JP2007009068A - System and method using reformed gas - Google Patents
System and method using reformed gas Download PDFInfo
- Publication number
- JP2007009068A JP2007009068A JP2005191820A JP2005191820A JP2007009068A JP 2007009068 A JP2007009068 A JP 2007009068A JP 2005191820 A JP2005191820 A JP 2005191820A JP 2005191820 A JP2005191820 A JP 2005191820A JP 2007009068 A JP2007009068 A JP 2007009068A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- carbon monoxide
- reformed
- recovered
- reforming furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/122—Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
Landscapes
- Gasification And Melting Of Waste (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Carbon And Carbon Compounds (AREA)
- Industrial Gases (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
【課題】転炉と別置のガス改質炉を用いて改質ガス中の一酸化炭素ガス、水素ガスを化学原料に有効利用可能にし、かつ改質ガス中の二酸化炭素を大気に放出することなく有効利用し得るようにする。
【解決手段】ガス改質炉1において、可燃性廃棄物及び/又はその乾留副生成物8、及び石炭10を酸素9と反応させてCOガス、H2ガス、CO2ガス、N2ガスを含む改質ガスを生成する。改質ガス中のCO2ガス、COガス、及びH2ガスは、分離装置2,3,4を解して順次分離回収される。回収されたCOガス及びH2ガスの少なくとも一つを化学原料として化学物質合成設備6、7に送られる。CO2ガス14は、COガスの分離工程の前工程で改質ガスから分離回収され、ガス改質炉1に還流される。還流されるCO2ガスは、ガス改質炉へ搬送される石炭の搬送用及び炉シール用のN2ガスの代替として利用される。
【選択図】図1
To effectively use carbon monoxide gas and hydrogen gas in reformed gas as chemical raw materials and to release carbon dioxide in the reformed gas to the atmosphere using a gas reforming furnace separately from the converter So that it can be used effectively without any problems.
In a gas reforming furnace 1, a combustible waste and / or its dry distillation by-product 8 and coal 10 are reacted with oxygen 9 to produce CO gas, H 2 gas, CO 2 gas, and N 2 gas. A reformed gas containing is generated. The CO 2 gas, CO gas, and H 2 gas in the reformed gas are separated and recovered sequentially through the separation devices 2, 3, and 4. At least one of the recovered CO gas and H 2 gas is sent as a chemical raw material to chemical substance synthesis facilities 6 and 7. The CO 2 gas 14 is separated and recovered from the reformed gas in the previous step of the CO gas separation step, and is returned to the gas reforming furnace 1. The refluxed CO 2 gas is used as an alternative to N 2 gas for transporting coal and sealing the furnace transported to the gas reforming furnace.
[Selection] Figure 1
Description
本発明は、製鉄所の転炉ガスと別置きのガス改質炉設備で生成される改質ガスを、化学品(例えば酢酸等)の製造原料として有効利用するための改質ガス利用システムと、この改質ガス利用システムを転炉ガスシステムと結合させたシステムに関する。 The present invention relates to a reformed gas utilization system for effectively using a reformed gas generated in a separate gas reforming furnace facility and a converter gas at an ironworks as a raw material for producing a chemical product (for example, acetic acid). The present invention relates to a system in which this reformed gas utilization system is combined with a converter gas system.
製鉄所の転炉で副生成される一酸化炭素(CO)ガスを、化学品製造所(化学物質合成設備)に送って酢酸などの化学品の原料として利用可能にする産業間連携のエネルギーシステムや、転炉の代替方式として、製鉄所に転炉と別置のガス改質炉設備を設置して一酸化炭素ガスや水素(H2)ガスを生成し、化学品の原料として利用するエネルギーシステムが提案されている。 Inter-industrial energy system that sends carbon monoxide (CO) gas, which is by-produced in the steelworks converter, to a chemical manufacturing plant (chemical synthesis facility) and can be used as a raw material for chemicals such as acetic acid As an alternative to the converter, energy is used as a raw material for chemical products by installing a gas reformer facility separate from the converter at the ironworks to generate carbon monoxide gas and hydrogen (H 2 ) gas. A system has been proposed.
ここで、従来における、転炉で副生成されるガス(「転炉ガス」と称することもある)の有効利用と、別置ガス改質炉で生成される改質ガスの有効利用について説明する。
(転炉ガスの有効利用について)
(1)製鉄所の転炉から副生成される転炉ガスエネルギーの有効利用については、回収ボイラーによる蒸気回収や燃焼設備の燃料ガスとして利用されていることが知られている。転炉内発生ガス温度は1000℃を超える高温であり、煙道部ガス温度も千数百度に達する場合がある。高温ガス顕熱は、通常は、水冷ジャケットによるガス冷却により熱交換される。循環冷却水によって持ち出される熱は冷却塔にて大気放散される。また、炉頂部に顕熱回収設備を設置し、蒸気回収して有効利用を図る方策も一部で行われている。
Here, the conventional effective use of gas by-produced in the converter (sometimes referred to as “converter gas”) and the effective use of the reformed gas generated in the separate gas reforming furnace will be described. .
(Effective use of converter gas)
(1) About the effective use of the converter gas energy byproduced from the converter of a steelworks, it is known that it is utilized as the steam recovery by a recovery boiler and the fuel gas of a combustion facility. The gas temperature generated in the converter is higher than 1000 ° C., and the flue gas temperature may reach several thousand degrees. The hot gas sensible heat is usually exchanged by gas cooling using a water cooling jacket. The heat brought out by the circulating cooling water is dissipated into the atmosphere in the cooling tower. In addition, some sensible heat recovery equipment is installed at the top of the furnace to recover steam for effective use.
転炉ガスは、一酸化炭素ガス、水素ガスのような有用ガス以外にも不可避的に二酸化炭素(CO2)、窒素(N2)を含む。さらに酸素吹き込みに伴う鉄ダスト類を含む。 The converter gas inevitably contains carbon dioxide (CO 2 ) and nitrogen (N 2 ) in addition to useful gases such as carbon monoxide gas and hydrogen gas. Furthermore, iron dust accompanying oxygen blowing is included.
ダスト類ならびに水溶性ガスについては、湿式集塵機にて除去され、清浄化された転炉ガスが回収対象のガスとしてガスホルダーに送られる。転炉は、挿入・溶解・吹錬・出湯を順次繰り返すバッチシステムであるので、通常複数基の運転で若干の平準化はされる。しかしながら、発生ガスは大きな流量変動を伴うので、ガスホルダーが発生ガス量変動のバッファーとして設置される。 Dusts and water-soluble gas are removed by a wet dust collector and the cleaned converter gas is sent to the gas holder as the gas to be recovered. Since the converter is a batch system that repeats insertion, melting, blowing, and tapping water in sequence, it is usually leveled slightly by operation of multiple units. However, since the generated gas is accompanied by a large flow rate variation, a gas holder is installed as a buffer for the generated gas amount variation.
回収される転炉ガスは、一酸化炭素、水素などの可燃成分を50%以上含んでいることから、製鉄所内の加熱炉や発電設備等の補助燃料として利用できる。ガスホルダー容量以上の転炉ガス発生の場合に対応して、複数の設備の補助燃料として使用することでバッファー機能を持たせることも選択肢のひとつである。例えば、高炉設備を持たない製鉄所では、高炉ガスやコークス炉ガスの発生が無いため、副生成ガスとしては転炉ガスに頼らざるを得ず、バッファー機能の必要性や所要規模は大きなものとなる。 Since the recovered converter gas contains 50% or more of combustible components such as carbon monoxide and hydrogen, it can be used as an auxiliary fuel for heating furnaces and power generation facilities in steelworks. Corresponding to the case of converter gas generation exceeding the gas holder capacity, it is also an option to provide a buffer function by using it as auxiliary fuel for multiple facilities. For example, in a steelworks without blast furnace facilities, there is no generation of blast furnace gas or coke oven gas, so it is necessary to rely on converter gas as a by-product gas, and the necessity and required scale of the buffer function are large. Become.
また、転炉ガス中には一酸化炭素成分が過半を占めている点に着目して、隣接する化学物質合成設備に原料ガスとして回収転炉ガスを供給する方法も特許文献1に示されている。この有効利用法は、転炉ガス回収系統の下流に酢酸を合成する設備を配設して一酸化炭素ガスをメタノールと反応させて酢酸を製造する方法が示されている。
Moreover, paying attention to the fact that the carbon monoxide component occupies a majority in the converter gas,
転炉ガスから一酸化炭素ガスを分離する方法としては、2段圧力スイング吸着(PSA)法が知られている。これは、まず第1段の圧力スイング吸着(PSA)で二酸化炭素を吸着除去し、第2段の圧力スイング吸着(PSA)で一酸化炭素を吸着する方法である。この方法によれば、吸着された一酸化炭素の脱着回収を減圧下で行うので、高純度の一酸化炭素ガスを回収することができる(非特許文献1)。転炉ガスを構成するガス分子の吸着特性は、一般には分子量の重い順となり、また一酸化炭素と窒素は吸着特性が類似している。かような状況の下で、経済的に高純度の一酸化炭素を得るためには、一酸化炭素分離装置の前段で一酸化炭素分圧を高めることが有効であることが知られている(非特許文献2)。二酸化炭素、一酸化炭素、窒素、水素のモル分子量は、それぞれ44、28、28、2である。
(2)転炉ガス発生時の時間あたりのガス量変動は膨大なものになる。その理由としては、(イ)転炉のサイクル時間内における炉の挙動が溶解・脱炭・吹錬などであり、炉の停止・起動が断続的であること、(ロ)かつ複数炉設備の場合でも各炉が独立して稼動していることが挙げられる。またガス組成についても、前述のような溶解・吹錬の起動・停止時のガス燃焼制御から、一定の一酸化炭素濃度を維持することは困難である。炉内からは燃焼で生成される一酸化炭素と二酸化炭素、底吹きに使用している窒素等の混合ガスが発生する。また、石炭を投入している場合には、熱分解により水素も生成する。スクラップや型銑を原料にする転炉においては、副原料に、微粉炭や廃タイヤ・チップを含ませる場合もある。廃タイヤ中のスチールコードは鉄原料として、ゴム他可燃成分は底吹き微粉炭代替として活用できるが硫黄(S)分もガス中に含まれる。
As a method for separating the carbon monoxide gas from the converter gas, a two-stage pressure swing adsorption (PSA) method is known. In this method, carbon dioxide is first adsorbed and removed by first-stage pressure swing adsorption (PSA), and carbon monoxide is adsorbed by second-stage pressure swing adsorption (PSA). According to this method, the desorption recovery of the adsorbed carbon monoxide is performed under reduced pressure, so that high-purity carbon monoxide gas can be recovered (Non-Patent Document 1). The adsorption characteristics of the gas molecules constituting the converter gas are generally in descending order of molecular weight, and the adsorption characteristics of carbon monoxide and nitrogen are similar. Under such circumstances, in order to obtain high-purity carbon monoxide economically, it is known that it is effective to increase the carbon monoxide partial pressure at the front stage of the carbon monoxide separator ( Non-patent document 2). The molar molecular weights of carbon dioxide, carbon monoxide, nitrogen and hydrogen are 44, 28, 28 and 2, respectively.
(2) Gas amount fluctuation per hour when converter gas is generated becomes enormous. The reasons are as follows: (b) The furnace behavior within the converter cycle time is melting, decarburizing, blowing, etc., and the furnace is stopped and started intermittently. Even in this case, it is mentioned that each furnace operates independently. In addition, regarding the gas composition, it is difficult to maintain a constant carbon monoxide concentration from the above-described gas combustion control at the start / stop of melting / blowing. From the furnace, a mixed gas such as carbon monoxide and carbon dioxide produced by combustion and nitrogen used for bottom blowing is generated. In addition, when coal is input, hydrogen is also generated by thermal decomposition. In converters that use scraps and molds as raw materials, pulverized coal and waste tires and chips may be included in the auxiliary materials. Steel cords in waste tires can be used as iron raw materials, and rubber and other combustible components can be used as a substitute for bottom-blown pulverized coal, but sulfur (S) is also included in the gas.
転炉ガスの宿命であるバッチ操業に起因するガス発生変動に対しては、ガス貯蔵タンク等のバッファー機能も設けることが知られている。化学原料としての一酸化炭素や水素の需要増加に対して、バッチ操業に伴うガス量変動を均一化することが要求される。また、冷鉄源溶解法を採用した転炉の運転では、発生ガスのカロリー変動を伴う場合もある。したがって、ガス貯蔵タンクの容量は、上記のガス量変動の均一化に、カロリー変動の均一化まで含めると膨大なものなることは容易に推察できる。
(改質ガスの有効利用について)
ガス改質炉は、製鉄所内に集積された廃棄物(廃タイヤ、廃プラスチックなどの炭素含有品)及び/又はその副生成物(乾留化された炭素、ガス、油)および石炭などの原料を酸素と反応(部分燃焼)させて、一酸化炭素ガス、水素ガスを生成するものであり、これらのガスは、補助燃料、化学原料として利用可能である。
It is known to provide a buffer function such as a gas storage tank for fluctuations in gas generation caused by batch operation which is the fate of converter gas. In response to the increasing demand for carbon monoxide and hydrogen as chemical raw materials, it is required to make the gas amount fluctuations associated with batch operations uniform. Moreover, the operation of the converter adopting the cold iron source melting method may be accompanied by calorie fluctuation of the generated gas. Therefore, it can be easily guessed that the capacity of the gas storage tank becomes enormous if the above-described uniform gas amount fluctuation is included in the uniform calorie fluctuation.
(Effective use of reformed gas)
A gas reforming furnace uses raw materials such as waste (carbon-containing products such as waste tires and plastics) and / or by-products (carbonized carbon, gas, oil) and coal accumulated in steelworks. It reacts with oxygen (partial combustion) to generate carbon monoxide gas and hydrogen gas, and these gases can be used as auxiliary fuel and chemical raw material.
改質ガスシステムとは、転炉ガスシステムとは別置のガス改質炉設備を設置することにより、製鉄所内に存在する廃棄物あるいはその副生成物(乾留化された炭素、油、ガス)をより付加価値の高い化学原料として利用可能な形態に改質するシステムである。このシステムによれば、エネルギー余力を捻出し、また、転炉間欠運転による流量変動に対するバッファー機能の装備などを可能にする。 The reformed gas system is a waste gas or its by-products (carbonized, carbonized, oil, and gas) existing in the steelworks by installing a gas reforming furnace installed separately from the converter gas system. Is a system that can be used as a chemical raw material with higher added value. According to this system, it is possible to generate an energy surplus and to equip a buffer function with respect to a flow rate fluctuation caused by intermittent operation of the converter.
ガス改質炉では、製鉄所内に保有するエネルギー生成原料、例えば廃タイヤや廃プラスチック等の廃棄物処理後の副生成物質(乾留された炭素、油、ガス)ならびに石炭に酸素を反応させる。ガス改質炉への石炭および乾留チャーの搬送とガス化炉内のシールガスに、窒素が使用される。 In the gas reforming furnace, oxygen is reacted with energy-generating raw materials held in the steelworks, for example, by-products (carbonized carbon, oil, gas) after waste treatment such as waste tires and plastics, and coal. Nitrogen is used for the transfer of coal and dry distillation char to the gas reforming furnace and the seal gas in the gasification furnace.
ガス改質炉で生成した改質ガスは、熱交換器で冷却される。その後、ガス精製設備で改質ガス中のダスト類が除去され、また硫化水素(H2S)や硫化カルボニル(COS)などの硫黄系化合物などの不純物が除去される。精製された改質ガスは、例えば鉄鋼側の用途としては、熱間圧延工場の加熱炉用補助燃料ならび発電設備向け補助燃料に使用される。また、改質ガスは、化学側の用途としては、一酸化炭素分離装置および水素分離装置を介して原料供給ガスとして使用可能である。
(その他の一酸化炭素生成法)
化学原料用の一酸化炭素を製造するためには、重質油を原料とするガス化炉を使用する方法が従来から知られている。アスファルト等の重質油は石油精製プラント等からの供給となり、製鉄所内で使用する原料の範疇には入っておらず、専用の原料確保が必要となる。したがって、製鉄所内のエネルギー需給条件からは好ましいとはいえない。この場合には、一酸化炭素を必要とする化学会社自身が重質油ガス化炉を設置するのが一般的である。
(Other carbon monoxide production methods)
In order to produce carbon monoxide for a chemical raw material, a method using a gasifier using heavy oil as a raw material has been conventionally known. Heavy oil such as asphalt is supplied from oil refining plants and is not included in the category of raw materials used in steelworks, and it is necessary to secure dedicated raw materials. Therefore, it cannot be said that it is preferable from the energy supply and demand conditions in the steelworks. In this case, it is common for a chemical company that requires carbon monoxide to install a heavy oil gasifier.
転炉ガス回収系と別置のガス改質炉設備により一酸化炭素を主成分とする改質ガスの生成を行う方式によれば、転炉ガス回収系で課題とされていた一酸化炭素流量変動に対するバッファー機能の装備を可能にする。また、転炉ガスエネルギーの化学原料としての不足体質の脱却、未利用エネルギー活用によるエネルギー余力の捻出等の問題点を解消することができる。しかしながら、この方式においても、一酸化炭素分離回収の前段階処理で分離した二酸化炭素の有効利用が図れない点や、改質ガス中の窒素成分の残存により一酸化炭素ガス成分の純度に対する制約があり、経済的向上のためにはなお課題が残されている。
すなわち、転炉ガス回収系統とは別置のガス改質炉系統による化学原料ガスの供給において、二酸化炭素、一酸化炭素、水素を順次、分離回収する方法の場合には、以下の技術的課題がある。
According to the method of generating reformed gas mainly composed of carbon monoxide with the converter gas recovery system and the separate gas reforming furnace equipment, the carbon monoxide flow rate, which has been a problem in the converter gas recovery system Enables the provision of buffer functions against fluctuations. In addition, problems such as escape from the shortage of converter gas energy as a chemical raw material and generation of energy surplus by utilizing unused energy can be solved. However, even in this method, the carbon dioxide separated in the pre-treatment of carbon monoxide separation and recovery cannot be effectively used, and there is a restriction on the purity of the carbon monoxide gas component due to the remaining nitrogen component in the reformed gas. Yes, there are still issues for economic improvement.
That is, in the case of a method for sequentially separating and recovering carbon dioxide, carbon monoxide, and hydrogen in the supply of chemical raw material gas by a gas reforming furnace system that is separate from the converter gas recovery system, the following technical problems There is.
第1の課題は、分離した二酸化炭素は、オフガスとして大気放出するか、所外への搬出等の措置が必要となる。二酸化炭素排出削減の地球環境問題対策の観点からすれば、製鉄所内で二酸化炭素を有効利用できることが望まれる。 The first problem is that the separated carbon dioxide must be released into the atmosphere as off-gas or taken out of the office. From the viewpoint of measures for global environmental problems to reduce carbon dioxide emissions, it is desirable that carbon dioxide can be effectively used in steelworks.
第2の課題は、二酸化炭素を除去した回収ガス中には、なお窒素成分がそのまま残っており、一酸化炭素分圧を高める観点からも窒素低減を図ることが望まれる。第3の課題は、化学原料ガスの安定供給のための、バックアップ機能が必要なことがある。 The second problem is that the nitrogen component still remains in the recovered gas from which carbon dioxide has been removed, and it is desired to reduce nitrogen from the viewpoint of increasing the carbon monoxide partial pressure. A third problem may be that a backup function is required for stable supply of chemical source gas.
本発明は、上記改質ガス利用システムの課題を解決するために、基本的には、次のように構成される。 The present invention is basically configured as follows in order to solve the problems of the reformed gas utilization system.
本発明の改質ガス利用システムは、ガス改質炉によって、可燃廃棄物(例えば廃タイヤ,廃プラスチック等)及び/又はその副生物質(乾留炭素,ガス)や石炭に酸素を反応させ、それにより、転炉ガスと類似の一酸化炭素,水素,二酸化炭素、窒素成分で構成される改質ガスを発生させることを前提とする。そして、一酸化炭素分離の前段で二酸化炭素ガスを分離し回収し、その二酸化炭素ガスを改質炉に還流させる系統を備える。 The reformed gas utilization system of the present invention reacts oxygen with combustible waste (for example, waste tires, waste plastics, etc.) and / or by-products (carbonized carbon, gas) and coal by a gas reforming furnace. Thus, it is assumed that a reformed gas composed of carbon monoxide, hydrogen, carbon dioxide, and nitrogen components similar to the converter gas is generated. And the system which isolate | separates and collect | recovers carbon dioxide gas in the front | former stage of carbon monoxide separation, and recirculates the carbon dioxide gas to a reforming furnace is provided.
この場合、ガス改質炉に還流される二酸化炭素ガスは、石炭搬送や炉シール用の窒素ガスの代替として利用することができる。二酸化炭素をガス改質炉に還流させた場合、その一部がガス改質炉内で水素と反応し、次化学式により一酸化炭素が精製されるので、改質ガス中の二酸化炭素濃度の増大を抑制し、反面一酸化炭素濃度の低下を抑えることができる。 In this case, the carbon dioxide gas recirculated to the gas reforming furnace can be used as an alternative to nitrogen gas for coal transportation and furnace sealing. When carbon dioxide is refluxed to the gas reforming furnace, a part of it reacts with hydrogen in the gas reforming furnace, and carbon monoxide is purified by the following chemical formula, so the concentration of carbon dioxide in the reformed gas increases. On the other hand, a decrease in the concentration of carbon monoxide can be suppressed.
[化1]
CO2+H2→CO+H2O
また、化学物質合成設備(化学品製造設備)の改質精製ガス(COやH2)供給系に、転炉で回収された精製ガス供給系統を接続すれば、化学原料の確実なバックアップ機能が可能となる。
[Chemical 1]
CO 2 + H 2 → CO + H 2 O
In addition, if the refined gas supply system recovered by the converter is connected to the reformed refined gas (CO or H 2 ) supply system of the chemical substance synthesis facility (chemical product production facility), a reliable backup function for chemical raw materials can be provided. It becomes possible.
本発明によれば、ガス改質炉において、石炭搬送や炉シール用の窒素ガスの代替ガスとして、分離回収した二酸化炭素を利用することができる。それにより、製鉄所内での回収二酸化炭素の有効利用とあわせて、搬送・シール用窒素ガスの使用量節減,一酸化炭素分離装置のフィード一酸化炭素濃度を高め、PSAによる一酸化炭素回収率を高めることができる。 According to the present invention, in the gas reforming furnace, carbon dioxide separated and recovered can be used as a substitute gas for nitrogen gas for coal transportation and furnace sealing. As a result, in addition to the effective use of recovered carbon dioxide in steelworks, the use of nitrogen gas for transportation and sealing is reduced, the carbon monoxide concentration in the carbon monoxide separator is increased, and the carbon monoxide recovery rate by PSA is increased. Can be increased.
化学物質合成設備においては、改質ガスの精製ガスの供給系と転炉回収ガスの供給系統とを接続することにより、化学原料ガスの安定供給のためのバックアップ機能を発揮することができる。 In a chemical substance synthesis facility, a backup function for a stable supply of chemical raw material gas can be exhibited by connecting a purified gas supply system of reformed gas and a converter recovery gas supply system.
(実施例1)
図1は、本発明に係る第1実施例の改質ガス利用システムの構成図である。
Example 1
FIG. 1 is a configuration diagram of a reformed gas utilization system according to a first embodiment of the present invention.
本システムは、上流側から下流側に向けて、ガス改質炉設備1、ガス精製装置2、二酸化炭素分離装置3、一酸化炭素分離装置4、水素分離装置5を備える。これらの構成要素は、製鉄所内に配置される。また、一酸化炭素分離装置4は、一酸化炭素供給ライン16を介して化学物質製造所の酢酸製造設備6に接続される。水素分離装置5は、シクロヘキサン製造設備7に水素供給ラインを介して接続される。
This system includes a gas reforming
ガス改質炉設備1は、その上流に接続される廃棄物処理装置(例えば乾留ガス化装置)30から廃棄物副生成物8が供給され、また、酸素ガス供給系から酸素ガス9が供給され、石炭供給系から石炭10が供給され、窒素ガス供給系から窒素ガス11が供給される。
The gas reforming
廃棄物副生成物8は、例えば廃タイヤを乾留ガス化処理して生じた乾留炭素、油、ガスなどで、改質により利便性の高いガスとして用途が拡大する。石炭10は、コークスの原料や転炉原料、微粉炭火力等の自家発電設備の原料として製鉄所内で調達できる原料である。酸素ガス9は転炉への吹き込み剤として通常所内に製造設備を有している。窒素ガス11は、微粉炭搬送用およびガス改質炉の圧力容器内部のシール用に使用される。ただし、本実施例では、後述するように、改質ガス12が生成されてその中の二酸化炭素ガス14がガス改質炉1に還流されると、この還流二酸化炭素が窒素ガスに替わる機能(微粉炭搬送用及び炉内シール用)をなす。
The waste by-product 8 is, for example, carbonized carbon, oil, gas, etc. generated by carbonizing a waste tire, and its use is expanded as a highly convenient gas by reforming.
ガス改質炉設備1に供給される原料類は、製鉄所内に製造設備または貯蔵設備を有しており、転炉への供給原料類と同様である。
The raw materials supplied to the gas reforming
ガス改質炉設備1は、廃棄物副生成物8(乾留された炭素、油、ガス)及び石炭10に酸素を反応させることにより、炭素,水素,二酸化炭素,窒素を含む改質ガス12を生成する設備であり、その設備自体は既知の構造物であるので、詳細構造は省略する。ガス改質炉への微粉石炭の搬送と、ガス化炉内のシールドガスに、窒素が使用される。
The gas reforming
改質ガス12は、一酸化炭素を主成分としており、また既述したように、転炉ガスと同じく水素,二酸化炭素,窒素を成分としている。石炭中の硫黄(S)分や不純物はガス精製装置2の脱塵プロセス、脱硫プロセスなどで除去される。
The reformed
ガス改質炉1の運転圧力は、ガスの利用先の運転圧力を考慮して加圧システムとすることが一般的であり、通常1.5〜3MPa程度が選択される。
The operating pressure of the
ガス精製装置2も加圧システムとなり、製鉄所内の副生成ガス用の精製設備とは運転圧力の点で異なる。またガス改質炉原料の物質・性状・不純物含有によって影響を受けるため、ガス精製装置2はガス改質炉設備1と合わせて仕様を計画する必要がある。
The gas purification apparatus 2 is also a pressurization system, and is different from the purification equipment for by-product gas in the steelworks in terms of operating pressure. Further, since it is affected by the material, properties, and impurities contained in the gas reforming furnace raw material, it is necessary to plan the specifications of the gas purification apparatus 2 together with the gas reforming
脱硫プロセスは、常温以下の反応温度が経済的と一般にいわれており、ガス改質炉設備1には顕熱熱回収のボイラ設備を設けてガス顕熱を冷却し、通常蒸気回収する方法が取られる。精製されたガス13は、加圧されたガスである。精製ガス13に含まれる化学原料ガスとしての有効成分である一酸化炭素や水素の分圧を上げる目的で、二酸化炭素分離装置3で二酸化炭素14を分離回収する。
It is generally said that the desulfurization process is economical at a reaction temperature below room temperature, and a gas sensible heat recovery boiler is installed in the
二酸化炭素の分離は、例えば、公知の化学吸収法、物理吸収法、膜分離法、圧力スイング法などが採用される。 For the separation of carbon dioxide, for example, a known chemical absorption method, physical absorption method, membrane separation method, pressure swing method or the like is employed.
二酸化炭素分離後のフィードガス15に含まれる一酸化炭素は、圧力スイング吸着(PSA)などの一酸化炭素分離装置4にて高純度の一酸化炭素ガス16として分離され、酢酸を合成する原料として、酢酸製造設備6にラインを介して供給される。酢酸の合成プロセスについては(公知例文献1)にも記載があり、ここでは詳しい説明は省略する。
Carbon monoxide contained in the
一酸化炭素分離後のオフガス17は、一酸化炭素、二酸化炭素の大部分を分離して、結果として水素分圧が高くなっており、水素分離装置5で水素ガス18を経済的に分離可能となる。分離した水素ガス18は、例えばシクロヘキサン製造装置7へ供給して化学原料として利用される。精製ガス13は、二酸化炭素ガス14、一酸化炭素ガス16、水素ガス18と順次分離回収することにより、一酸化炭素回収後はフィードガスの水素分圧が高い状態で、水素分離装置5において経済的に回収することが可能となる。
The off-
なお、図1に示す本実施例では、一酸化炭素分離装置4で回収した一酸化炭素ガスと、水素分離装置5で回収した水素ガスの両方を化学原料として利用するようにした系統を例示しているが、分離回収した少なくとも一方のガスを化学原料として利用するように系統を構成しても良い。
In the present embodiment shown in FIG. 1, a system in which both the carbon monoxide gas recovered by the carbon monoxide separator 4 and the hydrogen gas recovered by the
上記の別置のガス改質炉方式において、回収された二酸化炭素ガス14はガス改質炉設備1へ還流され、石炭(粉体)10の搬送用窒素11の代替として使用される。また、二酸化炭素14は、窒素に代わる炉内シールドガスとして使用される。
In the above-described separate gas reforming furnace system, the recovered
ガス改質炉において、回収二酸化炭素14を、窒素11に代えて改質炉の原料搬送やシールガスとして利用した場合の効果試算結果を表1に示す。
Table 1 shows the results of trial calculation of effects when the recovered
従来のように搬送とシール用に窒素を使用した場合の試算例では、CO:N2の成分割合は65:9であったのが、搬送・シール窒素を二酸化炭素に代えた場合には、その比は67:6となり、窒素分圧は2/3に低減すると共に、窒素と一酸化炭素の分圧割合比は1/7から1/11へと大幅に低減される結果を得た。 In the trial calculation example when nitrogen is used for conveyance and sealing as in the past, the component ratio of CO: N 2 was 65: 9, but when the conveyance / seal nitrogen was replaced with carbon dioxide, The ratio was 67: 6, and the nitrogen partial pressure was reduced to 2/3, and the partial pressure ratio of nitrogen and carbon monoxide was greatly reduced from 1/7 to 1/11.
以上のように、本実施例による改質ガス利用システムによれば、石炭等の原料搬送用およびシール用の窒素を二酸化炭素で代替することから、一酸化炭素分離装置4のフィードガス15の一酸化炭素濃度を2%以上高くすると共に、分子量の等しい窒素の一酸化炭素に対する成分割合を2/3以下とする利点がある。このことは圧力スイング吸着(PSA)における一酸化炭素回収率20に貢献し(図2のフィードCO濃度とCO回収率の関係を参照)、経済的な回収純度アップを可能とする。二酸化炭素をガス改質炉に還流させた場合、その一部がガス改質炉内で水素と反応し、既述した化学式1により一酸化炭素が精製されるので、改質ガス中の二酸化炭素濃度の増大は、抑制され、反面一酸化炭素濃度の低下を抑えることができる。
As described above, according to the reformed gas utilization system according to the present embodiment, carbon for the feed of raw materials such as coal and nitrogen for sealing is replaced with carbon dioxide. There is an advantage that the carbon oxide concentration is increased by 2% or more and the ratio of nitrogen to carbon monoxide having the same molecular weight is 2/3 or less. This contributes to the carbon
なお、ガス改質炉1中には、廃タイヤ、廃プラスチックなどの可燃性廃棄物を直接投入してこれを酸素と反応させて改質ガスを生成するようにしてもよい。
(実施例2)
図3は、本発明の第2実施例に関する改質ガス利用システムである。本実施例では、既述した第1の実施例の改質ガス利用システムに、さらに転炉ガス利用システムが結合したものである。酢酸製造設備6の原料供給系統を、転炉別置のガス改質炉からのフィードガス15から回収した一酸化炭素ガス16と回収転炉ガス24から回収した一酸化炭素ガス26のそれぞれを接続する系統を設けると共に、切替え装置によって何れのガスからも酢酸製造設備6への一酸化炭素原料供給可能とする方法を示したものである。
転炉(図示省略)で生成された転炉ガスは、精製後にガス貯蔵ホルダー21で貯蔵される。貯蔵ホルダーから送られる転炉ガス24は、二酸化炭素分離装置22にて二酸化炭素ガス28が分離され、一酸化炭素分圧を高めたフィードガス25として、一酸化炭素分離装置23に送られる。ここで一酸化炭素ガス26が分離回収され、その一酸化炭素は、化学原料として酢酸製造設備6の一酸化炭素ガス16の供給系統に接続される。改質ガスと転炉ガスの両系統の一酸化炭素ガスは切り替えて使用が可能とする切替え装置を有する。一酸化炭素分離装置23からはオフガス27として可燃分を含んでおり、一部は燃焼用他に使うことが出来る。
In the
(Example 2)
FIG. 3 shows a reformed gas utilization system according to the second embodiment of the present invention. In this embodiment, a converter gas utilization system is further coupled to the reformed gas utilization system of the first embodiment described above. The raw material supply system of the acetic acid production facility 6 is connected to each of the
The converter gas generated in the converter (not shown) is stored in the
鉄鋼産業と化学産業の隣接する工場間のエネルギー連携によって、鉄鋼の産業の未利用・余剰エネルギーを化学産業の原料として供給しつつ、製鉄所内のエネルギー利用の高度化を図ることができる。更に、将来は周辺地域へのエネルギー供給にも拡張適用が可能である。 Energy cooperation between the steel industry and the chemical industry adjacent to each other can increase the use of energy in the steelworks while supplying unused and surplus energy from the steel industry as raw materials for the chemical industry. In the future, it can be extended to supply energy to surrounding areas.
1:ガス改質炉設備、2:ガス精製装置、3:二酸化炭素分離装置、4:一酸化炭素分離装置、5:水素分離装置、6:酢酸製造設備、7:シクロヘキサン製造設備、8:廃棄物副生成物、9:酸素ガス、10:石炭供給、11:窒素ガス、12:改質ガス。 1: Gas reforming furnace equipment, 2: Gas purification equipment, 3: Carbon dioxide separation equipment, 4: Carbon monoxide separation equipment, 5: Hydrogen separation equipment, 6: Acetic acid production equipment, 7: Cyclohexane production equipment, 8: Disposal Product by-products, 9: oxygen gas, 10: coal supply, 11: nitrogen gas, 12: reformed gas.
Claims (7)
前記ガス改質炉設備で生成された改質ガス中に含まれる不純物を除去するガス精製装置と、
改質ガス中の二酸化炭素を分離回収する二酸化炭素分離装置と、
二酸化炭素分離後に改質ガス中の一酸化炭素を分離回収する一酸化炭素分離装置と、
一酸化炭素分離後に改質ガス中の水素を分離回収する水素分離装置と、を含む改質ガス利用システムにおいて、
前記一酸化炭素分離装置で回収した一酸化炭素ガス及び前記水素分離装置で回収した水素ガスのうち少なくとも一方を、化学原料ガスとして利用するための系統と、
前記二酸化炭素分離装置で除去した二酸化炭素ガスを前記ガス改質炉設備に還流させる系統と、を有することを特徴とする改質ガス利用システム。 A gas reforming furnace facility that is supplied with waste tires, waste plastics and / or waste and / or carbonization by-products, coal, oxygen, etc., and reforms some or all of these feedstocks to gasification materials ,
A gas purification device for removing impurities contained in the reformed gas generated in the gas reforming furnace facility;
A carbon dioxide separator that separates and recovers carbon dioxide in the reformed gas;
A carbon monoxide separator for separating and recovering carbon monoxide in the reformed gas after carbon dioxide separation;
A reforming gas utilization system including a hydrogen separation device that separates and recovers hydrogen in the reformed gas after carbon monoxide separation;
A system for using at least one of the carbon monoxide gas recovered by the carbon monoxide separator and the hydrogen gas recovered by the hydrogen separator as a chemical raw material gas;
And a system for recirculating the carbon dioxide gas removed by the carbon dioxide separator to the gas reforming furnace equipment.
さらに、前記ガス改質炉と別系統の一酸化炭素供給系統として、転炉によって生じた転炉ガス中の一酸化炭素を分離回収する転炉系一酸化炭素分離装置と、この回収された一酸化炭素ガスを前記化学物質合成設備に送るために、該化学物質合成設備或いは前記第1の一酸化炭素ガスラインに接続される第2の一酸化炭素ガス供給ラインと、を備える改質ガス利用システム。 In Claim 1, it has the 1st carbon monoxide gas supply line for supplying the carbon monoxide gas recovered from the reformed gas with the carbon monoxide separation device to the chemical substance synthesis equipment,
Further, as a carbon monoxide supply system separate from the gas reforming furnace, a converter-type carbon monoxide separation device that separates and recovers carbon monoxide in the converter gas generated by the converter, and this recovered one Use of a reformed gas comprising a second carbon monoxide gas supply line connected to the chemical substance synthesis facility or the first carbon monoxide gas line to send the carbon oxide gas to the chemical substance synthesis facility system.
前記二酸化炭素ガス、一酸化炭素ガス、及び水素ガスを順次分離回収する工程と、
回収された一酸化炭素ガス及び水素ガスの少なくとも一つを化学原料として化学物質合成設備に送る工程と、を含む改質ガス利用方法において、
前記二酸化炭素ガスを前記一酸化炭素ガスの分離工程の前工程で前記改質ガスから分離回収して前記ガス改質炉に還流させる工程を有することを特徴とする改質ガス利用方法。 Producing a reformed gas containing carbon monoxide gas, hydrogen gas, carbon dioxide gas and nitrogen gas by reacting combustible waste and / or its carbonization by-product and coal with oxygen in a gas reforming furnace; ,
A step of sequentially separating and recovering the carbon dioxide gas, carbon monoxide gas, and hydrogen gas;
A method of using a reformed gas comprising a step of sending at least one of the recovered carbon monoxide gas and hydrogen gas to a chemical synthesis facility as a chemical raw material,
A method of using a reformed gas, comprising a step of separating and recovering the carbon dioxide gas from the reformed gas in a step prior to the carbon monoxide gas separation step and refluxing it to the gas reforming furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005191820A JP4515975B2 (en) | 2005-06-30 | 2005-06-30 | System and method using reformed gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005191820A JP4515975B2 (en) | 2005-06-30 | 2005-06-30 | System and method using reformed gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007009068A true JP2007009068A (en) | 2007-01-18 |
JP4515975B2 JP4515975B2 (en) | 2010-08-04 |
Family
ID=37747978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005191820A Expired - Fee Related JP4515975B2 (en) | 2005-06-30 | 2005-06-30 | System and method using reformed gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4515975B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009133601A (en) * | 2007-10-31 | 2009-06-18 | Jfe Steel Corp | Blast furnace gas separation method |
JP2012524233A (en) * | 2009-04-20 | 2012-10-11 | ミドレックス テクノロジーズ,インコーポレイテッド | Method and apparatus for separating carbon dioxide from spent gas |
JP2012241104A (en) * | 2011-05-19 | 2012-12-10 | Nippon Steel Engineering Co Ltd | Coal gasification system |
EP2956406A4 (en) * | 2013-02-15 | 2016-10-12 | Midrex Technologies Inc | METHOD AND APPARATUS FOR SEQUESTERING THE CARBON DIOXIDE CONTAINED IN WASTE GAS |
KR20210147086A (en) * | 2019-05-14 | 2021-12-06 | 풀 부르스 에스.에이. | How a metallurgical furnace works |
CN114752418A (en) * | 2022-05-20 | 2022-07-15 | 陕西煤业化工技术研究院有限责任公司 | Coal quality-based utilization system and process for realizing zero carbon emission |
WO2025099929A1 (en) * | 2023-11-10 | 2025-05-15 | Jfeエンジニアリング株式会社 | Method for operating waste treatment device, and waste treatment device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6097021A (en) * | 1983-11-01 | 1985-05-30 | Kawasaki Steel Corp | Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method |
JPH08117544A (en) * | 1994-10-18 | 1996-05-14 | Nippon Steel Corp | Method for purifying and separating synthesis gas |
WO2000059825A1 (en) * | 1999-04-02 | 2000-10-12 | Ebara Corporation | Method and apparatus for production of hydrogen by gasification of combusible material |
JP2000283658A (en) * | 1999-03-30 | 2000-10-13 | Kawasaki Steel Corp | Method and apparatus for using converter gas |
JP2002275479A (en) * | 2001-03-16 | 2002-09-25 | Kawasaki Heavy Ind Ltd | Method and apparatus for producing combustible gas |
-
2005
- 2005-06-30 JP JP2005191820A patent/JP4515975B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6097021A (en) * | 1983-11-01 | 1985-05-30 | Kawasaki Steel Corp | Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method |
JPH08117544A (en) * | 1994-10-18 | 1996-05-14 | Nippon Steel Corp | Method for purifying and separating synthesis gas |
JP2000283658A (en) * | 1999-03-30 | 2000-10-13 | Kawasaki Steel Corp | Method and apparatus for using converter gas |
WO2000059825A1 (en) * | 1999-04-02 | 2000-10-12 | Ebara Corporation | Method and apparatus for production of hydrogen by gasification of combusible material |
JP2002275479A (en) * | 2001-03-16 | 2002-09-25 | Kawasaki Heavy Ind Ltd | Method and apparatus for producing combustible gas |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009133601A (en) * | 2007-10-31 | 2009-06-18 | Jfe Steel Corp | Blast furnace gas separation method |
JP2013231584A (en) * | 2007-10-31 | 2013-11-14 | Jfe Steel Corp | Method for separating blast furnace gas |
JP2012524233A (en) * | 2009-04-20 | 2012-10-11 | ミドレックス テクノロジーズ,インコーポレイテッド | Method and apparatus for separating carbon dioxide from spent gas |
JP2012241104A (en) * | 2011-05-19 | 2012-12-10 | Nippon Steel Engineering Co Ltd | Coal gasification system |
EP2956406A4 (en) * | 2013-02-15 | 2016-10-12 | Midrex Technologies Inc | METHOD AND APPARATUS FOR SEQUESTERING THE CARBON DIOXIDE CONTAINED IN WASTE GAS |
KR20210147086A (en) * | 2019-05-14 | 2021-12-06 | 풀 부르스 에스.에이. | How a metallurgical furnace works |
KR102429208B1 (en) * | 2019-05-14 | 2022-08-03 | 풀 부르스 에스.에이. | How metallurgical furnaces work |
US11591662B2 (en) | 2019-05-14 | 2023-02-28 | Paul Wurth S.A. | Method for operating a metallurgical furnace |
CN114752418A (en) * | 2022-05-20 | 2022-07-15 | 陕西煤业化工技术研究院有限责任公司 | Coal quality-based utilization system and process for realizing zero carbon emission |
WO2025099929A1 (en) * | 2023-11-10 | 2025-05-15 | Jfeエンジニアリング株式会社 | Method for operating waste treatment device, and waste treatment device |
Also Published As
Publication number | Publication date |
---|---|
JP4515975B2 (en) | 2010-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8821760B2 (en) | Method and device for producing a raw synthesis gas | |
KR101464056B1 (en) | Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides | |
KR101679179B1 (en) | Reformed gas-based reduction method with return of the waste reduction gases and decarbonisation of the waste gas component used as combustion gas for the reformer | |
US8940076B2 (en) | Method for producing direct reduced iron with limited CO2 emissions | |
CA2673274C (en) | Process and installation for generating electrical energy in a gas and steam turbine (combined cycle) power generating plant | |
KR101153358B1 (en) | Apparatus for manufacturing molten irons that is capable of reducing carbon dioxide emissions | |
CN102181315B (en) | Process for producing natural gas by coal coking and pyrolysis coal gas thereof | |
CN103781724A (en) | Apparatus for producing a synthetic gas including carbon monoxide and hydrogen, and method therefor | |
EP4263878B1 (en) | Smart hydrogen production for dri making | |
KR20130076645A (en) | Apparatus for manufacturing syngas containing co and h2 and method thereof | |
KR20120056260A (en) | Reformer gas-based reducing method with reduced nox emission | |
CN103805728B (en) | Method and device for producing reduced iron through synthetic gas prepared from high-nitrogen content retort gas | |
JP4515975B2 (en) | System and method using reformed gas | |
EP4032991A1 (en) | Smart hydrogen production for dri making | |
JP2008143770A (en) | Waste heat recovery system and waste heat recovery device | |
CN106241736A (en) | A kind of technique utilizing coke-stove gas extraction metallurgy reducing gases | |
KR20230116442A (en) | Processing method of reducing gas using steel by-product gas | |
AU2017372827A1 (en) | Hydrogen production equipment and hydrogen production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100412 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100511 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100513 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |