JP2006349014A - Tapered roller bearing - Google Patents
Tapered roller bearing Download PDFInfo
- Publication number
- JP2006349014A JP2006349014A JP2005174501A JP2005174501A JP2006349014A JP 2006349014 A JP2006349014 A JP 2006349014A JP 2005174501 A JP2005174501 A JP 2005174501A JP 2005174501 A JP2005174501 A JP 2005174501A JP 2006349014 A JP2006349014 A JP 2006349014A
- Authority
- JP
- Japan
- Prior art keywords
- roller
- face
- ratio
- tapered
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 abstract description 11
- 239000003921 oil Substances 0.000 description 27
- 238000000034 method Methods 0.000 description 10
- 239000002184 metal Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 3
- 238000005461 lubrication Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 210000001217 buttock Anatomy 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/225—Details of the ribs supporting the end of the rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/34—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
- F16C19/36—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
- F16C19/364—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/34—Rollers; Needles
- F16C33/36—Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
- F16C33/366—Tapered rollers, i.e. rollers generally shaped as truncated cones
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/40—Linear dimensions, e.g. length, radius, thickness, gap
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/40—Linear dimensions, e.g. length, radius, thickness, gap
- F16C2240/70—Diameters; Radii
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
Abstract
【課題】ころ大端面と内輪大鍔との接触部における最小油膜厚さを最大とでき、耐焼付き性に優れ、かつころの製造コストを低く抑えることができる円すいころ軸受を提供する。
【解決手段】円すいころ軸受1は、円すいころ4の大端面4aが球面、内輪2の大鍔2bの円すいころ4側の側面2baが略円すい面とされたものである。ころ端面R比を荷重条件に応じて次の値とする。基本動定格荷重Cに対する動等価ラジアル荷重Pの割合P/Cが、P/C≦12%の範囲で使用される場合は、ころ端面R比を86〜92%とする。P/C>12%の範囲で使用される軸受の場合は、ころ端面R比を84〜88とする。ころ端面R比は、内輪2の軌道面となる円すい面の頂点Aから、円すいころ4の大端面4aと上記大鍔2bとの接触点Bまでの距離をrb 、円すいころ4の大端面4aの曲率半径をrm としたときに、R=rm /rb 、で示されるRの値である。
【選択図】図1To provide a tapered roller bearing capable of maximizing a minimum oil film thickness at a contact portion between a roller large end face and an inner ring large collar, having excellent seizure resistance, and suppressing the manufacturing cost of the roller.
A tapered roller bearing 1 is configured such that a large end surface 4a of a tapered roller 4 is a spherical surface, and a side surface 2ba of a large flange 2b of an inner ring 2 on a tapered roller 4 side is a substantially tapered surface. The roller end face R ratio is set to the following value according to the load condition. When the ratio P / C of the dynamic equivalent radial load P to the basic dynamic load rating C is used in the range of P / C ≦ 12%, the roller end face R ratio is set to 86 to 92%. In the case of a bearing used in the range of P / C> 12%, the roller end face R ratio is 84 to 88. Roller end R ratio, from the vertex A of the conical surface formed with an inner ring 2 of the raceway surface, the large end face of the distance to the contact point B between the large end face 4a and the large collar 2b of the tapered roller 4 r b, the tapered rollers 4 the radius of curvature 4a when the r m, the value of R = r m / r b, in represented by R.
[Selection] Figure 1
Description
この発明は、自動車のトランスミッション等に使用される円すいころ軸受に関する。 The present invention relates to a tapered roller bearing used for an automobile transmission or the like.
円すいころ軸受は、通常、その内輪の背面側に大鍔を有する。この大鍔の円すいころ側の側面は略円すい面とされており、球面の一部で構成されるころ大端面と接触する。この内輪大鍔ところ大端面との接触部では、相対運動にすべりを伴うため、高荷重で使用される自動車トランスミッション用の円すいころ軸受では油膜が薄くなり金属接触を発生する可能性がある。
従来、円すいころ軸受の大鍔部の潤滑性向上のための技術として、大鍔に周方向溝を形成することで金属接触を防止する方法(例えば特許文献1)、ころ大端面にランダムな研削痕を設け、この研削痕の谷部に潤滑油を溜める方法(例えば特許文献2)、ころ大端面に微小くぼみを点在させて、そのくぼみ内に潤滑油を溜める方法(例えば特許文献3)、ころ大端面と内輪大鍔の接触部におけるいずれか一方の接触面に自己潤滑性のある皮膜をコーティングする方法(例えば特許文献4)、ころ大端面と内輪大鍔の接触部におけるいずれか一方の接触面にセラミック皮膜をコーティングする方法(例えば特許文献5)などが提案されている。
Tapered roller bearings usually have a large collar on the back side of the inner ring. The side surface of this large bowl on the tapered roller side is a substantially conical surface, and comes into contact with the roller large end surface constituted by a part of a spherical surface. At the contact portion with the large end surface of the inner ring, the relative motion is accompanied by a slip, so that in a tapered roller bearing for an automobile transmission used at a high load, the oil film becomes thin and metal contact may occur.
Conventionally, as a technique for improving the lubricity of a large collar portion of a tapered roller bearing, a method of preventing metal contact by forming a circumferential groove in the large collar (for example, Patent Document 1), random grinding on a roller large end face A method of providing a trace and storing lubricating oil in a valley portion of the grinding mark (for example, Patent Document 2), a method of dispersing minute recesses on the roller large end surface, and storing the lubricant in the recess (for example, Patent Document 3) A method of coating a self-lubricating film on any one contact surface at the contact portion between the roller large end surface and the inner ring collar (for example, Patent Document 4), either one at the contact portion between the roller large end surface and the inner ring collar A method of coating a contact surface with a ceramic film (for example, Patent Document 5) has been proposed.
潤滑性向上の方法としては、このほか油膜の形成能を向上させることも考えられる。油膜の形成能を支配する要因の一つとして、ころ大端面の曲率半径がある。ころ大端面と内輪大鍔との接触点では、内輪大鍔面の曲率半径に対して、ころ大端面の曲率半径はやや小さく製作される。具体的には、内輪の軌道面となる円すい面の頂点から前記接触点までの距離をrb とし、ころ大端面の曲率半径をrm としたとき、rm /rb =0.8〜0.97程度である。ここで、R=rm /rb はころ端面R比と呼ばれる値である。このころ端面R比に関する従来技術として、特許文献6〜特許文献8などが知られている。
特許文献8では、最小油膜厚さ比を0.95以上にできるころ端面R比の最適値が、0.75〜0.85であると述べられている。
Patent Document 8 states that the optimum value of the roller end face R ratio that can make the minimum oil film thickness ratio 0.95 or more is 0.75 to 0.85.
しかし、特許文献1〜5に開示される潤滑性向上の方法は、特殊な加工工程を要するため、製造コストが増大する。
また、特許文献6〜8に開示されるころ端面R比の設計技術では、使用条件にかかわらず、一律にころ端面R比を与えており、必ずしも最適値とは言いがたい。ころ端面R比の最適値は、耐焼付き性、油膜形成性、回転中のころの姿勢の安定性、加工性などによって検討されるべきであり、使用条件によって最適値は異なる。
However, the lubricity improving methods disclosed in
Further, in the roller end face R ratio design techniques disclosed in Patent Documents 6 to 8, the roller end face R ratio is uniformly given regardless of the use conditions, and is not necessarily an optimum value. The optimum value of the roller end face R ratio should be examined based on seizure resistance, oil film formation, stability of the posture of the rotating roller, workability, and the like, and the optimum value varies depending on use conditions.
この発明の目的は、使用条件に対して最適なころ端面R比とすることで、ころ大端面と内輪大鍔との接触部における最小油膜厚さを最大とでき、公差内では極端な油膜厚さの低下がなく、耐焼付き性に優れ、かつころの製造コストをできるだけ低く抑えることができる円すいころ軸受を提供することである。 An object of the present invention is to make the minimum oil film thickness at the contact portion between the roller large end face and the inner ring collar so that the roller end face R ratio is optimum for the use conditions, and an extreme oil film thickness within the tolerance. It is an object of the present invention to provide a tapered roller bearing that is excellent in seizure resistance and that can keep the manufacturing cost of rollers as low as possible.
この発明における円すいころ軸受は、円すいころの大端面が球面、内輪の大鍔の円すいころ側の側面が略円すい面である円すいころ軸受であって、
荷重条件が軽荷重または普通荷重の範囲である、P/C≦12%の範囲で使用される軸受であり、ころ端面R比を86〜92%としたことを特徴とする。
P/Cは、基本動定格荷重Cに対する動等価ラジアル荷重Pの割合である。
ころ端面R比は、内輪の軌道面となる円すい面の頂点から、円すいころの大端面と上記大鍔との接触点までの距離をrb 、円すいころの大端面の曲率半径をrm としたときに、次式、R=rm /rb 、で示されるRの値である。
The tapered roller bearing according to the present invention is a tapered roller bearing in which a large end surface of the tapered roller is a spherical surface, and a side surface on the tapered roller side of the inner ring is a tapered surface.
The bearing is used in the range of P / C ≦ 12% where the load condition is light load or normal load, and the roller end face R ratio is 86 to 92%.
P / C is the ratio of the dynamic equivalent radial load P to the basic dynamic load rating C.
Roller end R ratio, from the apex of conical surface as the inner ring raceway surface, the distance to the contact point between the large end face and the large rib of the tapered rollers r b, the radius of curvature of the large end face of the tapered roller and r m The value of R shown by the following formula, R = r m / r b .
この発明における他の円すいころ軸受は、円すいころの大端面が球面、内輪の大鍔の円すいころ側の側面が略円すい面である円すいころ軸受であって、
荷重条件が重荷重の範囲である、P/C>12%の範囲で使用される軸受であり、ころ端面R比を84〜88%としたことを特徴とする。
なお、上記軽荷重、普通荷重、重荷重の区分は、後述のように、JISB1566の参考付表3注(1) における荷重区分である。
Another tapered roller bearing according to the present invention is a tapered roller bearing in which the large end surface of the tapered roller is a spherical surface, and the side surface of the inner ring on the tapered roller side is a substantially tapered surface,
It is a bearing used in the range of P / C> 12% where the load condition is a heavy load range, and the roller end face R ratio is 84 to 88%.
The light load, normal load, and heavy load classifications are the load classifications in JIS B1566 Appendix A Note 3 (1) as will be described later.
この構成によると、EHL(elastohydrodynamic lubrication)理論、つまり弾性流体潤滑理論に基づく計算結果から、円すいころの大端面と内輪の大鍔の接触部での最小油膜厚さを最大にできる。そのため、公差内で極端な油膜厚さの低下がなく、内輪大鍔での耐焼付き性を向上させることができる。また、円すいころ軸受用の円すいころを大量生産する場合、ころ端面R比が1に近いほど低いコストで高精度に製作できるが、この発明によると、使用条件に応じて、ころ端面R比をできるだけ大きくするため、円すいころの製造コストをできるだけ低く抑えて高精度に製作できる。 According to this configuration, the minimum oil film thickness at the contact portion between the large end face of the tapered roller and the large collar of the inner ring can be maximized from the calculation result based on EHL (elastohydrodynamic lubrication) theory, that is, elastohydrodynamic lubrication theory. Therefore, there is no drastic reduction in the oil film thickness within the tolerance, and the seizure resistance in the inner ring can be improved. In addition, when mass producing tapered rollers for tapered roller bearings, the roller end surface R ratio can be manufactured with high accuracy at a lower cost as the roller end surface R ratio is closer to 1, but according to the present invention, the roller end surface R ratio can be increased depending on the use conditions. In order to make it as large as possible, it is possible to manufacture with high accuracy while keeping the manufacturing cost of tapered rollers as low as possible.
この発明の円すいころ軸受は、荷重条件が軽荷重または普通荷重で使用される軸受において、ころ端面R比を86〜92%としたため、使用条件に対して最適なころ端面R比とできて、円すいころの大端面と内輪の大鍔の接触部での最小油膜厚さを最大にでき、公差内で極端な油膜厚さの低下がなく、内輪大鍔での耐焼付き性を向上させることができる。しかも、使用条件に対してころ端面R比を1にできるだけ近い値とするため、円すいころの製造コストをできるだけ低く抑えて高精度に製作できる。 The tapered roller bearing according to the present invention has a roller end face R ratio of 86 to 92% in a bearing that is used under a light load or a normal load. The minimum oil film thickness at the contact point between the large end face of the tapered roller and the inner ring can be maximized, and there is no drastic reduction in oil film thickness within the tolerance, and the seizure resistance of the inner ring can be improved. it can. In addition, since the roller end face R ratio is as close to 1 as possible with respect to the use conditions, it is possible to manufacture the tapered rollers with high accuracy while keeping the manufacturing cost of the tapered rollers as low as possible.
この発明の他の円すいころ軸受は、荷重条件が重荷重で使用される軸受において、ころ端面R比を84〜88%としたため、使用条件に対して最適なころ端面R比とできて、円すいころの大端面と内輪の大鍔の接触部での最小油膜厚さを最大にでき、公差内で極端な油膜厚さの低下がなく、内輪大鍔での耐焼付き性を向上させることができる。しかも、使用条件に対してころ端面R比を1にできるだけ近い値とするため、円すいころの製造コストをできるだけ低く抑えて高精度に製作できる。 Another tapered roller bearing according to the present invention has a roller end surface R ratio of 84 to 88% in a bearing that is used under heavy load conditions. The minimum oil film thickness at the contact area between the roller's large end face and the inner ring's large collar can be maximized, and there is no drastic reduction in oil film thickness within tolerances, improving seizure resistance on the inner ring's large collar. . In addition, since the roller end face R ratio is as close to 1 as possible with respect to the use conditions, it is possible to manufacture the tapered rollers with high accuracy while keeping the manufacturing cost of the tapered rollers as low as possible.
この発明の一実施形態を図1ないし図5と共に説明する。この実施形態の円すいころ軸受1は、図1(A)に断面図で示すように、内輪2と、外輪3と、これら内外輪2,3間に介在した円すいころ4とを有し、内外輪2,3間に軸方向の予圧を付与可能とした単列の円すいころ軸受である。内輪2は、外径面に円すい面とされた軌道面2aを有し、外径の大径側および小径側に大鍔2bおよび小鍔2cをそれぞれ有する。外輪3は、内輪2の軌道面2aに対向する内径面に円すい面とされた軌道面3aを有する。上記両軌道面2a,3a間に複数個の円すいころ4が転動自在に介在している。これら円すいころ4は、保持器5により円周方向に所定間隔を隔てて保持されている。
An embodiment of the present invention will be described with reference to FIGS. The tapered roller bearing 1 of this embodiment has an
円すいころ4の大端面4aは球面とされ、内輪2の大鍔2bの円すいころ4側の側面である内輪大鍔面2ba(図1(B))は、略円すい面とされている。内輪2の軌道面2aである円すい面の頂点Aから、円すいころ4の大端面4aと内輪大鍔2bとの接触点Bまでの距離をrb 、円すいころ4の大端面4aの曲率半径をrm としたときに、次式、
R=rm /rb
で示されるRの値を、ころ端面R比と呼ぶ。
The
R = r m / r b
The value of R indicated by is called the roller end face R ratio.
この実施形態は、荷重条件ところ端面R比との関係につき、荷重条件が軽荷重または普通荷重の範囲、つまり基本動定格荷重Cに対する動等価ラジアル荷重Pの割合P/Cが、P/C≦12%の範囲で使用される軸受であり、ころ端面R比を86〜92%としたものである。
荷重条件が重荷重、つまりP/Cが、P/C>12%の範囲で使用される軸受とする場合は、ころ端面R比を84〜88%とする。
In this embodiment, in relation to the load condition and the end face R ratio, the load condition is in the range of light load or normal load, that is, the ratio P / C of the dynamic equivalent radial load P to the basic dynamic load rating C is P / C ≦ The bearing is used in a range of 12%, and has a roller end face R ratio of 86 to 92%.
When the load condition is a heavy load, that is, when the bearing is used in a range where P / C is P / C> 12%, the roller end face R ratio is 84 to 88%.
この実施形態における円すいころ軸受1のように、円すいころ4の大端面4aを球面、内輪大鍔2bの側面2baを略円すい面とした円すいころ軸受おいて、円すいころ4を大量生産する場合、上記ころ端面R比が1に近いほど低コストで高精度に製作できる。
また、この円すいころ軸受1の運転中に円すいころ4がスキューした場合、ころ大端面4a上の接触点Bは正規の位置から摺動方向に移動する。これによってスキューを矯正しようとする力のモーメントが発生するが、ころ端面R比が大きいほど、小さなスキュー角で大きなモーメントが発生する。したがって円すいころ4の姿勢の安定性の観点からは、ころ端面R比は大きいほうが望ましい。
When the
Further, when the
一方、ころ端面R比が大きいほど、前記接触点Bでの接触楕円が大きくなる。接触楕円の長軸半径は内輪大鍔2bの周方向に存在する。円すいころ4がスキューし接触点Bが移動したとき、ころ端面R比が大きいほど接触楕円はころ大端面4aと内輪大鍔面2baの接触可能な領域からはみ出し易くなる。接触楕円がはみ出すと、エッジ部で過大な圧力が発生し、焼付きが生じる原因となる。焼付きが生じるとき、ころ大端面4aと内輪大鍔面2baの間には油膜が形成されておらず、金属接触状態となっている。このとき、円すいころ4には内輪大鍔面2baとの摩擦によってスキューが生じる。
On the other hand, the larger the roller end face R ratio, the larger the contact ellipse at the contact point B. The major axis radius of the contact ellipse exists in the circumferential direction of the
スキューによる接触点Bの移動量は、詳細な理論検討結果によれば、軌道面2aの影響をほとんど受けず、鍔部での力のモーメントの釣り合いによって決定される。すなわち、次式の鍔荷重と摩擦力のころ重心まわりのモーメントの釣り合いである。
Qd=μQl
Q:鍔荷重 d:接触点Bの周方向移動量
μ:摩擦係数
l:接触点Bところ重心の距離
The amount of movement of the contact point B due to the skew is determined by the balance of the moments of force at the buttocks according to the detailed theoretical examination results, with little influence of the
Qd = μQl
Q: Hail load d: Amount of movement in the circumferential direction of contact point B μ: Friction coefficient l: Distance of center of gravity at contact point B
接触楕円の大きさはHertzの式によって計算できる。ここから、接触楕円がはみ出さない限界の荷重が求められ、例えば図2に示すグラフのようになる。このグラフから、ころ端面R比が小さいほど、耐焼付き性が良いことが分かる。 The size of the contact ellipse can be calculated by the Hertz equation. From this, a limit load that does not allow the contact ellipse to protrude is obtained, for example, as shown in the graph of FIG. From this graph, it can be seen that the smaller the roller end face R ratio, the better the seizure resistance.
焼付くためには金属接触を生じる必要があるが、油膜が厚ければ金属接触は生じ難い。このことから、同一の運転条件で最小油膜厚さが最大となるころ端面R比を与えることが、耐焼付き性向上の一手段となることが分かる。そこで、ころ大端面4aと内輪大鍔面2baの潤滑状態について、EHL理論に基づいて計算したところ、図3〜図6にグラフで示す結果が得られた。
すなわち、図3や図4のグラフによると、回転速度や潤滑粘度をパラメータとして変化させても、最小油膜厚さを最大とするころ端面R比はほとんど変化しない。ところが、図5のグラフによると、鍔荷重をパラメータとして変化させると、最小油膜厚さを最大とするころ端面R比が変化し、鍔荷重が大きくなるほど、ころ端面R比の最適値が小さくなっている。また、最適値より小さいころ端面R比では、最小油膜厚さの減少はわずかであるが、最適値より大きいころ端面R比では、最小油膜厚さは急激に減少する。なお、図5のグラフにおいて、P/Cは、基本動定格荷重Cに対する動等価ラジアル荷重Pの割合を表す。
In order to seize, it is necessary to make metal contact. However, if the oil film is thick, metal contact is difficult to occur. From this, it can be seen that providing a roller end face R ratio that maximizes the minimum oil film thickness under the same operating conditions is one means of improving seizure resistance. Accordingly, the lubrication state of the roller
That is, according to the graphs of FIGS. 3 and 4, even when the rotational speed and the lubricating viscosity are changed as parameters, the roller end face R ratio that maximizes the minimum oil film thickness hardly changes. However, according to the graph of FIG. 5, when the heel load is changed as a parameter, the roller end face R ratio that maximizes the minimum oil film thickness changes, and the optimum value of the roller end face R ratio decreases as the heel load increases. ing. Further, when the roller end surface R ratio is smaller than the optimum value, the minimum oil film thickness decreases slightly, but when the roller end surface R ratio is larger than the optimum value, the minimum oil film thickness decreases rapidly. In the graph of FIG. 5, P / C represents the ratio of the dynamic equivalent radial load P to the basic dynamic load rating C.
以上の計算結果によると、油膜の形成性にとって最適なころ端面R比は荷重に依存し、円すいころ軸受1の設計において、鍔荷重が小さいときはころ端面R比を大きくし、鍔荷重が大きいときはころ端面R比を小さくすれば良いことが分かる。また、製造上、ころ端面R比には公差を与える必要があるが、上記計算結果によれば最適値以下を公差範囲に設定しなければならないことが分かる。
According to the above calculation results, the optimum roller end face R ratio for oil film formation depends on the load. In the design of the tapered
ここで、JIS1566参考付表3注(1) に、「軽荷重,普通荷重及び重荷重は,動等価ラジアル荷重が使用する軸受の基本動定格荷重のそれぞれ6%以下、6%を超え12%以下及び12%を超える荷重を言う。」とある。上記特許文献8と同様に、最小油膜厚さの最大値に対して5%減まで許容するとすれば、図5より図6が得られる。
図6によると、軽荷重の目安とされるP/C≦6%の軸受では、ころ端面R比を86〜93とし、普通荷重の目安とされる6%<P/C≦12%の軸受では、ころ端面R比を83〜92%とし、重荷重の目安とされるP/C>12%の軸受では、ころ端面R比を84〜88%とすることが望ましいことがわかる。
この実施形態では、軽荷重で使用される軸受と、普通荷重で使用される軸受とにつき、ころ端面R比は、その望ましい範囲の共通範囲でとなる86〜92%とした。
すなわち、円すいころ軸受の設計方法として、上記のように、軽荷重および普通荷重の場合と、重荷重の場合とで、上記のようにころ端面R比の範囲をそれぞれ設定した。
Here, JIS 1566 Reference Attached Table 3 Note (1) states that “light load, normal load and heavy load are 6% or less of the basic dynamic load rating of the bearing used by the dynamic equivalent radial load, and exceed 6% and 12% or less, respectively. And a load exceeding 12% ". Similarly to the above-mentioned Patent Document 8, if it is allowed to reduce the maximum oil film thickness by 5%, FIG. 6 is obtained from FIG.
According to FIG. 6, in a bearing with P / C ≦ 6%, which is a light load standard, the roller end face R ratio is 86 to 93, and a bearing with 6% <P / C ≦ 12%, which is a standard standard load. Then, it is understood that the roller end surface R ratio is desirably 83 to 92%, and that the roller end surface R ratio is desirably 84 to 88% in a bearing having P / C> 12%, which is a guideline for heavy load.
In this embodiment, the roller end face R ratio is 86 to 92%, which is a common range of the desired range, for a bearing used with a light load and a bearing used with a normal load.
That is, as described above, the range of the roller end face R ratio was set as a design method for the tapered roller bearing in the case of a light load and a normal load and in the case of a heavy load as described above.
このように、この実施形態では、荷重条件が軽荷重または普通荷重の範囲で使用される軸受の場合には、ころ端面R比を86〜92%とし、また荷重条件が重荷重の範囲で使用される軸受の場合は、ころ端面R比を84〜88としたため、いずれも、ころ大端面4aと内輪大鍔2bの接触部での最小油膜厚さが最大となり、公差内で極端な油膜厚さの低下がなくて、内輪大鍔2bでの耐焼付き性を向上させることができる。しかも、円すいころ4の製造コストをできるだけ低く抑えることができる。
As described above, in this embodiment, when the bearing is used in a range where the load condition is a light load or a normal load, the roller end face R ratio is 86 to 92%, and the load condition is used in a range of a heavy load. In the case of the bearing to be used, since the roller end face R ratio is 84 to 88, the minimum oil film thickness at the contact portion between the roller
2…内輪
2a…内輪軌道面(円すい面)
2b…大鍔
2ba…内輪大鍔面
4…円すいころ
4a…大端面
A…内輪円すい面の頂点 B…大端面・大鍔の接触点 rb …頂点・接触点間の距離 rm …大端面の曲率半径
2 ...
2b ... large collar 2ba ... inner ring large collar surface 4: tapered
Claims (2)
荷重条件が軽荷重または普通荷重の範囲である、基本動定格荷重Cに対する動等価ラジアル荷重Pの割合P/Cが、P/C≦12%の範囲で使用される軸受であり、
内輪の軌道面となる円すい面の頂点から、円すいころの大端面と上記大鍔との接触点までの距離をrb 、円すいころの大端面の曲率半径をrm としたときに、次式、
R=rm /rb
で示されるRの値であるころ端面R比を86〜92%としたことを特徴とする円すいころ軸受。 A tapered roller bearing in which the large end surface of the tapered roller is a spherical surface, and the side surface on the tapered roller side of the collar of the inner ring is a substantially tapered surface,
It is a bearing that is used in a range where the ratio P / C of the dynamic equivalent radial load P to the basic dynamic load rating C where the load condition is a light load or a normal load is P / C ≦ 12%.
From the apex of conical surface as the inner ring raceway surface, the distance to the contact point between the large end face and the large rib of the tapered rollers r b, the radius of curvature of the large end faces of tapered rollers is taken as r m, the following formula ,
R = r m / r b
A tapered roller bearing having a roller end face R ratio of 86 to 92%, which is a value of R shown in FIG.
荷重条件が重荷重の範囲である、基本動定格荷重Cに対する動等価ラジアル荷重Pの割合P/Cが、P/C>12%の範囲で使用される軸受であり、
内輪の軌道面となる円すい面の頂点から、円すいころの大端面と上記大鍔との接触点までの距離をrb 、円すいころの大端面の曲率半径をrm としたときに、次式、
R=rm /rb
で示されるRの値であるころ端面R比を84〜88%としたことを特徴とする円すいころ軸受。 A tapered roller bearing in which the large end surface of the tapered roller is a spherical surface, and the side surface on the tapered roller side of the collar of the inner ring is a substantially tapered surface,
The load condition is a heavy load range, and the ratio P / C of the dynamic equivalent radial load P to the basic dynamic load rating C is P / C> 12%.
From the apex of conical surface as the inner ring raceway surface, the distance to the contact point between the large end face and the large rib of the tapered rollers r b, the radius of curvature of the large end faces of tapered rollers is taken as r m, the following formula ,
R = r m / r b
A tapered roller bearing having a roller end face R ratio of 84 to 88%, which is a value of R indicated by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005174501A JP4484771B2 (en) | 2005-06-15 | 2005-06-15 | Tapered roller bearing design method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005174501A JP4484771B2 (en) | 2005-06-15 | 2005-06-15 | Tapered roller bearing design method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006349014A true JP2006349014A (en) | 2006-12-28 |
JP4484771B2 JP4484771B2 (en) | 2010-06-16 |
Family
ID=37645093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005174501A Expired - Lifetime JP4484771B2 (en) | 2005-06-15 | 2005-06-15 | Tapered roller bearing design method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4484771B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010062481B3 (en) * | 2010-12-06 | 2011-12-15 | Aktiebolaget Skf | Geometry concept for a roller-to-board contact in roller bearings |
JP2015113972A (en) * | 2013-12-16 | 2015-06-22 | 株式会社ジェイテクト | Tapered roller bearing and power transmission device |
US9599160B2 (en) | 2014-08-11 | 2017-03-21 | Jtekt Corporation | Tapered roller bearing |
CN111946736A (en) * | 2020-08-14 | 2020-11-17 | 中车大连机车研究所有限公司 | Tapered roller bearing |
CN112160984A (en) * | 2020-10-26 | 2021-01-01 | 中车大连机车研究所有限公司 | Axle box bearing for high-speed train |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04331813A (en) * | 1991-04-30 | 1992-11-19 | Ntn Corp | Conical roller bearing |
JP2000161349A (en) * | 1998-11-30 | 2000-06-13 | Ntn Corp | Gear shaft support device for vehicle |
JP2000170774A (en) * | 1998-12-01 | 2000-06-20 | Ntn Corp | Conical roller bearing and gear shaft support device for vehicle |
JP2004076932A (en) * | 2002-06-18 | 2004-03-11 | Koyo Seiko Co Ltd | Rolling bearing, vehicular transmission and differential |
JP2004190717A (en) * | 2002-12-09 | 2004-07-08 | Nsk Ltd | Rolling device |
JP2005024029A (en) * | 2003-07-03 | 2005-01-27 | Nissan Motor Co Ltd | Tapered roller bearing |
-
2005
- 2005-06-15 JP JP2005174501A patent/JP4484771B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04331813A (en) * | 1991-04-30 | 1992-11-19 | Ntn Corp | Conical roller bearing |
JP2000161349A (en) * | 1998-11-30 | 2000-06-13 | Ntn Corp | Gear shaft support device for vehicle |
JP2000170774A (en) * | 1998-12-01 | 2000-06-20 | Ntn Corp | Conical roller bearing and gear shaft support device for vehicle |
JP2004076932A (en) * | 2002-06-18 | 2004-03-11 | Koyo Seiko Co Ltd | Rolling bearing, vehicular transmission and differential |
JP2004190717A (en) * | 2002-12-09 | 2004-07-08 | Nsk Ltd | Rolling device |
JP2005024029A (en) * | 2003-07-03 | 2005-01-27 | Nissan Motor Co Ltd | Tapered roller bearing |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010062481B3 (en) * | 2010-12-06 | 2011-12-15 | Aktiebolaget Skf | Geometry concept for a roller-to-board contact in roller bearings |
US8899839B2 (en) | 2010-12-06 | 2014-12-02 | Aktiebolaget Skf | Geometric concept for a roller-flange contact in roller bearings |
JP2015113972A (en) * | 2013-12-16 | 2015-06-22 | 株式会社ジェイテクト | Tapered roller bearing and power transmission device |
US9599160B2 (en) | 2014-08-11 | 2017-03-21 | Jtekt Corporation | Tapered roller bearing |
CN111946736A (en) * | 2020-08-14 | 2020-11-17 | 中车大连机车研究所有限公司 | Tapered roller bearing |
CN111946736B (en) * | 2020-08-14 | 2022-05-27 | 中车大连机车研究所有限公司 | Tapered roller bearing |
CN112160984A (en) * | 2020-10-26 | 2021-01-01 | 中车大连机车研究所有限公司 | Axle box bearing for high-speed train |
Also Published As
Publication number | Publication date |
---|---|
JP4484771B2 (en) | 2010-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5007747A (en) | Radial roller bearing | |
US6547443B2 (en) | Tapered roller bearing | |
CN113631821A (en) | Tapered Roller Bearings | |
JP2009108963A (en) | Rolling member | |
JP4484771B2 (en) | Tapered roller bearing design method | |
JP2584623Y2 (en) | Tapered roller bearing | |
WO2008032532A1 (en) | Steel ball rolling structure and constant velocity universal joint | |
CA2498748A1 (en) | Bearing with pass or fail wear gauge | |
JP2009275722A (en) | Rolling bearing | |
US7934873B2 (en) | Tapered roller bearing | |
JP2009041651A (en) | Tapered roller bearings | |
JP2006349015A (en) | Tapered roller bearing and method of designing the same | |
JP2009115187A (en) | Rolling member | |
JP2006105323A (en) | Ball bearing | |
JP2004324670A (en) | Roller bearing | |
WO2016072305A1 (en) | Rotational sliding bearing | |
JP2009019701A (en) | Split needle roller bearing | |
CN108071683A (en) | Taper roll bearing and power transmission | |
CN108779796A (en) | The roller bearing contacted with the enhancing of flange with roller end | |
JP2005106204A (en) | Roller bearing cage | |
JP2005061509A (en) | Rolling bearing | |
JP2008190630A (en) | Radial ball bearing cage and radial ball bearing | |
CN105715671A (en) | Double-row spherical roller bearing | |
JP2007333161A (en) | Spherical roller bearing manufacturing method and spherical roller bearing | |
JP2007333160A (en) | Spherical roller bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080530 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091029 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100323 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100323 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4484771 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140402 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |