JP2007008004A - 光学部品、光学部品の製造方法及び光学部品用型の製造方法 - Google Patents
光学部品、光学部品の製造方法及び光学部品用型の製造方法 Download PDFInfo
- Publication number
- JP2007008004A JP2007008004A JP2005191778A JP2005191778A JP2007008004A JP 2007008004 A JP2007008004 A JP 2007008004A JP 2005191778 A JP2005191778 A JP 2005191778A JP 2005191778 A JP2005191778 A JP 2005191778A JP 2007008004 A JP2007008004 A JP 2007008004A
- Authority
- JP
- Japan
- Prior art keywords
- optical component
- mold
- manufacturing
- resin liquid
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Abstract
【課題】 ファインピッチ化が可能であって、精度良く、かつ簡便に形成することができる光学部品等の製造方法等を提供すること。
【解決手段】 本発明に係る光学部品等の製造方法は、投影領域を単位として一括露光を繰り返すことにより、光硬化性樹脂液に選択的に光を照射して硬化樹脂層を形成し、該硬化樹脂層を順次積層して三次元形状を形成するものである。本発明は、光学部品等の構造が、オーバーハング部を有する複雑な三次元構造である場合に、特に有効である。
【選択図】 図1
【解決手段】 本発明に係る光学部品等の製造方法は、投影領域を単位として一括露光を繰り返すことにより、光硬化性樹脂液に選択的に光を照射して硬化樹脂層を形成し、該硬化樹脂層を順次積層して三次元形状を形成するものである。本発明は、光学部品等の構造が、オーバーハング部を有する複雑な三次元構造である場合に、特に有効である。
【選択図】 図1
Description
本発明は、光硬化性樹脂液に選択的に光を照射して硬化樹脂層を形成し、該硬化樹脂層を順次積層して三次元構造を形成することを特徴とする光学部品の製造方法、光学部品用型の製造方法、及び光学部品用型により製造された光学部品に関する。
近年、液晶デバイス、デジタルマイクロデバイスなどの光学エンジンを備えたプロジェクションTVが急速に普及している。このプロジェクションTVには、映像を観察するための透過型スクリーンが搭載されている。
図3は、従来の透過型スクリーンの構成を示す断面図である(特許文献1)。同図に示すように、透過型スクリーン50は、フレネルレンズシート51、レンチキュラーレンズシート52、前面板53、第1粘着層54、第2粘着層55、ARフィルム56等を備えている。フレネルレンズシート51は、背面投射型プロジェクターからの映像光を一定角度の範囲内に絞り込むためのものであり、光源側に設けられている。レンチキュラーレンズシート52は、フレネルレンズシート51を通過した映像光を適度な角度の範囲に広げる機能を有している。
図3は、従来の透過型スクリーンの構成を示す断面図である(特許文献1)。同図に示すように、透過型スクリーン50は、フレネルレンズシート51、レンチキュラーレンズシート52、前面板53、第1粘着層54、第2粘着層55、ARフィルム56等を備えている。フレネルレンズシート51は、背面投射型プロジェクターからの映像光を一定角度の範囲内に絞り込むためのものであり、光源側に設けられている。レンチキュラーレンズシート52は、フレネルレンズシート51を通過した映像光を適度な角度の範囲に広げる機能を有している。
レンチキュラーレンズシート52は、同図に示すように、レンチキュラーレンズ57を備えている。レンチキュラーレンズ57の入射面は、凸レンズからなる複数のレンズ列で構成されている。図3の例においては、入射光はレンズ媒質内で集光した後に、水平方向に拡散せしめられる。他のレンチキュラーレンズシートとして、シートの両側にレンチキュラーレンズを備えているものも開示されている(特許文献2)。
従来におけるレンチキュラーレンズシートの製造方法としては、(1)押し出し成形により表裏両面の形状を一度に形成する方法や、(2)フィルム基材の両面又は片面に紫外線硬化性樹脂等の放射線硬化性樹脂を用いて形成する方法(特許文献2、特許文献3)が開示されている。
図4に上記特許文献3に開示のレンチキュラーレンズシートの製造装置を示す。同図に示すように、製造装置70は、連続したフィルム基材71を供給する給紙ロール72と、レンチキュラーレンズの逆形状が形成された成形ロール73と、成形ロール73に放射線硬化性樹脂を塗布する塗工ユニット74と、成形ロール73に対して放射線硬化性樹脂に放射線を照射する放射線ランプ75等を備えている。また、製造装置70は、フィルム基材71の出光側の表面にネガ型のレジスト層を形成するためのレジスト形成装置76を備えている。
液晶表示装置においても、レンズシートが重要な機能を果たしている(例えば、特許文献4)。図5は、上記特許文献4に開示の液晶表示装置の構成を示す断面図である。同図に示すように、液晶表示装置80は、液晶層82、アクティブマトリックス基板81(支持基盤81a、偏光板81b、TFT素子81c、絶縁層81d、対向電極81e、表示電極81f、配向膜81g等を備える。)、アクティブマトリックス基板81と液晶層82を介して対向する対向基板83(透光性を有するガラス支持基盤83a、配向膜83b、円偏光層83c、1/4波長層83d、配向膜83e等を備えている。)、等を備えている。また、液晶表示装置80における対向基板83の主面のうち、液晶層82と対向しない側の主面上には、面状光源装置84が設けられている。面状光源装置84には、対向基板83側からプリズムシート85、光拡散シート86、導光板87、及び反射板88がこの順序で設けられている。そして、反射板88の一方の側面には光源89が取り付けられている。
プリズムレンズシート85は、光拡散シート86を通過した光を平行光化する役割を担っている。プリズムレンズシート85は、同図に示すように、プリズムレンズ85aを備えている。
特開2005−10545号公報
特開2000−180971号公報
特開平1−159627号公報
特開平9−258210号公報
上記レンチキュラーレンズシートやプリズムレンズシートを製造するに当っては、より簡便な方法により製造することが理想的である。
一方、近年、映像画質の高精細化を達成すべくプロジェクターの画素数が増大している。これに伴って、レンチキュラーレンズシートに備えられるレンズピッチのファインピッチ化(例えば、レンズピッチが0.2mm以下)が要求されている。このため、押し出し成形法を用いた場合の雌型や、図4に示す製造装置における成形ロール73等を簡便にファインピッチ化する技術が必要となる。
一方、近年、映像画質の高精細化を達成すべくプロジェクターの画素数が増大している。これに伴って、レンチキュラーレンズシートに備えられるレンズピッチのファインピッチ化(例えば、レンズピッチが0.2mm以下)が要求されている。このため、押し出し成形法を用いた場合の雌型や、図4に示す製造装置における成形ロール73等を簡便にファインピッチ化する技術が必要となる。
なお、上記においてはレンチキュラーレンズシートやプリズムレンズシートにおける課題について記載したが、これに限定されるものではなく、フレネルレンズシート等をも含めたレンズシート等の光学部品全般において同様の課題が生じ得る。
本発明は、上記背景に鑑みてなされたものであり、その目的とするところは、ファインピッチ化が可能であって、精度良く、かつ簡便に形成することができる光学部品等の製造方法等を提供することである。
本発明に係る光学部品等の製造方法は、投影領域を単位として一括露光を繰り返すことにより、光硬化性樹脂液に選択的に光を照射して硬化樹脂層を形成し、該硬化樹脂層を順次積層して三次元構造を形成するものである。本発明は、光学部品等の構造が、オーバーハング部を有する複雑な三次元構造である場合に、特に有効である。
ここで、前記投影領域の面積が100mm2以下の場合に、本発明に係る光造形方法を用いれば、より精度良く光学部品等を形成することができる。
同様に、前記硬化樹脂層の1層の厚さは10μm以下の場合に、本発明に係る光造形方法を用いれば、より精度良く光学部品等を形成することができる。
同様に、前記硬化樹脂層の1層の厚さは10μm以下の場合に、本発明に係る光造形方法を用いれば、より精度良く光学部品等を形成することができる。
本発明に係る光学部品等の製造方法は、前記光硬化性樹脂液を、ディジタルミラーデバイスによって反射された光によって硬化させる場合に好適に用いられる。
また、本発明に係る光学部品用型の製造方法は、前記光硬化性樹脂液にセラミックス粉体を配合することにより、より強度を持たせたセラミックス材料からなる光学部品用型を形成することができる。
本発明によれば、ファインピッチ化が可能であって、精度良く、かつ簡便に形成することができる光学部品等の製造方法を提供することができるという優れた効果を有する。
以下、本発明を適用した実施形態の一例について説明する。なお、本発明の趣旨に合致する限り、他の実施形態も本発明の範疇に属し得ることは言うまでもない。
[実施形態1(光学部品の製造方法)]
図1は、本実施形態1に係る光学部品たるレンチキュラーレンズシートを製造する光硬化造形装置(以下、「光造形装置」という)の装置構成の一例を説明するための図である。同図に示すように、光造形装置100は、光源1、ディジタルミラーデバイス(以下「DMD」と略記する)2、レンズ3、造形テーブル4、ディスペンサ5、リコータ6、制御部7、記憶部8等を備えている。
図1は、本実施形態1に係る光学部品たるレンチキュラーレンズシートを製造する光硬化造形装置(以下、「光造形装置」という)の装置構成の一例を説明するための図である。同図に示すように、光造形装置100は、光源1、ディジタルミラーデバイス(以下「DMD」と略記する)2、レンズ3、造形テーブル4、ディスペンサ5、リコータ6、制御部7、記憶部8等を備えている。
光源1には、レーザ光線を発振可能なものが搭載されている。光源1から発生するレーザ光線を、後述する光硬化性樹脂液に照射せしめることにより、光硬化性樹脂液を硬化させることができる。従って、光硬化性樹脂液10のコート層9が硬化する波長のレーザ光線を搭載する必要がある。光源1の具体例としては、405nmのレーザ光を発生させるレーザダイオード(LD)や紫外線(UV)ランプ等を挙げることができる。
ディジタルミラーデバイス(DMD)2は、テキサス・インスツルメンツ社によって開発されたデバイスであり、CMOS半導体上に独立して動くマイクロミラーが数十万〜数百万個、例えば、48万〜131万個敷き詰められているものである。個々のマイクロミラーは、静電界作用によって、それぞれ独立に対角線を軸に約±10度、例えば、±12度程度傾けることが可能である。個々のマイクロミラーの角度を制御することにより、後述する造形テーブルに形成された光硬化性樹脂液の所望の位置に光照射することができる。
DMD2に備えられたマイクロミラーは、各マイクロミラーのピッチの1辺の長さが約10μm、例えば、13.68μmの四角形の形状を有している。隣接するマイクロミラーの間隔は、例えば1μmである。本実施形態1で用いたDMD2の全体は、40.8×31.8mmの四角形状を有し(うち、ミラー部は、14.0×10.5mmの四角形状を有する。)、1辺の長さが13.68μmのマイクロミラー786,432個により構成されている。光源1から出射されたレーザ光線は、DMD2の構成部材であるマイクロミラーによって反射される。そして、DMD2において、集光レンズ3に向かって反射されたレーザ光線が造形テーブル4上の光硬化性樹脂液10に照射されることになる。
レンズ3は、DMD2によって反射されたレーザ光線を光硬化性樹脂液10上に導き、投影領域を形成する役割を担う。レンズ3は、凸レンズを用いた集光レンズであってもよいし、凹レンズを用いてもよい。凹レンズを用いると、DMD2の実サイズよりも大きな投影領域を得ることができる。本実施形態1に係るレンズ3は、凸レンズからなる集光レンズであって、入射光を約15倍縮小し、光硬化性樹脂液10により形成されたコート層9上に集光している。
造形テーブル4は、平板状の載置台からなる。造形テーブル4上で、光硬化性樹脂液10のコート層9が形成され、レンズ3を介してレーザ光線が照射されて光硬化性樹脂液10の硬化が行われる。造形テーブル4は、図示しない駆動機構、即ち移動機構によって、水平移動及び垂直移動が移動自在に構成されている。この駆動機構により、所望の範囲に亘って光造形を行なうことができる。ディスペンサ5は、光硬化性樹脂液10を収容し、予め定められた量の光硬化性樹脂液10を所定位置に供給可能なように構成されている。また、リコータ6は、例えば、ブレード機構と移動機構を備え、光硬化性樹脂液10を均一に塗布可能なように構成されている。
制御部7は、露光データを含む制御データに応じて光源1、DMD2、造形テーブル4、ディスペンサ5、リコータ6を制御する。制御部7は、典型的には、コンピュータに所定のプログラムをインストールすることによって構成することができる。典型的なコンピュータの構成は、中央処理装置(CPU)とメモリとを含んでいる。CPUとメモリとは、バスを介して補助記憶装置としてのハードディスク装置などの外部記憶装置に接続される。この外部記憶装置が、制御部7の記憶部8として機能する。記憶部8として機能するフレキシブルディスク装置、ハードディスク装置、CD−ROMドライブ等の記憶媒体駆動装置は、各種コントローラを介してバスに接続される。フレキシブルディスク装置等の記憶媒体駆動装置には、フレキシブルディスク等の可搬型記憶媒体が挿入される。記憶媒体にはオペレーティングシステムと協働してCPUなどに命令を与え、本実施形態を実施するための所定のコンピュータプログラムを記憶することができる。
記憶部8には、造形しようとする立体モデルを複数の層にスライスして得られる断面群の露光データを含む制御データが格納されている。制御部7は、記憶部8に格納された露光データに基づいて、主としてDMD2における各マイクロミラーの角度制御、造形テーブル4の移動(即ち、立体モデルに対するレーザ光の照射範囲の位置)を制御し、立体モデルの造形を指示する。
コンピュータプログラムは、メモリにロードされることによって実行される。コンピュータプログラムは、圧縮したり、複数に分割して記憶媒体に記憶することができる。さらに、ユーザ・インターフェース・ハードウェアを備えることができる。ユーザ・インターフェース・ハードウェアとしては、例えば、マウスなどの入力をするためのポインティング・デバイス、キーボード、あるいは視覚データをユーザに提示するためのディスプレイなどがある。
光硬化性樹脂液10としては、レーザ光線によって硬化するものを選定する。レーザ光線としては、例えば可視光、紫外光を好適に用いることができる。例えば、15μm以上(500mJ/cm2)の硬化深度を有し、粘度が1500〜2500Pa・s(25℃)の405nm対応のアクリル系樹脂を用いることができる。
次に、本実施形態1に係る光造形装置100の光造形動作について説明する。まず、ディスペンサ5に未硬化状態の光硬化性樹脂液10を収容する。造形テーブル4は初期位置にある。ディスペンサ5は、収容された光硬化性樹脂液10を所定量だけ造形テーブル4上に供給する。リコータ6は、光硬化性樹脂液10を引き伸ばすようにして掃引し、硬化させる一層分のコート層9を形成する。
光源1から出射したレーザ光線は、DMD2に入射する。DMD2は記憶部8に格納された露光データに応じて制御部7により制御され、レーザ光線を光硬化性樹脂液10に照射する部分に対応したマイクロミラーの角度を調整する。これにより、そのマイクロミラーを反射したレーザ光線が集光レンズ3を介して光硬化性樹脂液10のコート層9に照射され、その他のマイクロミラーを反射したレーザ光線は光硬化性樹脂液10のコート層9に照射されない。光硬化性樹脂液10へのレーザ光線の照射は例えば0.4秒間行なわれる。このとき、光硬化性樹脂液10のコート層9への投影領域は例えば、1.3×1.8mm程度であり、0.6×0.9mm程度まで縮小することもできる。投影領域の面積は、通常、100mm2以下であることが望ましい。
レンズ3に、凹レンズを用いることにより、投影領域を6×9cm程度まで拡大することもできる。投影領域をこのサイズを超えて拡大すると、投影領域に照射されるレーザ光線のエネルギー密度が低くなるため、光硬化性樹脂液10の硬化が不十分となることがある。レーザ光線の投影領域のサイズよりも大きい立体モデルを形成する場合には、例えば造形テーブル4を移動機構によって水平移動させることにより、レーザ光線の照射位置を移動させて全造形領域を照射する必要がある。投影領域毎に1ショットずつレーザ光線の照射を実行していく。各投影領域に対するレーザ光線の照射の制御については後に詳述する。
このようにして、投影領域を移動させて、各投影領域を単位としてレーザ光線の照射、即ち露光を実行することによって、光硬化性樹脂液10のコート層9が硬化し、第1層目の硬化樹脂層が形成される。1層分の積層ピッチ、即ち、硬化樹脂層1層の厚みは、例えば、1〜50μm、好ましくは、2〜10μm、さらに好ましくは、5〜10μmである。従来の光造形方法では、造形物の解像度を上げることが困難であり、典型的な解像度は、数10μmであって、より高解像度を要する光学部品の製造に用いることは困難であった。本実施形態1に係る光造形方法によれば、例えば、解像度を積層方向に5μm程度、造形テーブルと平行な平面方向解像度を2μm程度に上げることができる。
続いて、同様の工程で所望形状の立体モデルの2層目を同時形成する。具体的には、1層目として形成された硬化樹脂層の外側にディスペンサ5より供給された光硬化性樹脂液10をリコータ6によって立体モデルを越えて引き伸ばされるように均一厚さに塗布する。そして、レーザ光線を照射することにより、第2層目の硬化樹脂層を第1層目の硬化樹脂層の上に形成する。以下同様にして第3層目以降の硬化樹脂層を順次堆積させる。そして、最終層の堆積終了後、造形テーブル4上に形成された造形物を取り出す。造形物は、表面に付着した未硬化の光硬化性樹脂液を洗浄その他の方法で除去する。その後、必要に応じて造形物は、紫外線ランプ等により照射し又は加熱して、硬化を更に進行させてもよい。
次に、本実施形態に係る製造方法により製造することができる光学部品の一例について説明する。光学部品の三次元構造は、上記の光造形装置の解像度の範囲内であれば、任意の構造のものを製造することができる。本実施形態に係る光学部品等の製造方法は、特に、オーバーハング部を有するような複雑な三次元構造を有する光学部品等の製造に好適である。オーバーハング部を有する三次元構造の具体例としては、図2(a)に示すような両側にレンチキュラーレンズを有するレンチキュラーレンズシート20の構造等を挙げることができる。
ここで、「オーバーハング部を有する」とは、その三次元構造体をいかなる方向に回転させて設置した場合でも、垂直方向から見てオーバーハング部が少なくとも一部に存在することをいうものとする。また、オーバーハング部とは、ある部分の水平幅よりもより上部の水平幅の方が大きい構造を有する部分であって、典型的には、柱部と柱部の上に接して柱部よりも水平方向に張り出したいわば天井部からなる構造であるが、直線的な構造に限定するものではなく、垂直方向に立ち上がりつつ水平方向へ張り出す曲面を有する形状や、いわゆる逆テーパー形状等も含む概念である。例えば、円筒形状は、筒状側面を水平面に接した状態で垂直方向から見ると下半分がオーバーハング部であるが、底面を水平面に接した状態で垂直方向から見るとオーバーハング部は無いので、オーバーハング部を有する三次元構造ではない。他方、球形状は、オーバーハング部を有する三次元構造である。本発明の製造方法が、オーバーハング部を有する三次元構造の造形に特に適しているのは、ある方向から見ればオーバーハング部を有しない構造であれば、オーバーハング部を本質的に製造困難な他の製造方法を用いてもその三次元構造の造形が可能となる場合もあり得るからである。
図2(a)に示すレンチキュラーレンズシート20は、第1のレンチキュラーレンズ21と、第2のレンチキュラーレンズ22とを備える。レンチキュラーレンズシート20の立体構造に関する情報を記憶部8に記憶させる。そして、例えば、第2のレンチキュラーレンズ22側から造形するべく、光硬化性樹脂液10をディスペンサ5を介して造形テーブル4に硬化させる一層分のコート層9を形成する。そして、上記記憶部8に格納された露光データに基づいて、制御部7は、DMD2における各マイクロミラーの角度制御を行い、投影領域毎に1ショットずつレーザ光線の照射を実行し、所望の位置のコート層9を硬化せしめる。その後、ディスペンサ5を介して上層に光硬化性樹脂液10のコート層9を形成し、上記方法を繰り返す。これにより、第2のレンチキュラーレンズ22を形成し、内部の中実構造部を構成し、続いて第1のレンチキュラーレンズ21を形成することができる。無論、第1のレンチキュラーレンズ21側から造形してもよい。第1のレンチキュラーレンズ21のピッチとしては例えば0.2mm、第2のピッチとしては例えば0.1mmとすることができる。
また、図2(b)に示すようなレンチキュラーレンズを片面側のみに持つレンチキュラーレンズシート30も製造することができる。レンチキュラーレンズ31以外の中実構造領域32には、ベースフィルムを用いてもよい。これにより、光硬化性樹脂液10よりも機械的強度の強い材料を選定することが可能となり、レンチキュラーレンズの機械的強度を高めることができる。この場合においては、造形テーブル4に予めベースフィルムを載置し、その上にコート層9の形成と、光硬化とを繰り返し行うことにより形成すればよい。また、図5に示すようなプリズムレンズシート85を製造することもできる。
本実施形態1に用いられる光硬化性樹脂液は、特に限定されるものではないが、通常、ラジカル重合性化合物及び/又はカチオン重合性化合物を有してなる光硬化性樹脂液組成物が好適に用いられる。また、これらの光硬化性樹脂液組成物には、通常、ラジカル重合又はカチオン重合にそれぞれ対応した光重合開始剤が添加される。
上述の光造形方法により得られた硬化物からなる立体形状物は、光造形装置から取り出し、その表面や内部に残存する未反応の組成物(未硬化)を除去した後、必要に応じて洗浄する。ここで、洗浄剤としては、イソプロピルアルコール、エチルアルコール等のアルコール類に代表されるアルコール系有機溶剤;アセトン、酢酸エチル、メチルエチルケトン等に代表されるケトン系有機溶剤;テルペン類に代表される脂肪族系有機溶剤が挙げられる。
本実施形態1によれば、光照射工程で扱う断面を隣接する断面に切り替えながら、光照射と光硬化性樹脂液のコートを繰り返すことによって、所望のレンチキュラーレンズ等を精度良くかつ簡便に造形することができる。また、レンチキュラーレンズ等のファインピッチ化にも対応可能である。また、記憶部8に格納された露光データを書き換えるのみで、レンズピッチやレンズの厚み、形状の異なるレンチキュラーレンズシートを簡便かつ迅速に製造することができるというメリットを有する。従って、少量多品種のレンチキュラーレンズ等の光学部品やオーダメイドの光学部品を提供する場合に特に適している。また、両面にレンチキュラーレンズを備えるようなオーバーハング構造を有する構造を、簡便かつ迅速に形成することができる。
[実施形態2(光学部品用型の製造方法)]
次に、光学部品用型の製造方法について説明する。基本的な光造形方法は、上記実施形態1と同様であるが、以下の点が異なる。すなわち、上記実施形態1においては、光造形方法により光学部品自体を造形して製造したが、本実施形態2においては、光学部品の製造に用いられる型を光造形方法により造形して製造する点が異なる。なお、ここでいう型とは、雌型とマスター型を含む。いずれも当該光造形方法により造形、製造することができる。ここで、雌型とは、その型から形状を写し取って光学部品を製造する型のことを言い、マスター型とは、最終的に製造しようとする光学部品の原型であって、マスター型の形状を写し取って前述の雌型を製造するための型のことを言う。
次に、光学部品用型の製造方法について説明する。基本的な光造形方法は、上記実施形態1と同様であるが、以下の点が異なる。すなわち、上記実施形態1においては、光造形方法により光学部品自体を造形して製造したが、本実施形態2においては、光学部品の製造に用いられる型を光造形方法により造形して製造する点が異なる。なお、ここでいう型とは、雌型とマスター型を含む。いずれも当該光造形方法により造形、製造することができる。ここで、雌型とは、その型から形状を写し取って光学部品を製造する型のことを言い、マスター型とは、最終的に製造しようとする光学部品の原型であって、マスター型の形状を写し取って前述の雌型を製造するための型のことを言う。
図2(a)に示すような両面にレンチキュラーレンズを備えるレンチキュラーレンズシート20においては、例えば、第1の雌型基板と、第2の雌型基板とを接合することによって形成され、その内部空間がレンチキュラーレンズシート20の形状を有しているものを型として用いることができる。この場合、それぞれの第1の雌型基板、第2の雌型基板にレンズシート用樹脂液を充填し、その後にこれらの基板を位置合わせをしつつ接合し、熱や光による外部刺激を加え、レンズシート用樹脂液を硬化することによりレンチキュラーレンズシートを得ることができる。また、第1の雌型基板又は第2の雌型基板のどちらかに内部空間に連通するレンズシート用樹脂液の注入口を設けてもよい。ここで、レンズシート用樹脂液としては、レンチキュラーレンズシート20に要求される透明性等の要件を満たす樹脂であって、型に流し込んで充填した後に適当な方法で硬化できる樹脂であれば特に限定されない。例えばアクリル系樹脂等の熱硬化性の未硬化樹脂液を充填した後に、熱を加えて型の内部で硬化させてもよいし、熱可塑性樹脂を熱溶融して充填した後に、型内部で冷却してもよい。
図2(b)に示すような片面にレンチキュラーレンズを備えるレンチキュラーレンズシート30においては、平板と雌型基板とを接合することによって形成され、その内部空間がレンチキュラーレンズシート30の形状を有している型を用いることができる。図4に示すような成形ロール自体を雌型として光造形方法により製造することもできる。
雌型から光学部品を製造する場合には、雌型の中に、例えば、加水分解性基を有するシラン化合物を注入して、加熱等により加水分解・縮合反応を生じせしめて、雌型の形状を写し取ったポリシロキサンからなる三次元構造物を得る。この三次元構造物を雌型から剥離させることにより、光学部品を得ることができる。雌型の構造が複雑である場合には、雌型を破壊しなければ剥離させることができない場合がある。このような場合には、例えば、300℃×6時間程度の熱処理により雌型を構成する硬化樹脂を焼失させたり、エタノール等の有機溶剤に浸漬して超音波処理を1時間程度行うことにより雌型を構成する硬化樹脂を膨潤させる等の方法により、雌型を破壊することができる。光硬化性樹脂液からなる雌型は、剥離のために破壊しない場合であっても、金型等に比較すると機械強度が劣るため、光学部品を製造することができる回数は限定的である。しかし、金型と異なり、簡便且つ迅速に雌型が得られるため、様々な形状の光学部品を試作する場合等に有効である。
レンチキュラーレンズシート用の型をセラミックで製造したい場合には、光硬化性樹脂液組成物に、セラミック粉体を配合することができる。その数平均粒径は、電子顕微鏡法による測定で、通常、0.01〜0.5μmである。好ましくは、0.02〜0.3μmであり、さらに好ましくは、0.05〜0.2μmである。セラミック粉体の粒径は、電子顕微鏡法により測定されるが、特に、走査型電子顕微鏡法が好ましい。セラミック粉体の形状は、粒径を定義できる程度の粒状性を有していれば、特に限定されるものではない。例えば、球状に限らず、粉砕体等であってもよい。球状以外の形状である場合の粒径は、電子顕微鏡像における最大径により定義される。
セラミック粉体を構成する材質は、照射波長の光を実質的に吸収しないものであれば特に制限されない。例えば、アルミナ、ジルコニア、チタニア、酸化亜鉛、フェライト、チタン酸バリウム、アパタイト、シリカ等の酸化物、炭化ジルコニウム、炭化ケイ素等の炭化物、窒化アルミニウム、窒化ケイ素、サイアロン(SiAlON)等の窒化物、又はこれらの混合物等の各種セラミックスを用いることができる。通常、(A)成分としては、アルミナ、ジルコニア、シリカ、窒化アルミニウム、窒化ケイ素、又はこれらの混合物等が好適に用いられる。
セラミック粉体を配合した光硬化性樹脂液を光硬化させて得られた立体形状物を焼成すると、セラミックス焼成体からなるレンチキュラーレンズシート用型となり得る。ここで用いる焼成方法は特に限定されず、公知の方法を用いることができる。
マスター型から光学部品を製造する場合には、例えば、マスター型の表面にNi電気鋳造を行った後、マスター型を剥離してマスター型の形状を写し取った雌型を作製する。これにより、金型の雌型を得ることができる。そして、この雌型を用いて前述と同様に加水分解性基を有するシラン化合物を注入・反応させ、雌型から剥離させることによりポリシロキサン製の光学部品を得ることができる。
図2(a)に示すような両面にレンチキュラーレンズを備えるレンチキュラーレンズシート20においては、レンチキュラーレンズシート20のマスター型を製造し、必要に応じてNi電気鋳造を行う。これをマスター型として、内部空間にレンチキュラーレンズシートの形状を有する筐体構造の雌型を得る。筐体構造の表面には、内部空間に連通するレンズシート用樹脂液の注入口を設ければよい。図2(b)に占めすような片面にレンチキュラーレンズを備えるレンチキュラーレンズシート30においても、同様にしてマスター型を製造することができる。
図4に示すような成形ロールのマスター型としては、第1のマスター型と第2のマスター型とを接合することによって形成され、その内部空間が成形ロール73の形状を有しているものを用いることができる。雌型を製造する場合には、それぞれの第1のマスター型、第2のマスター型にレンズシート用樹脂液を充填し、その後にこれらの基板を位置合わせをしつつ接合し、熱や光による外部刺激を加え、レンズシート用樹脂液を硬化せしめることにより成形ロール73を得ることができる。また、第1のマスター型又は第2のマスター型のどちらかに内部空間に連通するレンズシート用樹脂液の注入口を設けてもよい。
なお、実施形態1及び実施形態2においては、レンチキュラーレンズの例について説明したが、これに限定されるものではなく、フレネルレンズシート、プリズムレンズシート等を含めたレンズシート等の光学部品全般について本件発明を適用することができる。
1 光源
2 DMD
3 集光レンズ
4 造形テーブル
5 ディスペンサ
6 リコータ
7 制御部
8 記憶部
9 光硬化性樹脂液
10 光硬化性樹脂液
20 レンチキュラーレンズシート
21 第1のレンチキュラーレンズ
22 第2のレンチキュラーレンズ
30 レンチキュラーレンズシート
31 レンチキュラーレンズ
32 中実構造領域
100 光造形装置
2 DMD
3 集光レンズ
4 造形テーブル
5 ディスペンサ
6 リコータ
7 制御部
8 記憶部
9 光硬化性樹脂液
10 光硬化性樹脂液
20 レンチキュラーレンズシート
21 第1のレンチキュラーレンズ
22 第2のレンチキュラーレンズ
30 レンチキュラーレンズシート
31 レンチキュラーレンズ
32 中実構造領域
100 光造形装置
Claims (14)
- 投影領域を単位として一括露光を繰り返すことにより、光硬化性樹脂液に選択的に光を照射して硬化樹脂層を形成し、該硬化樹脂層を順次積層して三次元構造を形成することを特徴とする、光学部品の製造方法。
- 前記光学部品の三次元構造が、オーバーハング部を有する、請求項1に記載の光学部品の製造方法。
- 前記投影領域の面積は、100mm2以下であることを特徴とする請求項1又は2に記載の光学部品の製造方法。
- 前記硬化樹脂層の1層の厚さは10μm以下であることを特徴とする請求項1〜3のいずれか1項に記載の光学部品の製造方法。
- 前記光硬化性樹脂液は、ディジタルミラーデバイスによって反射された光によって硬化することを特徴とする請求項1〜4のいずれか1項に記載の光学部品の製造方法。
- 投影領域を単位として一括露光を繰り返すことにより、光硬化性樹脂液に選択的に光を照射して硬化樹脂層を形成し、該硬化樹脂層を順次積層して三次元構造を形成することを特徴とする、光学部品用型の製造方法。
- 前記光学部品の三次元構造が、オーバーハング部を有する、請求項6に記載の光学部品用型の製造方法。
- 前記投影領域の面積は、100mm2以下であることを特徴とする請求項6又は7に記載の光学部品用型の製造方法。
- 前記硬化樹脂層の1層の厚さは10μm以下であることを特徴とする請求項6〜8のいずれか1項に記載の光学部品用型の製造方法。
- 前記光硬化性樹脂液は、ディジタルミラーデバイスによって反射された光によって硬化することを特徴とする請求項6〜9のいずれか1項に記載の光学部品用型の製造方法。
- 前記光学部品用型が、光学部品を製造するための雌型である、請求項6〜10のいずれか1項に記載の光学部品用型の製造方法
- 前記光学部品用型が、光学部品用雌型を製造するためのマスター型である、請求項6〜10のいずれか1項に記載の光学部品用型の製造方法。
- 前記光硬化性樹脂液が、セラミックス粉体を含有するものである、請求項11又は12に記載の光学部品用型の製造方法。
- 請求項6〜13のいずれか1項に記載の光学部品用型の製造方法により製造された光学部品用型を用いて製造された光学部品。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005191778A JP2007008004A (ja) | 2005-06-30 | 2005-06-30 | 光学部品、光学部品の製造方法及び光学部品用型の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005191778A JP2007008004A (ja) | 2005-06-30 | 2005-06-30 | 光学部品、光学部品の製造方法及び光学部品用型の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007008004A true JP2007008004A (ja) | 2007-01-18 |
Family
ID=37747103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005191778A Pending JP2007008004A (ja) | 2005-06-30 | 2005-06-30 | 光学部品、光学部品の製造方法及び光学部品用型の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007008004A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007291317A (ja) * | 2006-03-31 | 2007-11-08 | Jsr Corp | 微小造形法用光硬化性液状樹脂組成物、これを用いた3次元構造体の製造方法、及び金属型 |
WO2017080842A1 (en) * | 2015-11-09 | 2017-05-18 | Philips Lighting Holding B.V. | Method for producing an optical component by 3d printing, an optical component and a lighting device |
WO2017094072A1 (ja) * | 2015-11-30 | 2017-06-08 | オリンパス株式会社 | 光学素子製造装置および光学素子製造方法 |
WO2019110419A1 (de) * | 2017-12-05 | 2019-06-13 | Osram Opto Semiconductors Gmbh | Verfahren zur herstellung eines strahlungsemittierenden bauteils und strahlungsemittierendes bauteil |
CN112703100A (zh) * | 2018-09-14 | 2021-04-23 | 阿莱恩技术有限公司 | 利用光固化材料的混合式3d打印 |
-
2005
- 2005-06-30 JP JP2005191778A patent/JP2007008004A/ja active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007291317A (ja) * | 2006-03-31 | 2007-11-08 | Jsr Corp | 微小造形法用光硬化性液状樹脂組成物、これを用いた3次元構造体の製造方法、及び金属型 |
WO2017080842A1 (en) * | 2015-11-09 | 2017-05-18 | Philips Lighting Holding B.V. | Method for producing an optical component by 3d printing, an optical component and a lighting device |
CN108349158A (zh) * | 2015-11-09 | 2018-07-31 | 飞利浦照明控股有限公司 | 通过3d打印生产光学部件的方法、光学部件以及照明设备 |
CN108349158B (zh) * | 2015-11-09 | 2020-08-28 | 昕诺飞控股有限公司 | 通过3d打印生产光学部件的方法、光学部件以及照明设备 |
US10989388B2 (en) | 2015-11-09 | 2021-04-27 | Signify Holding B.V. | Lighting device having a 3D printed biconvex cylindrical lens array |
WO2017094072A1 (ja) * | 2015-11-30 | 2017-06-08 | オリンパス株式会社 | 光学素子製造装置および光学素子製造方法 |
JPWO2017094072A1 (ja) * | 2015-11-30 | 2018-09-13 | オリンパス株式会社 | 光学素子製造装置および光学素子製造方法 |
WO2019110419A1 (de) * | 2017-12-05 | 2019-06-13 | Osram Opto Semiconductors Gmbh | Verfahren zur herstellung eines strahlungsemittierenden bauteils und strahlungsemittierendes bauteil |
US11686999B2 (en) | 2017-12-05 | 2023-06-27 | Osram Oled Gmbh | Method for producing a radiation-emitting component, and radiation-emitting component |
CN112703100A (zh) * | 2018-09-14 | 2021-04-23 | 阿莱恩技术有限公司 | 利用光固化材料的混合式3d打印 |
CN112703100B (zh) * | 2018-09-14 | 2023-06-06 | 阿莱恩技术有限公司 | 利用光固化材料的混合式3d打印 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4525424B2 (ja) | 光造形方法 | |
TW214584B (ja) | ||
US7265907B2 (en) | Method of manufacturing microlens, microlens, optical film, screen for projection, and projector system | |
CN110023234B (zh) | 在压印光刻工艺中配置光学层 | |
US7736577B2 (en) | Stereolithography apparatus and stereolithography method | |
JP2014120604A (ja) | インプリント装置、デバイス製造方法及びインプリント装置に用いられる型 | |
WO2013038912A1 (ja) | 微細構造形成用型および光学素子の製造方法 | |
JP2021135504A (ja) | 均一光強度のための露光装置及びその使用方法 | |
JP2023126273A (ja) | 樹脂積層光学体、光源ユニット、光学ユニット、光照射装置、画像表示装置、樹脂積層光学体の製造方法、及び光源ユニットの製造方法 | |
JP5082537B2 (ja) | 光造形方法及び光造形装置 | |
JP2007008004A (ja) | 光学部品、光学部品の製造方法及び光学部品用型の製造方法 | |
JP6995530B2 (ja) | 型を用いて基板上の組成物を成形する成形装置及び物品の製造方法 | |
JP7324257B2 (ja) | インプリントリソグラフィプロセスにおける光学層の構成 | |
JP6924248B2 (ja) | フレーム硬化テンプレート、およびフレーム硬化テンプレートを使用する方法 | |
JP7326876B2 (ja) | 樹脂製モールド、レプリカモールドの製造方法、及び光学素子の製造方法 | |
JP7071231B2 (ja) | 平坦化装置、平坦化方法、物品製造方法及び液滴配置パターンデータの作成方法 | |
JP5151319B2 (ja) | 光造形方法 | |
JP6821387B2 (ja) | インプリント方法、インプリント装置、および物品の製造方法 | |
JP4626446B2 (ja) | 光造形装置および光造形方法 | |
JP2021005679A (ja) | 成形装置、成形装置を用いた物品製造方法 | |
JP2007062130A (ja) | マイクロ光デバイスの製造方法、マイクロ光デバイス用型の製造方法及びマイクロ光デバイス | |
JP2006272917A (ja) | 光造形方法 | |
JP2006321083A (ja) | マイクロリアクターの製造方法及びマイクロリアクター用マスター型若しくは雌型の製造方法 | |
JP4650161B2 (ja) | 光造形装置および光造形方法 | |
JP2020068338A (ja) | 型を用いて基板上の組成物を成形する成形装置、成形方法、および物品の製造方法 |