記PSD5からの出力値は、受光面の長手方向の端から照射位置までの距離と比例の関係を有するので、被測定物10が発光側レンズ2から遠ざかるにつれて、PSD5からの出力値の変化量が減少することになる。その結果、被測定物10が発光側レンズ2から遠ざかるにつれて、測定値の分解能が低下して、測定値の精度が低下する。   According to the above formula (1), the distance of the irradiation position on the light receiving surface of the PSD 5 has an inverse relationship with the distance of the DUT 10. Here, the output value from the PSD 5 has a proportional relationship with the distance from the end in the longitudinal direction of the light receiving surface to the irradiation position, and therefore the output value from the PSD 5 as the DUT 10 moves away from the light-emitting side lens 2. The amount of change will decrease. As a result, as the device under test 10 moves away from the light-emitting side lens 2, the resolution of the measurement value decreases, and the accuracy of the measurement value decreases.

これに対して、第1実施形態の光学式測距センサは、受光側レンズ3とPSD5との間にプリズム4を配置し、このプリズム4は、光の入射角が小さい程、この入射角の変化量に対する出射角の変化量の割合が大きい屈折特性を有する。これにより、上記PSD5の受光面における照射光の移動量を、上記被測定物10の位置の変化量に対して、この被測定物10が遠距離位置にある場合と近距離位置にある場合とで略同じにできる。その結果、上記被測定物10の距離の測定値の精度を、遠距離位置にある場合と近距離位置にある場合とで略同じにできる。すなわち、上記被測定物10が発光側レンズ2から遠ざかるにつれて測定精度が低下することを防止できる。   On the other hand, in the optical distance measuring sensor according to the first embodiment, the prism 4 is disposed between the light-receiving side lens 3 and the PSD 5, and the prism 4 has a smaller incident angle as the incident angle of light decreases. Refractive characteristics have a large ratio of the change amount of the exit angle to the change amount. As a result, the amount of movement of the irradiation light on the light receiving surface of the PSD 5 with respect to the amount of change in the position of the device under test 10 can be measured when the device under test 10 is at a long distance position and when it is at a short distance position. Can be almost the same. As a result, the accuracy of the measured value of the distance of the device under test 10 can be made substantially the same between the case of being at a long distance position and the case of being at a short distance position. That is, it is possible to prevent the measurement accuracy from being lowered as the DUT 10 moves away from the light-emitting side lens 2.

(第2実施形態)
図6は、本発明の第2実施形態の光学式測距センサが備えるPSD5と、このPSD5がダイボンドされたフレーム15とを示す図である。
(Second Embodiment)
FIG. 6 is a diagram showing PSD 5 provided in the optical distance measuring sensor according to the second embodiment of the present invention and a frame 15 to which this PSD 5 is die-bonded.

第2実施形態の光学式測距センサは、第1実施形態の光学式測距センサに対して、プリズム4を有しない点と、PSD5の取付け姿勢が直角をなす点が異なる。第2実施形態の光学式測距センサについて、第1実施形態の光学式測距センサの構成部分と同一の部分には同一の参照番号を引用して、詳細な説明を省略する。   The optical distance measuring sensor according to the second embodiment is different from the optical distance measuring sensor according to the first embodiment in that the prism 4 is not provided and the PSD 5 is attached at a right angle. Regarding the optical distance measuring sensor according to the second embodiment, the same reference numerals are used for the same parts as those of the optical distance measuring sensor according to the first embodiment, and detailed description thereof is omitted.

本実施形態の光学式測距センサは、第1実施形態の光学式測距センサと同様に、ケーシング8内に、LED1、PSD5及び測距IC6を収容すると共に、上記ケーシング8の天板に、発光側レンズ2と受光側レンズ3とを固定している。   The optical distance measuring sensor of this embodiment accommodates the LED 1, PSD 5, and distance measuring IC 6 in the casing 8, as well as the optical distance measuring sensor of the first embodiment, The light emitting side lens 2 and the light receiving side lens 3 are fixed.

上記PSD5は、図6に示すようなフレーム15にダイボンドされており、このフレーム15は、PSD5ダイボンドされたダイボンド部15aと、このダイボンド部15aに対して直角に屈曲した取付け部15bとを有する。この取付け部15bを、ケーシング8の底板の内側面に固定することにより、上記ダイボンド部15aにダイボンドされたPSD5の受光面の法線を、発光側レンズ2の光軸と直角の方向に向けている。   The PSD 5 is die-bonded to a frame 15 as shown in FIG. 6, and the frame 15 has a die-bonded portion 15a bonded to the PSD 5 and a mounting portion 15b bent at a right angle to the die-bonded portion 15a. By fixing the mounting portion 15b to the inner surface of the bottom plate of the casing 8, the normal line of the light receiving surface of the PSD 5 die-bonded to the die-bonding portion 15a is directed in a direction perpendicular to the optical axis of the light-emitting side lens 2. Yes.

本実施形態の光学式測距センサは、PSD5の受光面の法線が、発光側レンズ2の光軸と直角をなすことにより、被測定物10が近距離位置にある場合と遠距離位置にある場合とで、距離の測定精度を互いに略同じにできる。図7は、本実施形態において用いる三角測量の原理を模式的に示した図である。   In the optical distance measuring sensor according to the present embodiment, the normal line of the light receiving surface of the PSD 5 is perpendicular to the optical axis of the light-emitting side lens 2, so that the object to be measured 10 is at a short distance position and at a long distance position. In some cases, the distance measurement accuracy can be substantially the same. FIG. 7 is a diagram schematically showing the principle of triangulation used in the present embodiment.

図7において、被測定物10が遠距離位置Fにある場合の発光側レンズ2の中心C2から被測定物までの距離L25と、受光側レンズ3の中心C3からPSD5の受光面上における反射光の照射位置までの距離L29とについて、下記の式(2)のような関係が成立する。
L29=β・L25・L27/L26・・・(2)
ここで、βは比例定数であり、L26は発光側レンズ2と受光側レンズ3のレンズ中心C2,C3の間の距離であり、L27は受光側レンズ3とPSD5の受光面までの距離である。
In FIG. 7, the distance L25 from the center C2 of the light emitting side lens 2 to the object to be measured when the object to be measured 10 is at the long distance position F, and the reflected light on the light receiving surface of the PSD 5 from the center C3 of the light receiving side lens 3 For the distance L29 to the irradiation position, a relationship such as the following equation (2) is established.
L29 = β · L25 · L27 / L26 (2)
Here, β is a proportional constant, L26 is the distance between the lens centers C2 and C3 of the light emitting side lens 2 and the light receiving side lens 3, and L27 is the distance between the light receiving side lens 3 and the light receiving surface of the PSD5. .

なお、図7において、L24は近距離位置Nにある被測定物10までの距離であり、L25は遠距離位置Fにある被測定物10までの距離であり、L28は近距離位置Nにある被測定物10について、受光側レンズ3の中心C3からPSD5の受光面上における反射光の照射光位置までの距離である。   In FIG. 7, L24 is the distance to the object 10 at the short distance position N, L25 is the distance to the object 10 at the far distance position F, and L28 is at the short distance position N. It is the distance from the center C3 of the light receiving side lens 3 to the irradiation light position of the reflected light on the light receiving surface of the PSD 5 for the device under test 10.

上記式(2)から明らかなように、被測定物10の距離に対して、PSD5の受光面上における反射光の照射位置の距離が比例の関係を有する。PSD5の出力は、受光面の端から照射位置までの距離と比例の関係を有するので、被測定物10の距離とPSD5の出力値とは、図8に示すような距離−出力特性を有する。なお、図8において、横軸は、発光側レンズ2から被測定物10まで距離であり、縦軸は、PSD5の出力である。横軸および縦軸のいずれも、最大距離および最大出力で各々規定した無次元量である。   As is clear from the above equation (2), the distance of the reflected light irradiation position on the light receiving surface of the PSD 5 is proportional to the distance of the DUT 10. Since the output of the PSD 5 is proportional to the distance from the end of the light receiving surface to the irradiation position, the distance of the DUT 10 and the output value of the PSD 5 have distance-output characteristics as shown in FIG. In FIG. 8, the horizontal axis is the distance from the light-emitting side lens 2 to the DUT 10, and the vertical axis is the output of the PSD 5. Both the horizontal axis and the vertical axis are dimensionless quantities respectively defined by the maximum distance and the maximum output.

本実施形態の光学式測距センサは、図8に示すような距離−出力特性を有するので、被測定物10が発光側レンズ2から遠ざかっても、従来のようにPSD5からの出力値の変化量が減少することがない。その結果、測距IC6によって算出される被測定物10までの距離の値は、被測定物10が遠距離位置にある場合でも、近距離位置にある場合と略同じ分解能を有し、測定精度の低下を防止することができる。   Since the optical distance measuring sensor of this embodiment has a distance-output characteristic as shown in FIG. 8, even if the object to be measured 10 moves away from the light-emitting side lens 2, the output value from the PSD 5 changes as in the prior art. The amount never decreases. As a result, the value of the distance to the device under test 10 calculated by the distance measuring IC 6 has substantially the same resolution as when the device under test 10 is at a long distance position, and has a measurement accuracy. Can be prevented.

上記フレーム15は、第1実施形態において用いられるような板状のフレームを、電子部品の製造工程で広く用いられるフォーミング金型で屈曲することにより、簡単安価に作製できる。   The frame 15 can be easily and inexpensively manufactured by bending a plate-like frame used in the first embodiment with a forming mold widely used in the manufacturing process of electronic components.

(第3実施形態)
第3実施形態の光学式測距センサは、第1実施形態の光学式測距センサに対して、プリズム4を有しない点と、受光側レンズの表面形状が異なる。第3実施形態の光学式測距センサについて、第1実施形態の光学式測距センサの構成部分と同一の部分には同一の参照番号を引用して、詳細な説明を省略する。
(Third embodiment)
The optical distance measuring sensor of the third embodiment is different from the optical distance measuring sensor of the first embodiment in that the prism 4 is not provided and the surface shape of the light receiving side lens is different. Regarding the optical distance measuring sensor according to the third embodiment, the same reference numerals are used for the same parts as those of the optical distance measuring sensor according to the first embodiment, and detailed description thereof is omitted.

本実施形態の光学式測距センサは、被測定物10の反射光を集光する受光側レンズが、光軸に関して非対称の表面形状を有する。この受光側レンズの表面形状は、光の入射角が小さい程、この入射角の変化量に対する出射角の変化量の割合が大きい屈折特性を有する。これにより、遠距離位置にある被測定物10からの反射光は、近距離位置にある被測定物10からの反射光よりも入射角が小さいので、遠距離位置と近距離位置との間で、被測定物10の位置の変化量に対する受光側レンズからの出射角の変化量が略同じになる。その結果、PSD5の受光面上における照射光の移動量が互いに略同じになって、遠距離位置と近距離位置との間で距離の測定精度が互いに略同じになる。つまり、被測定物10が遠ざかるにつれて距離の測定精度が低下することを防止できる。   In the optical distance measuring sensor of the present embodiment, the light-receiving side lens that collects the reflected light of the object to be measured 10 has an asymmetric surface shape with respect to the optical axis. The surface shape of the light-receiving side lens has a refractive characteristic in which the smaller the incident angle of light, the greater the ratio of the change amount of the exit angle to the change amount of the incident angle. Thereby, the reflected light from the object to be measured 10 at the long distance position has a smaller incident angle than the reflected light from the object to be measured 10 at the short distance position, so that the distance between the long distance position and the short distance position is between. The amount of change in the emission angle from the light receiving side lens with respect to the amount of change in the position of the DUT 10 is substantially the same. As a result, the movement amounts of the irradiation light on the light receiving surface of the PSD 5 are substantially the same, and the distance measurement accuracy is substantially the same between the long distance position and the short distance position. That is, it is possible to prevent the distance measurement accuracy from being lowered as the DUT 10 moves away.

このように、本実施形態によれば、第1実施形態の軸対象の受光側レンズ3とプリズム4の機能を、受光側レンズのみによって得ることができる。   Thus, according to the present embodiment, the functions of the axial light receiving side lens 3 and the prism 4 of the first embodiment can be obtained only by the light receiving side lens.

なお、受光側レンズの表面形状を光軸に関して非対称に形成することに代えて、受光側レンズの屈折率分布を光軸に関して非対称に形成することによって本実施形態の効果を奏することもできる。例えば、受光側レンズを、屈折率が互いに異なる材料によって発光側レンズに近い側の部分と遠い側の部分とを形成し、光の入射角が小さい程、この入射角の変化量に対する出射角の変化量の割合が大きくなる屈折特性を与えてもよい。   Note that, instead of forming the surface shape of the light receiving side lens asymmetrically with respect to the optical axis, the effect of the present embodiment can be achieved by forming the refractive index distribution of the light receiving side lens asymmetric with respect to the optical axis. For example, the light receiving side lens is formed of a material closer to the light emitting side lens and a far side portion made of materials having different refractive indexes, and the smaller the incident angle of the light, the more the outgoing angle of the incident angle changes. Refractive characteristics that increase the rate of change may be given.

(第4実施形態)
第4実施形態の光学式測距センサは、第1実施形態の光学式測距センサに対して、プリズム4が無い点と、PSDの受光面における電気抵抗値が不均一である点が異なる。
(Fourth embodiment)
The optical distance measuring sensor according to the fourth embodiment differs from the optical distance measuring sensor according to the first embodiment in that the prism 4 is not provided and the electric resistance value on the light receiving surface of the PSD is not uniform.

本実施形態において、第1実施形態の光学式測距センサと同一の構成部分には同一の参照番号を引用して、詳細な説明を省略する。   In the present embodiment, the same components as those of the optical distance measuring sensor of the first embodiment are referred to by the same reference numerals, and detailed description thereof is omitted.

第1実施形態の光学式測距センサのPSD5は、受光面の単位面積当たりの抵抗値が、いずれの位置においても同じである。これに対して、本実施形態では、受光面の単位面積当たりの抵抗値を、受光面の長手方向の一端から他端に向かって大きくなるように形成している。この単位面積当たりの抵抗値が大きい側の端を、発光側レンズ2側に向けてPSDを配置している。すなわち、発光側レンズ2から遠ざかるにつれて受光面の単位面積当たりの抵抗値が小さくなるように配置している。   The PSD 5 of the optical distance measuring sensor according to the first embodiment has the same resistance value per unit area of the light receiving surface at any position. On the other hand, in the present embodiment, the resistance value per unit area of the light receiving surface is formed so as to increase from one end to the other end in the longitudinal direction of the light receiving surface. The PSD is arranged with the end having the larger resistance value per unit area facing the light emitting side lens 2 side. That is, the resistance value per unit area of the light receiving surface is decreased as the distance from the light emitting side lens 2 increases.

本実施形態の光学式測距センサは、PSDの受光面の単位面積当たりの抵抗値が、発光側レンズ2から遠ざかるにつれて小さいので、上記PSDからの出力の変化量の割合を、被測定物10が近距離位置にある場合と遠距離位置にある場合とで互いに略同じにできる。   In the optical distance measuring sensor according to the present embodiment, the resistance value per unit area of the light receiving surface of the PSD decreases as the distance from the light-emitting side lens 2 increases, so the ratio of the amount of change in the output from the PSD is measured. Can be made substantially the same in the case of being in the short distance position and in the case of being in the long distance position.

詳しくは、被測定物10の位置の変化量に対する受光側レンズ3からの出射角の変化量は、被測定物10が遠距離位置にある場合よりも近距離位置にある場合の方が大きい。したがって、この受光側レンズ3から出射されてPSDの受光面に照射される照射光の移動量は、上記被測定物10が遠距離位置にある場合よりも近距離位置にある場合の方が大きい。ここで、上記PSDの受光面において、遠距離位置にある被測定物10からの反射光は、発光側レンズ2に近い位置に照射され、上記近距離位置にある被測定物10からの反射光は、発光側レンズ2から遠い位置に照射される。そして、上記PSDの受光面の単位面積当たりの抵抗値は、発光側レンズ2から遠ざかるにつれて小さくなるように形成されている。したがって、受光面上において、近距離位置にある被測定物10からの照射光は、抵抗値が小さい領域で大きく移動し、遠距離位置にある被測定物10からの照射光は、抵抗値が大きい領域で小さく移動することになる。これにより、上記PSDからの出力電流値が、上記被測定物10の位置の変化量に対して変化する割合が、上記被測定物10が遠距離位置にある場合と近距離位置にある場合との間で互いに略同じになる。したがって、上記PSDの出力値から算出される上記被測定物10の距離の値の分解能を、遠距離位置にある場合と近距離位置にある場合とで略同じにできる。その結果、上記被測定物10の距離の測定値の精度を、遠距離位置にある場合においても、近距離位置にある場合と略同じにできる。   Specifically, the change amount of the emission angle from the light-receiving side lens 3 with respect to the change amount of the position of the object to be measured 10 is larger when the object to be measured 10 is at the short distance position than when the object to be measured 10 is at the long distance position. Therefore, the amount of movement of the irradiation light emitted from the light receiving side lens 3 and applied to the light receiving surface of the PSD is larger when the object to be measured 10 is at a short distance position than when the object to be measured 10 is at a long distance position. . Here, on the PSD light receiving surface, the reflected light from the object to be measured 10 at a long distance position is irradiated to a position near the light-emitting side lens 2 and the reflected light from the object to be measured 10 at the short distance position. Is irradiated to a position far from the light-emitting side lens 2. The resistance value per unit area of the light-receiving surface of the PSD is formed so as to decrease as the distance from the light-emitting side lens 2 increases. Therefore, on the light receiving surface, the irradiation light from the object to be measured 10 at a short distance moves greatly in a region having a small resistance value, and the irradiation light from the object to be measured 10 at a long distance position has a resistance value. It will move small in a large area. As a result, the rate at which the output current value from the PSD changes with respect to the amount of change in the position of the device under test 10 is when the device under test 10 is in a long distance position and in the short distance position. Are substantially the same. Therefore, the resolution of the distance value of the device under test 10 calculated from the output value of the PSD can be made substantially the same between the case of being at a long distance position and the case of being at a short distance position. As a result, the accuracy of the measured value of the distance of the device under test 10 can be made substantially the same when it is at the far distance position as when it is at the near distance position.

(第5実施形態)
第5実施形態では、光学式測距センサの測距範囲を変更することにより、測距範囲内の測定精度の差を縮小するものである。
(Fifth embodiment)
In the fifth embodiment, the difference in measurement accuracy within the distance measurement range is reduced by changing the distance measurement range of the optical distance measurement sensor.

図9A及び9Bは、本実施形態の光学式測距センサにおける三角測量の原理を模式的に示した図である。   9A and 9B are diagrams schematically showing the principle of triangulation in the optical distance measuring sensor according to the present embodiment.

本実施形態の光学式測距センサは、PSD5がダイボンドされるフレーム25が、PSD5の長手方向の寸法よりも大きいダイボンド領域を有する。これにより、同一のフレーム25を用いてPSD5のダイボンド位置を調節することにより、異なる測距範囲を有する光学式測距センサが得られる。   In the optical distance measuring sensor according to the present embodiment, the frame 25 to which the PSD 5 is die-bonded has a die bond area larger than the dimension in the longitudinal direction of the PSD 5. Accordingly, by adjusting the die bond position of the PSD 5 using the same frame 25, an optical distance measuring sensor having a different distance measuring range can be obtained.

図9Aにおいて、被測定物10が、発光側レンズ2の中心C2からL45の距離だけ離れた遠距離位置Fにある場合と、発光側レンズ2の中心C2からL44の距離だけ離れた近距離位置Nにある場合との間で、PSD5の受光面上における反射光の照射位置の差の距離は、L48になる。この照射位置の差の距離L48は、発光側レンズ2と受光側レンズ3の中心C2,C3の間の距離L46と、受光側レンズ3の焦点距離L47と、PSD5の発光側レンズ2の中心C2からの距離L50によって決まる。   In FIG. 9A, when the object to be measured 10 is at a long distance position F that is a distance L45 from the center C2 of the light emitting side lens 2, and a short distance position that is a distance L44 from the center C2 of the light emitting side lens 2. The distance of the difference in the irradiation position of the reflected light on the light receiving surface of the PSD 5 with the case of N is L48. This irradiation position difference distance L48 is a distance L46 between the centers C2 and C3 of the light emitting side lens 2 and the light receiving side lens 3, a focal length L47 of the light receiving side lens 3, and a center C2 of the light emitting side lens 2 of PSD5. It is determined by the distance L50 from.

ここで、図9Bに示すように、同一のフレーム25上に、PSD5を、図9Aにおけるよりも発光側レンズ2から遠い位置であって、発光側レンズ2の中心C2から距離L51の位置にダイボンドする。これにより、PSD5の受光面上に反射光が照射される距離L48を変えないで、測距範囲を変更することができる。この場合、フレーム25上のPSD5のダイボンド位置の変更のみでよいので、発光側レンズ2の中心C2と受光側レンズ3の中心C3との間の距離L46や、受光側レンズ3の焦点距離や、PSD5の受光領域の長さL48を変える必要が無いから、ケーシング8や受光側レンズ3やPSD5の変更によるコスト上昇を防止できる。   Here, as shown in FIG. 9B, the PSD 5 is die-bonded on the same frame 25 at a position farther from the light emitting side lens 2 than in FIG. 9A and at a distance L51 from the center C2 of the light emitting side lens 2. To do. As a result, the distance measurement range can be changed without changing the distance L48 at which the reflected light is irradiated onto the light receiving surface of the PSD 5. In this case, it is only necessary to change the die bond position of the PSD 5 on the frame 25. Therefore, the distance L46 between the center C2 of the light emitting side lens 2 and the center C3 of the light receiving side lens 3, the focal length of the light receiving side lens 3, Since it is not necessary to change the length L48 of the light receiving area of the PSD 5, it is possible to prevent an increase in cost due to a change in the casing 8, the light receiving side lens 3, or the PSD 5.

(第6実施形態)
本発明の第6実施形態の機器としての自走式掃除機は、第1実施形態の光学式測距センサを備える。この自走式掃除機は、上記光学式測距センサによって、被測定物として室内の壁や、掃除機の周囲に存在する障害物や、人体等に対する距離を、これらの被測定物が測距範囲の限界近傍に位置する場合であっても高精度に計測できる。したがって、上記室内を、障害物や人体等との衝突を正確に回避しながら走行して掃除動作を行うことができる。
(Sixth embodiment)
The self-propelled cleaner as the device of the sixth embodiment of the present invention includes the optical distance measuring sensor of the first embodiment. This self-propelled cleaner uses the optical distance measuring sensor to measure the distance to the wall of the room as an object to be measured, obstacles around the cleaner, the human body, etc. Even if it is located near the limit of the range, it can be measured with high accuracy. Therefore, it is possible to perform a cleaning operation while traveling in the room while accurately avoiding a collision with an obstacle or a human body.

また、上記機器は、上記自走式掃除機以外の例えばプロジェクタであってもよい。このプロジェクタは、本発明の光学式測距センサを備えることにより、映像を投射すべきスクリーン等に対する距離を、測距範囲の限界に至るまで高精度に計測することができる。このプロジェクタによれば、上記光学式測距センサからの情報に基づいてオートフォーカス装置を駆動することにより、測距範囲の限界近傍に位置するスクリーンに、高精度に焦点を合わせて映像を投射できる。したがって、高精細の大画面映像をスクリーンに映し出すことができる。   Further, the device may be a projector other than the self-propelled cleaner, for example. By providing the optical distance measuring sensor of the present invention, this projector can measure the distance to the screen or the like on which an image is to be projected with high accuracy up to the limit of the distance measuring range. According to this projector, by driving the autofocus device based on the information from the optical distance measuring sensor, it is possible to project an image with a high-precision focus on a screen located near the limit of the distance measuring range. . Therefore, a high-definition large-screen image can be displayed on the screen.

本発明の第1実施形態としての光学式測距センサを模式的に示した縦断面図である。It is the longitudinal cross-sectional view which showed typically the optical ranging sensor as 1st Embodiment of this invention. 第1実施形態の光学式測距センサを模式的に示した平断面図である。It is the plane sectional view showing typically the optical ranging sensor of a 1st embodiment. 従来の光学式測距センサを模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional optical ranging sensor typically. 被測定物の距離とPSDの出力との間の距離−出力特性を模式的に示したグラフである。It is the graph which showed typically the distance-output characteristic between the distance of a to-be-measured object, and the output of PSD. 光学式測距センサにおける三角測量の原理を模式的に示した図である。It is the figure which showed typically the principle of the triangulation in an optical ranging sensor. 第2実施形態の光学式測距センサが備えるPSD及びフレームを示す図である。It is a figure which shows PSD and a frame with which the optical ranging sensor of 2nd Embodiment is provided. 第2実施形態において用いる三角測量の原理を模式的に示した図である。It is the figure which showed typically the principle of the triangulation used in 2nd Embodiment. 第2実施形態の光学式測距センサの距離−出力特性を模式的に示したグラフである。It is the graph which showed typically the distance-output characteristic of the optical ranging sensor of a 2nd embodiment. 第5実施形態の光学式測距センサにおける三角測量の原理を模式的に示した図である。It is the figure which showed typically the principle of the triangulation in the optical ranging sensor of 5th Embodiment. 第5実施形態の光学式測距センサにおいて、PSDの位置を変更したときの三角測量の原理を模式的に示した図である。In the optical distance measuring sensor of 5th Embodiment, it is the figure which showed typically the principle of the triangulation when the position of PSD is changed.

符号の説明Explanation of symbols

1 LED
2 発光側レンズ
3 受光側レンズ
4 プリズム
5 PSD
6 測距IC
8 ケーシング
10 被測定物
1 LED
2 Light-Emitting Lens 3 Light-Receiving Lens 4 Prism 5 PSD
6 Ranging IC
8 Casing 10 Object to be measured

Claims (11)

光を出射する発光素子と、
上記発光素子からの出射光が透過する発光側レンズと、
上記発光側レンズを透過して被測定物に照射され、この被測定物で反射された反射光が入射する受光側レンズと、
上記受光側レンズで集光された光を受ける受光面を有し、この受光面における受光位置に応じた信号を出力する受光素子と、
上記受光素子からの出力信号に基づいて、上記被測定物に対する距離を算出する距離算出回路とを備え、
上記受光素子は、上記被測定物の位置の変化量に対する出力の変化量の割合が、上記被測定物が上記発光側レンズに近い近距離位置にある場合と、上記被測定物が上記発光側レンズから遠い遠距離位置にある場合との間で、互いに略同じであることを特徴とする光学式測距センサ。
A light emitting element that emits light;
A light-emitting side lens through which light emitted from the light-emitting element passes,
A light-receiving side lens through which the light to be measured passes through the light-emitting side lens and is irradiated on the object to be measured, and the reflected light reflected by the object to be measured enters;
A light receiving element that receives light collected by the light receiving side lens and outputs a signal corresponding to a light receiving position on the light receiving surface;
A distance calculation circuit for calculating a distance to the object to be measured based on an output signal from the light receiving element;
In the light receiving element, the ratio of the change amount of the output to the change amount of the position of the object to be measured is such that the object to be measured is at a short distance position close to the light emitting side lens, and the object to be measured is the light emitting side. An optical distance measuring sensor characterized by being substantially the same with each other when located at a far distance from a lens.
請求項1に記載の光学式測距センサにおいて、
上記被測定物が上記近距離位置にある場合と、上記被測定物が上記遠距離位置にある場合とで、上記被測定物の位置の変化量に対する上記受光素子の受光面における受光位置の移動量が、互いに略同じであることを特徴とする光学式測距センサ。
The optical distance measuring sensor according to claim 1,
The movement of the light receiving position on the light receiving surface of the light receiving element with respect to the amount of change in the position of the measured object when the measured object is at the short distance position and when the measured object is at the long distance position An optical distance measuring sensor characterized in that the amounts are substantially the same.
請求項2に記載の光学式測距センサにおいて、
上記被測定物が上記近距離位置にある場合と、上記被測定物が上記遠距離位置にある場合とで、上記被測定物の位置の変化量に対する上記受光素子の受光面における受光位置の移動量の割合を互いに略同じにする光学素子を、上記受光側レンズと受光素子との間に備えることを特徴とする光学式測距センサ。
The optical distance measuring sensor according to claim 2,
Movement of the light receiving position on the light receiving surface of the light receiving element with respect to the amount of change in the position of the object to be measured when the object to be measured is at the short distance position and when the object to be measured is located at the long distance position. An optical distance measuring sensor comprising an optical element having a ratio of amounts substantially equal to each other between the light receiving side lens and the light receiving element.
請求項2に記載の光学式測距センサにおいて、
上記受光側レンズは、入射する光の入射角が大きい場合と小さい場合とで、上記入射角の変化量に対する上記受光素子の受光面への集光位置の移動量が、互いに略同じであることを特徴とする光学式測距センサ。
The optical distance measuring sensor according to claim 2,
In the light receiving side lens, the amount of movement of the condensing position on the light receiving surface of the light receiving element with respect to the amount of change in the incident angle is substantially the same for both cases where the incident angle of incident light is large and small. Optical distance measuring sensor.
請求項1に記載の光学式測距センサにおいて、
上記受光素子は、上記受光面の法線が上記発光側レンズの光軸に対して略直角を向くと共に、上記受光面が上記発光素子側を向くように配置されていることを特徴とする光学式測距センサ。
The optical distance measuring sensor according to claim 1,
The light receiving element is disposed such that a normal line of the light receiving surface is substantially perpendicular to an optical axis of the light emitting side lens, and the light receiving surface is directed to the light emitting element side. Type distance measuring sensor.
請求項5に記載の光学式測距センサにおいて、
上記受光素子を搭載するフレームを備え、
上記フレームの上記受光素子を搭載する部分は、フォーミング金型によって他の部分に対して略直角に屈曲されていることを特徴とする光学式測距センサ。
The optical distance measuring sensor according to claim 5,
A frame on which the light receiving element is mounted;
The optical distance measuring sensor, wherein a portion of the frame on which the light receiving element is mounted is bent at a substantially right angle with respect to other portions by a forming mold.
請求項1に記載の光学式測距センサにおいて、
上記受光素子は、上記受光面の単位面積あたりの電気抵抗値が、近距離位置にある被測定物の反射光が入射する位置よりも、遠距離位置にある被測定物の反射光が入射する位置のほうが大きいことを特徴とする光学式測距センサ。
The optical distance measuring sensor according to claim 1,
The light receiving element has an electric resistance value per unit area of the light receiving surface that is reflected by a light measured at a far distance from a position where light reflected from a light measured at a short distance is incident. An optical distance measuring sensor having a larger position.
請求項2に記載の光学式測距センサにおいて、
上記受光側レンズは、光軸に関して非対称の表面形状を有することを特徴とする光学式測距センサ。
The optical distance measuring sensor according to claim 2,
The optical distance measuring sensor, wherein the light receiving side lens has an asymmetric surface shape with respect to an optical axis.
請求項2に記載の光学式測距センサにおいて、
上記受光側レンズは、光軸に関して非対称の屈折率分布形状を有することを特徴とする光学式測距センサ。
The optical distance measuring sensor according to claim 2,
The optical distance measuring sensor, wherein the light-receiving side lens has an asymmetric refractive index distribution shape with respect to the optical axis.
請求項1に記載の光学式測距センサにおいて、
上記受光素子は、この受光素子の長手方向の寸法よりも大きい寸法の搭載領域を有するフレームに搭載されていることを特徴とする光学式測距センサ。
The optical distance measuring sensor according to claim 1,
The optical distance measuring sensor, wherein the light receiving element is mounted on a frame having a mounting area having a dimension larger than the dimension in the longitudinal direction of the light receiving element.
請求項1乃至10のいずれか1つに記載の光学式測距センサを備えた機器。   A device comprising the optical distance measuring sensor according to any one of claims 1 to 10.
JP2005193785A 2005-07-01 2005-07-01 Optical range finding sensor, and equipment provided therewith Pending JP2007010556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005193785A JP2007010556A (en) 2005-07-01 2005-07-01 Optical range finding sensor, and equipment provided therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005193785A JP2007010556A (en) 2005-07-01 2005-07-01 Optical range finding sensor, and equipment provided therewith

Publications (1)

Publication Number Publication Date
JP2007010556A true JP2007010556A (en) 2007-01-18

Family

ID=37749261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005193785A Pending JP2007010556A (en) 2005-07-01 2005-07-01 Optical range finding sensor, and equipment provided therewith

Country Status (1)

Country Link
JP (1) JP2007010556A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229458A (en) * 2008-03-19 2009-10-08 Vorwerk & Co Interholding Gmbh Autonomous dust collector provided with sensor unit and its subject for floor
CN102144919A (en) * 2010-02-04 2011-08-10 精工爱普生株式会社 Biological information detector, biological information measuring device, and method for designing reflecting part in biological information detector
JP2013088406A (en) * 2011-10-21 2013-05-13 Nanao Corp Distance measuring device including range-finding sensor and distance measuring method
JP2017122711A (en) * 2015-11-13 2017-07-13 ジック アーゲー Photoelectric sensor and object detection method
CN107087097A (en) * 2017-06-27 2017-08-22 维沃移动通信有限公司 A camera structure and terminal
CN108494909A (en) * 2018-03-09 2018-09-04 广东欧珀移动通信有限公司 Electronic device and manufacturing method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162701A (en) * 1985-01-11 1986-07-23 Hitachi Zosen Corp Method for measuring position
JPS6318201A (en) * 1986-07-11 1988-01-26 Hamamatsu Photonics Kk Semiconductor position detector
JPS63292015A (en) * 1987-05-26 1988-11-29 Rikagaku Kenkyusho Configuration of optical distance detection device imaging optical system
JPS645108U (en) * 1987-06-27 1989-01-12
JPS648614U (en) * 1987-07-03 1989-01-18
JPH04174923A (en) * 1990-07-06 1992-06-23 Omron Corp Displacement sensor and positioning device
JPH0587526A (en) * 1991-07-26 1993-04-06 Omron Corp Displacement sensor
JPH05240611A (en) * 1992-02-26 1993-09-17 Omron Corp Displacement sensor
JPH06213657A (en) * 1993-01-20 1994-08-05 Omron Corp Measuring distance variable type displacement measuring device
JPH10221064A (en) * 1997-02-07 1998-08-21 Nippon Soken Inc Optical distance-measuring device
JP2003035534A (en) * 2001-07-25 2003-02-07 Sumitomo Osaka Cement Co Ltd Distance sensor and distance sensor array

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162701A (en) * 1985-01-11 1986-07-23 Hitachi Zosen Corp Method for measuring position
JPS6318201A (en) * 1986-07-11 1988-01-26 Hamamatsu Photonics Kk Semiconductor position detector
JPS63292015A (en) * 1987-05-26 1988-11-29 Rikagaku Kenkyusho Configuration of optical distance detection device imaging optical system
JPS645108U (en) * 1987-06-27 1989-01-12
JPS648614U (en) * 1987-07-03 1989-01-18
JPH04174923A (en) * 1990-07-06 1992-06-23 Omron Corp Displacement sensor and positioning device
JPH0587526A (en) * 1991-07-26 1993-04-06 Omron Corp Displacement sensor
JPH05240611A (en) * 1992-02-26 1993-09-17 Omron Corp Displacement sensor
JPH06213657A (en) * 1993-01-20 1994-08-05 Omron Corp Measuring distance variable type displacement measuring device
JPH10221064A (en) * 1997-02-07 1998-08-21 Nippon Soken Inc Optical distance-measuring device
JP2003035534A (en) * 2001-07-25 2003-02-07 Sumitomo Osaka Cement Co Ltd Distance sensor and distance sensor array

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229458A (en) * 2008-03-19 2009-10-08 Vorwerk & Co Interholding Gmbh Autonomous dust collector provided with sensor unit and its subject for floor
TWI610650B (en) * 2008-03-19 2018-01-11 佛維爾克控股公司 Automatically displaceable floor-dust collector
CN102144919A (en) * 2010-02-04 2011-08-10 精工爱普生株式会社 Biological information detector, biological information measuring device, and method for designing reflecting part in biological information detector
JP2013088406A (en) * 2011-10-21 2013-05-13 Nanao Corp Distance measuring device including range-finding sensor and distance measuring method
JP2017122711A (en) * 2015-11-13 2017-07-13 ジック アーゲー Photoelectric sensor and object detection method
CN107087097A (en) * 2017-06-27 2017-08-22 维沃移动通信有限公司 A camera structure and terminal
CN108494909A (en) * 2018-03-09 2018-09-04 广东欧珀移动通信有限公司 Electronic device and manufacturing method
WO2019169917A1 (en) * 2018-03-09 2019-09-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Electronic device and manufacturing method for same
CN108494909B (en) * 2018-03-09 2020-03-20 Oppo广东移动通信有限公司 Electronic device and manufacturing method
US10910449B2 (en) 2018-03-09 2021-02-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Electronic device and manufacturing method for same

Similar Documents

Publication Publication Date Title
CN103134470B (en) Optical ranging device and electronic equipment installed with the same
US7995189B2 (en) Optical distance measuring sensor and electronic device
TWI536210B (en) Method of estimating motion with optical lift detection
JP2008051764A (en) Range finding sensor, and electronic device having sensor mounted
CN111721235B (en) Photoelectric edge detection system and detection method thereof
TWI570387B (en) Image ranging system, light source module and image sensing module
JP2005017382A (en) Distance measuring sensor and electronic apparatus provided with the same
JP2012026921A (en) Optical distance measuring equipment and equipment loaded with the same
JP2003287420A (en) Ranging sensor, electronic equipment having the same, and manufacturing method of the ranging sensor
JPH10221064A (en) Optical distance-measuring device
CN106093454A (en) Non-calibrating vehicle-mounted space filtering speed measuring device and speed-measuring method
JP2006125862A (en) Optical range finding sensor, self-advancing cleaner, and air conditioner
CN108594258A (en) Amendment type tachogenerator and its calibration based on Doppler effect and measurement method
JP2007010556A (en) Optical range finding sensor, and equipment provided therewith
CN114930191B (en) Laser measuring device and movable platform
JPH08184431A (en) Distance measuring equipment
TWI666422B (en) A displacement sensor device and object displacement measurement method
EP3511699B1 (en) Refractometer apparatus and method for optically measuring a refractive index difference
JPH04248509A (en) Multipoint range finder
JPS58216903A (en) Thickness measuring device
JP2009098003A (en) Vibration displacement detecting device and method of detecting displacement and vibration
KR20090039208A (en) Distance measuring sensor module
JP2013246048A (en) Distance measuring device
JPS60244802A (en) Distance measuring instrument
JP2006105764A (en) Acceleration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A02 Decision of refusal

Effective date: 20100629

Free format text: JAPANESE INTERMEDIATE CODE: A02