[go: up one dir, main page]

JP2007001531A - Telescopic shaft for vehicle steering - Google Patents

Telescopic shaft for vehicle steering Download PDF

Info

Publication number
JP2007001531A
JP2007001531A JP2005186709A JP2005186709A JP2007001531A JP 2007001531 A JP2007001531 A JP 2007001531A JP 2005186709 A JP2005186709 A JP 2005186709A JP 2005186709 A JP2005186709 A JP 2005186709A JP 2007001531 A JP2007001531 A JP 2007001531A
Authority
JP
Japan
Prior art keywords
torque transmission
shaft
steering
peripheral surface
transmission pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005186709A
Other languages
Japanese (ja)
Inventor
Takeshi Saito
剛 齋藤
Hiroyuki Uchida
啓之 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005186709A priority Critical patent/JP2007001531A/en
Publication of JP2007001531A publication Critical patent/JP2007001531A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1095Construction relative to lubrication with solids as lubricant, e.g. dry coatings, powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/007Hybrid linear bearings, i.e. including more than one bearing type, e.g. sliding contact bearings as well as rolling contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/12Arrangements for adjusting play
    • F16C29/123Arrangements for adjusting play using elastic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/03Shafts; Axles telescopic
    • F16C3/035Shafts; Axles telescopic with built-in bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/50Lubricating properties
    • F16C2202/54Molybdenum disulfide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/30Alloys based on one of tin, lead, antimony, bismuth, indium, e.g. materials for providing sliding surfaces
    • F16C2204/34Alloys based on tin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/44Hole or pocket sizes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/54Surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/60Thickness, e.g. thickness of coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/20Land vehicles
    • F16C2326/24Steering systems, e.g. steering rods or columns

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Steering Controls (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

【課題】操舵感への影響をより少なくし、かつ回転の際によりスムーズなトルクの伝達が可能な車両のステアリング用伸縮軸を提供する。
【解決手段】互いにスプライン嵌合する雄軸21と雌軸22の軸方向に延びるトルク伝達溝27,28を雄軸21の外周面及び雌軸22の内周面に形成すると共にトルク伝達溝27,28に係合するトルク伝達ピン29を雄軸21と雌軸22との間に配置した車両のステアリング用伸縮軸において、トルク伝達ピン29の外周面及び/またはトルク伝達溝27,28の溝面に固体潤滑剤からなる固体潤滑被膜30を75%以上の面積率で形成し、トルク伝達溝27,28とトルク伝達ピン29の摺動部のスライド抵抗を低減するようにした。
【選択図】図3
Disclosed is a telescopic shaft for steering of a vehicle that has less influence on the steering feeling and can transmit torque more smoothly during rotation.
Torque transmission grooves 27 and 28 extending in the axial direction of a male shaft 21 and a female shaft 22 that are spline-fitted with each other are formed on the outer peripheral surface of the male shaft 21 and the inner peripheral surface of the female shaft 22 and the torque transmission groove 27 is formed. , 28 is a steering telescopic shaft of a vehicle in which a torque transmission pin 29 that is engaged between the male shaft 21 and the female shaft 22 is disposed, and the outer peripheral surface of the torque transmission pin 29 and / or the grooves of the torque transmission grooves 27, 28. A solid lubricant film 30 made of a solid lubricant was formed on the surface with an area ratio of 75% or more so as to reduce the sliding resistance of the sliding portions of the torque transmission grooves 27 and 28 and the torque transmission pin 29.
[Selection] Figure 3

Description

本発明は、自動車等の車両のステアリング用としていられる伸縮軸に関する。   The present invention relates to a telescopic shaft used for steering a vehicle such as an automobile.

一般に、自動車のステアリング機構は、図5に示すように、ステアリングホイール11、ステアリングシャフト12、ステアリングコラム13等からなり、ステアリングシャフト12は、上部ステアリングシャフト部121と下部ステアリングシャフト部122とから構成されている。
上部ステアリングシャフト部121及び下部ステアリングシャフト部122は軸方向に伸縮自在な伸縮軸からなり、車両の走行時に発生する軸方向の変位を伸縮軸で吸収することによって、不快な振動がステアリングホイール11に伝わらないようにしている。
In general, as shown in FIG. 5, the steering mechanism of an automobile includes a steering wheel 11, a steering shaft 12, a steering column 13, and the like. The steering shaft 12 includes an upper steering shaft portion 121 and a lower steering shaft portion 122. ing.
The upper steering shaft portion 121 and the lower steering shaft portion 122 are composed of telescopic shafts that can be expanded and contracted in the axial direction. Absorption of undesired vibrations in the steering wheel 11 by absorbing axial displacements that occur when the vehicle is traveling by the telescopic shafts. I try not to communicate.

このようなステアリング用伸縮軸としては、従来、例えば下記の特許文献1に記載されたものが知られているが、このステアリング用伸縮軸は互いにスプライン嵌合する雄軸と雌軸との間に組み込まれたボールによって軸方向の摺動抵抗を減少させることができるものの、回転の際にはトルクを伝達することができないという問題がある。
そこで、トルクの伝達を可能とするために、雄軸及び雌軸の軸方向に延びるトルク伝達溝を雄軸の外周面と雌軸の内周面に形成すると共に上記トルク伝達溝に係合するトルク伝達ピンを雄軸と雌軸との間に配置したものが提案されている(特許文献2参照)。
特開2001−50293号公報 特開2004−130928号公報
As such a telescopic shaft for steering, for example, the one described in Patent Document 1 below is known, and this telescopic shaft for steering is between a male shaft and a female shaft that are spline-fitted with each other. Although the built-in ball can reduce the sliding resistance in the axial direction, there is a problem that torque cannot be transmitted during rotation.
Therefore, in order to enable transmission of torque, a torque transmission groove extending in the axial direction of the male shaft and the female shaft is formed on the outer peripheral surface of the male shaft and the inner peripheral surface of the female shaft, and is engaged with the torque transmission groove. The thing which has arrange | positioned the torque transmission pin between the male shaft and the female shaft is proposed (refer patent document 2).
JP 2001-50293 A JP 2004-130928 A

特許文献2に記載されたステアリング用伸縮軸では、回転の際のトルク伝達及び軸方向の摺動が共に改善されてはいるが、いわゆる高級車や電気自動車など元々エンジン振動の少ない車両では、ステアリングのスライド抵抗や回転ガタが運転者に伝わりやすく、さらなる改善が望まれている。
本発明は、このような問題点に着目してなされたものであり、操舵感への影響をより少なくし、かつ回転の際によりスムーズなトルクの伝達が可能な車両のステアリング用伸縮軸を提供することを目的とするものである。
In the telescopic shaft for steering described in Patent Document 2, both torque transmission and sliding in the axial direction during rotation are improved. However, in a vehicle with low engine vibration such as a so-called luxury car or electric car, Therefore, further improvement is desired.
The present invention has been made paying attention to such problems, and provides a telescopic shaft for steering of a vehicle that has less influence on steering feeling and can transmit torque more smoothly during rotation. It is intended to do.

上記の目的を達成するために、請求項1の発明は、互いにスプライン嵌合する雄軸と雌軸の軸方向に延びるトルク伝達溝を前記雄軸の外周面及び前記雌軸の内周面に形成すると共に前記トルク伝達溝に係合するトルク伝達ピンを前記雄軸と前記雌軸との間に配置した車両のステアリング用伸縮軸において、前記トルク伝達ピンの外周面及び/または前記トルク伝達溝の溝面に固体潤滑剤からなる固体潤滑被膜を75%以上の面積率で形成したことを特徴とする。   In order to achieve the above object, the invention according to claim 1 is characterized in that torque transmission grooves extending in the axial direction of the male shaft and the female shaft that are spline-fitted with each other are formed on the outer peripheral surface of the male shaft and the inner peripheral surface of the female shaft. In a telescopic shaft for steering of a vehicle in which a torque transmission pin that is formed and engages with the torque transmission groove is disposed between the male shaft and the female shaft, an outer peripheral surface of the torque transmission pin and / or the torque transmission groove A solid lubricating film made of a solid lubricant is formed on the groove surface of each with an area ratio of 75% or more.

請求項2の発明は、請求項1記載の車両のステアリング用伸縮軸において、前記固体潤滑被膜の膜厚を0.1μm以上8.0μm以下としたことを特徴とする。
請求項3の発明は、請求項1または2記載の車両のステアリング用伸縮軸において、前記トルク伝達ピンの外周面及び/または前記トルク伝達溝の溝面に0.1〜5.0μmの深さを有する微細なディンプルを形成したことを特徴とする。
According to a second aspect of the present invention, in the telescopic shaft for steering of the vehicle according to the first aspect, the thickness of the solid lubricating film is 0.1 μm or more and 8.0 μm or less.
According to a third aspect of the present invention, in the telescopic shaft for steering of a vehicle according to the first or second aspect, the outer peripheral surface of the torque transmission pin and / or the groove surface of the torque transmission groove has a depth of 0.1 to 5.0 μm. The present invention is characterized in that fine dimples having the above are formed.

請求項4の発明は、請求項1〜3のいずれか一項記載の車両のステアリング用伸縮軸に
おいて、前記トルク伝達ピンの外周面及び/または前記トルク伝達溝の溝面の中心線平均粗さを0.1〜1.6μmRaの範囲内としたことを特徴とする。
請求項5の発明は、請求項1〜4のいずれか一項記載の車両のステアリング用伸縮軸において、前記トルク伝達ピンの外周面及び/または前記トルク伝達溝の溝面に固体潤滑剤粉末をショットピーニングすることにより前記固体潤滑被膜を形成したことを特徴とする。
According to a fourth aspect of the present invention, in the telescopic shaft for steering of a vehicle according to any one of the first to third aspects, the center line average roughness of the outer peripheral surface of the torque transmission pin and / or the groove surface of the torque transmission groove. Is within the range of 0.1 to 1.6 μmRa.
According to a fifth aspect of the present invention, in the vehicle telescopic shaft according to any one of the first to fourth aspects, solid lubricant powder is applied to the outer peripheral surface of the torque transmission pin and / or the groove surface of the torque transmission groove. The solid lubricant film is formed by shot peening.

請求項1の発明に係る車両のステアリング用伸縮軸によれば、トルク伝達ピンの外周面及び/またはトルク伝達溝の溝面に固体潤滑被膜が形成されていないものと比べ、トルク伝達ピンとトルク伝達溝との摺動部のスライド抵抗を低減することができる。また、固体潤滑被膜の面積率が75%未満のものと比べ、トルク伝達ピンの耐焼付性を高めることができる。したがって、トルク伝達ピンを介して雄軸から雌軸または雌軸から雄軸に回転トルクを伝達する際にトルク伝達ピンとトルク伝達溝との摺動部のスライド抵抗を低減することができる。   According to the telescopic shaft for steering of a vehicle according to the first aspect of the present invention, the torque transmission pin and the torque transmission are compared with those in which the solid lubricant film is not formed on the outer peripheral surface of the torque transmission pin and / or the groove surface of the torque transmission groove. The sliding resistance of the sliding part with the groove can be reduced. Further, the seizure resistance of the torque transmission pin can be improved as compared with the solid lubricant film having an area ratio of less than 75%. Therefore, when the rotational torque is transmitted from the male shaft to the female shaft or from the female shaft to the male shaft via the torque transmission pin, the sliding resistance of the sliding portion between the torque transmission pin and the torque transmission groove can be reduced.

請求項2の発明に係る車両のステアリング用伸縮軸によれば、良好な潤滑性を保ちながら十分な強度の固体潤滑被膜が得られるとともに、固体潤滑被膜摩耗粉の噛み込みを抑制して摺動部のスライド抵抗を低減することができる。
請求項3の発明に係る車両のステアリング用伸縮軸によれば、固体潤滑被膜と母材との付着強度がアンカー効果により向上し、摺動部のスライド抵抗を長期にわたって低く保つことができる。
According to the telescopic shaft for steering of a vehicle according to the invention of claim 2, a solid lubricating film having sufficient strength can be obtained while maintaining good lubricity, and the sliding of the solid lubricating film with wear powder being suppressed. The sliding resistance of the part can be reduced.
According to the telescopic shaft for steering of a vehicle according to the invention of claim 3, the adhesion strength between the solid lubricant film and the base material is improved by the anchor effect, and the sliding resistance of the sliding portion can be kept low for a long period.

請求項4の発明に係る車両のステアリング用伸縮軸によれば、摺動部のスライド抵抗をより一層低減できると共にトルク伝達ピンの耐久性を損なうことがない。
請求項5の発明に係る車両のステアリング用伸縮軸によれば、母材と強固に密着した固体潤滑被膜が形成されるため、固体潤滑剤による潤滑が長期にわたって行われ、グリース潤滑を併用しても、摺動部のスライド抵抗をより一層低減できると共にトルク伝達ピンの耐久性を損なうことがない。
According to the telescopic shaft for steering of a vehicle according to the invention of claim 4, the sliding resistance of the sliding portion can be further reduced and the durability of the torque transmission pin is not impaired.
According to the telescopic shaft for steering of a vehicle according to the invention of claim 5, since the solid lubricating film that is firmly adhered to the base material is formed, lubrication with the solid lubricant is performed over a long period of time, and grease lubrication is used in combination. However, the sliding resistance of the sliding portion can be further reduced and the durability of the torque transmission pin is not impaired.

以下、本発明に係る車両のステアリング用伸縮軸を図面に基づいて説明する。
図1〜図3は、本発明に係るステアリング用伸縮軸の一実施形態を示す図である。図1及び図2において符号20はステアリング用伸縮軸を示し、このステアリング用伸縮軸20は互いにスプライン嵌合する雄軸21と雌軸22とを備えている。
雄軸21はその径方向断面が円形状をなしており、この雄軸21の外周面には、三つのボール転動溝23が雄軸21の周方向に120度の間隔で且つ雄軸21の軸方向に沿って形成されているとともに、雄軸21の軸方向に延びる三つのトルク伝達溝27が雄軸21の周方向に120度の間隔で形成されている。
Hereinafter, a telescopic shaft for steering of a vehicle according to the present invention will be described with reference to the drawings.
1 to 3 are views showing an embodiment of a telescopic shaft for steering according to the present invention. 1 and 2, reference numeral 20 denotes a steering telescopic shaft. The steering telescopic shaft 20 includes a male shaft 21 and a female shaft 22 that are spline-fitted with each other.
The male shaft 21 has a circular cross section in the radial direction, and three ball rolling grooves 23 are formed on the outer peripheral surface of the male shaft 21 at intervals of 120 degrees in the circumferential direction of the male shaft 21. The three torque transmission grooves 27 extending in the axial direction of the male shaft 21 are formed at intervals of 120 degrees in the circumferential direction of the male shaft 21.

一方、雌軸22は径方向断面が円筒形状をなしており、この雌軸22の内周面には、断面が円弧形状をなす三つのボール転動溝24が雌軸22の周方向に120度の間隔で且つ雌軸22の軸方向に沿って形成されているとともに、雌軸22の軸方向に延びる三つのトルク伝達溝28が雌軸22の周方向に120度の間隔で形成されている。
ボール転動溝23,24は互いに対向しており、これら両ボール転動溝23,24間には、雄軸21と雌軸22の軸方向における摺動抵抗を低減するために、複数個のボール25が転動自在に介装されている。
On the other hand, the female shaft 22 has a cylindrical cross section in the radial direction, and three ball rolling grooves 24 having a circular arc cross section are formed on the inner peripheral surface of the female shaft 22 in the circumferential direction of the female shaft 22. Are formed along the axial direction of the female shaft 22 and three torque transmission grooves 28 extending in the axial direction of the female shaft 22 are formed at 120 ° intervals in the circumferential direction of the female shaft 22. Yes.
The ball rolling grooves 23 and 24 are opposed to each other, and in order to reduce the sliding resistance in the axial direction of the male shaft 21 and the female shaft 22 between the ball rolling grooves 23 and 24, a plurality of the rolling balls are provided. A ball 25 is interposed so as to freely roll.

ボール転動溝23はその断面がほぼ台形状をなしており、各ボール転動溝23内には、ボール25をボール転動溝24の溝面に押し付けてボール25のガタツキを防止するガタ
防止部材としての板バネ26が設けられている。
トルク伝達溝27,28は、その長手方向と直交する断面が円弧状をなしている。また、トルク伝達溝27,28は互いに対向しており、これら両トルク伝達溝27,28間には、周方向のトルクを雄軸21から雌軸22または雌軸22から雄軸21に伝えるために、トルク伝達ピン29が組み込まれている。
The ball rolling groove 23 has a substantially trapezoidal cross section. In each ball rolling groove 23, the ball 25 is pressed against the groove surface of the ball rolling groove 24 to prevent rattling of the ball 25. A plate spring 26 as a member is provided.
The torque transmission grooves 27 and 28 have an arc shape in cross section perpendicular to the longitudinal direction. Further, the torque transmission grooves 27 and 28 are opposed to each other, and between these torque transmission grooves 27 and 28, the torque in the circumferential direction is transmitted from the male shaft 21 to the female shaft 22 or from the female shaft 22 to the male shaft 21. In addition, a torque transmission pin 29 is incorporated.

トルク伝達ピン29はその長手方向と直交する断面が円形状をなしており、このトルク伝達ピン29の外周面には、固体潤滑剤からなる固体潤滑被膜30(図3参照)が75%以上の面積率で形成されている。
ここで、トルク伝達ピン29の外周面に固体潤滑被膜30を75%以上の面積率で形成した理由について説明する。
The torque transmission pin 29 has a circular cross section perpendicular to the longitudinal direction thereof, and a solid lubricating film 30 (see FIG. 3) made of a solid lubricant is 75% or more on the outer peripheral surface of the torque transmission pin 29. It is formed by area ratio.
Here, the reason why the solid lubricant film 30 is formed on the outer peripheral surface of the torque transmission pin 29 with an area ratio of 75% or more will be described.

本発明者らは、トルク伝達溝27,28とトルク伝達ピン29との摺動部に発生するスライド抵抗を低減するために、次のような実験を行った。先ず、固体潤滑被膜が形成される前のトルク伝達ピン外周面の平均粗さを測定した。次に、JISR6001に規定の平均粒径が45μmのスズ粉末(または平均粒径3μmの二硫化モリブデン粉末)をショットピーニング装置によりトルク伝達ピン(ピン重量:1〜6kg)の外周面に噴射し、固体潤滑被膜をトルク伝達ピンの外周面に形成した。そして、固体潤滑被膜の面積率および平均膜厚を測定した後、トルク伝達ピンの焼付耐久性試験と摺動抵抗試験を行った。その結果を表1に示す。   The present inventors conducted the following experiment in order to reduce the sliding resistance generated at the sliding portion between the torque transmission grooves 27 and 28 and the torque transmission pin 29. First, the average roughness of the outer peripheral surface of the torque transmission pin before the solid lubricant film was formed was measured. Next, tin powder (or molybdenum disulfide powder with an average particle diameter of 3 μm) having an average particle diameter of 45 μm as defined in JISR6001 is sprayed onto the outer peripheral surface of the torque transmission pin (pin weight: 1 to 6 kg) by a shot peening device, A solid lubricant film was formed on the outer peripheral surface of the torque transmission pin. Then, after measuring the area ratio and average film thickness of the solid lubricant film, a seizure durability test and a sliding resistance test of the torque transmission pin were performed. The results are shown in Table 1.

Figure 2007001531
Figure 2007001531

なお、ショットピーニングは噴射圧力:19.6〜88.2N/cm、噴射時間:10〜20minの条件で行った。また、固体潤滑被膜の面積率は固体潤滑被膜が形成されたトルク伝達ピンの外周面をEPMA(電子プローブマイクロアナライザ)により観察(倍率×2000,30視野)し、トルク伝達ピン外周面の200μm四方を1000倍に拡大した際に、固体潤滑被膜形成前の元素特性X線強度が10倍以上の強度を有する領域に固体潤滑被膜が形成されていると仮定し、その結果を画像解析して固体潤滑被膜の面積率の平均値を求めた。 The shot peening was performed under the conditions of the injection pressure: 19.6 to 88.2 N / cm 2 and the injection time: 10 to 20 min. In addition, the area ratio of the solid lubricant film was measured by observing the outer peripheral surface of the torque transmission pin on which the solid lubricant film was formed with an EPMA (Electron Probe Microanalyzer) (magnification × 2000, 30 fields of view). Is magnified 1000 times, it is assumed that the solid lubricant film is formed in a region where the element characteristic X-ray intensity before the solid lubricant film is formed is 10 times or more. The average value of the area ratio of the lubricating coating was determined.

固体潤滑被膜の平均膜厚は、固体潤滑被膜を保護するために、先ず、熱硬化性樹脂であるポリアミドイミドをピロリドンに溶解した化合物でトルク伝達ピンの表面を被覆した後、175℃の雰囲気温度でトルク伝達ピンを2時間放置し、その表面層を硬化させた。次に、トルク伝達ピンを切断してエポキシ樹脂中に埋め込み、その切断面をバフ研磨で鏡面仕上げした後、鏡面仕上げされた切断面に凹凸をつける目的で3%ピクラール溶液中にトルク伝達ピンを5秒間浸漬した。その後、トルク伝達ピンの切断面にナノオーダーのクロム被覆層をスパッタにより形成し、その表面を電子顕微鏡で観察(倍率×5000,30視野)した。   In order to protect the solid lubricating film, the average film thickness of the solid lubricating film is such that first, the surface of the torque transmission pin is coated with a compound obtained by dissolving polyamideimide, which is a thermosetting resin, in pyrrolidone, and then the ambient temperature of 175 ° C. The torque transmission pin was allowed to stand for 2 hours to cure the surface layer. Next, the torque transmission pin is cut and embedded in an epoxy resin, and the cut surface is mirror-finished by buffing, and then the torque transmission pin is placed in a 3% picral solution for the purpose of roughening the mirror-finished cut surface. Soaked for 5 seconds. Thereafter, a nano-order chromium coating layer was formed on the cut surface of the torque transmission pin by sputtering, and the surface was observed with an electron microscope (magnification × 5000, 30 fields of view).

電子顕微鏡観察では、固体潤滑剤の種類により二次電子線像と反射電子線像を使い分け、固体潤滑被膜の膜厚を明瞭に確認することに努めた。さらに詳細に説明すると、各々の1視野について横方向に被覆面が横断されるように確認し、そして縦方向に6分割を行い、この5点の平均値を求め、それを1視野当たりの膜厚とし、さらに30視野において平均膜厚とした。   In the electron microscope observation, we tried to check the film thickness of the solid lubricant film clearly by using different secondary electron beam images and reflected electron beam images depending on the type of solid lubricant. More specifically, it is confirmed that the coated surface is crossed in the horizontal direction for each field of view, and is divided into six in the vertical direction, and an average value of these five points is obtained, and the film per field is determined. The thickness was set to an average thickness in 30 fields of view.

トルク伝達ピンの焼付耐久性試験は、ブロックオンリング試験法(回転リングにブロックを所定の荷重で押し付け、所定の速度で回転リングを回転させる試験法)で行った。また、摺動抵抗試験はジョイント角度を30°に固定してステアリング機構に回転トルクを入力し、トルク伝達ピンを雄軸及び雌軸の軸方向にスライドさせるのに必要な力を測定した。   The seizure durability test of the torque transmission pin was performed by a block-on-ring test method (a test method in which a block is pressed against a rotating ring with a predetermined load and the rotating ring is rotated at a predetermined speed). In the sliding resistance test, the joint angle was fixed at 30 °, rotational torque was input to the steering mechanism, and the force required to slide the torque transmission pin in the axial direction of the male shaft and female shaft was measured.

また、表1に示す試料No.1〜25のうちNo.6〜10,13〜15,21,22,24,25の試料については、トルク伝達ピンの外周面に微細なディンプルを0.2〜6μmの深さで形成した後、固体潤滑被膜をトルク伝達ピンの外周面に形成した。なお、ディンプルはショットピーニング装置により形成され、ショット材としては、JISR6001に規定の平均粒径が45μmの鋼球、SiC、SiO、Al、ガラスビーズ等を用いることができる。 Sample No. shown in Table 1 No. 1-25 For the samples 6 to 10, 13 to 15, 21, 22, 24, and 25, after forming fine dimples with a depth of 0.2 to 6 μm on the outer peripheral surface of the torque transmission pin, the solid lubricant film is torque transmitted. It was formed on the outer peripheral surface of the pin. The dimples are formed by a shot peening apparatus, and a steel ball, SiC, SiO 2 , Al 2 O 3 , glass beads or the like having an average particle diameter of 45 μm as defined in JIS R6001 can be used as a shot material.

ディンプルの深さについては、トルク伝達ピンの外周面に形成されたディンプルを三次元日接触表面形状測定機により観察(倍率×5000,30視野)し、得られた画像を断面プロファイルに変換した。そして、X方向断面及びY方向断面の5ヶ所をそれぞれ測定し、その結果を平均値として求めた。
表1に示す試験結果から明らかなように、トルク伝達ピンの外周面に固体潤滑剤からなる固体潤滑被膜を形成することにより、トルク伝達ピンの外周面に固体潤滑被膜が形成されていないもの(例えば試料No.16,18)と比較して、トルク伝達溝とトルク伝達ピンとの摺動部のスライド抵抗が低減されていることがわかる。
Regarding the depth of the dimple, the dimple formed on the outer peripheral surface of the torque transmission pin was observed with a three-dimensional date contact surface shape measuring machine (magnification × 5000, 30 fields of view), and the obtained image was converted into a cross-sectional profile. And five places of the cross section in the X direction and the cross section in the Y direction were measured, and the results were obtained as average values.
As apparent from the test results shown in Table 1, by forming a solid lubricant film made of a solid lubricant on the outer peripheral surface of the torque transmission pin, a solid lubricant film is not formed on the outer peripheral surface of the torque transmission pin ( For example, it can be seen that the sliding resistance of the sliding portion between the torque transmission groove and the torque transmission pin is reduced as compared with Sample Nos. 16 and 18).

さらに、トルク伝達ピンの外周面に対する固体潤滑被膜の面積率を75%以上に設定することにより、面積率が75%未満のもの(例えば試料No.19,20,21,22)と比較して、トルク伝達ピンの焼付耐久性すなわち耐久性が向上することがわかる。
したがって、表1に示した実施例のように、トルク伝達ピンの外周面に固体潤滑剤からなる固体潤滑被膜を75%以上の面積率で形成することにより、トルク伝達ピンを介して
雄軸から雌軸または雌軸から雄軸に回転トルクを伝達する際にトルク伝達ピンとトルク伝達溝との摺動部のスライド抵抗を低減できると共にトルク伝達ピンの耐久性を高めることができる。
Further, by setting the area ratio of the solid lubricant film to the outer peripheral surface of the torque transmission pin to 75% or more, the area ratio is less than 75% (for example, samples No. 19, 20, 21, 22). It can be seen that the seizure durability of the torque transmission pin, that is, the durability is improved.
Therefore, as in the embodiment shown in Table 1, by forming a solid lubricant film made of a solid lubricant on the outer peripheral surface of the torque transmission pin with an area ratio of 75% or more, the male shaft is connected via the torque transmission pin. When the rotational torque is transmitted from the female shaft or the female shaft to the male shaft, the sliding resistance of the sliding portion between the torque transmission pin and the torque transmission groove can be reduced and the durability of the torque transmission pin can be increased.

また、固体潤滑被膜の平均膜厚を0.1μm以上8.0μm以下に設定することにより、平均膜厚が8.0μmを上回るもの(例えば試料No.23,24)と比較して、トルク伝達ピンとトルク伝達溝との摺動部のスライド抵抗を低減できると共にトルク伝達ピンの耐久性を向上させることができる。
また、トルク伝達ピンの外周面に0.1〜5.0μmの深さを有する微細なディンプルを形成することにより、トルク伝達ピンの外周面にディンプルを持たないもの(例えば試料No.17)と比較して、トルク伝達ピンの耐久性を向上させることができる。さらに、ディンプルの深さが5.0μmを上回るもの(例えば試料No.25)と比較して、トルク伝達ピンとトルク伝達溝との摺動部のスライド抵抗を低減することができる。
In addition, by setting the average film thickness of the solid lubricant film to 0.1 μm or more and 8.0 μm or less, torque transmission can be achieved as compared with those having an average film thickness exceeding 8.0 μm (for example, Sample Nos. 23 and 24). The sliding resistance of the sliding part between the pin and the torque transmission groove can be reduced and the durability of the torque transmission pin can be improved.
Further, by forming fine dimples having a depth of 0.1 to 5.0 μm on the outer peripheral surface of the torque transmission pin, the outer periphery of the torque transmission pin does not have dimples (for example, sample No. 17) and In comparison, the durability of the torque transmission pin can be improved. Furthermore, the sliding resistance of the sliding portion between the torque transmission pin and the torque transmission groove can be reduced as compared with a dimple whose depth exceeds 5.0 μm (for example, sample No. 25).

また、固体潤滑被膜をショットピーニングにより形成することにより、固体潤滑被膜をスプレー塗布により形成したもの(例えば試料No.17)と比較して、トルク伝達ピンの耐久性を向上させることができる。
なお、表1に示した実施例では固体潤滑剤のショット後に微小硬度計を用いて硬さ試験を行った。その結果、固体潤滑被膜により覆われた母材の表面から2〜15μmの深さの硬さが勾配を持ち、勾配の最高位の硬さが処理前の母材硬さと比べて5〜20%程度増大することが確認された。
Further, by forming the solid lubricating film by shot peening, the durability of the torque transmission pin can be improved as compared with the solid lubricating film formed by spray coating (for example, sample No. 17).
In the examples shown in Table 1, a hardness test was performed using a micro hardness tester after a solid lubricant shot. As a result, the hardness at a depth of 2 to 15 μm has a gradient from the surface of the base material covered with the solid lubricant film, and the highest hardness of the gradient is 5 to 20% compared to the base material hardness before processing. It was confirmed that the degree increased.

上述した実施の形態では固体潤滑剤からなる固体潤滑被膜をトルク伝達ピンの外周面に形成した場合を例示したが、これに限定されるものではなく、例えば図4に示すように、固体潤滑被膜30をトルク伝達溝27,28の溝面に形成してもよいし、あるいは固体潤滑被膜をトルク伝達ピンとトルク伝達溝の両方に形成してもよい。
また、上述した実施の形態ではハイブリッド式伸縮軸に本発明を適用した場合を例示したが、これに限定されるものではなく、例えば樹脂コーティングタイプや隙間調整タイプの伸縮軸についても本発明を適用することができる。
In the embodiment described above, the case where the solid lubricant film made of the solid lubricant is formed on the outer peripheral surface of the torque transmission pin is exemplified, but the present invention is not limited to this. For example, as shown in FIG. 30 may be formed on the groove surfaces of the torque transmission grooves 27 and 28, or a solid lubricating film may be formed on both the torque transmission pin and the torque transmission groove.
In the above-described embodiment, the case where the present invention is applied to the hybrid telescopic shaft is illustrated. However, the present invention is not limited to this. can do.

また、表1に示した実施例では固体潤滑剤としてスズや二硫化モリブデンを用いた場合を例示したが、例えばポリエチレン、フッ素樹脂、ナイロン、ポリアセタール、ポリオレフィン、ポリエステル、金属石鹸、MoS、WS、BN、黒鉛、フッ化カルシウム、フッ化バリウム、スズ合金、銅合金、純鉄、純銅、純クロムなどを固体潤滑剤として用いてもよい。 In the examples shown in Table 1, the case where tin or molybdenum disulfide is used as the solid lubricant is exemplified. For example, polyethylene, fluororesin, nylon, polyacetal, polyolefin, polyester, metal soap, MoS 2 , WS 2 BN, graphite, calcium fluoride, barium fluoride, tin alloy, copper alloy, pure iron, pure copper, pure chromium, or the like may be used as the solid lubricant.

また、表1に示した実施例ではディンプルの形成をショットピーニングにより行ったが、ディンプルの形成をバレル法にて行ってもよく、さらにバレル法とショットピーニング法の両方を用いてディンプルを形成してもよい。バレルに関しては、種々のメディアや添加剤を配合して、表面に大きな凹凸をつける粗加工とプラトー部の粗さを整える仕上げ加工を行うことができる。   In the examples shown in Table 1, the dimples are formed by shot peening. However, the dimples may be formed by a barrel method, and the dimples are formed by using both the barrel method and the shot peening method. May be. With respect to the barrel, various media and additives can be blended to perform rough processing for providing large irregularities on the surface and finishing processing for adjusting the roughness of the plateau portion.

本発明の一実施形態に係るステアリング用伸縮軸の軸方向断面図である。It is an axial sectional view of a telescopic shaft for steering according to an embodiment of the present invention. 図1のII―II断面図である。It is II-II sectional drawing of FIG. 図2に示すA部の拡大詳細図である。FIG. 3 is an enlarged detail view of a part A shown in FIG. 2. 本発明の他の実施形態に係るステアリング用伸縮軸の要部を示す断面図である。It is sectional drawing which shows the principal part of the expansion-contraction shaft for steering which concerns on other embodiment of this invention. 自動車のステアリング機構の概略構成を示す図である。It is a figure which shows schematic structure of the steering mechanism of a motor vehicle.

符号の説明Explanation of symbols

11 ステアリングホイール
12 ステアリングシャフト
121 上部ステアリングシャフト部
122 下部ステアリングシャフト部
13 ステアリングコラム
20 ステアリング用伸縮軸
21 雄軸
22 雌軸
23,24 ボール転動溝
25 ボール
27,28 トルク伝達溝
29 トルク伝達ピン
30 固体潤滑被膜
DESCRIPTION OF SYMBOLS 11 Steering wheel 12 Steering shaft 121 Upper steering shaft part 122 Lower steering shaft part 13 Steering column 20 Telescopic shaft for steering 21 Male shaft 22 Female shaft 23, 24 Ball rolling groove 25 Ball 27, 28 Torque transmission groove 29 Torque transmission pin 30 Solid lubricant coating

Claims (5)

互いにスプライン嵌合する雄軸と雌軸の軸方向に延びるトルク伝達溝を前記雄軸の外周面及び前記雌軸の内周面に形成すると共に前記トルク伝達溝に係合するトルク伝達ピンを前記雄軸と前記雌軸との間に配置した車両のステアリング用伸縮軸において、
前記トルク伝達ピンの外周面及び/または前記トルク伝達溝の溝面に固体潤滑剤からなる固体潤滑被膜を75%以上の面積率で形成したことを特徴とする車両のステアリング用伸縮軸。
Torque transmission grooves extending in the axial direction of the male shaft and female shaft that are spline-fitted with each other are formed on the outer peripheral surface of the male shaft and the inner peripheral surface of the female shaft, and the torque transmission pin that engages with the torque transmission groove is In a telescopic shaft for steering a vehicle disposed between a male shaft and the female shaft,
A telescopic shaft for steering of a vehicle, wherein a solid lubricant film made of a solid lubricant is formed at an area ratio of 75% or more on an outer peripheral surface of the torque transmission pin and / or a groove surface of the torque transmission groove.
請求項1記載の車両のステアリング用伸縮軸において、前記固体潤滑被膜の膜厚を0.1μm以上8.0μm以下としたことを特徴とする車両のステアリング用伸縮軸。   The telescopic shaft for steering a vehicle according to claim 1, wherein the solid lubricating film has a thickness of 0.1 µm or more and 8.0 µm or less. 請求項1または2記載の車両のステアリング用伸縮軸において、前記トルク伝達ピンの外周面及び/または前記トルク伝達溝の溝面に0.1〜5.0μmの深さを有する微細なディンプルを形成したことを特徴とする車両のステアリング用伸縮軸。   3. A telescopic shaft for steering a vehicle according to claim 1, wherein fine dimples having a depth of 0.1 to 5.0 [mu] m are formed on an outer peripheral surface of the torque transmission pin and / or a groove surface of the torque transmission groove. A telescopic shaft for steering a vehicle. 請求項1〜3のいずれか一項記載の車両のステアリング用伸縮軸において、前記トルク伝達ピンの外周面及び/または前記トルク伝達溝の溝面の中心線平均粗さを0.1〜1.6μmRaの範囲内としたことを特徴とする車両のステアリング用伸縮軸。   The telescopic shaft for steering of a vehicle according to any one of claims 1 to 3, wherein the center line average roughness of the outer peripheral surface of the torque transmission pin and / or the groove surface of the torque transmission groove is 0.1 to 1. A telescopic shaft for steering a vehicle characterized by being in a range of 6 μmRa. 請求項1〜4のいずれか一項記載の車両のステアリング用伸縮軸において、前記トルク伝達ピンの外周面及び/または前記トルク伝達溝の溝面に固体潤滑剤粉末をショットピーニングすることにより前記固体潤滑被膜を形成したことを特徴とする車両のステアリング用伸縮軸。   The telescopic shaft for steering of a vehicle according to any one of claims 1 to 4, wherein the solid lubricant powder is shot peened on an outer peripheral surface of the torque transmission pin and / or a groove surface of the torque transmission groove. A telescopic shaft for steering a vehicle, wherein a lubricating coating is formed.
JP2005186709A 2005-06-27 2005-06-27 Telescopic shaft for vehicle steering Withdrawn JP2007001531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186709A JP2007001531A (en) 2005-06-27 2005-06-27 Telescopic shaft for vehicle steering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005186709A JP2007001531A (en) 2005-06-27 2005-06-27 Telescopic shaft for vehicle steering

Publications (1)

Publication Number Publication Date
JP2007001531A true JP2007001531A (en) 2007-01-11

Family

ID=37687501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186709A Withdrawn JP2007001531A (en) 2005-06-27 2005-06-27 Telescopic shaft for vehicle steering

Country Status (1)

Country Link
JP (1) JP2007001531A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121679A (en) * 2007-11-12 2009-06-04 Mando Corp Universal joint
JP2009293128A (en) * 2008-06-04 2009-12-17 Messier Bugatti Surface treatment method for high-strength steel machine part and sealing system obtained by implementing the method
JP2011257005A (en) * 2007-12-03 2011-12-22 Mando Corp Slip joint for automobile steering device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121679A (en) * 2007-11-12 2009-06-04 Mando Corp Universal joint
US8100774B2 (en) 2007-11-12 2012-01-24 Mando Corporation Joint having a slip bush
JP2011257005A (en) * 2007-12-03 2011-12-22 Mando Corp Slip joint for automobile steering device
JP2009293128A (en) * 2008-06-04 2009-12-17 Messier Bugatti Surface treatment method for high-strength steel machine part and sealing system obtained by implementing the method

Similar Documents

Publication Publication Date Title
US7811002B2 (en) Rolling device
US7052400B2 (en) Constant velocity universal joint
WO2018159840A1 (en) Bearing component, rolling bearing, and bearing component manufacturing method
US8757886B2 (en) Rolling bearing
JP2007001531A (en) Telescopic shaft for vehicle steering
JP6093737B2 (en) Constant velocity joint and manufacturing method thereof
JP2008151236A (en) Rolling bearing
JP5284904B2 (en) Manufacturing method of universal joint parts
WO2017164399A1 (en) Holder for rolling bearing, and rolling bearing
JP2010180971A (en) Rolling bearing and manufacturing method
JP7428768B2 (en) Mechanical parts and rolling bearings
WO2017126323A1 (en) Rolling element bearing, rolling device, and rolling device manufacturing method
JP2006250316A (en) Rolling device
JP4513775B2 (en) Rolling device for rolling mill roll neck
EP3798459B1 (en) Sliding spline shaft device
WO2016072305A1 (en) Rotational sliding bearing
JPH03277823A (en) Constant velocity universal joint
JP2007002912A (en) Rolling bearing
JP2006308080A (en) Rolling bearing
JP2006242246A (en) Rolling bearing
JP6964400B2 (en) Manufacturing method of rolling bearings, rolling devices and rolling devices
WO2023037846A1 (en) Machine component
JP2006250167A (en) Wet multi-plate clutch for automatic transmission and manufacturing method thereof
JP4752295B2 (en) Toroidal continuously variable transmission
JP2012031989A (en) Rolling bearing, and pulley with damper equipped therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080626

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090130

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090901