JP2006522063A - Process for producing at least one partial oxidation product and / or partial ammoxidation product of hydrocarbon - Google Patents
Process for producing at least one partial oxidation product and / or partial ammoxidation product of hydrocarbon Download PDFInfo
- Publication number
- JP2006522063A JP2006522063A JP2006504983A JP2006504983A JP2006522063A JP 2006522063 A JP2006522063 A JP 2006522063A JP 2006504983 A JP2006504983 A JP 2006504983A JP 2006504983 A JP2006504983 A JP 2006504983A JP 2006522063 A JP2006522063 A JP 2006522063A
- Authority
- JP
- Japan
- Prior art keywords
- gas mixture
- partial
- dehydrogenation
- catalyst
- hydrocarbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 230000003647 oxidation Effects 0.000 title claims abstract description 36
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 36
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 32
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 32
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 26
- 230000008569 process Effects 0.000 title claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 116
- 239000002638 heterogeneous catalyst Substances 0.000 claims abstract description 55
- 229930195734 saturated hydrocarbon Natural products 0.000 claims abstract description 37
- 238000000926 separation method Methods 0.000 claims abstract description 12
- 238000006356 dehydrogenation reaction Methods 0.000 claims description 87
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical group CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 45
- 239000001294 propane Substances 0.000 claims description 22
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical group CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 claims description 16
- 239000007787 solid Substances 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 10
- 239000000470 constituent Substances 0.000 claims description 9
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 claims description 8
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 8
- 239000001282 iso-butane Substances 0.000 claims description 8
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 claims description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 3
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 claims description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 3
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 claims description 3
- 230000003197 catalytic effect Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 95
- 239000003054 catalyst Substances 0.000 description 73
- 238000006243 chemical reaction Methods 0.000 description 69
- 239000000047 product Substances 0.000 description 59
- 239000012495 reaction gas Substances 0.000 description 31
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 238000010438 heat treatment Methods 0.000 description 17
- 239000001257 hydrogen Substances 0.000 description 14
- 229910052739 hydrogen Inorganic materials 0.000 description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 13
- 239000001301 oxygen Substances 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 13
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 238000002485 combustion reaction Methods 0.000 description 11
- 230000008929 regeneration Effects 0.000 description 10
- 238000011069 regeneration method Methods 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000003085 diluting agent Substances 0.000 description 6
- 229910001882 dioxygen Inorganic materials 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 239000003701 inert diluent Substances 0.000 description 5
- 239000003915 liquefied petroleum gas Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 239000012018 catalyst precursor Substances 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000005839 oxidative dehydrogenation reaction Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000011135 tin Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 229910000423 chromium oxide Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- -1 CO 2 Chemical compound 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 150000001722 carbon compounds Chemical class 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 238000007210 heterogeneous catalysis Methods 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 229910052756 noble gas Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000011949 solid catalyst Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- PGTXKIZLOWULDJ-UHFFFAOYSA-N [Mg].[Zn] Chemical compound [Mg].[Zn] PGTXKIZLOWULDJ-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical compound C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 1
- 150000001361 allenes Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical compound CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/32—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
- C07C5/327—Formation of non-aromatic carbon-to-carbon double bonds only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/62—Platinum group metals with gallium, indium, thallium, germanium, tin or lead
- B01J23/622—Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
- B01J23/626—Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C253/00—Preparation of carboxylic acid nitriles
- C07C253/24—Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
- C07C253/26—Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
- C07C45/32—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
- C07C45/33—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
- C07C45/32—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
- C07C45/33—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
- C07C45/34—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
- C07C45/32—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
- C07C45/33—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
- C07C45/34—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
- C07C45/35—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/25—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/25—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
- C07C51/252—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
炭化水素の少なくとも1種の部分酸化生成物及び/又は部分アンモ酸化生成物の製造方法において、少なくとも1種の飽和炭化水素(K)を、不均一系触媒による部分脱水素させ、そしてその際に得られた部分脱水素された炭化水素(K)を含有する生成ガス混合物(A)それ自体又は改質された形態で、生成ガス混合物(A)中に含まれる部分脱水素された炭化水素の不均一系触媒による部分酸化及び/又は部分アンモ酸化に使用し、その際、生成ガス混合物(A)と不均一系触媒による部分酸化及び/又は部分アンモ酸化との間で機械的分離操作を行う方法である。In the process for producing at least one partial oxidation product and / or partial ammoxidation product of a hydrocarbon, at least one saturated hydrocarbon (K) is partially dehydrogenated with a heterogeneous catalyst, The resulting product gas mixture (A) containing the partially dehydrogenated hydrocarbon (K) itself or in a modified form of the partially dehydrogenated hydrocarbon contained in the product gas mixture (A). Used for partial oxidation and / or partial ammoxidation with a heterogeneous catalyst, with a mechanical separation operation between the product gas mixture (A) and partial oxidation and / or partial ammoxidation with a heterogeneous catalyst. Is the method.
Description
本発明は、炭化水素の少なくとも1種の部分酸化生成物及び/又は部分アンモ酸化生成物を製造するにあたり、少なくとも1種の飽和炭化水素Kを気相中で不均一系触媒による脱水素にかけ、その際、少なくとも1種の部分脱水素された炭化水素Kを含有する生成ガス混合物Aを生じさせ、この生成ガス混合物A中に含まれる、飽和炭化水素K及び部分脱水素された炭化水素Kとは異なる構成成分を前記混合物中に留まらせるか、又はこれを部分的に又は完全に分離して生成ガス混合物A′を得て、そして生成ガス混合物A及び/又は生成ガス混合物A′をガス混合物Bの構成成分として、生成ガス混合物A及び/又は生成ガス混合物A′中に含まれる少なくとも1種の部分脱水素された炭化水素Kの少なくとも1回の不均一系触媒による部分酸化及び/又は部分アンモ酸化にかける方法に関する。 In the production of at least one partial oxidation product and / or partial ammoxidation product of a hydrocarbon, the present invention involves subjecting at least one saturated hydrocarbon K to dehydrogenation with a heterogeneous catalyst in the gas phase, In this case, a product gas mixture A containing at least one partially dehydrogenated hydrocarbon K is produced, and saturated hydrocarbon K and partially dehydrogenated hydrocarbon K contained in this product gas mixture A Causes the different constituents to remain in the mixture or to partly or completely separate them to obtain a product gas mixture A 'and to produce the product gas mixture A and / or product gas mixture A' as a gas mixture At least one heterogeneously catalyzed part of at least one partially dehydrogenated hydrocarbon K contained in product gas mixture A and / or product gas mixture A ′ as a constituent of B It relates to a method of subjecting the oxidation and / or partial ammoxidation.
本明細書中において不均一系触媒による脱水素とは、吸熱的に進行し、かつ主要な副生物として水素が生ずる脱水素と解されるのが望ましい。この脱水素は、C−H結合の熱開裂に必要な活性化エネルギーを低減させる固体触媒において実施される。この不均一系触媒による脱水素と不均一系触媒による酸化脱水素とは、後者が存在する酸素により強制を受け、そして主要な副生物として水が形成される点で異なる。更に不均一系触媒による酸化的脱水素は、発熱的に進行する。 In the present specification, dehydrogenation with a heterogeneous catalyst is desirably understood as dehydrogenation that proceeds endothermically and generates hydrogen as a major byproduct. This dehydrogenation is carried out in a solid catalyst that reduces the activation energy required for thermal cleavage of C—H bonds. This heterogeneous catalyst dehydrogenation differs from oxidative dehydrogenation by a heterogeneous catalyst in that the latter is forced by the oxygen present and water is formed as a major byproduct. Furthermore, oxidative dehydrogenation with a heterogeneous catalyst proceeds exothermically.
炭化水素の完全酸化は、この炭化水素中に含まれる炭素が全て炭素の酸化物(CO、CO2)に変換されることと解されるのが望ましい。 Desirably, the complete oxidation of a hydrocarbon is understood as the conversion of all the carbon contained in the hydrocarbon into an oxide of carbon (CO, CO 2 ).
この完全酸化から逸脱する酸素との反応が部分酸化であり、アンモニア存在下では部分アンモ酸化である。 The reaction with oxygen deviating from this complete oxidation is partial oxidation, and in the presence of ammonia, partial ammoxidation.
冒頭に記載された方法は公知であり(例えば、DE−A10219686号、DE−A10246119号、DE−A10245585号、DE−A10219685号、EP−A731077号、DE−A3313573号、DE−A10131297号、DE−A10211275号、EP−A117146号、GB−A2118939号、US−A4532365号、US−A3161670号及びEP−A193310号を参照のこと)、そしてとりわけ、プロパンからの、アクロレイン、アクリル酸及び/又はアクリルニトリルの製造方法、イソブタンからの、メタクロレイン、メタクリル酸及び/又はメタクリルニトリルの製造方法が使用される。この場合、部分アンモ酸化は、主としてアンモニアが反応ガス混合物中に存在するという点で部分酸化と異なる。また、NH3とO2との比を好適に選択することにより、部分酸化と部分アンモ酸化とを並行して、即ち同時に実施することができる。不活性の希釈用ガスを添加することにより、部分酸化及び/又は部分アンモ酸化の反応ガス混合物は、爆発範囲外に保たれる。 The methods described at the beginning are known (for example DE-A 10219686, DE-A 10246119, DE-A 10245585, DE-A 10219685, EP-A 731077, DE-A 3131573, DE-A 1031297, DE-A A10211275, EP-A117146, GB-A2118939, U.S. Pat. No. 4,532,365, U.S. Pat. No. 3,161,670 and EP-A193310) and in particular of acrolein, acrylic acid and / or acrylonitrile from propane. A production method, a production method of methacrolein, methacrylic acid and / or methacrylonitrile from isobutane is used. In this case, partial ammoxidation differs from partial oxidation mainly in that ammonia is present in the reaction gas mixture. Further, by suitably selecting the ratio of NH 3 and O 2 , partial oxidation and partial ammoxidation can be performed in parallel, that is, simultaneously. By adding an inert diluent gas, the partial oxidation and / or partial ammoxidation reaction gas mixture is kept outside the explosion range.
この場合(特にDE−A3313573号、EP−A117146号、GB−A2118939号、US−A4532365号及びUS−A3161670号の教示により)、生成ガス混合物Aそれ自体及び/又は生成ガス混合物A′をガス混合物Bの構成成分として、生成ガス混合物A及び/又は生成ガス混合物A′中に含まれる少なくとも1種の部分脱水素された炭化水素Kの少なくとも1回の不均一系触媒による部分酸化及び/又は部分アンモ酸化にかけることができる。 In this case (especially in accordance with the teachings of DE-A 3331573, EP-A 117146, GB-A 2118939, US-A 4532365 and US-A 3161670) the product gas mixture A itself and / or the product gas mixture A ' At least one partial oxidation and / or partial oxidation of at least one partially dehydrogenated hydrocarbon K contained in the product gas mixture A and / or the product gas mixture A ′ as a constituent of B Can be subjected to ammoxidation.
生成ガス混合物Aの生成ガス混合物A′への移行は、最も単純には、生成ガス混合物A中に場合により含まれる水蒸気を部分的に又は完全に分離させることにより実施できる。これは、例えば生成ガス混合物を冷却し、そしてその中に場合により含まれる水蒸気を部分的に又は完全に凝縮させることにより実施できる。 The transition of the product gas mixture A to the product gas mixture A ′ can be carried out most simply by partial or complete separation of the water vapor optionally contained in the product gas mixture A. This can be done, for example, by cooling the product gas mixture and partially or completely condensing the water vapor optionally contained therein.
しかし当然に、生成ガス混合物A中に含まれる他の構成成分を分離して、生成ガス混合物A′を得ることもできる。例えば、生成ガス混合物Aを、一般的に筒状に構成され、生成ガス混合物A中に含まれる水素のみに透過性であり、かつ従って生成ガス混合物A中に含まれる水素を部分的に又は完全に分離する膜に導いてよい。生成ガス混合物A中に含まれるCO2は、生成ガス混合物Aを液状アルカリ溶液中に導くことにより分離できる。代替の分離法は、DE−A10245585号による吸着/脱着(ストリッピング)である。 Naturally, however, the product gas mixture A ′ can also be obtained by separating the other constituents contained in the product gas mixture A. For example, the product gas mixture A is generally configured in a cylinder, is permeable only to hydrogen contained in the product gas mixture A, and thus partially or completely contains hydrogen contained in the product gas mixture A. It may lead to a membrane that separates into The CO 2 contained in the product gas mixture A can be separated by introducing the product gas mixture A into a liquid alkaline solution. An alternative separation method is adsorption / desorption (stripping) according to DE-A 10245585.
しかしながら、先行技術の方法の欠点は、生成ガス混合物Aについても、生成ガス混合物A′についても、ガス混合物Bについても、少なくとも1回の不均一系触媒による部分酸化又は部分アンモ酸化の前に、このガス混合物中に含まれる固体粒子をこのガス混合物から分離できる機械的分離操作にかけないということである。吸着分離法が使用される場合には、吸着剤は経時的に、場合により固体粒子で飽和する。例えば、ストリッピング及び/又は脱着の場合には、固体粒子が飛沫同伴することがある。 However, the disadvantages of the prior art method are that for the product gas mixture A, the product gas mixture A ′, and the gas mixture B, before at least one partial or partial ammoxidation with a heterogeneous catalyst, The solid particles contained in the gas mixture are not subjected to a mechanical separation operation that can be separated from the gas mixture. If adsorptive separation methods are used, the adsorbent saturates over time, possibly with solid particles. For example, in the case of stripping and / or desorption, solid particles may entrain.
驚くべきことに、このことは、本出願人により長時間の試験において確認した限り、冒頭に記載された方法では、不均一系触媒による脱水素のために使用される固体触媒のうち、非常に微細な粒子が後続の不均一系触媒による部分酸化及び/又はアンモ酸化に運ばれることがあり、これらはそこで使用された触媒固定床中に場合により堆積するという点で不利である。 Surprisingly, this is, as confirmed by the applicant in a long-term test, that, in the method described at the outset, among the solid catalysts used for dehydrogenation with heterogeneous catalysts, Fine particles can be transported to subsequent partial oxidation and / or ammoxidation with heterogeneous catalysts, which are disadvantageous in that they are optionally deposited in the catalyst fixed bed used there.
このことは、不均一系触媒による部分酸化及び/又はアンモ酸化が、反応化学量論比に対して通常は過剰の酸素の存在下で実施されるという点で不利である。 This is disadvantageous in that partial oxidation and / or ammoxidation with a heterogeneous catalyst is usually carried out in the presence of excess oxygen relative to the reaction stoichiometry.
しかしまた、酸素の存在下では、不均一系触媒による脱水素に好適な触媒は、通例、炭化水素のCO2及びH2Oへの完全燃焼(例えばUS−A4788371号を参照のこと)並びにH2とO2とのH2Oへの爆鳴気反応をも触媒する。これらは両方とも、不所望にも、不均一系触媒による部分酸化及び/又はアンモ酸化において不所望な反応物の消費をもたらすか(このことは同時に、不所望にも付加的な熱が発生することを意味する)、又は困難と評価されるにすぎないリスクが潜んでいるという何れかという点で不利である。 However, also in the presence of oxygen, suitable catalysts for dehydrogenation with heterogeneous catalysts are typically complete combustion of hydrocarbons to CO 2 and H 2 O (see, for example, US Pat. No. 4,788,371) and H It also catalyzes the squeal reaction of 2 and O 2 to H 2 O. Both of these undesirably lead to undesired consumption of reactants in the partial and / or ammoxidation with heterogeneous catalysts (which at the same time undesirably generate additional heat. ), Or it is disadvantageous in that there is a risk that is only evaluated as difficult.
従って本発明の課題は、特に、比較的長時間(不均一系触媒による部分酸化及び/又はアンモ酸化のための触媒の耐用期間は、一般的に数年である)にわたる安全な連続的稼働にも好適な有利な方法を提供することである。 The object of the present invention is therefore in particular for safe continuous operation over a relatively long period of time (the catalyst lifetime for partial oxidation and / or ammoxidation with heterogeneous catalysts is generally several years). Is also to provide a preferred and advantageous method.
これに応じて、炭化水素の少なくとも1種の部分酸化生成物及び/又は部分アンモ酸化生成物の製造するにあたり、少なくとも1種の飽和炭化水素Kを、気相中で不均一系触媒による脱水素にかけて、その際、少なくとも1種の部分脱水素された炭化水素Kを含有する生成ガス混合物Aを生じさせ、この生成ガス混合物A中に含まれる、飽和炭化水素K及び部分脱水素された炭化水素Kとは異なる構成成分を前記混合物中に留まらせるか、又はこれを部分的に又は完全に分離して生成ガス混合物A′を得て、そして生成ガス混合物A及び/又は生成ガス混合物A′を、ガス混合物Bの構成成分として、生成ガス混合物A及び/又は生成ガス混合物A′中に含まれる少なくとも1種の部分脱水素された炭化水素Kの、少なくとも1回の不均一系触媒による部分酸化及び/又はアンモ酸化にかける方法において、生成ガス混合物A、生成ガス混合物A′及び/又はガス混合物Bを、少なくとも1回の不均一系触媒による部分酸化及び/又はアンモ酸化の前に、このガス混合物中に含まれる固体粒子をこのガス混合物から分離できる機械的分離操作にかけることを特徴とする方法を見出した。 Accordingly, in the production of at least one partial oxidation product and / or partial ammoxidation product of a hydrocarbon, at least one saturated hydrocarbon K is dehydrogenated by a heterogeneous catalyst in the gas phase. To produce a product gas mixture A containing at least one partially dehydrogenated hydrocarbon K, saturated hydrocarbons K and partially dehydrogenated hydrocarbons contained in this product gas mixture A. The constituents different from K remain in the mixture or are partly or completely separated to obtain a product gas mixture A 'and product gas mixture A and / or product gas mixture A' At least one heterogeneous contact of at least one partially dehydrogenated hydrocarbon K contained in the product gas mixture A and / or product gas mixture A ′ as a constituent of the gas mixture B In the process of partial oxidation and / or ammoxidation by means of the product gas mixture A, product gas mixture A ′ and / or gas mixture B prior to at least one partial oxidation and / or ammoxidation with a heterogeneous catalyst. The present inventors have found a method characterized by subjecting the solid particles contained in the gas mixture to a mechanical separation operation capable of separating the solid particles from the gas mixture.
本発明にかかる方法がとりわけ有利なのは、不均一系触媒による部分酸化及び/又は部分アンモ酸化方法において、生成ガス混合物Aそれ自体及び/又は、生成ガス混合物Aから、この混合物中に一般的に含まれる水蒸気を部分的に又は完全に凝縮させることにより得られる生成ガス混合物A′が使用される場合である。 The process according to the invention is particularly advantageous in the process of partial oxidation and / or partial ammoxidation with heterogeneous catalysts, generally contained in this mixture from the product gas mixture A itself and / or from the product gas mixture A. The product gas mixture A ′ obtained by partially or completely condensing the steam produced is used.
機械的分離操作に使用される、本発明にかかる好適なガス精製装置は、例えば、質量力を利用する沈降室式分離機、衝突式分離機及び遠心分離機である。しかしまた、本発明にかかる方法には、音波式分離機も利用可能である。気体式サイクロンも好ましい。しかし本発明によれば、簡単には機械的分離操作として、濾過を行ってもよい。濾過層としては、濾布、多孔性濾過材料、フリース紙又はオイルで湿った金属濾材が考えられる。また本発明によれば、静電選別機が使用可能である。また簡単には、ガス混合物が不均一系触媒による部分酸化及び/又は部分アンモ酸化のための触媒に到達する前に、ガス混合物中に含まれる非常に微細な固体粒子を分離して、ガス混合物を不活性固定床に貫流させてもよい。本明細書中では、機械的分離操作という概念は、ガスを直流又は向流で液体の細滴(例えば、高沸点の有機液体又は水)に暴露させてガス中に含まれる固体粒子を取り出すことができる吹付装置を含むことが望ましい。吹付用液体は、数回の再循環後に交換し、固体粒子での飽和を回避する。 Suitable gas purification apparatuses according to the present invention used for the mechanical separation operation are, for example, a sedimentation chamber type separator, a collision type separator and a centrifuge using mass force. However, a sonic separator can also be used in the method according to the present invention. A gas cyclone is also preferred. However, according to the present invention, filtration may be performed simply as a mechanical separation operation. As the filter layer, filter cloth, porous filter material, fleece paper or metal filter medium moistened with oil can be considered. Moreover, according to this invention, an electrostatic sorter can be used. It is also simple to separate the very fine solid particles contained in the gas mixture before the gas mixture reaches the catalyst for partial oxidation and / or partial ammoxidation with the heterogeneous catalyst. May be allowed to flow through an inert fixed bed. In this specification, the concept of mechanical separation operation refers to the extraction of solid particles contained in a gas by exposing the gas to a liquid droplet (eg, a high boiling point organic liquid or water) in direct current or countercurrent. It is desirable to include a spraying device that can The spray liquid is changed after several recirculations to avoid saturation with solid particles.
また本発明によれば、直列に接続された種々の機械的分離操作も当然に使用できる。 Also, according to the present invention, various mechanical separation operations connected in series can naturally be used.
本発明によれば、一般的に飽和炭化水素K(特に、プロパン及び/又はイソブタンの場合)の不均一系触媒による脱水素を、DE−A3313973号、WO01/96270号、DE−A10131297号又はDE−A102111275号に記載されているように実施することができる。 According to the invention, the dehydrogenation of saturated hydrocarbons K (especially in the case of propane and / or isobutane) with heterogeneous catalysis is generally carried out according to DE-A 3313973, WO 01/96270, DE-A 1013297 or DE. -Can be carried out as described in A102111275.
不均一系触媒による脱水素反応は容積が増大しながら進行するので、生成物の分圧を減らすことによりその転化率を高めることができる。このことは、例えば減圧での脱水素及び/又は、主として不活性の希釈用ガス、例えば脱水素反応にとっては普通は不活性ガスである水蒸気の混合により、簡単に達成できる。一般的に水蒸気での希釈は、別の利点として、使用された触媒のコークス化の減少をもたらす。それというのも、この水蒸気と形成されたコークスとが石炭ガス化の原理により反応するからである。更に水蒸気は、希釈用ガスとして、引き続いての少なくとも1箇所の酸化帯域及び/又はアンモ酸化帯域内で併用することができる。しかしまた、水蒸気は部分的に又は完全に脱水素の生成混合物Aから簡単に分離でき(例えば、凝縮により)、このことは、その際に得られた生成混合物A′を少なくとも1回の部分酸化及び/又は部分アンモ酸化において更に使用する際に、希釈用ガスN2の割合を高める可能性をもたらす。不均一系触媒による脱水素に好適な別の希釈剤は、例えばCO、メタン、エタン、CO2、窒素及び希ガス、例えばHe、Ne及びArである。全種の公知の希釈剤は、単独又は種々の混合物の形態の何れかで併用できる。これは、また上述の希釈剤が一般的に、少なくとも1回の部分酸化及び/又は部分アンモ酸化においても好適な希釈剤であるという利点に基づいている。不活性希釈剤は、それぞれの反応において、特に不活性にふるまう(即ち、5モル%未満まで、好ましくは3モル%未満まで、更に特に好ましくは1モル%未満まで化学的変化する)希釈剤である。不均一系触媒による脱水素のためには、原則的に先行技術において公知の全種の脱水素触媒が考えられる。これらは、大きく2つの群に分けることができる。即ち、酸化物性の群(例えば、酸化クロム及び/又は酸化アルミニウム)と、一般的に酸化物担体上に堆積された、一般的に比較的貴重な少なくとも1種の金属(例えば、白金、パラジウム、スズ、金、銀)からなる群とに分けることができる。 Since the dehydrogenation reaction using a heterogeneous catalyst proceeds while the volume increases, the conversion can be increased by reducing the partial pressure of the product. This can easily be achieved, for example, by dehydrogenation at reduced pressure and / or by mixing with an inert diluent gas, for example water vapor, which is usually an inert gas for dehydrogenation reactions. In general, dilution with steam provides another advantage of reducing the coking of the catalyst used. This is because the steam reacts with the formed coke by the principle of coal gasification. Furthermore, water vapor can be used in combination as a diluent gas in at least one subsequent oxidation zone and / or ammoxidation zone. However, the water vapor can also be easily separated from the partially or completely dehydrogenated product mixture A (for example by condensation), which means that the product mixture A ′ obtained in this process is at least once partially oxidized. And / or the possibility of increasing the proportion of the dilution gas N 2 for further use in partial ammoxidation. Another diluent suitable dehydrogenation heterogeneous catalyst, for example CO, methane, ethane, CO 2, nitrogen and noble gases, such as He, Ne and Ar. All known diluents can be used together either alone or in the form of various mixtures. This is also based on the advantage that the abovementioned diluents are generally suitable diluents in at least one partial oxidation and / or partial ammoxidation. The inert diluent is a diluent that behaves particularly inert in each reaction (ie, chemically changes to less than 5 mol%, preferably less than 3 mol%, more particularly preferably less than 1 mol%). is there. For dehydrogenation with heterogeneous catalysts, in principle all dehydrogenation catalysts known in the prior art are conceivable. These can be roughly divided into two groups. That is, an oxidic group (eg, chromium oxide and / or aluminum oxide) and at least one generally relatively valuable metal (eg, platinum, palladium, generally deposited on an oxide support). (Tin, gold, silver).
即ち本発明によれば、WO01/96270号、EP−A731077号、DE−A10211275号、DE−A10131297号、WO99/46039号、US−A4788371号、EP−A0705136号、WO99/29420号、US−A4220091号、US−A5430220号、US−A5877369号、EP−A−0117146号、DE−A19937196号、DE−A19937105号並びにDE−A19937107号において推奨されている全種の脱水素触媒を使用できる。特に、DE−A19937107号の実施例1、実施例2、実施例3及び実施例4による触媒を使用できる。 That is, according to the present invention, WO01 / 96270, EP-A731077, DE-A10211275, DE-A10131297, WO99 / 46039, US-A4788371, EP-A0705136, WO99 / 29420, US-A4220091 All types of dehydrogenation catalysts recommended in US Pat. No. 5,430,220, US Pat. No. 5,877,369, EP-A-0117146, DE-A 1937196, DE-A 19937105 and DE-A 19937107 can be used. In particular, the catalysts according to DE-A 19937107, Examples 1, 2, 3, and 4 can be used.
この場合、10〜99.9質量%の二酸化ジルコニウム、0〜60質量%の酸化アルミニウム、二酸化ケイ素及び/又は二酸化チタン並びに、0.1〜10質量%の、元素の周期律表の少なくとも1種の第1主族又は第2主族の元素、元素の周期律表の少なくとも1種の第3副族の元素、元素の周期律表の少なくとも1種の第8副族の元素、ランタン及び/又はスズを含有し、但し質量パーセントの合計が100質量%になる脱水素触媒が挙げられる。 In this case, 10 to 99.9% by mass of zirconium dioxide, 0 to 60% by mass of aluminum oxide, silicon dioxide and / or titanium dioxide, and 0.1 to 10% by mass of at least one element in the periodic table of elements Elements of the first main group or the second main group, elements of at least one third subgroup of the periodic table of elements, elements of at least one eighth subgroup of the periodic table of elements, lanthanum and / or Or the dehydrogenation catalyst which contains tin but the sum total of the mass percentage becomes 100 mass% is mentioned.
本発明にかかる不均一系触媒による脱水素を実施するためには、原則的に先行技術において公知の全種の反応器型及び変法が考えられる。かかる変法の記載は、例えば脱水素触媒に関して挙げられた先行技術の全ての引用文献に含まれている。 In order to carry out the dehydrogenation with a heterogeneous catalyst according to the invention, in principle all reactor types and variants known in the prior art are conceivable. Descriptions of such variants are included in all prior art references cited for example with respect to dehydrogenation catalysts.
本発明にかかる好適な脱水素方法の比較的詳細な記載はまた、“Catalytica(R)研究部門、酸化脱水素法と選択的脱水素法、研究番号4192OD、1993年、430、ファーガソンドライブ、マウンテンビュー、カリフォルニア州、94043−5272 アメリカ合衆国”(Catalytica(R) Studies Division, Oxidative Dehydrogenation and Alternative Dehydrogenation Processes, Study Number 4192OD, 1993, 430 Ferguson Drive, Mountain View, California, 94043-5272 U.S.A.)にも含まれている。 Relatively detailed description of the preferred dehydrogenation process according to the present invention also provides, "Catalytica (R) Research Division, selective dehydrogenation and oxidative dehydrogenation, research number 4192OD, 1993 years, 430, Ferguson Drive, Mountain view, CA, 94043-5272 United States of America "(Catalytica (R) Studies Division , Oxidative Dehydrogenation and Alternative Dehydrogenation Processes, Study Number 4192OD, 1993, 430 Ferguson Drive, Mountain view, California, 94043-5272 USA) are also included in the Yes.
飽和炭化水素の不均一触媒による部分脱水素についての特徴は、これが吸熱的に進行することである。即ち、必須の反応温度の調節のために必要とされる熱(エネルギー)を、予め反応ガス出発混合物に供給すること及び/又は不均一系触媒による脱水素の進行中で供給することの何れかを行わなければならない。 A feature of partial dehydrogenation of saturated hydrocarbons with heterogeneous catalysts is that this proceeds endothermically. That is, either the heat (energy) required for adjusting the required reaction temperature is supplied to the reaction gas starting mixture in advance and / or during the course of dehydrogenation with a heterogeneous catalyst. Must be done.
更に、飽和炭化水素、例えばプロパン及びイソブタンの不均一系触媒による脱水素については、必要とされる反応温度が高いために、高沸点の高分子有機化合物ないしは炭素が少量で形成され、これが触媒表面上に析出し、そしてこれにより触媒が不活性化することが一般的である。この不利な随伴現象を最小限にするために、不均一系触媒による脱水素のために温度を高めた際に触媒表面に導かれて脱水素されるべき飽和炭化水素Kを含有する反応ガス混合物を、水蒸気で希釈してよい。析出した炭素は、このように付与された条件下で、石炭ガス化の原理により部分的に又は完全に除去される。 Furthermore, for the dehydrogenation of saturated hydrocarbons such as propane and isobutane with heterogeneous catalysts, the required reaction temperature is high, so that high-boiling high molecular weight organic compounds or carbons are formed in a small amount, which is the catalyst surface. It is common to deposit on top and thereby deactivate the catalyst. In order to minimize this disadvantageous entrainment phenomenon, a reaction gas mixture containing saturated hydrocarbons K to be led to the catalyst surface and dehydrogenated when the temperature is increased for dehydrogenation with a heterogeneous catalyst. May be diluted with water vapor. The precipitated carbon is partially or completely removed under the conditions given in this way by the principle of coal gasification.
析出した炭素化合物を除去するその他の可能性は、脱水素触媒を、ときおり温度を高めて酸素含有ガスと共に貫流させ、そしてこれにより析出した炭素化合物をほぼ焼失させることにある。しかしまた、炭素堆積物の形成を十分に抑制することは、不均一系触媒により脱水素されるべき飽和炭化水素K(例えば、プロパン又はイソブタン)に、温度を高めてこれを脱水素触媒に導く前に、分子状水素を添加することによっても可能である。 Another possibility to remove the precipitated carbon compound is to let the dehydrogenation catalyst flow through with an oxygen-containing gas, sometimes at an elevated temperature, thereby almost burning out the deposited carbon compound. However, also sufficiently suppressing the formation of carbon deposits leads to a saturated hydrocarbon K (eg propane or isobutane) to be dehydrogenated by the heterogeneous catalyst, leading to a dehydrogenation catalyst by raising the temperature. It is also possible by adding molecular hydrogen before.
無論、不均一系触媒により脱水素されるべき飽和炭化水素Kに、水蒸気及び分子状水素を混合物で添加するという可能性も存在する。分子状水素をプロパンの不均一系触媒による脱水素のために添加することはまた、副生物としてのアレン(プロパジエン)、プロピン及びアセチレンの不所望な形成をも減少させる。 Of course, there is also the possibility of adding steam and molecular hydrogen in a mixture to the saturated hydrocarbon K to be dehydrogenated with a heterogeneous catalyst. The addition of molecular hydrogen for the propane heterogeneous catalyzed dehydrogenation also reduces the unwanted formation of allene (propadiene), propyne and acetylene as by-products.
本発明にかかる不均一系触媒による脱水素に好適な反応器形態は、固定床管反応器、若しくは管束反応器である。即ち、脱水素触媒は固定床として1本の反応管又は反応管の1本の束内に存在する。反応管は、この反応管を取り囲む空間内で、ガス、例えば炭化水素、例えばメタンを燃焼させることにより加熱される。有利なのは、この触媒用管の直接的な加熱形態が固定床層の最初の約20%〜約30%に適用されるにすぎず、そして残りの長さの層は燃焼範囲内で遊離した放射熱により、必要な反応温度まで加熱されることである。このように、ほぼ等温での反応運転が達成可能である。好適な反応管内径は、約10cm〜約15cmである。一般的な脱水素用管束反応器は、300〜1000本の反応管を有する。反応管内部の温度は、300〜700℃の範囲内、好ましくは400〜700℃の範囲内で変動する。有利には、反応ガス出発混合物を反応温度まで予熱して管型反応器に供給する。生成ガス混合物が、50〜100℃だけ低い温度で反応管を出ることが可能である。しかしまた、出口温度はより高くてもよく、又は同等の水準であってもよい。前記方法の範囲では、酸化クロム及び/又は酸化アルミニウムを基礎とする酸化物脱水素触媒の使用が適切である。しばしば、希釈用ガスを併用するのではなく、主として飽和炭化水素K(例えば、プロパン又は粗製プロパン)のみから出発反応ガスとして出発する。脱水素触媒はまた、ほとんど希釈することなく使用する。 A reactor configuration suitable for dehydrogenation with a heterogeneous catalyst according to the present invention is a fixed bed tube reactor or a tube bundle reactor. That is, the dehydrogenation catalyst is present in one reaction tube or one bundle of reaction tubes as a fixed bed. The reaction tube is heated by burning a gas, for example a hydrocarbon such as methane, in a space surrounding the reaction tube. Advantageously, this direct heating mode of the catalyst tube is only applied to the first about 20% to about 30% of the fixed bed layer, and the remaining length layers are freed within the combustion range. Heating up to the required reaction temperature. In this way, a reaction operation at almost isothermal temperature can be achieved. A suitable reaction tube inner diameter is from about 10 cm to about 15 cm. A typical dehydrogenation tube bundle reactor has 300 to 1000 reaction tubes. The temperature inside the reaction tube varies within a range of 300 to 700 ° C, preferably within a range of 400 to 700 ° C. Advantageously, the reaction gas starting mixture is preheated to the reaction temperature and fed to the tubular reactor. It is possible for the product gas mixture to leave the reaction tube at a temperature as low as 50-100 ° C. However, the outlet temperature may also be higher or at an equivalent level. Within the scope of the process, the use of oxide dehydrogenation catalysts based on chromium oxide and / or aluminum oxide is suitable. Often, rather than using a diluting gas in combination, the starting reaction gas starts primarily from saturated hydrocarbons K (eg, propane or crude propane) only. The dehydrogenation catalyst is also used with little dilution.
大規模工業的には、複数基(例えば3基)のかかる管束反応器を、並行して稼働させることができる。その際、本発明により、場合により、この2基の反応器が脱水素稼働状態である一方で、第3の反応器内では触媒装填物を再生させるが、少なくとも1箇所の部分帯域での稼働が損なわれることはない。 On a large scale industry, multiple (for example, three) such tube bundle reactors can be operated in parallel. In this case, according to the invention, in some cases, the two reactors are in dehydrogenation operation, while the catalyst charge is regenerated in the third reactor, but in at least one partial zone. Will not be damaged.
かかる方法は、例えば文献公知のLinde式プロパン脱水素法の場合に適切である。しかし、本発明によれば、1基のかかる管束反応器を使用することで十分であることに意義がある。 Such a method is suitable, for example, in the case of the Linde propane dehydrogenation method known in the literature. However, it is significant according to the invention that it is sufficient to use one such tube bundle reactor.
また、かかる方法は、Phillips Petroleum Co.社により開発された、いわゆる“スチームアクティブリフォーミング(steam active reforming)(STAR)法”で使用可能である(例えば、US−A4902849号、US−A4996387号及びUS−A5389342号を参照のこと)。脱水素触媒として、STAR法においては、有利には助触媒を含有する白金を、担体としての亜鉛(マグネシウム)スピネル上で使用する(例えば、US−A5073662号を参照のこと)。BASF−Linde式プロパン脱水素法とは異なり、STAR法の場合には、脱水素されるべきプロパンが水蒸気で希釈される。水蒸気とプロパンとのモル比は、一般的には4〜6の範囲内である。反応器の出口圧力は、しばしば3〜8atmであり、かつ反応器温度は、適切には480〜620℃で選択される。全ての反応ガス混合物での一般的な触媒充填量は、0.5〜10h−1である(LHSV)。 Such a method is also described in Phillips Petroleum Co. It can be used in the so-called “steam active reforming (STAR) method” developed by the company (see, for example, US Pat. No. 4,902,849, US Pat. No. 4,996,387 and US Pat. No. 5,389,342). As a dehydrogenation catalyst, the STAR process preferably uses platinum containing a cocatalyst on a zinc (magnesium) spinel as support (see, for example, US Pat. No. 5,073,662). Unlike the BASF-Linde propane dehydrogenation method, in the case of the STAR method, the propane to be dehydrogenated is diluted with steam. The molar ratio of water vapor to propane is generally in the range of 4-6. The reactor outlet pressure is often 3-8 atm and the reactor temperature is suitably selected at 480-620 ° C. Typical catalyst loadings for all reaction gas mixtures are 0.5-10 h −1 (LHSV).
本発明にかかる不均一系触媒による脱水素はまた、移動床においても行うことができる。触媒移動床は、例えば半径流反応器内に収容されていてよい。この反応器内では、触媒は上方から下方までゆっくりと移動する一方で、反応ガス混合物は半径方向に流れる。この方法は、例えばいわゆるUOP−Oleflex式脱水素法において使用される。この方法の場合、反応器は準断熱的に稼働されるので、適切には複数基の反応器をカスケードとして連結させて稼働させる(一般的には4基まで)。これにより、反応器入口での反応ガス混合物と、反応器出口での反応ガス混合物との温度差が大きくなりすぎるのを避けることができ(断熱的に稼働させる場合、反応ガス出発混合物は熱媒体として機能し、反応温度の低下は、その熱容量に依存する)、それにもかかわらず、適切な全転化率を達成できる。 Dehydrogenation with the heterogeneous catalyst according to the invention can also be carried out in a moving bed. The catalyst moving bed may be housed, for example, in a radial flow reactor. Within this reactor, the catalyst moves slowly from top to bottom while the reaction gas mixture flows radially. This method is used, for example, in the so-called UOP-Oleflex dehydrogenation process. In the case of this method, the reactor is operated semi-adiabatically, and accordingly, a plurality of reactors are suitably connected in cascade and operated (generally up to four reactors). As a result, it is possible to avoid the temperature difference between the reaction gas mixture at the reactor inlet and the reaction gas mixture at the reactor outlet from becoming too large. And the reduction of the reaction temperature depends on its heat capacity), nevertheless an adequate total conversion can be achieved.
触媒床が移動床反応器を出た際には、これを再生部に供給し、次いで再び使用する。この方法のために、脱水素触媒としては例えば、主として球形の酸化アルミニウム担体上の白金からなる球形の脱水素触媒を使用することができる。UOP変法の場合には、脱水素されるべき飽和炭化水素K(例えば、プロパン)に水素を添加し、触媒が早期に変質するのを避ける。作業圧力は、一般的には2〜5atmである。プロパンの場合には、水素とプロパンとの(モル)比は、適切には0.1〜1である。反応温度は、好ましくは550〜650℃であり、かつ触媒と反応ガス混合物との接触時間は約2h−1〜約6h−1までで選択する。 When the catalyst bed leaves the moving bed reactor, it is fed to the regenerator and then used again. For this method, for example, a spherical dehydrogenation catalyst composed mainly of platinum on a spherical aluminum oxide support can be used as the dehydrogenation catalyst. In the case of the UOP variant, hydrogen is added to the saturated hydrocarbon K (eg propane) to be dehydrogenated to avoid premature alteration of the catalyst. The working pressure is generally 2-5 atm. In the case of propane, the (molar) ratio of hydrogen to propane is suitably 0.1-1. The reaction temperature is preferably 550 to 650 ° C., and contact time of the reaction gas mixture with the catalyst is selected from about 2h -1 ~ about 6h -1.
前記の固定床法の場合には、触媒の幾何学的形状は同様に球形であるが、また円筒形(中空又は中実)又は他の幾何学的形状に構成してもよい。 In the case of the fixed bed method described above, the catalyst geometry is also spherical, but may also be configured in a cylindrical shape (hollow or solid) or other geometric shapes.
飽和炭化水素Kの不均一系触媒による脱水素のための別の変法として、デウィット紀要、石油化学研究、ヒューストン、テキサス州、1992年a、N1(Proceedings De Witt, Petrochem.Review, Houston, Texas, 1992a, N1)は、炭化水素を希釈しない移動床での不均一系触媒による脱水素の可能性を記載している。 Another variant for the heterogeneously catalyzed dehydrogenation of saturated hydrocarbons K is Dewitt Bulletin, Petrochemical Research, Houston, Texas, 1992a, N1 (Proceedings De Witt, Petrochem. Review, Houston, Texas , 1992a, N1) describe the possibility of dehydrogenation with a heterogeneous catalyst in a moving bed that does not dilute hydrocarbons.
本発明によれば、この場合、例えば2個の移動床を同時に稼働させることができ、そのうち一方は、全プロセスに対して悪影響を与えることなく一時的に再生状態で存在させることができる。この場合、活性物質として、酸化アルミニウム上の酸化クロムを使用する。作業圧力は、一般的に1〜2atmであり、かつ脱水素温度は、一般的に550〜600℃である。脱水素に必要な熱は、脱水素触媒を反応温度まで予熱することを通じて反応系に導入する。前記の脱水素はまた、文献中でSnamprogetti−Yarsintez法としても知られている。 According to the present invention, in this case, for example, two moving beds can be operated simultaneously, one of which can be temporarily present in a regenerated state without adversely affecting the entire process. In this case, chromium oxide on aluminum oxide is used as the active substance. The working pressure is generally 1-2 atm and the dehydrogenation temperature is generally 550-600 ° C. The heat required for dehydrogenation is introduced into the reaction system through preheating the dehydrogenation catalyst to the reaction temperature. Said dehydrogenation is also known in the literature as the Snamprogeti-Yarsintez method.
前記の方法とは別に、十分な酸素排除下での不均一系触媒による脱水素触媒をABB Lummus Crest社により開発された方法によっても実現できる(デウィット紀要、石油化学研究、ヒューストン、テキサス州、1992年、P1(Proceedings De Witt, Petrochem.Review, Houston, Texas, 1992, P1)を参照のこと)。 Apart from the above method, a dehydrogenation catalyst with a heterogeneous catalyst under sufficient oxygen exclusion can also be realized by a method developed by ABB Lummus Crest (Dewit Bulletin, Petrochemical Research, Houston, Texas, 1992). Year, P1 (see Proceedings De Witt, Petrochem. Review, Houston, Texas, 1992, P1).
従来記載された十分な酸素排除下での飽和炭化水素Kの不均一系触媒による脱水素法は、これらが≧30モル%(一般的には≦60モル%)の飽和炭化水素K(例えば、プロパン)転化率で稼働されることが共通している(1回の反応帯域通過に対して)。本発明によれば、有利なのは、≧5モル%〜≦30モル%又は≦25モル%の飽和炭化水素K(例えば、プロパン)転化率を達成すれば十分であることである。即ち、不均一系触媒による脱水素を10〜20モル%の転化率で稼働させることもできる(転化率は、1回の反応帯域通過に関する)。これは特に、未反応の飽和炭化水素K(例えば、プロパン)の残留量が、後続の少なくとも1回の部分酸化及び/又は部分アンモ酸化において主として不活性希釈用ガスとして機能し、次いでこれをそれほど損失させることなく脱水素帯域及び/又は少なくとも1箇所の帯域内に返還できることに基づいている。 Conventionally described methods for dehydrogenating saturated hydrocarbons K with heterogeneous catalysis under sufficient oxygen exclusion are those with ≧ 30 mol% (generally ≦ 60 mol%) of saturated hydrocarbons K (for example, It is common to operate at (propane) conversion (for one reaction zone pass). According to the present invention, it is advantageous to achieve a saturated hydrocarbon K (eg propane) conversion of ≧ 5 mol% to ≦ 30 mol% or ≦ 25 mol%. That is, dehydrogenation with a heterogeneous catalyst can be operated at a conversion rate of 10 to 20 mol% (the conversion rate relates to one reaction zone passage). In particular, the residual amount of unreacted saturated hydrocarbon K (eg propane) functions mainly as an inert diluent gas in at least one subsequent partial oxidation and / or partial ammoxidation, which It is based on being able to return to the dehydrogenation zone and / or at least one zone without loss.
前記の転化率を実現するために、有利には不均一系触媒による脱水素を一般的に0.3〜3atmの作業圧力で実施することである。更に、不均一系触媒により脱水素されるべき飽和炭化水素Kを、水蒸気で希釈させることが有利である。従って、一方では水の熱容量が脱水素の吸熱作用の一部を相殺させることができ、他方では水蒸気での希釈が出発物分圧及び生成物分圧を減らすことができ、このことは、脱水素の平衡状況に有利に作用する。更に、前記のように水蒸気を併用することは、貴金属を含有する脱水素触媒の耐用期間にとって有利に作用する。また必要に応じて、別の構成要素として分子状水素を添加してもよい。この場合、分子状水素と飽和炭化水素K(例えば、プロパン)とのモル比は、一般的に≦5である。従って、比較的低い炭化水素K転化率での水蒸気と飽和炭化水素Kとのモル比は、≧0〜30、適切には0.1〜2、有利には0.5〜1であってよい。また脱水素転化率が低い方法が有利なのは、反応ガスが反応器を1回通過する際に、比較的小さい熱量が運ばれるにすぎず、そして転化率を1回の反応器通過の際に達成するために比較的低い反応温度で十分であることである。 In order to achieve the conversion mentioned above, it is advantageous to carry out the dehydrogenation with a heterogeneous catalyst, generally at a working pressure of 0.3-3 atm. Furthermore, it is advantageous to dilute the saturated hydrocarbon K to be dehydrogenated with the heterogeneous catalyst with steam. Thus, on the one hand, the heat capacity of water can offset part of the endothermic effect of dehydrogenation, and on the other hand, dilution with steam can reduce the starting and product partial pressures, which It works favorably on the elementary equilibrium situation. Further, the combined use of water vapor as described above has an advantageous effect on the useful life of the dehydrogenation catalyst containing the noble metal. Moreover, you may add molecular hydrogen as another component as needed. In this case, the molar ratio of molecular hydrogen to saturated hydrocarbon K (eg propane) is generally ≦ 5. Accordingly, the molar ratio of water vapor to saturated hydrocarbon K at a relatively low hydrocarbon K conversion may be ≧ 0-30, suitably 0.1-2, preferably 0.5-1. . Also, the low dehydrogenation conversion method is advantageous because only a relatively small amount of heat is carried when the reaction gas passes through the reactor once, and the conversion rate is achieved during one pass through the reactor. A relatively low reaction temperature is sufficient to do this.
従って適切であり得るのは、転化率が比較的低い脱水素を(準)断熱的に実施することである。即ち、反応ガス出発混合物を、一般的には最初に500〜700℃の温度(若しくは550〜650℃)まで加熱する(例えば、これを取り囲む内壁を直接的に熱することにより)。次いで、所望の転化率を達成するためには普通は触媒床を断熱的に1回通過させれば十分であり、その際、反応ガス混合物は(転化率及び希釈率に応じて)約30℃〜約200℃だけ下がる。熱媒体としての水蒸気の存在はまた、断熱的観点からも顕著に有利になる。低い反応温度により、使用された触媒床の耐用期間が長くなる。 It may therefore be appropriate to carry out the dehydrogenation with a relatively low conversion (quasi) adiabatically. That is, the reaction gas starting mixture is generally first heated to a temperature of 500-700 ° C. (or 550-650 ° C.) (eg, by directly heating the inner wall surrounding it). Then, it is usually sufficient to pass the catalyst bed once adiabatically to achieve the desired conversion, with the reaction gas mixture (depending on conversion and dilution) at about 30 ° C. Decrease by ~ 200 ° C. The presence of water vapor as a heating medium is also significantly advantageous from the viewpoint of adiabaticity. The low reaction temperature increases the useful life of the catalyst bed used.
原則的に、転化率が比較的低い不均一系触媒による脱水素は、これを断熱的に実施する場合でも等温的に実施する場合でも、固定床反応器並びに移動床反応器若しくは流動床反応器内で実施可能である。 In principle, dehydrogenation with a heterogeneous catalyst with a relatively low conversion rate, whether carried out adiabatically or isothermally, is carried out in a fixed bed reactor and moving bed reactor or fluidized bed reactor. Can be implemented within.
顕著に重要なことは、本発明にかかる方法の場合、その実現のために、特に断熱的稼働において、反応ガス混合物が軸方向及び/又は半径方向に貫流する固定床反応器として単独の直立炉型反応器で十分であることである。 Significantly, in the case of the process according to the invention, for the realization thereof, in particular in adiabatic operation, a single upright furnace as a fixed bed reactor through which the reaction gas mixture flows axially and / or radially. A type reactor is sufficient.
この場合、最も単純には、単一の密封された反応容積、例えば、内径が0.1〜10m、場合によりまた0.5〜5mであり、かつその中で触媒固定床が担体装置(例えば、格子)上に施与されている容器である。触媒が装填された反応容積は、断熱的稼働において熱を遮断させ、その際、飽和炭化水素Kを含有する高温の反応ガスは、軸方向に貫流する。この場合、触媒の幾何学的形状は、球形並びに環形又はストランド形であってよい。この場合、反応容積は極めて廉価な装置により実現されるべきであるので、特に圧力損失が低い全ての触媒幾何学的形状が好まれるべきである。これは特に、大きな中空室容積をもたらすか又は構造的に構築された触媒幾何学的形状、例えばモノリス若しくはハニカムである。飽和炭化水素Kを含有する反応ガスの半径方向への流れの実現のために、反応器を、例えばジャケット中に存在する、相互に同心円上に配置された2つの円筒状格子から構成して、触媒層をその環状の隙間に設けてよい。断熱式の場合には、場合によりジャケットを同様に熱を遮断させるのが望ましい。 In this case, the simplest is a single sealed reaction volume, for example an inner diameter of 0.1-10 m, optionally also 0.5-5 m, in which the catalyst fixed bed is a support device (for example , Grid). The reaction volume loaded with the catalyst shuts off heat in an adiabatic operation, with the hot reaction gas containing saturated hydrocarbons K flowing through in the axial direction. In this case, the catalyst geometry may be spherical as well as ring or strand. In this case, all catalyst geometries with particularly low pressure losses should be preferred, since the reaction volume should be realized with very inexpensive equipment. This is in particular a catalyst geometry that results in a large hollow chamber volume or is structurally constructed, such as a monolith or honeycomb. For the realization of the radial flow of the reaction gas containing saturated hydrocarbons K, the reactor consists of two cylindrical grids, for example present in the jacket, arranged concentrically with each other, A catalyst layer may be provided in the annular gap. In the case of an adiabatic type, it may be desirable in some cases to block the heat in the same manner.
1回の通過で転化率が比較的低い不均一系触媒による脱水素のための触媒装填物としては、特にDE−A19937107号において公知の触媒、とりわけ全実施例において公知の触媒が好適である。 Suitable catalysts for the dehydrogenation with heterogeneous catalysts with a relatively low conversion in one pass are in particular those known from DE-A 19937107, in particular those known in all examples.
長い稼働時間の後に、前記触媒は例えば300〜600℃、しばしば400〜550℃の入口温度で、最初に第一の再生段階で窒素及び/又は水素で(好ましくは)希釈された空気を触媒床に導入させることにより、簡単に再生可能である。この場合、再生用ガスでの触媒充填量は、例えば50〜10000h−1であり、かつ再生用ガスの酸素含有率は、0.5〜20容量%である。 After a long operating time, the catalyst is supplied with, for example, 300-600 ° C., often 400-550 ° C. inlet temperature, first (preferably) diluted air with nitrogen and / or hydrogen in the first regeneration stage. It is possible to reproduce easily by introducing it. In this case, the catalyst filling amount with the regeneration gas is, for example, 50 to 10,000 h −1 , and the oxygen content of the regeneration gas is 0.5 to 20% by volume.
引き続いての更なる再生段階では、その他は同等の再生条件下で、再生用ガスとして、空気を使用することができる。無論、工業的用途としては、適切には触媒をその再生前に、不活性ガス(例えば、N2)で洗浄することが望ましい。 In a subsequent further regeneration stage, air can be used as regeneration gas under otherwise similar regeneration conditions. Of course, for industrial applications, it is desirable to clean the catalyst with an inert gas (eg, N 2 ) prior to its regeneration.
次いで、一般的に更に純粋な分子状水素又は、不活性ガス(好ましくは水蒸気)により希釈された分子状水素(水素含有率は、≧1容量%であるのが望ましい)を用いて、その他は同等の条件の範囲で再生させることが望ましい。 Then, generally using more pure molecular hydrogen or molecular hydrogen diluted with an inert gas (preferably water vapor) (hydrogen content is preferably ≧ 1% by volume), the others It is desirable to reproduce within a range of equivalent conditions.
転化率が比較的低い(≦30モル%)不均一系触媒による脱水素は、全ての場合で、転化率が高い(>30モル%)変法と同等の触媒充填量(反応ガス全部並びにこの反応ガスに含まれる飽和炭化水素Kに関する)で稼働させることができる。反応ガスでのこの充填量は、例えば100〜10000h−1、しばしば300〜5000h−1、特にしばしば約500h−1〜約3000h−1であってよい。 Dehydrogenation with a heterogeneous catalyst with a relatively low conversion (≦ 30 mol%) is, in all cases, a catalyst loading equivalent to the variant with a high conversion (> 30 mol%) (all the reaction gases as well as this (Saturated hydrocarbon K contained in the reaction gas). The filling amount of the reaction gas, for example 100~10000H -1, often 300~5000H -1, in particular often be about 500h -1 ~ about 3000h -1.
特に適切には、転化率が比較的低い不均一系触媒による脱水素は、棚型反応器内で実施することができる。 Particularly suitably, the dehydrogenation with a heterogeneous catalyst with a relatively low conversion can be carried out in a shelf reactor.
この反応器は、脱水素を触媒する1個以上の触媒床を空間的に連続して有する。触媒床数は、1〜20個、適切には2〜8個であってよく、しかしまた3〜6個であってよい。この触媒床は、好ましくは半径方向又は軸方向に連続的に設けられている。工業的用途としては、触媒固定床型をかかる棚型反応器内で使用するのが適切である。 The reactor has one or more catalyst beds that catalyze dehydrogenation in spatial succession. The number of catalyst beds may be 1-20, suitably 2-8, but may also be 3-6. This catalyst bed is preferably provided continuously in the radial or axial direction. For industrial applications, it is appropriate to use a fixed catalyst bed type in such a shelf reactor.
最も単純には、触媒固定床を直立炉型反応器内で軸方向に設けるか、又は相互に同心円上に配置された円筒状格子の環状の隙間に設ける。しかしながら、区画の上下に環状間隙を設け、そしてガスを一つの区画内を半径方向に流出させた後に、その上方又は下方に存在する次の区画内に導くこともまた可能である。 Most simply, the fixed catalyst bed is provided axially in an upright reactor or in an annular gap of a cylindrical grid arranged concentrically with each other. However, it is also possible to provide an annular gap above and below the compartment and direct gas into the next compartment above or below it after it has flowed out radially in one compartment.
適切には、反応ガス混合物を、一つの触媒床からその次の触媒床への途中で、例えば高温ガスで加熱された熱交換器フィン上に導くか、又は高温の燃焼ガスで加熱された管に導くことにより、棚型反応器内でその中間加熱にかける。 Suitably, the reaction gas mixture is routed from one catalyst bed to the next, for example, on heat exchanger fins heated with hot gas, or with tubes heated with hot combustion gas. To the intermediate heating in a shelf reactor.
その他の点では、棚型反応器を断熱的に稼働させる場合には、特にDE−A19937107号、特に例としての実施形態に記載された触媒を使用する場合、所望の転化率(≦30モル%)のためには、反応ガス混合物を450〜550℃の温度まで予熱して脱水素用反応器内に導き、そして棚型反応器内でこの温度範囲に維持させれば十分である。即ち、全ての脱水素をこのように非常に低い温度で実施でき、このことは、2つの再生段階の間の触媒固定床の耐用期間にとって特に有利であることは明らかである。 In other respects, when the shelf reactor is operated adiabatically, the desired conversion (≦ 30 mol%), especially when using the catalyst described in DE-A 19937107, in particular the exemplary embodiment For this purpose, it is sufficient to preheat the reaction gas mixture to a temperature of 450-550 ° C., lead it into the dehydrogenation reactor and maintain it in this temperature range in the shelf reactor. That is, it is clear that all dehydrogenation can be carried out at such very low temperatures, which is particularly advantageous for the lifetime of the fixed catalyst bed between the two regeneration stages.
更に適切には、前記の中間加熱を直接的に実施する(自己熱式)。このために、反応ガス混合物に、この最初の触媒床の貫流前及び/又は後続の触媒床の間の貫流前の何れかにおいて、分子状酸素をその量を制限しつつ添加する。従って、使用された脱水素触媒に応じて、反応ガス混合物中に含まれる炭化水素、場合により、既に触媒表面上に析出した炭若しくは炭様化合物、及び/又は不均一系触媒による脱水素の過程で形成された水素及び/又は反応ガス混合物に添加された水素の限られた燃焼が生ずる(また、工業的用途としては、水素の燃焼(及び/又は炭化水素の燃焼)を特異的に(選択的に)触媒する触媒が装填されている棚型反応器内に、触媒床を挿入することが適切である(かかる触媒としては、例えば文献US−A4788371号、US−A4886928号、US−A5430209号、US−A5530171号、US−A5527979号及びUS−A5563314号のその触媒が考えられる;例えば、かかる触媒床は、脱水素触媒を含有する床に対して交互に棚型反応器内に収容されていてよい))。従って、その際に遊離する反応熱により、準自己熱式で不均一系触媒による脱水素をほぼ等温で稼働させることができる。従って、触媒床中での反応ガスの選択滞留時間が増加すればするほど、脱水素は、低温で又は主として一定温度で可能となり、特にこれにより2つの再生段階の間の耐用期間を長くすることができる。 More suitably, the intermediate heating is carried out directly (self-heating). For this purpose, molecular oxygen is added to the reaction gas mixture in a limited amount, either before the first catalyst bed and / or before the subsequent catalyst bed. Therefore, depending on the dehydrogenation catalyst used, the process of dehydrogenation with the hydrocarbons contained in the reaction gas mixture, possibly with the char or carbonaceous compounds already deposited on the catalyst surface, and / or the heterogeneous catalyst Limited combustion of hydrogen formed in and / or hydrogen added to the reaction gas mixture occurs (and, for industrial applications, hydrogen combustion (and / or hydrocarbon combustion) is specifically (selected) In particular, it is appropriate to insert a catalyst bed into a shelf reactor loaded with the catalyst to be catalyzed (for example, such as US Pat. No. 4,788,371, US Pat. No. 4,886,928, US Pat. No. 5,430,209). US Pat. No. 5,530,171, US Pat. No. 5,527,979 and US Pat. No. 5,563,314 are conceivable; for example, such a catalyst bed contains a dehydrogenation catalyst. That may be housed in a tray reactor alternately to the floor)). Therefore, dehydrogenation by a heterogeneous catalyst can be operated almost isothermally by the reaction heat liberated at that time. Therefore, the greater the selective residence time of the reaction gas in the catalyst bed, the more dehydrogenation can be achieved at a lower temperature or mainly at a constant temperature, in particular, thereby extending the useful life between the two regeneration stages. Can do.
一般的には、前記されたような酸素供給を、反応ガス混合物の酸素含有率がこれに含まれる飽和炭化水素Kの量に対して0.5〜30容量%になるように行うことが望ましい。この場合、酸素源としては、純粋な分子状酸素又は、不活性ガス、例えばCO、CO2、N2、希ガスで希釈された酸素、特に空気が考えられる。得られる燃焼ガスは、一般的に更に希釈作用を有し、そしてこれにより不均一系触媒による脱水素が促進される。 In general, it is desirable to supply oxygen as described above so that the oxygen content of the reaction gas mixture is 0.5 to 30% by volume with respect to the amount of saturated hydrocarbon K contained therein. . In this case, the oxygen source can be pure molecular oxygen or oxygen diluted with an inert gas such as CO, CO 2 , N 2 or a noble gas, in particular air. The resulting combustion gas generally has a further diluting effect and this promotes dehydrogenation with heterogeneous catalysts.
不均一系触媒による脱水素の等温性は、棚型反応器内で、触媒床の間の空間に、その充填前に有利ではあるが必ずしも必要ではない真空化がなされた密封された内部構造物(例えば、管形)を備えることにより更に改善することができる。かかる内部構造物はまた、それぞれの触媒床中に配置されていてもよい。この内部構造物は好適な固体又は流体を有し、これらは所定の温度より高い温度で蒸発又は溶融し、その場合には熱が消費され、そしてこの温度を下回るときには再び凝縮し、その場合には熱が遊離する。 The isothermal nature of the dehydrogenation with heterogeneous catalysts can be achieved in a shelf reactor, in a space between the catalyst beds, sealed internal structures that have been evacuated, which is advantageous but not necessary before filling them (e.g. Further improvement can be achieved by providing a tube shape. Such internal structures may also be located in each catalyst bed. This internal structure has suitable solids or fluids, which evaporate or melt at a temperature above a predetermined temperature, in which case heat is consumed and condenses again when below this temperature, in which case Releases heat.
反応ガス出発混合物を、不均一系触媒による脱水素のために必要な反応温度まで加熱するという可能性はまた、この混合物に含まれる飽和炭化水素K及び/又はH2の一部を、分子状酸素により燃焼させること(例えば、特異的に作用する好適な燃焼用触媒に、例えば一回移送させること及び/又は通過させることにより)及び、このように放出される燃焼熱により、所望の反応温度までの加熱を生じさせることにある。得られた燃焼生成物、例えばCO2、H2O並びに燃焼に必要な分子状酸素に場合により伴うN2は、有利にも不活性の希釈用ガスを成す。 The possibility of heating the reaction gas starting mixture to the reaction temperature required for the dehydrogenation with a heterogeneous catalyst also allows some of the saturated hydrocarbons K and / or H 2 contained in this mixture to be molecular. The desired reaction temperature is obtained by burning with oxygen (for example by transferring and / or passing once, for example, to a suitable combustion catalyst which acts specifically) and with the heat of combustion thus released. It is to cause heating up to. The resulting combustion products, such as CO 2 , H 2 O, and optionally N 2 with the molecular oxygen required for combustion, advantageously form an inert diluent gas.
特に適切には、前記の水素燃焼をDE−A10211275号に記載されているように実現することができる。即ち、気相中での飽和炭化水素Kの連続的な不均一系触媒により部分脱水素するにあたり、
− 反応帯域に、脱水素されるべき飽和炭化水素Kを含有する反応ガスを連続的に供給し、
− 反応帯域中の反応ガスを、少なくとも1個の触媒固定床に導き、該触媒固定床において、触媒による脱水素により分子状水素及び少なくとも部分脱水素された炭化水素Kを形成させ、
− 反応ガスを反応帯域中に入れる前及び/又は入れた後に、これに少なくとも分子状酸素を含有するガスを添加し、
− 反応帯域内の分子状酸素が、反応ガス中に含まれる分子状水素を部分的に水蒸気に酸化し、そして
− 反応帯域から、分子状水素、水蒸気、部分脱水素された炭化水素K及び(脱水素されるべき)飽和炭化水素Kを含有する生成ガスを取り出す部分脱水素法であって、反応帯域から取り出された生成ガスを同一組成の2つの部分量に分割し、そして両方の部分量のうち一方を、循環ガスとして脱水素反応帯域に返送させ、そして他方の部分量を、本発明により生成ガス混合物Aとして更に使用すること特徴とする部分脱水素法である。
Particularly suitably, the hydrogen combustion can be realized as described in DE-A 10211275. That is, in the partial dehydrogenation by the continuous heterogeneous catalyst of the saturated hydrocarbon K in the gas phase,
The reaction zone is continuously fed with a reaction gas containing saturated hydrocarbons K to be dehydrogenated,
The reaction gas in the reaction zone is led to at least one catalyst fixed bed in which molecular hydrogen and at least partially dehydrogenated hydrocarbons K are formed by dehydrogenation with the catalyst,
-Before and / or after the reaction gas is introduced into the reaction zone, to which is added a gas containing at least molecular oxygen,
-Molecular oxygen in the reaction zone partially oxidizes molecular hydrogen contained in the reaction gas to water vapor, and-From the reaction zone, molecular hydrogen, water vapor, partially dehydrogenated hydrocarbons K and ( A partial dehydrogenation process for removing a product gas containing saturated hydrocarbons K) to be dehydrogenated, wherein the product gas taken from the reaction zone is divided into two partial quantities of the same composition, and both partial quantities A partial dehydrogenation process characterized in that one of them is returned to the dehydrogenation reaction zone as circulating gas and the other partial quantity is further used as product gas mixture A according to the invention.
更に、本発明により使用されるべき触媒による脱水素の前記の変法は特に、脱水素されるべき飽和炭化水素Kが、プロパン及び/又はイソブタンである場合に使用可能である。 Furthermore, the above-described variant of the catalytic dehydrogenation to be used according to the invention can be used in particular when the saturated hydrocarbon K to be dehydrogenated is propane and / or isobutane.
ところで、生成ガス混合物A及び/又は、この混合物から前記のように生成させることができる生成ガス混合物A′は、自体公知のように、不均一系触媒による部分酸化及び/又は部分アンモ酸化にガス混合物Bを装填するために使用してよい(最初に挙げられた先行技術を参照のこと)。本発明において重要なことは、生成ガス混合物A、生成ガス混合物A′及び/又は混合物Bを、少なくとも1回の不均一系触媒による部分酸化及び/又は部分アンモ酸化の前に、このガス混合物中に含まれる固体粒子をこのガス混合物から分離できる機械的分離操作にかけることだけである。 By the way, the product gas mixture A and / or the product gas mixture A ′ that can be produced from the mixture as described above are used for partial oxidation and / or partial ammoxidation by a heterogeneous catalyst as known per se. It may be used to load mixture B (see prior art listed first). What is important in the present invention is that the product gas mixture A, the product gas mixture A ′ and / or the mixture B are contained in this gas mixture before at least one partial oxidation and / or partial ammoxidation with a heterogeneous catalyst. It is only subjected to a mechanical separation operation in which the solid particles contained in can be separated from this gas mixture.
部分酸化としては、本発明にかかる方法のためには、特に、プロペン(プロパンの部分脱水素により得られる)からアクロレイン及び/又はアクリル酸への部分酸化及びイソブテン(イソブタンの部分脱水素により得られる)からメタクロレイン及び/又はメタクリル酸への部分酸化を考慮することができる。 As partial oxidation, for the process according to the invention, in particular, partial oxidation from propene (obtained by partial dehydrogenation of propane) to acrolein and / or acrylic acid and isobutene (obtained by partial dehydrogenation of isobutane). ) To methacrolein and / or methacrylic acid.
部分アンモ酸化としては、本発明にかかる方法のためには、特に、プロペンからアクリルニトリルへの部分アンモ酸化並びにイソブテンからメタクリルニトリルへの部分アンモ酸化を考慮することができる。 As partial ammoxidation, in particular for the process according to the invention, partial ammoxidation from propene to acrylonitrile and partial ammoxidation from isobutene to methacrylonitrile can be considered.
実施例
1.脱水素触媒
ZrO2・SiO2混合酸化物担体(長さが3〜8mmの範囲、直径が2mmのストランド;DE−A10219879号の実施例3により製造)の外表面及び内表面上に、DE−A10219879号の記載と同様に、酸化物形態の元素Cs、K及びLaでプロモータ添加されているPt/Sn合金を施与した。この元素の化学量論組成(質量比)は:Pt0.3Sn0.6La3.0Cs0.5K0.2(ZrO2)88.3(SiO2)7.1であった。
Example 1. On the outer and inner surfaces of the dehydrogenation catalyst ZrO 2 · SiO 2 mixed oxide support (strands in the range of 3-8 mm in length, 2 mm in diameter; produced according to Example 3 of DE-A 102 19879), DE- A Pt / Sn alloy with the promoter added with the elements Cs, K and La in oxide form was applied as described in A10219879. The stoichiometric composition (mass ratio) of this element was: Pt 0.3 Sn 0.6 La 3.0 Cs 0.5 K 0.2 (ZrO 2 ) 88.3 (SiO 2 ) 7.1 .
前記のようなプロモータ添加された合金の施与を、粉砕された担体に相応の金属の塩溶液を含浸させ、次いでこれを気流中で560℃で加熱処理(1.5時間)することにより実施した。加熱処理の範囲では、活性成分Pt及びSn並びに助触媒が、これらの酸化物形態に変換された。後述の脱水素用反応器内においては、触媒前駆体の活性成分を、後述するように水素流内で500℃で金属まで還元させ、活性触媒を得た。 The application of the promoter-added alloy as described above is carried out by impregnating the ground support with the corresponding metal salt solution and then heat-treating it at 560 ° C. (1.5 hours) in a stream of air. did. In the range of heat treatment, the active components Pt and Sn and the cocatalyst were converted to their oxide form. In the dehydrogenation reactor described later, the active component of the catalyst precursor was reduced to a metal at 500 ° C. in a hydrogen stream as described later to obtain an active catalyst.
2.脱水素用反応器(C330)
前記のように得られた触媒前駆体650ml(762g)を、垂直固定された以下の管型反応器(管長:2049mm、壁厚:7mm、内径:41mm、金属:内部がアルミニウム被覆された(即ち、酸化アルミニウム被覆された)鋼管)(下方から上方に向かって触媒台座上に固定されている):299mmはステアタイト環(外径×長さ×内径=7mm×3mm×4mm)、次いで50mmは直径4〜5mmのステアタイト球、次いで25mmは直径1.5〜2.5mmのステアタイト球、次いで500mmは触媒前駆体、次いで50mmは直径4〜5mmのステアタイト球、次いで1080mmはステアタイト環(外径×長さ×内径=7mm×3mm×4mm)に装入した。ステアタイトとしては、Fa.CeramTec社製のステアタイト(Steatit)C−220を使用した。反応管の加熱を、Fa.HTM Reetz社製の加熱コイル式炉(反応管はこの中に導入されていた)により、下方から上方に向かって直接的に連続する、それぞれ長さ2×220cmに及ぶ4箇所の加熱帯域内で(電気的に)実施した。管表面と加熱コイルとの間には、約72.5mm幅の空隙が存在した。反応管は、下方から上方に向かって、その外壁上で1000mmの長さまで、Fa.Mientherm DE社製のTyp MPS−Super Gの層厚100mmの微孔性の断熱材料で覆われているものであった(準断熱的反応部)。この領域では、この加熱を単に補助的な加熱としてのみ機能させる一方で、この上方領域の管区域を直接的に加熱するのに利用した。
2. Dehydrogenation reactor (C330)
650 ml (762 g) of the catalyst precursor obtained as described above was vertically fixed in the following tubular reactor (tube length: 2049 mm, wall thickness: 7 mm, inner diameter: 41 mm, metal: interior coated with aluminum (that is, Steel tube coated with aluminum oxide) (fixed on the catalyst pedestal from bottom to top): 299 mm is steatite ring (outer diameter x length x inner diameter = 7 mm x 3 mm x 4 mm), then 50 mm Steatite spheres with a diameter of 4-5 mm, then 25 mm with a steatite sphere with a diameter of 1.5-2.5 mm, then 500 mm with a catalyst precursor, then 50 mm with a steatite sphere with a diameter of 4-5 mm, then 1080 mm with a steatite ring (Outer diameter x length x inner diameter = 7 mm x 3 mm x 4 mm). As steatite, Fa. Steatite C-220 manufactured by CeramTec was used. Heat the reaction tube to Fa. In a heating coil furnace manufactured by HTM Reetz (reaction tube was introduced in this), four heating zones each extending in length of 2 × 220 cm, each continuously extending from the bottom to the top. Conducted (electrically). There was a gap of about 72.5 mm width between the tube surface and the heating coil. The reaction tube extends from bottom to top up to a length of 1000 mm on its outer wall. It was covered with a microporous heat insulating material having a thickness of 100 mm of Type MPS-Super G manufactured by Mienherm DE (quasi-adiabatic reaction part). In this region, this heating served only as auxiliary heating, while being used to directly heat the tube area in this upper region.
複数個の熱電対を収容するために、サーモウェル(外径=6mm、内径=4mm)を、反応管内で、上方から下方に向かって1.50mの長さで中央に位置させて差し込んだ。 In order to accommodate a plurality of thermocouples, a thermowell (outer diameter = 6 mm, inner diameter = 4 mm) was inserted in the reaction tube from the top to the bottom with a length of 1.50 m.
長さ60cmのサーモウェルを、下方から上方に向かって対応させて、反応管内に導入した。 A thermowell having a length of 60 cm was introduced into the reaction tube from the bottom to the top.
触媒前駆体の活性化は、水素流内でDE−A10211275号の実施例1に記載されているように実施した。 Activation of the catalyst precursor was carried out as described in Example 1 of DE-A 10211275 in a hydrogen stream.
3.実験施設
不均一系触媒により脱水素されるべき炭化水素としては、プロパン若しくはn−ブタン(以下、液化石油ガスをLPGと呼ぶ)を使用した。
3. Experimental Facility Propane or n-butane (hereinafter, liquefied petroleum gas is referred to as LPG) was used as the hydrocarbon to be dehydrogenated by the heterogeneous catalyst.
実験施設は、合計4部:
− 配量装置
− 反応器装置
− 循環ガス装置
− 排出装置
から構成された。
There are 4 experimental facilities in total:
-Metering device-Reactor device-Circulating gas device-Discharge device.
配量装置内では、液状の出発物質LPG及び水を(必要であれば、窒素流内で)蒸発装置W100に導入して、そして同蒸発装置内で気相に変換させた。蒸発装置段階の後に、蒸発装置内で生じたガス混合物に、必要であれば空気、分子状酸素及び分子状水素を混合して、所望の新しい出発混合物を得ることができた。 Within the metering device, the liquid starting material LPG and water were introduced into the evaporator W100 (if necessary, in a nitrogen stream) and converted into the gas phase in the evaporator. After the evaporator stage, the gas mixture produced in the evaporator could be mixed with air, molecular oxygen and molecular hydrogen, if necessary, to obtain the desired new starting mixture.
反応器装置内では、新しい出発混合物を(場合により、循環ガスとの混合物中で)予熱器(熱交換器)W200内で400〜500℃の温度まで加熱して、次いで前記の脱水素用反応器C330内に導いた(上方から下方に向かって)。その際、加熱帯域は、下方から上方に向かって、以下の温度:500℃、550℃、550℃、550℃を示した。脱水素用反応器内の入口圧力は、2バールまでで選択した。 Within the reactor apparatus, the new starting mixture is heated to a temperature of 400-500 ° C. in a preheater (heat exchanger) W200 (optionally in a mixture with circulating gas) and then the dehydrogenation reaction as described above. Guided into vessel C330 (from top to bottom). At that time, the heating zone showed the following temperatures from below to above: 500 ° C., 550 ° C., 550 ° C., and 550 ° C. The inlet pressure in the dehydrogenation reactor was selected up to 2 bar.
脱水素用反応器を出る生成ガス混合物Aを、空冷された熱交換器に導いて、そして300℃まで冷却した。次いで、この混合物を、完全に又は部分的に導管を経由させて排出部内に移送して、同排出部内で更に処理した。冷却された生成ガス混合物Aの部分量のみを放出部内に導いた場合には、残りの部分量を循環ガス装置に供給した。 Product gas mixture A exiting the dehydrogenation reactor was directed to an air cooled heat exchanger and cooled to 300 ° C. The mixture was then transferred completely or partially via a conduit into the discharge and further processed in the discharge. When only a partial amount of the cooled product gas mixture A was introduced into the discharge portion, the remaining partial amount was supplied to the circulating gas device.
同循環ガス装置内で、循環して導かれた生成ガス混合物Aの部分量を、熱媒体油で稼働された熱交換器W420内で、最初に150℃まで更に冷却し、次いで圧縮機V440内で2バールまで再び圧縮させ、次いで300℃まで加熱された熱交換器W460に移送した後に、予熱器W200段階の前に、これと新しい出発ガス混合物とを統合させた(次いで、予熱器に供給した)。 In the same circulating gas apparatus, a part amount of the product gas mixture A circulated and guided is first further cooled to 150 ° C. in the heat exchanger W420 operated by the heat medium oil, and then in the compressor V440. This was recompressed to 2 bar and then transferred to a heat exchanger W460 heated to 300 ° C. before it was integrated with the new starting gas mixture before the preheater W200 stage (then fed to the preheater) did).
4.結果
実験施設を、3ヶ月の期間にわたり、主として連続的に稼働させた。全部で26反応サイクルを実施した。それぞれの反応サイクルの後に、脱水素触媒の再生を、DE−A10028582号により、洗浄、燃焼、洗浄、還元の順で実施した。反応サイクル(反応サイクルの最短持続時間は3時間であり、かつ反応サイクルの最長持続時間は100時間であった)内では、条件を一定に保った。全サイクルの条件は、以下の範囲:
炭化水素: LPG;
サイクル時間: 3〜100時間;
LPG量: 500〜2000g/h;
新しい水蒸気: 500〜1000g/h;
窒素: 0〜50NI/h;
空気: 0〜375NI/h;
水素: 0〜150NI/h;
加熱帯域の温度: 500℃、550℃、550℃、550℃;
入口圧力: 2バール
循環ガス比: 0又は5(循環量と流出量との比)であった。
4). Results The experimental facility was operated primarily continuously over a period of 3 months. A total of 26 reaction cycles were performed. After each reaction cycle, regeneration of the dehydrogenation catalyst was carried out according to DE-A 10028582 in the order of washing, combustion, washing and reduction. Within the reaction cycle (the minimum duration of the reaction cycle was 3 hours and the maximum duration of the reaction cycle was 100 hours), the conditions were kept constant. The conditions for all cycles are in the following ranges:
Hydrocarbon: LPG;
Cycle time: 3 to 100 hours;
LPG amount: 500-2000 g / h;
New water vapor: 500-1000 g / h;
Nitrogen: 0-50 NI / h;
Air: 0-375 NI / h;
Hydrogen: 0 to 150 NI / h;
Heating zone temperature: 500 ° C, 550 ° C, 550 ° C, 550 ° C;
Inlet pressure: 2 bar Circulating gas ratio: 0 or 5 (ratio of circulating volume to outflow volume).
300℃以下の温度に暴露される実験施設の部分は、V2A鋼から製造されているものであった。300℃より高い温度に暴露される実験施設の部分は、1.4841鋼から製造されているものであった。 The part of the experimental facility that was exposed to temperatures below 300 ° C. was made from V2A steel. The part of the laboratory facility that was exposed to temperatures above 300 ° C. was made from 1.4841 steel.
実験系の完了後に、循環ガス及び全ての生成ガス混合物Aにより貫流された実験施設の全ての部分で、かなりの量の膜状の錆が確認された。これは、(明らかに、生成ガス混合物Aの予冷により生ずる)水が凝縮した導管の錆に起因するものであった。 After completion of the experimental system, a considerable amount of filmy rust was observed in all parts of the experimental facility that were flowed through by the circulating gas and all product gas mixture A. This was due to the rust of the conduit with condensed water (obviously caused by the precooling of the product gas mixture A).
原子吸収スペクトルによる膜状の錆の分析は、予想される構成成分であるFe、Ni及びCrの他に、また脱水素触媒にのみ起因しうるZr、Si及びPtの成分をも明らかにした。この分析された錆試料は、全部で以下の元素量:
炭素:1.5g/100g;
Al:2.2g/100g;
Cr:2.6g/100g;
Fe:13.1g/100g;
Mg:10.6g/100g;
Ni:1.9g/100g;
Pt:0.019g/100g;
Si:20.6g/100g;
Zr:0.17g/100g
を示した。
Analysis of film-like rust by atomic absorption spectrum revealed Zr, Si, and Pt components that can be attributed only to the dehydrogenation catalyst in addition to the expected constituents Fe, Ni, and Cr. This analyzed rust sample has a total amount of the following elements:
Carbon: 1.5 g / 100 g;
Al: 2.2 g / 100 g;
Cr: 2.6 g / 100 g;
Fe: 13.1 g / 100 g;
Mg: 10.6 g / 100 g;
Ni: 1.9 g / 100 g;
Pt: 0.019 g / 100 g;
Si: 20.6 g / 100 g;
Zr: 0.17 g / 100 g
showed that.
逐一取り出された生成ガス混合物Aの試料の分析においては、Zr、Si及びPtを検出できなかった。明らかに、これらが含まれる量は検出限度未満である。 In the analysis of the sample of the product gas mixture A taken out one by one, Zr, Si and Pt could not be detected. Obviously, the amount they contain is below the detection limit.
Claims (5)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10316039A DE10316039A1 (en) | 2003-04-07 | 2003-04-07 | Preparation of at least one partial oxidation and/or ammoxidation product of a hydrocarbon e.g. isobutane involves partially dehydrogenating saturated hydrocarbon under heterogeneous catalysis |
US47616603P | 2003-06-06 | 2003-06-06 | |
PCT/EP2004/003557 WO2004089858A1 (en) | 2003-04-07 | 2004-04-03 | Method for the production of at least one partial oxidation and/or ammoxidation product of a hydrocarbon |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006522063A true JP2006522063A (en) | 2006-09-28 |
JP2006522063A5 JP2006522063A5 (en) | 2007-03-01 |
Family
ID=33160610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006504983A Withdrawn JP2006522063A (en) | 2003-04-07 | 2004-04-03 | Process for producing at least one partial oxidation product and / or partial ammoxidation product of hydrocarbon |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1613574A1 (en) |
JP (1) | JP2006522063A (en) |
KR (1) | KR20050122239A (en) |
BR (1) | BRPI0408968A (en) |
MY (1) | MY144309A (en) |
RU (1) | RU2356881C2 (en) |
WO (1) | WO2004089858A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009511539A (en) * | 2005-10-14 | 2009-03-19 | ビーエーエスエフ ソシエタス・ヨーロピア | Process for producing acrolein or acrylic acid or mixtures thereof from propane |
JP2009514829A (en) * | 2005-11-03 | 2009-04-09 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for carrying out the process of continuously producing acrolein or acrylic acid or mixtures thereof from propane in a stable manner |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3161670A (en) * | 1960-12-12 | 1964-12-15 | Shell Oil Co | Preparation of olefinic compounds |
CA2029277A1 (en) * | 1989-11-06 | 1991-05-07 | Tatsuya Kawajiri | Method for production of acrylic acid |
-
2004
- 2004-04-03 RU RU2005134010/04A patent/RU2356881C2/en not_active IP Right Cessation
- 2004-04-03 WO PCT/EP2004/003557 patent/WO2004089858A1/en active Application Filing
- 2004-04-03 EP EP04725618A patent/EP1613574A1/en not_active Withdrawn
- 2004-04-03 KR KR1020057018981A patent/KR20050122239A/en not_active Withdrawn
- 2004-04-03 BR BRPI0408968-5A patent/BRPI0408968A/en not_active IP Right Cessation
- 2004-04-03 JP JP2006504983A patent/JP2006522063A/en not_active Withdrawn
- 2004-04-05 MY MYPI20041246A patent/MY144309A/en unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009511539A (en) * | 2005-10-14 | 2009-03-19 | ビーエーエスエフ ソシエタス・ヨーロピア | Process for producing acrolein or acrylic acid or mixtures thereof from propane |
JP2009514829A (en) * | 2005-11-03 | 2009-04-09 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for carrying out the process of continuously producing acrolein or acrylic acid or mixtures thereof from propane in a stable manner |
Also Published As
Publication number | Publication date |
---|---|
BRPI0408968A (en) | 2006-04-04 |
RU2005134010A (en) | 2006-05-27 |
KR20050122239A (en) | 2005-12-28 |
MY144309A (en) | 2011-08-29 |
EP1613574A1 (en) | 2006-01-11 |
RU2356881C2 (en) | 2009-05-27 |
WO2004089858A1 (en) | 2004-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2312851C2 (en) | Method for preparing acrolein or acrylic acid or their mixture from propane | |
RU2346928C2 (en) | Method of obtaining at least one product of partial propylene oxidation and/or ammoxidation | |
KR100886032B1 (en) | Process for preparing partial oxidation product and / or partial ammonia oxidation product of one or more olefinic hydrocarbons | |
US7910766B2 (en) | Preparation of at least one partial oxidation and/or ammoxidation product of a hydrocarbon | |
KR100974260B1 (en) | Process for preparing butadiene from N-butane | |
TWI458552B (en) | Process for regenerating a catalyst bed deactivated in the course of a heterogeneously catalyzed partial dehydrogenation of a hydrocarbon | |
JP4115393B2 (en) | Process for producing 1,2-dichloroethane | |
RU2452724C2 (en) | Method to produce acrolein or acrylic acid or their mixture from propane | |
JP2004503517A (en) | Method for producing acrolein and / or acrylic acid | |
JP5231996B2 (en) | Process for producing at least one final product by partial oxidation and / or ammoxidation of propylene | |
TWI373464B (en) | Process for preparing acrolein or acrylic acid or a mixture thereof from propane | |
JP4159545B2 (en) | Isothermal treatment method for dehydrogenating alkanes | |
JP2008523013A (en) | Method for producing propene from propane | |
JP4456862B2 (en) | Process for producing methacrylic acid from iso-butane | |
JP5260300B2 (en) | A process for producing acrolein from propane, acrylic acid, or a mixture thereof | |
JP2006522063A (en) | Process for producing at least one partial oxidation product and / or partial ammoxidation product of hydrocarbon | |
RU2416595C2 (en) | Method of lowering flash point temperature of fixed catalyst bed during synthesis of acrolein or acrylic acid or mixture thereof via heterogeneously catalysed gas-phase partial oxidation | |
JP2004532283A (en) | Preparation of unsaturated nitriles from alkanes. | |
RU2429218C2 (en) | Method of producing acrolein, acrylic acid or mixture thereof from propane | |
TW200402408A (en) | Preparation of unsaturated nitriles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070115 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070115 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090204 |