JP2006344567A - Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material - Google Patents
Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material Download PDFInfo
- Publication number
- JP2006344567A JP2006344567A JP2005171714A JP2005171714A JP2006344567A JP 2006344567 A JP2006344567 A JP 2006344567A JP 2005171714 A JP2005171714 A JP 2005171714A JP 2005171714 A JP2005171714 A JP 2005171714A JP 2006344567 A JP2006344567 A JP 2006344567A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- nickel
- cobalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 151
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 171
- 239000002131 composite material Substances 0.000 claims abstract description 85
- 239000000203 mixture Substances 0.000 claims abstract description 79
- 239000002905 metal composite material Substances 0.000 claims abstract description 77
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 47
- 239000007864 aqueous solution Substances 0.000 claims abstract description 28
- QZYDAIMOJUSSFT-UHFFFAOYSA-N [Co].[Ni].[Mo] Chemical compound [Co].[Ni].[Mo] QZYDAIMOJUSSFT-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000000243 solution Substances 0.000 claims abstract description 16
- 150000002642 lithium compounds Chemical class 0.000 claims abstract description 15
- 150000002751 molybdenum Chemical class 0.000 claims abstract description 14
- 239000000843 powder Substances 0.000 claims abstract description 12
- 150000001868 cobalt Chemical class 0.000 claims abstract description 11
- 150000002815 nickel Chemical class 0.000 claims abstract description 11
- 239000012266 salt solution Substances 0.000 claims abstract description 9
- 239000003513 alkali Substances 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 65
- 229910052759 nickel Inorganic materials 0.000 claims description 60
- 238000000034 method Methods 0.000 claims description 45
- 229910052750 molybdenum Inorganic materials 0.000 claims description 42
- 230000020169 heat generation Effects 0.000 claims description 41
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 39
- 239000011733 molybdenum Substances 0.000 claims description 39
- 239000006185 dispersion Substances 0.000 claims description 33
- 238000010304 firing Methods 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 16
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 12
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 claims description 12
- 239000011149 active material Substances 0.000 claims description 9
- 238000000975 co-precipitation Methods 0.000 claims description 8
- 239000012670 alkaline solution Substances 0.000 claims description 7
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims description 7
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 6
- 239000011684 sodium molybdate Substances 0.000 claims description 6
- 235000015393 sodium molybdate Nutrition 0.000 claims description 6
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 claims description 6
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 claims description 5
- 239000011609 ammonium molybdate Substances 0.000 claims description 5
- 235000018660 ammonium molybdate Nutrition 0.000 claims description 5
- 229940010552 ammonium molybdate Drugs 0.000 claims description 5
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 claims description 5
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 claims description 5
- 238000001556 precipitation Methods 0.000 claims description 5
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 3
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 3
- GDXTWKJNMJAERW-UHFFFAOYSA-J molybdenum(4+);tetrahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[Mo+4] GDXTWKJNMJAERW-UHFFFAOYSA-J 0.000 claims description 3
- SUJBZPWTAHOABH-UHFFFAOYSA-N [Co].[Ni].[Mo].[Mo] Chemical compound [Co].[Ni].[Mo].[Mo] SUJBZPWTAHOABH-UHFFFAOYSA-N 0.000 claims 1
- -1 compound hydroxide Chemical class 0.000 abstract description 16
- 238000011156 evaluation Methods 0.000 description 42
- 239000002245 particle Substances 0.000 description 35
- 229910017052 cobalt Inorganic materials 0.000 description 31
- 239000010941 cobalt Substances 0.000 description 31
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 31
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 29
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 25
- 229910052760 oxygen Inorganic materials 0.000 description 25
- 239000001301 oxygen Substances 0.000 description 25
- 238000002441 X-ray diffraction Methods 0.000 description 23
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 21
- 229910001416 lithium ion Inorganic materials 0.000 description 21
- 238000009826 distribution Methods 0.000 description 20
- 229910052751 metal Inorganic materials 0.000 description 20
- 239000002184 metal Substances 0.000 description 20
- 239000000047 product Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 17
- 239000000463 material Substances 0.000 description 15
- 238000005259 measurement Methods 0.000 description 15
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 11
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 10
- NMHMDUCCVHOJQI-UHFFFAOYSA-N lithium molybdate Chemical compound [Li+].[Li+].[O-][Mo]([O-])(=O)=O NMHMDUCCVHOJQI-UHFFFAOYSA-N 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 238000001354 calcination Methods 0.000 description 7
- 238000007600 charging Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 6
- 229940044175 cobalt sulfate Drugs 0.000 description 6
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 6
- 239000008139 complexing agent Substances 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- 239000011259 mixed solution Substances 0.000 description 6
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 6
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- 230000000630 rising effect Effects 0.000 description 5
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 4
- 239000000395 magnesium oxide Substances 0.000 description 4
- 229910000480 nickel oxide Inorganic materials 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000006479 redox reaction Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- SZMVHSPKOYIRMU-UHFFFAOYSA-N [Mo].[Co].[Ni].[Li] Chemical compound [Mo].[Co].[Ni].[Li] SZMVHSPKOYIRMU-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000011163 secondary particle Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 102000020897 Formins Human genes 0.000 description 2
- 108091022623 Formins Proteins 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229920001973 fluoroelastomer Polymers 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000001989 lithium alloy Substances 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- YBJCDTIWNDBNTM-UHFFFAOYSA-N 1-methylsulfonylethane Chemical compound CCS(C)(=O)=O YBJCDTIWNDBNTM-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- GKZFQPGIDVGTLZ-UHFFFAOYSA-N 4-(trifluoromethyl)-1,3-dioxolan-2-one Chemical compound FC(F)(F)C1COC(=O)O1 GKZFQPGIDVGTLZ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013131 LiN Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- OSOVKCSKTAIGGF-UHFFFAOYSA-N [Ni].OOO Chemical compound [Ni].OOO OSOVKCSKTAIGGF-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- WHDPTDWLEKQKKX-UHFFFAOYSA-N cobalt molybdenum Chemical compound [Co].[Co].[Mo] WHDPTDWLEKQKKX-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011883 electrode binding agent Substances 0.000 description 1
- 238000010294 electrolyte impregnation Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000002816 nickel compounds Chemical class 0.000 description 1
- 229910000483 nickel oxide hydroxide Inorganic materials 0.000 description 1
- 229940053662 nickel sulfate Drugs 0.000 description 1
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 1
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- MHYFEEDKONKGEB-UHFFFAOYSA-N oxathiane 2,2-dioxide Chemical compound O=S1(=O)CCCCO1 MHYFEEDKONKGEB-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池に関する。 The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery using the positive electrode active material.
近年、携帯電話やノート型パソコンなどの携帯電子機器の普及にともない、高いエネルギー密度を有する小型で軽量な非水系電解質二次電池の開発が強く望まれている。このような二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池の負極材料には、リチウム金属やリチウム合金、金属酸化物、あるいはカーボン等が用いられている。これらの材料は、リチウムを脱離・挿入することが可能な材料である。 In recent years, with the widespread use of portable electronic devices such as mobile phones and notebook computers, development of small and lightweight non-aqueous electrolyte secondary batteries having high energy density is strongly desired. As such a secondary battery, there is a lithium ion secondary battery. Lithium metal, lithium alloy, metal oxide, carbon, or the like is used as a negative electrode material for a lithium ion secondary battery. These materials are materials capable of removing and inserting lithium.
このようなリチウムイオン二次電池については、現在、研究開発が盛んに行われているところである。この中でも、リチウム金属複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物(LiCoO2)を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として期待され、実用化が進んでいる。このリチウムコバルト複合酸化物を用いたリチウムイオン二次電池では、優れた初期容量特性やサイクル特性を得るための開発がこれまで数多く行われてきており、すでにさまざまな成果が得られている。 Research and development of such lithium ion secondary batteries is being actively conducted. Among these, a lithium ion secondary battery using a lithium metal composite oxide, particularly a lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, as a positive electrode material can obtain a high voltage of 4 V, and thus has high energy. It is expected as a battery having a high density and is being put to practical use. In the lithium ion secondary battery using this lithium cobalt composite oxide, many developments have been made so far to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained.
しかし、リチウムコバルト複合酸化物は、希産で高価なコバルト化合物を原料に用いているため、電池のコストアップの原因となる。このため、正極活物質としてリチウムコバルト複合酸化物以外のものを用いることが望まれている。 However, since the lithium cobalt composite oxide uses a rare and expensive cobalt compound as a raw material, it causes an increase in the cost of the battery. For this reason, it is desired to use materials other than the lithium cobalt composite oxide as the positive electrode active material.
また、最近は、携帯電子機器用の小型二次電池だけではなく、電力貯蔵用や、電気自動車用などの大型二次電池としてリチウムイオン二次電池を適用することへの期待も高まってきている。活物質のコストを下げ、より安価なリチウムイオン二次電池の製造を可能とすることは、これらの広範な分野への大きな波及効果が期待できる。 In addition, recently, not only small secondary batteries for portable electronic devices but also expectations for applying lithium ion secondary batteries as large-sized secondary batteries for power storage and electric vehicles are increasing. . Lowering the cost of the active material and making it possible to manufacture a cheaper lithium ion secondary battery can be expected to have a large ripple effect in these broad fields.
リチウムイオン二次電池用正極活物質として新たに提案されている材料としては、コバルトよりも安価なマンガンを用いたリチウムマンガン複合酸化物(LiMn2O4)や、ニッケルを用いたリチウムニッケル複合酸化物(LiNiO2)を挙げることができる。 Newly proposed materials as positive electrode active materials for lithium ion secondary batteries include lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, which is cheaper than cobalt, and lithium nickel composite oxide using nickel. (LiNiO 2 ).
リチウムマンガン複合酸化物は、その原料が安価である上、熱安定性、特に、発火などについての安全性に優れるため、リチウムコバルト複合酸化物の有力な代替材料であるといえるが、理論容量がリチウムコバルト複合酸化物のおよそ半分程度しかないため、年々高まるリチウムイオン二次電池の高容量化の要求に応えるのが難しいという欠点を持っている。また、45℃以上では、自己放電が激しく、充放電寿命も低下するという欠点もあった。 Lithium-manganese composite oxide is an inexpensive alternative to lithium-cobalt composite oxide because its raw materials are inexpensive and it has excellent thermal stability, especially safety for ignition. Since it is only about half of lithium cobalt composite oxide, it has a drawback that it is difficult to meet the demand for higher capacity of lithium ion secondary batteries, which is increasing year by year. Further, at 45 ° C. or higher, there is a drawback that self-discharge is intense and the charge / discharge life is also reduced.
一方、リチウムニッケル複合酸化物は、リチウムコバルト複合酸化物とほぼ同じ理論容量を持ち、リチウムコバルト複合酸化物よりもやや低い電池電圧を示す。このため、電解液の酸化による分解が問題になりにくく、より高い容量が期待できることから、開発が盛んに行われている。しかし、ニッケルを他の元素で置換せずに、純粋にニッケルのみで構成したリチウムニッケル複合酸化物を正極活物質として用いてリチウムイオン二次電池を作製した場合、リチウムコバルト複合酸化物に比べサイクル特性が劣っている。また、高温環境下で使用されたり保存されたりした場合に比較的電池性能を損ないやすいという欠点も有している。 On the other hand, the lithium nickel composite oxide has almost the same theoretical capacity as the lithium cobalt composite oxide, and shows a slightly lower battery voltage than the lithium cobalt composite oxide. For this reason, decomposition | disassembly by oxidation of electrolyte solution does not become a problem, and since the capacity | capacitance can be anticipated, development is performed actively. However, when a lithium-ion secondary battery is manufactured using a lithium-nickel composite oxide composed purely of nickel as a positive electrode active material without replacing nickel with other elements, the cycle is higher than that of a lithium-cobalt composite oxide. The characteristics are inferior. In addition, there is a disadvantage that battery performance is relatively easily lost when used or stored in a high temperature environment.
このような欠点を解決するために、例えば、特許文献1では、高温環境下での保存や使用に際して良好な電池性能を維持することのできる正極活物質として、LiwNixCoyBzO2(0.05≦w≦1.10、0.5≦x≦0.995、0.005≦z≦0.20、x+y+z=1)で表されるリチウムニッケル複合酸化物、すなわち、コバルトとホウ素が添加されたリチウムニッケル複合酸化物が提案されている。 In order to solve such drawbacks, for example, in Patent Document 1, Li w Ni x Co y B z O is used as a positive electrode active material capable of maintaining good battery performance during storage and use in a high temperature environment. 2 (0.05 ≦ w ≦ 1.10, 0.5 ≦ x ≦ 0.995, 0.005 ≦ z ≦ 0.20, x + y + z = 1), that is, cobalt and A lithium nickel composite oxide to which boron is added has been proposed.
また、特許文献2では、リチウムイオン二次電池の自己放電特性やサイクル特性を向上させることを目的として、LixNiaCobMcO2(0.8≦x≦1.2、0.01≦a≦0.99、0.01≦b≦0.99、0.01≦c≦0.3、0.8≦a+b+c≦1.2、MはAl、V、Mn、Fe、Cu及びZnから選ばれる少なくとも1種の元素)で表されるリチウムニッケル系複合酸化物が提案されている。 Further, in Patent Document 2, Li x Ni a Co b M c O 2 (0.8 ≦ x ≦ 1.2, 0... Is intended to improve self-discharge characteristics and cycle characteristics of a lithium ion secondary battery. 01 ≦ a ≦ 0.99, 0.01 ≦ b ≦ 0.99, 0.01 ≦ c ≦ 0.3, 0.8 ≦ a + b + c ≦ 1.2, M is Al, V, Mn, Fe, Cu and A lithium nickel composite oxide represented by at least one element selected from Zn has been proposed.
しかしながら、上記した従来の製造方法によって得られたリチウムニッケル複合酸化物では、リチウムコバルト系複合酸化物に比べて充電容量、放電容量ともに高く、サイクル特性も改善されているが、満充電状態で高温環境下に放置しておくと、コバルト系複合酸化物に比べて低い温度から酸素放出を伴うといった問題がある。 However, in the lithium nickel composite oxide obtained by the above-described conventional manufacturing method, both the charge capacity and discharge capacity are higher and the cycle characteristics are improved as compared with the lithium cobalt composite oxide. If left in the environment, there is a problem that oxygen is released from a temperature lower than that of the cobalt-based composite oxide.
このような問題を解決するために、例えば、特許文献3では、リチウムイオン二次電池正極材料の熱的安定性を向上させることを目的として、LiaMbNicCodOe(MはAl、Mn、Sn、In、Fe、V、Cu、Mg、Ti、Zn、Moから成る群から選択される少なくとも一種の金属であり、かつ0<a<1.3、0.02≦b≦0.5、0.02≦d/c+d≦0.9、1.8<e<2.2の範囲であって、さらにb+c+d=1である)で表されるリチウム含有複合酸化物等が提案されている。この場合に添加元素Mとして、例えばアルミニウムを選択した場合、ニッケルからアルミニウムへの置換量を多くすれば、正極活物質の分解反応は抑えられ、熱安定性が向上することが確かめられている。しかし、十分な安定性を確保するのに有効なアルミニウムでニッケルを置換すると、充放電反応にともなう酸化還元反応に寄与するニッケルの量が減少するため、電池性能として最も重要である初期容量が大きく低下するという問題点を有していた。これはAlは3価で安定していることからNiも電荷を合わせるため3価で安定化させると酸化還元反応(Redox反応)に寄与しない部分が生ずるために容量低下が起こるものと考えられる。 In order to solve such a problem, for example, in Patent Document 3, Li a M b Ni c Co d O e (M is a value for the purpose of improving the thermal stability of the positive electrode material of the lithium ion secondary battery. It is at least one metal selected from the group consisting of Al, Mn, Sn, In, Fe, V, Cu, Mg, Ti, Zn, Mo, and 0 <a <1.3, 0.02 ≦ b ≦ 0.5, 0.02 ≦ d / c + d ≦ 0.9, 1.8 <e <2.2, and b + c + d = 1)) Has been. In this case, for example, when aluminum is selected as the additive element M, it is confirmed that if the amount of substitution from nickel to aluminum is increased, the decomposition reaction of the positive electrode active material is suppressed and the thermal stability is improved. However, replacing nickel with aluminum, which is effective to ensure sufficient stability, reduces the amount of nickel that contributes to the oxidation-reduction reaction associated with the charge / discharge reaction, so the initial capacity, which is the most important for battery performance, is large. It had the problem of decreasing. Since Al is trivalent and stable, Ni is also matched to charge, and if it is stabilized with trivalent, a portion that does not contribute to the oxidation-reduction reaction (Redox reaction) is generated, so it is considered that the capacity decreases.
また、特許文献4では、一般式LiaNi1-b-cM1 bM2 cO2(ただし、0.95≦a≦1.05、0.01≦b≦0.10、0.10≦c≦0.20であり、M1はAl、B、Y、Ce、Ti、Sn、V、Nb、W、Moのうち少なくとも一種以上から成る元素、M2はCo、Mn、Feから選ばれる1種以上の元素)で表されるリチウム含有複合酸化物を、まず反応槽を用い、これに塩濃度が調整されたニッケル−コバルト−M2塩水溶液、その水溶液と錯塩を形成する錯化剤、およびアルカリ金属水酸化物をそれぞれ連続的に供給しニッケル−コバルト−M2錯塩を生成させ、次いでこの錯塩をアルカリ金属水酸化物により分解してニッケル−コバルト−M2水酸化物を析出させ、上記錯塩の生成及び分解を槽内で循環させながら繰り返し、ニッケル−コバルト−M2水酸化物をオ−バーフローさせて取り出す。これにより得られる該水酸化物とMoO3などの酸化物を混合し湿式粉砕した後に噴霧乾燥を行うことで粒子形状が略球状であるニッケル−コバルト−M1−M2の混合物を原料として用い、これにリチウム塩を混合し、焼成して得ることが記載されている。
In
上記方法によれば、活物質の導電性を低下させることにより、電池短絡時の短絡電流が活物質粒子内を貫通することを防止でき、短絡電流のジュール発熱によって活物質自体が熱分解することを回避して、熱安定性が向上することが記載されている。 According to the above method, by reducing the conductivity of the active material, it is possible to prevent the short-circuit current when the battery is short-circuited from passing through the active material particles, and the active material itself is thermally decomposed by the Joule heating of the short-circuit current. It is described that the thermal stability is improved.
最近では携帯電子機器等に用いる小型二次電池に対する高容量化の要求は年々高まる一方であるところ、安全性を確保するために容量を犠牲にすることは、リチウムニッケル複合酸化物の高容量のメリットを失うことになり、前記要求に応えられないことになる。また、リチウムイオン二次電池を大型二次電池に用いようという動きも盛んであり、中でもハイブリッド自動車用、電気自動車用の電源としての期待が大きい。自動車用の電源として用いられる場合、安全性に劣るというリチウムニッケル複合酸化物の問題点の解消は大きな課題である。 Recently, the demand for higher capacity for small secondary batteries used in portable electronic devices and the like is increasing year by year. However, sacrificing the capacity to ensure safety is the high capacity of lithium nickel composite oxide. The advantage is lost and the request cannot be met. In addition, a movement to use a lithium ion secondary battery for a large-sized secondary battery is also prominent. In particular, there is a great expectation as a power source for a hybrid vehicle and an electric vehicle. When used as a power source for automobiles, solving the problem of the lithium nickel composite oxide that is inferior in safety is a big problem.
本発明は、かかる問題点に鑑みてなされたものであって、熱安定性が良好で、かつ、高い充放電容量をもつ非水系電解質二次電池を実現できる正極活物質を提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to provide a positive electrode active material capable of realizing a nonaqueous electrolyte secondary battery having good thermal stability and high charge / discharge capacity. And
本発明に係る非水系電解質二次電池用正極活物質の製造方法の第一の態様は、ニッケル塩とコバルト塩の混合水溶液にモリブデン塩溶液とアルカリ溶液を同時に添加し、温度を50℃〜80℃の範囲、pHを10.0〜12.5の範囲に保って、ニッケル水酸化物、コバルト水酸化物、モリブデン水酸化物を共沈させることにより複合水酸化物Ni1-x-yCoxMoy (OH)2を得る工程1と、工程1で得られた複合水酸化物を600℃〜750℃で焼成してニッケルコバルトモリブデン複合酸化物を得る工程2と、工程2で得られたニッケルコバルトモリブデン複合酸化物とリチウム化合物とを混合し、該混合物を650℃以上850℃以下の温度で熱処理して、リチウム金属複合酸化物Li1+zNi1-x-yCoxMoyO2(但し、0.10≦x≦0.21、0.01≦y≦0.10、−0.05≦z≦0.10)の粉末を得る工程3と、を有することを特徴とする。 In a first aspect of the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention, a molybdenum salt solution and an alkaline solution are simultaneously added to a mixed aqueous solution of nickel salt and cobalt salt, and the temperature is set to 50 ° C to 80 ° C. The composite hydroxide Ni 1-xy Co x Mo is prepared by coprecipitation of nickel hydroxide, cobalt hydroxide, and molybdenum hydroxide while maintaining the range of ° C and pH in the range of 10.0 to 12.5. Step 1 for obtaining y (OH) 2 , Step 2 for firing the composite hydroxide obtained in Step 1 at 600 ° C. to 750 ° C. to obtain a nickel cobalt molybdenum composite oxide, and Nickel obtained in Step 2 A cobalt-molybdenum composite oxide and a lithium compound are mixed, and the mixture is heat-treated at a temperature of 650 ° C. or higher and 850 ° C. or lower to obtain a lithium metal composite oxide Li 1 + z Ni 1-xy Co x Mo y O 2 (however, 0.10 ≦ x ≦ 0.21, 0.01 ≦ y ≦ 0.10, −0.05 ≦ z ≦ 0.10).
前記モリブデン塩溶液は、モリブデン酸ナトリウム水溶液、または、モリブデン酸アンモニウム溶液であることが好ましい。 The molybdenum salt solution is preferably a sodium molybdate aqueous solution or an ammonium molybdate solution.
本発明に係る非水系電解質二次電池用正極活物質の製造方法の第二の態様は、ニッケル塩とコバルト塩の混合水溶液にアルカリ溶液を添加し、温度を50℃〜80℃の範囲、pHを10.0〜12.5の範囲に保って、ニッケル水酸化物、コバルト水酸化物を共沈させることによりニッケルコバルト複合水酸化物を得る工程1と、工程1で得られた複合水酸化物の表面にモリブデン酸化物を被覆する工程2と、工程2で得られたモリブデン酸化物が被覆されたニッケルコバルト複合水酸化物を焼成してモリブデンを均一に固溶させる工程3と、工程3で得られたモリブデンが均一に固溶したニッケルコバルト複合水酸化物とリチウム化合物とを混合し、該混合物を650℃以上850℃以下の温度で熱処理して、リチウム金属複合酸化物Li1+zNi1-x-yCoxMoyO2(但し、0.10≦x≦0.21、0.01≦y≦0.10、−0.05≦z≦0.10)の粉末を得る工程4と、を有することを特徴とする。 In the second aspect of the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention, an alkaline solution is added to a mixed aqueous solution of nickel salt and cobalt salt, the temperature is in the range of 50 ° C to 80 ° C, pH In the range of 10.0 to 12.5, nickel hydroxide and cobalt hydroxide are coprecipitated to obtain nickel cobalt composite hydroxide, and composite hydroxide obtained in step 1 Step 2 of coating the surface of the product with molybdenum oxide, Step 3 of firing the nickel-cobalt composite hydroxide coated with molybdenum oxide obtained in Step 2 to uniformly dissolve molybdenum, and Step 3 The nickel-cobalt composite hydroxide in which molybdenum obtained in the above is uniformly dissolved and a lithium compound are mixed, and the mixture is heat-treated at a temperature of 650 ° C. or higher and 850 ° C. or lower to obtain a lithium metal composite oxide Li 1+. Step of obtaining a powder of z Ni 1-xy Co x Mo y O 2 (where 0.10 ≦ x ≦ 0.21, 0.01 ≦ y ≦ 0.10, −0.05 ≦ z ≦ 0.10) 4.
本発明に係る非水系電解質二次電池用正極活物質の製造方法の第一および第二の態様において、前記リチウム化合物は、炭酸リチウム、もしくは水酸化リチウム、またはこれらの水和物であることが好ましい。 In the first and second embodiments of the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention, the lithium compound may be lithium carbonate, lithium hydroxide, or a hydrate thereof. preferable.
本発明に係る非水系電解質二次電池用正極活物質の第一の態様は、前記製造方法によって得られたリチウム金属複合酸化物Li1+zNi1-x-yCoxMoyO2(但し、0.10≦x≦0.21、0.01≦y≦0.10、−0.05≦z≦0.10)の粉末からなることを特徴とする。 The first aspect of the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is a lithium metal composite oxide Li 1 + z Ni 1-xy Co x Mo y O 2 (provided by the above production method) 0.10 ≦ x ≦ 0.21, 0.01 ≦ y ≦ 0.10, −0.05 ≦ z ≦ 0.10).
本発明に係る非水系電解質二次電池用正極活物質の第二の態様は、リチウム金属複合酸化物Li1+zNi1-x-yCoxMoyO2(但し、0.10≦x≦0.21、0.01≦y≦0.10、−0.05≦z≦0.10)の粉末からなり、該粉末のいずれの範囲においても、エネルギー分散法により複数回測定した時、MoのL線のピーク強度IMoとNiのL線のピーク強度INiとの強度比IMo/INiの標準偏差が、該強度比IMo/INiの平均値の1/2未満であることを特徴とする。 A second embodiment of the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is a lithium metal composite oxide Li 1 + z Ni 1-xy Co x Mo y O 2 (where 0.10 ≦ x ≦ 0 .21, 0.01 ≦ y ≦ 0.10, −0.05 ≦ z ≦ 0.10), and in any range of the powder, when measured multiple times by the energy dispersion method, the standard deviation of the intensity ratio I Mo / I Ni of the peak intensity I Ni of L line peak intensity I Mo and Ni in L line is less than 1/2 of the average value of said intensity ratio I Mo / I Ni It is characterized by.
前記非水系電解質二次電池用正極活物質を非水系電解質二次電池の正極に用いた場合、初期放電容量が170mAh/g以上であり、かつ、発熱速度が11.00J/sec/g以下であることが好ましい。 When the positive electrode active material for a non-aqueous electrolyte secondary battery is used for the positive electrode of a non-aqueous electrolyte secondary battery, the initial discharge capacity is 170 mAh / g or more and the heat generation rate is 11.00 J / sec / g or less. Preferably there is.
本発明に係る非水系電解質二次電池は、前記非水系電解質二次電池用正極活物質を正極に用いたことを特徴とする。 The non-aqueous electrolyte secondary battery according to the present invention is characterized in that the positive electrode active material for a non-aqueous electrolyte secondary battery is used for a positive electrode.
本発明によれば、熱安定性が良好で、かつ、高い充放電容量を有する非水系電解質二次電池を実現できる、正極活物質を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material which can implement | achieve the nonaqueous electrolyte secondary battery which has favorable thermal stability and has a high charging / discharging capacity | capacitance can be provided.
本発明に係る正極活物質を非水系電解質二次電池に用いれば、携帯電子機器等の小型二次電池における高容量化の要求に応えることができる。また、本発明に係る正極活物質は、ハイブリッド自動車用、電気自動車用の電源である大型二次電池に用いることができ、かつ、該大型二次電池に求められる安全性も確保することができる。 If the positive electrode active material according to the present invention is used in a non-aqueous electrolyte secondary battery, it is possible to meet the demand for higher capacity in small secondary batteries such as portable electronic devices. Moreover, the positive electrode active material according to the present invention can be used for a large-sized secondary battery that is a power source for hybrid vehicles and electric vehicles, and can also ensure the safety required for the large-sized secondary battery. .
本発明者は、一般式Li1+zNi1-x-yCoxMyO2(但し、0.10≦x≦0.21、0.01≦y≦0.10、−0.05≦z≦0.10)で表されるリチウム−金属複合酸化物の粉末について鋭意検討したところ、添加元素Mとして、モリブデンが充電状態での熱安定性を向上させるのに最適であることを見出した。 The present inventor has the general formula Li 1 + z Ni 1-xy Co x M y O 2 ( where, 0.10 ≦ x ≦ 0.21,0.01 ≦ y ≦ 0.10, -0.05 ≦ z As a result of intensive studies on the powder of lithium-metal composite oxide represented by ≦ 0.10, it was found that molybdenum is the optimum additive element M for improving thermal stability in a charged state.
また、均一なニッケル−コバルト−モリブデン水酸化物を用いることが良好な正極活物質を作製するために必要であるが、均一なニッケル−コバルト−モリブデン水酸化物を作製するためには、ニッケル塩とコバルト塩の混合水溶液にモリブデン塩溶液をアルカリ溶液と同時に添加して共沈させることが効果的であることを見出した。 In addition, it is necessary to use a uniform nickel-cobalt-molybdenum hydroxide in order to produce a good positive electrode active material, but in order to produce a uniform nickel-cobalt-molybdenum hydroxide, a nickel salt It was found that it is effective to coprecipitate by adding a molybdenum salt solution simultaneously with an alkali solution to a mixed aqueous solution of cobalt and cobalt salts.
さらに、複合水酸化物Ni1-x-yCoxMoy (OH)2を焼成して複合酸化物Ni1-x-yCoxMoyO2とした後、リチウム化合物と混合して熱処理をすることが、良好な正極活物質を得るために効果的であることも見出した。 Further, the composite hydroxide Ni 1-xy Co x Mo y (OH) 2 is fired to form the composite oxide Ni 1-xy Co x Mo y O 2 , and then mixed with a lithium compound and heat-treated. It has also been found effective for obtaining a good positive electrode active material.
本発明は、以上のような知見に基づき完成されたものである。 The present invention has been completed based on the above findings.
具体的には、次のような工程で正極活物質を作製する。まず、所望の組成割合に配合したニッケル塩とコバルト塩の混合水溶液およびモリブデン塩水溶液に、アルカリ溶液を加えて、均一なニッケルとコバルトとモリブデンの水酸化物を共沈させて、複合水酸化物Ni1-x-yCoxMoy (OH) 2を得る。 Specifically, the positive electrode active material is produced by the following process. First, an alkaline solution is added to a mixed aqueous solution of nickel salt and cobalt salt and a molybdenum salt aqueous solution blended in a desired composition ratio to co-precipitate a uniform nickel, cobalt, and molybdenum hydroxide, thereby forming a composite hydroxide. Ni 1-xy Co x Mo y (OH) 2 is obtained.
得られた複合水酸化物Ni1-x-yCoxMoy (OH)2を、空気雰囲気で600〜750℃で焼成を行い、複合酸化物Ni1-x-yCoxMoyO2を得る。 The obtained composite hydroxide Ni 1-xy Co x Mo y (OH) 2 is fired at 600 to 750 ° C. in an air atmosphere to obtain a composite oxide Ni 1-xy Co x Mo y O 2 .
得られた複合酸化物Ni1-x-yCoxMoyO2を、リチウム化合物と混合し、該混合物を650℃以上850℃以下の温度で熱処理をして、Li1+zNi1-x-yCoxMoyO2の粉末からなる非水系電解質二次電池用正極活物質を得る。得られた非水系電解質二次電池用正極活物質は、熱安定性が良好で、かつ、高い充放電容量を有している。 The obtained composite oxide Ni 1-xy Co x Mo y O 2 was mixed with a lithium compound, and the mixture was heat-treated at a temperature of 650 ° C. or higher and 850 ° C. or lower to obtain Li 1 + z Ni 1-xy Co. A positive electrode active material for a non-aqueous electrolyte secondary battery made of x Mo y O 2 powder is obtained. The obtained positive electrode active material for a non-aqueous electrolyte secondary battery has good thermal stability and high charge / discharge capacity.
以下、本発明について、さらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
本発明による二次電池の充放電反応は、正極活物質内のリチウムイオンが可逆的に出入りすることで進行する。充電によってリチウムが引き抜かれた正極活物質は高温において不安定であり、加熱すると活物質が分解して酸素を放出し、この酸素が電解液の燃焼を引き起こし、発熱反応が起こる。 The charge / discharge reaction of the secondary battery according to the present invention proceeds by reversibly entering and exiting lithium ions in the positive electrode active material. The positive electrode active material from which lithium has been extracted by charging is unstable at high temperatures, and when heated, the active material decomposes and releases oxygen, which causes combustion of the electrolyte and an exothermic reaction.
正極材料の熱安定性を改善するということは、リチウムが引き抜かれた正極活物質の分解反応を抑えるということである。従来開示されている正極活物質の分解反応を抑える方法としては、アルミニウムのような酸素との共有結合性の強い元素でニッケルの一部を置換することが一般的に行なわれてきた。確かにニッケルからアルミニウムへの置換量を多くすれば、正極活物質の分解反応は抑えられ、熱安定性が向上するが、充放電反応にともなう酸化還元反応に寄与するニッケルの量が減少することで充放電容量の低下を招くため、アルミニウムへの置換量はある程度以下に留めなければならなかった。その結果、十分な熱安定性を確保した場合には十分な可逆容量を得ることができず、逆にある程度以上の容量を得るためには熱安定性を犠牲にしなければならなかった。 To improve the thermal stability of the positive electrode material means to suppress the decomposition reaction of the positive electrode active material from which lithium has been extracted. As a method for suppressing the decomposition reaction of the positive electrode active material disclosed heretofore, it has been generally performed that a part of nickel is substituted with an element having strong covalent bond with oxygen such as aluminum. Certainly, if the amount of substitution from nickel to aluminum is increased, the decomposition reaction of the positive electrode active material is suppressed and the thermal stability is improved, but the amount of nickel contributing to the redox reaction accompanying the charge / discharge reaction is reduced. In order to reduce the charge / discharge capacity, the amount of substitution with aluminum had to be kept below a certain level. As a result, when sufficient thermal stability is ensured, sufficient reversible capacity cannot be obtained, and conversely, thermal stability must be sacrificed in order to obtain a certain capacity or more.
かかる課題を解決するために、本発明では、一般式Li1+zNi1-x-yCoxMyO2(但し、0.10≦x≦0.21、0.01≦y≦0.10、−0.05≦z≦0.10)で表されるリチウム金属複合酸化物の粉末において、添加元素Mを、6価で安定するモリブデンで置換した。これにより、3価であったNiの一部が2価となって安定するので、熱安定性の向上のためにニッケルを別元素に置換する量を減少させることができ、電池の初期容量の低下を防止することができる。 In order to solve such a problem, in the present invention, the general formula Li 1 + z Ni 1-xy Co x M y O 2 ( where, 0.10 ≦ x ≦ 0.21,0.01 ≦ y ≦ 0.10 , −0.05 ≦ z ≦ 0.10), the additive element M was replaced with hexavalent and stable molybdenum. As a result, a part of the trivalent Ni is stabilized as a divalent, so that the amount of replacing nickel with another element for improving thermal stability can be reduced, and the initial capacity of the battery can be reduced. A decrease can be prevented.
また、モリブデンは酸化力が強いので、モリブデンでニッケルを置換することにより、電池の熱安定性の向上を図ることができ、特に、充電状態での熱安定性を向上させることができる。 Further, since molybdenum has a strong oxidizing power, replacing nickel with molybdenum can improve the thermal stability of the battery, and in particular, improve the thermal stability in a charged state.
次に、本発明に係るリチウムイオン二次電池の実施形態について、各構成要素ごとにそれぞれ詳しく説明する。本発明に係るリチウムイオン二次電池は、正極、負極、非水電解液等、一般のリチウムイオン二次電池と同様の構成要素から構成される。なお、以下で説明する実施形態は例示に過ぎず、本発明の非水系電解質二次電池は、下記実施形態をはじめとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。また、本発明の非水系電解質二次電池は、その用途を特に限定するものではない。 Next, embodiments of the lithium ion secondary battery according to the present invention will be described in detail for each component. The lithium ion secondary battery according to the present invention is composed of the same components as those of a general lithium ion secondary battery, such as a positive electrode, a negative electrode, and a non-aqueous electrolyte. The embodiment described below is merely an example, and the nonaqueous electrolyte secondary battery of the present invention is implemented in various modifications and improvements based on the knowledge of those skilled in the art, including the following embodiment. can do. Moreover, the use of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited.
(1)正極活物質、正極
本発明に係る非水系電解質二次電池用正極活物質は、一般式Li1+zNi1-x-yCoxMoyO2(但し、0.10≦x≦0.21、0.01≦y≦0.10、−0.05≦z≦0.10)で表されるリチウム金属複合酸化物の粉末からなる。
(1) Positive electrode active material, positive electrode The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention has a general formula Li 1 + z Ni 1-xy Co x Mo y O 2 (where 0.10 ≦ x ≦ 0 .21, 0.01 ≦ y ≦ 0.10, −0.05 ≦ z ≦ 0.10).
本発明に係る製造方法では、ニッケル塩とコバルト塩の複合水溶液に、モリブデン塩水溶液を、アルカリ水溶液とともに同時に添加することを特徴としており、この添加方法により、Ni、Co、Moの3元素が均一に分散した複合水酸化物を得ることができる。ニッケルおよびコバルトの析出最適pHはアルカリ領域であるが、MoO3の析出は、一般には、pH3から4が最適であり、Moの共析はアルカリ領域では困難である。したがって、ニッケルおよびコバルトの水酸化物が析出するときにMoを共沈析出させるためには、モリブデン塩水溶液をアルカリ水溶液とともに同時添加する方法を採る必要がある。 The production method according to the present invention is characterized in that a molybdenum salt aqueous solution is added simultaneously to an aqueous solution of nickel salt and cobalt salt together with an alkaline aqueous solution. By this addition method, three elements of Ni, Co, and Mo are uniformly distributed. A composite hydroxide dispersed in can be obtained. The optimum precipitation pH of nickel and cobalt is in the alkaline region, but generally the precipitation of MoO 3 is optimum at pH 3 to 4, and the eutectoid of Mo is difficult in the alkaline region. Therefore, in order to co-precipitate Mo when nickel and cobalt hydroxides are precipitated, it is necessary to adopt a method of simultaneously adding an aqueous molybdenum salt solution together with an alkaline aqueous solution.
以下、本発明に係る非水系電解質二次電池用正極活物質の製造方法についてさらに詳細に説明する。 Hereinafter, the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention will be described in more detail.
本発明に係る非水系電解質二次電池用正極活物質は、ニッケル塩とコバルト塩の混合水溶液およびモリブデン塩水溶液に、アルカリ溶液を加えて、それらを一定速度にて攪拌して、反応槽内にコバルトとニッケルとモリブデンとの原子比が上記一般式の原子比となるように共沈殿させる。そして定常状態になった後に沈殿物を採取し、濾過、水洗してニッケルコバルトモリブデン複合水酸化物を得る。その後、該ニッケルコバルトモリブデン複合水酸化物を一度空気雰囲気で600〜750℃間で焼成を行い、ニッケルコバルトモリブデン複合酸化物を生成させる。そして、該ニッケルコバルトモリブデン複合酸化物とリチウム化合物とを混合し、この混合物を650℃以上850℃以下の温度で熱処理することが必要である。 The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is prepared by adding an alkaline solution to a mixed aqueous solution of nickel salt and cobalt salt and an aqueous molybdenum salt solution, stirring them at a constant speed, and Coprecipitation is performed so that the atomic ratio of cobalt, nickel, and molybdenum is the atomic ratio of the above general formula. After reaching a steady state, the precipitate is collected, filtered and washed with water to obtain a nickel cobalt molybdenum composite hydroxide. Thereafter, the nickel cobalt molybdenum composite hydroxide is fired once at 600 to 750 ° C. in an air atmosphere to form a nickel cobalt molybdenum composite oxide. And it is necessary to mix this nickel cobalt molybdenum complex oxide and a lithium compound, and to heat-process this mixture at the temperature of 650 degreeC or more and 850 degrees C or less.
まず、ニッケルコバルトモリブデン複合水酸化物を共沈殿させる方法について説明する。 First, a method for coprecipitation of nickel cobalt molybdenum composite hydroxide will be described.
反応条件は、錯化剤の使用の有無により異なるが、50℃を越えて80℃以下の温度範囲で、ニッケル塩とコバルト塩の混合水溶液にモリブデン塩の水溶液を添加すると同時に、pH10〜12.5の範囲となるようにアルカリ溶液を添加して、共沈殿させることが好ましい。 The reaction conditions vary depending on the presence or absence of the use of a complexing agent, but at the same time as adding an aqueous solution of molybdenum salt to a mixed aqueous solution of nickel salt and cobalt salt in a temperature range of more than 50 ° C. and not more than 80 ° C., pH 10-12. An alkaline solution is preferably added so as to be in the range of 5 and co-precipitated.
pH領域は、錯化剤がない場合、pH=10〜11を選択し、かつ、混合水溶液の温度を、60℃を超えて80℃以下の範囲とする。錯化剤がない場合、pH11〜13で晶析すると細かい粒子となり、濾過性も悪くなり、球状粒子が得られない。また、pHが10よりも小さいと水酸化物の生成速度が著しく遅くなり、濾液中にNiが残留し、Niの沈殿量が目的組成からずれて、目的の比率の混合水酸化物が得られなくなってしまう。 In the pH region, when there is no complexing agent, pH = 10 to 11 is selected, and the temperature of the mixed aqueous solution is in the range of more than 60 ° C. and 80 ° C. or less. In the absence of a complexing agent, crystallization at pH 11-13 results in fine particles, poor filterability, and no spherical particles. On the other hand, if the pH is less than 10, the rate of hydroxide formation is remarkably slow, Ni remains in the filtrate, and the amount of precipitated Ni deviates from the target composition, resulting in a mixed hydroxide of the target ratio. It will disappear.
そこで、錯化剤がない場合、pH=10〜11とし、かつ、混合水溶液の温度を60℃を超えて保つことによって、Niの沈殿量が目的組成からずれ、共沈にならない現象を、反応温度を上げ、Niの溶解度を上げることで回避している。この時、混合水溶液の温度が80℃を超えると、水の蒸発量が多いためにスラリー濃度が高くなり、Niの溶解度が低下する上、濾液中に硫酸ナトリウム等の結晶が発生し、不純物濃度が上昇する等正極材の充放電容量が低下する問題が出てきて好ましくない。 Therefore, in the absence of a complexing agent, by adjusting the pH to 10 to 11 and keeping the temperature of the mixed aqueous solution above 60 ° C., the phenomenon that the amount of Ni precipitation deviates from the target composition and coprecipitation does not occur. This is avoided by increasing the temperature and increasing the solubility of Ni. At this time, if the temperature of the mixed aqueous solution exceeds 80 ° C., the amount of water evaporation increases, so the slurry concentration increases, Ni solubility decreases, and crystals such as sodium sulfate are generated in the filtrate. A problem that the charge / discharge capacity of the positive electrode material decreases, such as an increase in the positive electrode material, is undesirable.
一方、アンモニアなどの錯化剤を使用する場合、Niの溶解度が上昇するためpH領域はpH10〜12.5まで、温度領域も50℃〜80℃まで広げることができる。
On the other hand, when a complexing agent such as ammonia is used, the solubility of Ni increases, so that the pH range can be extended to
モリブデン塩には、モリブデン酸ナトリウム水溶液、モリブデン酸アンモニウム水溶液を使用することが好ましい。前記薬品は水溶性で、工業上の取り扱いが容易であり、今回の発明に適しているからである。 As the molybdenum salt, it is preferable to use a sodium molybdate aqueous solution or an ammonium molybdate aqueous solution. This is because the chemicals are water-soluble and easy to handle industrially and are suitable for the present invention.
リチウム化合物としては、炭酸リチウムや水酸化リチウム、あるいは、その水和物等が好ましい。ニッケル化合物としては、酸化ニッケル、炭酸ニッケル、硝酸ニッケル、水酸化ニッケル、オキシ水酸化ニッケル等を用いることができる。 As the lithium compound, lithium carbonate, lithium hydroxide, or a hydrate thereof is preferable. As the nickel compound, nickel oxide, nickel carbonate, nickel nitrate, nickel hydroxide, nickel oxyhydroxide, or the like can be used.
添加元素(Ni、Co)に係る化合物としては、酸化物、炭酸化物等を使用できるが、前述したように複合水酸化物や複合酸化物を使用した方がより好ましい。 As the compound related to the additive element (Ni, Co), an oxide, a carbonate, or the like can be used, but it is more preferable to use a composite hydroxide or a composite oxide as described above.
上記したように、ニッケル塩とコバルト塩の混合水溶液に、モリブデン塩の水溶液を添加すると同時にアルカリ溶液を添加して、pH、温度等を所定の条件にして一定速度にて攪拌し、反応槽内が定常状態になった後に、オーバーフローした沈殿物を採取し、濾過、水洗してニッケルコバルトモリブデン複合水酸化物粒子を得る。 As described above, an aqueous solution of molybdenum salt is added to a mixed aqueous solution of nickel salt and cobalt salt at the same time as an alkaline solution, and the mixture is stirred at a constant speed under predetermined conditions such as pH and temperature. After reaching a steady state, the overflowed precipitate is collected, filtered and washed with water to obtain nickel cobalt molybdenum composite hydroxide particles.
本方法により、ニッケルとコバルトとモリブデンの原子比が望む比率に均一に混合されたニッケルコバルトモリブデン複合水酸化物粒子を得ることができる。この金属複合水酸化物は、1μm以下の一次粒子が複数集合した球状の二次粒子からなることが好ましく、このような粒子形状とすることで、濾過性も良好で、かつ、ハンドリング性も良好な粒子となる。 By this method, nickel-cobalt-molybdenum composite hydroxide particles in which the atomic ratio of nickel, cobalt, and molybdenum is uniformly mixed to a desired ratio can be obtained. This metal composite hydroxide is preferably composed of spherical secondary particles in which a plurality of primary particles of 1 μm or less are aggregated. By adopting such a particle shape, filterability is good and handling properties are also good. Particles.
また、モリブデンを均一に固溶させる他の方法として、所定の組成のニッケルコバルト複合水酸化物を前述のニッケルコバルトモリブデン複合水酸化物と同様の製造方法を用いて作製し、その後、モリブデン酸化物をニッケルコバルト複合水酸化物の粒子表面に被覆する方法を用いることもできる。例えば、ニッケルコバルト複合水酸化物に水を添加してスラリー化し、その中にモリブデン酸溶液を添加して、攪拌を行い、均一になったことを確認した後、硫酸などの中和剤を添加してpH8〜10.5に調整し、濾過、水洗を行うことで、表面にMo2O4(このpH領域ではMoは4価となる)で被覆されたニッケルコバルト複合水酸化物が得られる。Moの均一な固溶はこの後の空気気流中での焼成を行うことで達成することができる。 Further, as another method for uniformly dissolving molybdenum, a nickel cobalt composite hydroxide having a predetermined composition is prepared using the same manufacturing method as the above-described nickel cobalt molybdenum composite hydroxide, and then molybdenum oxide is prepared. It is also possible to use a method of coating the surface of nickel cobalt composite hydroxide particles. For example, water is added to a nickel-cobalt composite hydroxide to form a slurry, and then a molybdic acid solution is added therein, stirred, and after confirming that it has become uniform, a neutralizing agent such as sulfuric acid is added. Then, by adjusting the pH to 8 to 10.5, filtering and washing with water, a nickel cobalt composite hydroxide whose surface is coated with Mo 2 O 4 (Mo is tetravalent in this pH region) is obtained. . The uniform solid solution of Mo can be achieved by performing subsequent firing in an air stream.
得られたニッケルコバルトモリブデン複合水酸化物を、空気気流中で、600℃〜750℃で焼成を行い、ニッケルコバルトモリブデン複合酸化物を得る。この工程を経ないとMoの偏析が起こり、目的の化学組成を得ることは困難である。例えば、上記ニッケルコバルトモリブデン複合水酸化物とリチウム化合物を所定量混合し、直接リチウム金属複合酸化物を合成しようとして酸素気流中で焼成しても、合成されたリチウム金属複合酸化物には、LiMoO4やMoO3等の異相が多く存在することとなり、所望の均一な組成のリチウム金属複合酸化物を得ることは困難である。 The obtained nickel cobalt molybdenum composite hydroxide is fired at 600 ° C. to 750 ° C. in an air stream to obtain a nickel cobalt molybdenum composite oxide. Without this step, segregation of Mo occurs and it is difficult to obtain the target chemical composition. For example, even when a predetermined amount of the nickel cobalt molybdenum composite hydroxide and the lithium compound are mixed and directly sintered in an oxygen stream to synthesize the lithium metal composite oxide, the synthesized lithium metal composite oxide contains LiMoO. Many heterogeneous phases such as 4 and MoO 3 are present, and it is difficult to obtain a lithium metal composite oxide having a desired uniform composition.
また、焼成温度を600℃〜750℃に限定しているが、600℃を下回ると熱量不足でMoの拡散を行うには時間がかかる。また750℃を超えるとMoの拡散が進みすぎMoの偏析が発生するため好ましくない。焼成雰囲気は酸素雰囲気でも問題ない。 Moreover, although the firing temperature is limited to 600 ° C. to 750 ° C., if it falls below 600 ° C., it takes time to diffuse Mo due to insufficient heat. On the other hand, when the temperature exceeds 750 ° C., the diffusion of Mo proceeds so much that segregation of Mo occurs. There is no problem even if the firing atmosphere is an oxygen atmosphere.
本発明の正極活物質は、リチウム化合物と、上記焼成工程を経て得られたニッケルコバルトモリブデン複合酸化物を、それぞれ所定量混合し、酸素気流中で650℃〜850℃程度の温度で、10〜20時間程度焼成することによって合成することができる。焼成温度が650℃より低温であると、リチウム化合物との反応が十分に進まず、所望の層状構造をもったリチウムニッケル複合酸化物を合成することが難しくなる。また、850℃を超えると、Li層にNiが、Ni層にLiが混入して層状構造が乱れ、3aサイトにおけるリチウム以外の金属イオンのサイト占有率が2%より大きくなってしまい、リチウムのサイトである3aサイトに金属イオンの混入率が高くなり、リチウムイオンの拡散パスが阻害され、その正極を用いた電池は初期容量や出力が低下してしまうことから好ましくない。 The positive electrode active material of the present invention is a mixture of a lithium compound and a nickel cobalt molybdenum composite oxide obtained through the above firing step, each in a predetermined amount, and at a temperature of about 650 ° C. to 850 ° C. in an oxygen stream, It can be synthesized by baking for about 20 hours. When the firing temperature is lower than 650 ° C., the reaction with the lithium compound does not proceed sufficiently, and it becomes difficult to synthesize a lithium nickel composite oxide having a desired layered structure. Further, when the temperature exceeds 850 ° C., Ni is mixed into the Li layer, Li is mixed into the Ni layer, and the layered structure is disturbed, so that the site occupancy of metal ions other than lithium at the 3a site becomes larger than 2% The mixing rate of metal ions at the 3a site, which is the site, is increased, the lithium ion diffusion path is hindered, and the battery using the positive electrode is not preferable because the initial capacity and output are reduced.
なお、得られた正極活物質の粒度分布のd50は3〜15μmであり、タップ密度は0.8〜2.5g/mLであることが、特に好ましい。上記範囲を外れると、正極を作製するときに正極活物質の充填性が低下してしまう。 In addition, it is especially preferable that d50 of the particle size distribution of the obtained positive electrode active material is 3-15 micrometers, and a tap density is 0.8-2.5 g / mL. If it is out of the above range, the filling property of the positive electrode active material is lowered when the positive electrode is produced.
初期放電容量や熱安定性に強く影響を与える組成のばらつきは、本発明の金属複合酸化物からなる正極活物質について、エネルギー分散測定装置(EDAX社製EDX装置FALCON)を用いたエネルギー分散法によって測定する。 The compositional variation that strongly affects the initial discharge capacity and the thermal stability is caused by the energy dispersion method using the energy dispersion measuring device (EDX device FALCON manufactured by EDAX) for the positive electrode active material made of the metal composite oxide of the present invention. taking measurement.
測定方法は、上記複合酸化物を試料台上の導電性両面テープ上に数粒子の厚さで載せ、真空状態にして、SEMで像を確認し、測定目標を定め、測定を行う。 The measurement is carried out by placing the composite oxide on a conductive double-sided tape on a sample stage with a thickness of several particles, making it in a vacuum state, confirming an image with an SEM, setting a measurement target, and performing measurement.
測定条件は、電圧15kV、電流10-9〜10-10Aとし、電子ビーム径は3〜5nm、取り出し角度は20°とする。この測定においては、上記複合酸化物の粒子の一部で厚み数μmの情報を拾うことになる。 The measurement conditions are a voltage of 15 kV, a current of 10 −9 to 10 −10 A, an electron beam diameter of 3 to 5 nm, and an extraction angle of 20 °. In this measurement, information on a thickness of several μm is picked up by a part of the composite oxide particles.
上記測定では、MoのK線のピーク強度をIMo、NiのL線のピーク強度をINiとしたときの強度比IMo/INiを10回測定し、その平均値と標準偏差を算出し、それらの値により組成のばらつきを判断する。該金属複合酸化物のどの範囲を測定した場合であっても、MoのL線のピーク強度IMoとNiのL線のピーク強度INiとの強度比IMo/INiの標準偏差が強度比IMo/INiの平均値の1/2未満であることが好ましい。該範囲にあれば、モリブデンが均一に固溶していることが示され、その結果、初期放電容量が、リチウムコバルト複合酸化物(LiCoO2)に代替できる程度に高くなり、また、熱安定性も改善される。 In the above measurement, the intensity ratio I Mo / I Ni is measured 10 times, where the peak intensity of Mo K line is I Mo and the peak intensity of Ni L line is I Ni, and the average value and standard deviation are calculated. Then, variation in composition is determined based on these values. Even when measuring which range of the metal composite oxide, the standard deviation is the intensity of the intensity ratio I Mo / I Ni of the peak intensity I Ni of L line peak intensity I Mo and Ni in L lines of Mo It is preferably less than 1/2 of the average value of the ratio I Mo / I Ni . Within this range, it is shown that molybdenum is uniformly dissolved, and as a result, the initial discharge capacity becomes high enough to be replaced with lithium cobalt composite oxide (LiCoO 2 ), and the thermal stability. Is also improved.
次に、正極を形成する正極合材およびそれを構成する各材料について説明する。 Next, the positive electrode mixture forming the positive electrode and each material constituting the positive electrode mixture will be described.
前記一般式Li1+zNi1-x-yCoxMoyO2(但し、0.10≦x≦0.21、0.01≦y≦0.10、−0.05≦z≦0.10)で表されるリチウム金属複合酸化物を正極活物質として用いた正極は、例えば、次のようにして作製する。 General formula Li 1 + z Ni 1-xy Co x Mo y O 2 (where 0.10 ≦ x ≦ 0.21, 0.01 ≦ y ≦ 0.10, −0.05 ≦ z ≦ 0.10) For example, the positive electrode using the lithium metal composite oxide represented by (2) is produced as follows.
粉末状の正極活物質、導電材、結着剤とを混合し、さらに必要に応じて活性炭、粘度調整等の目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。正極合材中のそれぞれの混合比も、リチウム二次電池の性能を決定する重要な要素となる。溶剤を除いた正極合材の固形分の全質量を100質量%とした場合、一般のリチウム二次電池の正極と同様、それぞれ、正極活物質の含有量を60〜95質量%、導電材の含有量を1〜20質量%、結着剤の含有量を1〜20質量%とすることが望ましい。得られた正極合材ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥して溶剤を飛散させる。必要に応じ、電極密度を高めるべくロールプレス等により加圧することもある。このようにしてシート状の正極を作製することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断等し、電池の作製に供することができる。ただし、正極の作製方法は、前記例示のものに限られることなく、他の方法に依ってもよい。 A powdered positive electrode active material, a conductive material, and a binder are mixed, and activated carbon and a target solvent such as viscosity adjustment are added as necessary, and these are kneaded to prepare a positive electrode mixture paste. The respective mixing ratios in the positive electrode mixture are also important factors that determine the performance of the lithium secondary battery. When the total mass of the solid content of the positive electrode mixture excluding the solvent is 100% by mass, the content of the positive electrode active material is 60 to 95% by mass, respectively, as in the case of the positive electrode of a general lithium secondary battery. It is desirable that the content is 1 to 20% by mass and the content of the binder is 1 to 20% by mass. The obtained positive electrode mixture paste is applied to the surface of a current collector made of, for example, aluminum foil, and dried to scatter the solvent. If necessary, pressurization may be performed by a roll press or the like to increase the electrode density. In this way, a sheet-like positive electrode can be produced. The sheet-like positive electrode can be cut into an appropriate size according to the target battery and used for battery production. However, the manufacturing method of the positive electrode is not limited to the above-described examples, and may depend on other methods.
前記正極の作製にあたって、導電剤としては、例えば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)やアセチレンブラック、ケッチェンブラックなどのカーボンブラック系材料などを用いることができる。また、バインダーとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンプロピレンジエンゴム、フッ素ゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。
結着剤は、活物質粒子をつなぎ止める役割を果たすもので、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂等を用いることができる。必要に応じ、正極活物質、導電材、活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加する。溶剤としては、具体的にはN−メチル−2−ピロリドン等の有機溶剤を用いることができる。また、正極合材には電気二重層容量を増加させるために活性炭を添加することができる。
In producing the positive electrode, as the conductive agent, for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black materials such as acetylene black, ketjen black, and the like can be used. As the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, ethylene propylene diene rubber, fluororubber, styrene butadiene, cellulose resin, polyacrylic acid, and the like can be used.
The binder plays a role of holding the active material particles, and for example, fluorine-containing resins such as polytetrafluoroethylene, polyvinylidene fluoride, and fluororubber, and thermoplastic resins such as polypropylene and polyethylene can be used. If necessary, a positive electrode active material, a conductive material, and activated carbon are dispersed, and a solvent that dissolves the binder is added to the positive electrode mixture. Specifically, an organic solvent such as N-methyl-2-pyrrolidone can be used as the solvent. Moreover, activated carbon can be added to the positive electrode mixture in order to increase the electric double layer capacity.
(2)負極
負極には、金属リチウム、リチウム合金等、また、リチウムイオンを吸蔵・脱離できる負極活物質に結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
(2) Negative electrode For the negative electrode, metallic lithium, lithium alloy, or the like, and a negative electrode mixture made by mixing a binder with a negative electrode active material capable of occluding and desorbing lithium ions and adding an appropriate solvent to form a paste. In addition, it is applied to the surface of a metal foil current collector such as copper, dried, and compressed to increase the electrode density as necessary.
負極活物質としては、例えば、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、ポリフッ化ビニリデン等の含フッ素樹脂等を用いることができ、これら活物質および結着剤を分散させる溶剤としてはN−メチル−2−ピロリドン等の有機溶剤を用いることができる。 As the negative electrode active material, for example, natural graphite, artificial graphite, a fired organic compound such as phenol resin, or a powdery carbon material such as coke can be used. In this case, as the negative electrode binder, a fluorine-containing resin such as polyvinylidene fluoride can be used as in the case of the positive electrode, and the active material and the solvent for dispersing the binder include N-methyl-2-pyrrolidone. Organic solvents can be used.
(3)セパレータ
正極と負極との間にはセパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し電解質を保持するものであり、ポリエチレン、ポリプロピレン等の薄い膜で、微少な穴を多数有する膜を用いることができる。
(3) Separator A separator is interposed between the positive electrode and the negative electrode. The separator separates the positive electrode and the negative electrode and holds the electrolyte, and a thin film such as polyethylene or polypropylene and having a large number of minute holes can be used.
(4)非水系電解液
非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
(4) Non-aqueous electrolyte The non-aqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらに、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。 Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate; chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate; and tetrahydrofuran, 2- One kind selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, phosphorus compounds such as triethyl phosphate and trioctyl phosphate, etc. are used alone or in admixture of two or more. be able to.
支持塩としては、LiPF6、LiBF4、LiClO4、LiAsF6、LiN(CF3SO2)2等、およびそれらの複合塩を用いることができる。 As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , or a composite salt thereof can be used.
さらに、非水系電解液は、ラジカル補足剤、界面活性剤および難燃剤等を含んでいてもよい。 Furthermore, the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.
(5)電池の形状、構成
以上説明してきた正極、負極、セパレータおよび非水系電解液で構成される本発明に係るリチウム二次電池の形状は、円筒型、積層型等、種々のものとすることができる。
(5) Shape and configuration of battery The shape of the lithium secondary battery according to the present invention composed of the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte described above is various, such as a cylindrical type and a laminated type. be able to.
いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、この電極体に上記非水電解液を含浸させる。正極集電体と外部に通ずる正極端子との間、並びに負極集電体と外部に通ずる負極端子との間を集電用リード等を用いて接続する。以上の構成のものを電池ケースに密閉して電池を完成させることができる。 In any case, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and the electrode body is impregnated with the non-aqueous electrolyte. The positive electrode current collector and the positive electrode terminal communicating with the outside, and the negative electrode current collector and the negative electrode terminal communicating with the outside are connected using a current collecting lead or the like. The battery having the above configuration can be sealed in a battery case to complete the battery.
(実施例1)
ニッケル:コバルト:モリブデンのモル比が82:15:3となるように、硫酸ニッケルと硫酸コバルトの混合溶液、およびモリブデン酸ナトリウム水溶液を準備し、12.5%水酸化ナトリウム溶液とともに、これらの溶液を反応槽に同時に添加し、pHを10〜11の範囲、反応温度を50℃〜80℃の範囲に一定に保ち、共沈法によってニッケルコバルトモリブデン複合水酸化物粒子を作製した。その後、反応槽内の水酸化物スラリーを全量回収し、濾過、水洗後に乾燥させ、ニッケルコバルトモリブデン複合水酸化物の乾燥粉末を得た。この金属複合水酸化物は、1μm以下の一次粒子が複数集合した球状の二次粒子であった。
Example 1
A mixed solution of nickel sulfate and cobalt sulfate and a sodium molybdate aqueous solution were prepared so that the molar ratio of nickel: cobalt: molybdenum was 82: 15: 3, and these solutions were prepared together with a 12.5% sodium hydroxide solution. Were simultaneously added to the reaction vessel, and the pH was kept in the range of 10 to 11 and the reaction temperature was kept constant in the range of 50 ° C. to 80 ° C., and nickel cobalt molybdenum composite hydroxide particles were prepared by a coprecipitation method. Thereafter, the entire amount of hydroxide slurry in the reaction vessel was recovered, filtered, washed with water and dried to obtain a dry powder of nickel cobalt molybdenum composite hydroxide. This metal composite hydroxide was a spherical secondary particle in which a plurality of primary particles of 1 μm or less were assembled.
得られた複合水酸化物30gを5cm×12cm×3cmのマグネシア製の焼成容器に挿入し、密閉式電気炉を用いて、流量3L/minの空気気流中で昇温速度5℃/minで700℃まで昇温して10時間焼成した後、室温まで炉冷した。 30 g of the obtained composite hydroxide was inserted into a 5 cm × 12 cm × 3 cm magnesia firing container, and 700 ° C. at a heating rate of 5 ° C./min in an air stream with a flow rate of 3 L / min using a closed electric furnace. After heating up to 0 ° C. and firing for 10 hours, the furnace was cooled to room temperature.
このニッケルコバルトモリブデン複合酸化物と市販の水酸化リチウム(FMC社製)とを、ニッケルコバルトモリブデンとリチウムの原子比が1:1.05になるように秤量した後、球状の二次粒子の形骸が維持される程度の強さでシェーカーミキサー装置(WAB社製TURBULA TypeT2C)を用いて十分に混合した。この混合物20gを5cm×12cm×3cmのマグネシア製の焼成容器に入れ、密閉式電気炉を用いて、流量3L/minの酸素気流中で昇温速度5℃/minで730℃まで昇温して10時間焼成した後、室温まで炉冷した。 The nickel-cobalt-molybdenum composite oxide and commercially available lithium hydroxide (manufactured by FMC) were weighed so that the atomic ratio of nickel-cobalt-molybdenum and lithium was 1: 1.05, and then the shape of spherical secondary particles Was sufficiently mixed using a shaker mixer apparatus (TURBULA Type T2C manufactured by WAB Co., Ltd.) at such a strength that was maintained. 20 g of this mixture was put into a 5 cm × 12 cm × 3 cm magnesia firing container, and heated to 730 ° C. at a heating rate of 5 ° C./min in an oxygen stream at a flow rate of 3 L / min using a closed electric furnace. After baking for 10 hours, the furnace was cooled to room temperature.
得られた焼成物をX線回折で分析したところ、図1に示すように、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.82Co0.15Mo0.03O2)であった。マイクロトラックで測定した粒度分布のd50は6.6μm、タップ密度は0.93g/mLであった。 When the obtained fired product was analyzed by X-ray diffraction, it was a positive electrode active material (Li 1.05 Ni 0.82 Co 0.15 Mo 0.03 O 2 ) having a hexagonal layered structure as shown in FIG. D50 of the particle size distribution measured by Microtrac was 6.6 μm, and the tap density was 0.93 g / mL.
また、この金属複合酸化物からなる正極活物質について、エネルギー分散測定装置(EDAX社製EDX装置FALCON)を用いて、エネルギー分散法によって組成のばらつきを判断した。測定方法は、上記複合酸化物を試料台上の導電性両面テープ上に数粒子の厚さで載せ、真空状態にして、SEMで像を確認し、測定目標を定め、測定を行った。 Moreover, about the positive electrode active material which consists of this metal complex oxide, the dispersion | variation in a composition was judged by the energy dispersion method using the energy dispersion measuring apparatus (EDX apparatus FALCON by EDAX). The measurement was carried out by placing the composite oxide on a conductive double-sided tape on a sample stage with a thickness of several particles, applying a vacuum, checking the image with an SEM, setting a measurement target, and measuring.
測定条件は、電圧15kV、電流10-9〜10-10Aとし、電子ビーム径は3〜5nm、取り出し角度は20°とした。この測定においては、上記複合酸化物の粒子の一部で厚み数μmの情報を拾うことになる。上記測定では、MoのK線のピーク強度をIMo、NiのL線のピーク強度をINiとしたときの強度比IMo/INiを10回測定し、その平均値とその標準偏差により、組成のばらつきを判断した。 The measurement conditions were a voltage of 15 kV, a current of 10 −9 to 10 −10 A, an electron beam diameter of 3 to 5 nm, and an extraction angle of 20 °. In this measurement, information on a thickness of several μm is picked up by a part of the composite oxide particles. In the above measurement, the intensity ratio I Mo / I Ni is measured 10 times when the peak intensity of Mo K-line is I Mo and the peak intensity of Ni L-line is I Ni, and the average value and its standard deviation are used. The composition variation was judged.
この金属複合酸化物からなる正極活物質を、エネルギー分散法によって10回測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、MoのL線のピーク強度IMoとNiのL線のピーク強度INiとの強度比IMo/INiの平均値は0.173であり、その標準偏差は0.044であった。標準偏差は平均値の1/2未満であり、得られた正極活物質の組成は、どの範囲においても組成式Li1.05Ni0.82Co0.15Mo0.03O2を満たすものであった。
As a result of measuring the positive electrode active material made of this metal
得られた正極活物質の初期容量評価は以下のようにして行った。活物質粉末70質量%にアセチレンブラック20質量%およびPTFE10質量%を混合し、ここから150mgを取り出してペレットを作製し正極とした。負極としてリチウム金属を用い、電解液には1MのLiClO4を支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液(富山薬品工業製)を用いた。露点が−80℃に管理されたAr雰囲気のグローブボックス中で、図2に示すような2032型のコイン電池を作製した。 The initial capacity evaluation of the obtained positive electrode active material was performed as follows. 70% by mass of the active material powder was mixed with 20% by mass of acetylene black and 10% by mass of PTFE, and 150 mg was taken out from this to produce a pellet to obtain a positive electrode. Lithium metal was used as the negative electrode, and an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) (made by Toyama Pharmaceutical Co., Ltd.) using 1M LiClO 4 as a supporting salt was used as the electrolyte. A 2032 type coin battery as shown in FIG. 2 was fabricated in an Ar atmosphere glove box whose dew point was controlled at −80 ° C.
作製した電池は24時間程度放置し、開路電圧OCV(open circuit voltage)が安定した後、正極に対する電流密度を0.5mA/cm2としてカットオフ電圧4.3Vまで充電して初期充電容量とし、1時間の休止後カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。 The prepared battery is left for about 24 hours, and after the open circuit voltage OCV (open circuit voltage) is stabilized, the current density with respect to the positive electrode is set to 0.5 mA / cm 2 and charged to a cutoff voltage of 4.3 V to obtain an initial charge capacity. The capacity when the battery was discharged to a cutoff voltage of 3.0 V after a one hour rest was defined as the initial discharge capacity.
正極の安全性の評価は、上記と同様な方法で作製した2032型のコイン電池をカットオフ電圧4.5VまでCCCV充電(定電流−定電圧充電。まず、充電が、定電流で動作し、それから定電圧で充電を終了するという2つのフェーズの充電過程を用いる充電方法。)した後、短絡しないように注意しながら解体して正極を取り出した。この電極を3.0mg計り取り、電解液を1.3mg加えて、アルミニウム製測定容器に封入し、示差走査熱量計(DSC)PTC−10A(Rigaku社製)を用いて昇温速度10℃/minで室温から400℃まで発熱挙動を測定した。 The safety evaluation of the positive electrode is performed by CCCV charging (constant current-constant voltage charging. First, charging is operated at a constant current) to a cutoff voltage of 4.5V using a 2032 type coin battery manufactured by the same method as described above. Then, the charging method using a charging process of two phases of ending charging at a constant voltage.), And then disassembling with care not to short-circuit, and taking out the positive electrode. 3.0 mg of this electrode was measured, 1.3 mg of the electrolyte was added, sealed in an aluminum measurement container, and a temperature increase rate of 10 ° C./degree using a differential scanning calorimeter (DSC) PTC-10A (Rigaku). The heat generation behavior was measured from room temperature to 400 ° C. in min.
得られたリチウムニッケルコバルトモリブデン複合酸化物の元素分析値、電池評価によって得られた初期放電容量、およびDSC測定によって得られた発熱速度を表1に示す。 Table 1 shows the elemental analysis values of the obtained lithium nickel cobalt molybdenum composite oxide, the initial discharge capacity obtained by battery evaluation, and the heat generation rate obtained by DSC measurement.
(実施例2)
ニッケル:コバルト:モリブデンのモル比が75:15:10で固溶している金属複合酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
(Example 2)
A metal composite oxide in which the molar ratio of nickel: cobalt: molybdenum was 75:15:10 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. The mixture was mixed so that the molar ratio was 1.05: 1, calcined at 500 ° C. for 2 hours in an oxygen stream with a flow rate of 3 L / min using a sealed electric furnace, and then 730 at a heating rate of 5 ° C./min. The temperature was raised to 0 ° C., baked for 10 hours, and then cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.75Co0.15Mo0.10O2)であった。マイクロトラックで測定した粒度分布のd50は6.1μm、タップ密度は0.85g/mLであった。 When the obtained fired product was analyzed by X-ray diffraction, it was a positive electrode active material (Li 1.05 Ni 0.75 Co 0.15 Mo 0.10 O 2 ) having a hexagonal layered structure. D50 of the particle size distribution measured by Microtrac was 6.1 μm, and the tap density was 0.85 g / mL.
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、MoのL線のピーク強度IMoとNiのL線のピーク強度INiとの強度比IMo/INiの平均値は0.242であり、その標準偏差は0.088であった。標準偏差は平均値の1/2未満であり、得られた正極活物質の組成は、どの範囲においても、組成式Li1.05Ni0.75Co0.15Mo0.10O2を満たすものであった。 The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the L line of Mo was measured regardless of the range of the metal composite oxide. the average value of the intensity ratio I Mo / I Ni of the peak intensity I Ni of L lines I Mo and Ni is 0.242, a standard deviation of 0.088. The standard deviation was less than ½ of the average value, and the composition of the obtained positive electrode active material satisfied the composition formula Li 1.05 Ni 0.75 Co 0.15 Mo 0.10 O 2 in any range.
得られた正極活物質の初期容量の評価および正極の発熱挙動の評価は実施例1と同様に行った。得られた正極活物質の初期放電容量と発熱速度を表1に示す。 Evaluation of the initial capacity of the obtained positive electrode active material and evaluation of the heat generation behavior of the positive electrode were carried out in the same manner as in Example 1. Table 1 shows the initial discharge capacity and heat generation rate of the positive electrode active material obtained.
(実施例3)
ニッケル:コバルト:モリブデンのモル比が82:15:3で固溶している金属複合酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで800℃まで昇温し、10時間焼成した後、室温まで炉冷した。
(Example 3)
A metal composite oxide in which the molar ratio of nickel: cobalt: molybdenum was 82: 15: 3 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. The mixture was mixed so that the molar ratio was 1.05: 1, and calcined at 500 ° C. for 2 hours in an oxygen stream with a flow rate of 3 L / min using a sealed electric furnace, and then 800 ° C. at a temperature rising rate of 5 ° C./min. The temperature was raised to 0 ° C., baked for 10 hours, and then cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.82Co0.15Mo0.03O2)であった。マイクロトラックで測定した粒度分布のd50は4.3μm、タップ密度は1.07g/mLであった。 When the obtained fired product was analyzed by X-ray diffraction, it was a positive electrode active material (Li 1.05 Ni 0.82 Co 0.15 Mo 0.03 O 2 ) having a hexagonal layered structure. The d50 of the particle size distribution measured by Microtrac was 4.3 μm, and the tap density was 1.07 g / mL.
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、MoのL線のピーク強度IMoとNiのL線のピーク強度INiとの強度比IMo/INiの平均値は0.162であり、その標準偏差は0.041であった。標準偏差は平均値の1/2未満であり、得られた正極活物質の組成は、どの範囲においても、組成式Li1.05Ni0.82Co0.15Mo0.03O2を満たすものであった。 The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the L line of Mo was measured regardless of the range of the metal composite oxide. the average value of the intensity ratio I Mo / I Ni of the peak intensity I Ni of L lines I Mo and Ni are 0.162, a standard deviation of 0.041. The standard deviation was less than ½ of the average value, and the composition of the positive electrode active material obtained satisfied the composition formula Li 1.05 Ni 0.82 Co 0.15 Mo 0.03 O 2 in any range.
得られた正極活物質の初期容量の評価および正極の発熱挙動の評価は実施例1と同様に行った。得られた正極活物質の初期放電容量と発熱速度を表1に示す。 Evaluation of the initial capacity of the obtained positive electrode active material and evaluation of the heat generation behavior of the positive electrode were carried out in the same manner as in Example 1. Table 1 shows the initial discharge capacity and heat generation rate of the positive electrode active material obtained.
(実施例4)
ニッケル:コバルト:モリブデンのモル比が82:15:3で固溶している金属複合酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで650℃まで昇温し、10時間焼成した後、室温まで炉冷した。
Example 4
A metal composite oxide in which the molar ratio of nickel: cobalt: molybdenum was 82: 15: 3 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. After mixing at a molar ratio of 1.05: 1, using a closed electric furnace, calcining at 500 ° C. for 2 hours in an oxygen stream with a flow rate of 3 L / min, then 650 at a temperature rising rate of 5 ° C./min. The temperature was raised to 0 ° C., baked for 10 hours, and then cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.82Co0.15Mo0.03O2)であった。マイクロトラックで測定した粒度分布のd50は3.2μm、タップ密度は1.56g/mLであった。 When the obtained fired product was analyzed by X-ray diffraction, it was a positive electrode active material (Li 1.05 Ni 0.82 Co 0.15 Mo 0.03 O 2 ) having a hexagonal layered structure. D50 of the particle size distribution measured by Microtrac was 3.2 μm, and the tap density was 1.56 g / mL.
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、MoのL線のピーク強度IMoとNiのL線のピーク強度をINiとの強度比IMo/INiの平均値は0.178であり、その標準偏差は0.051であった。標準偏差は平均値の1/2未満であり、得られた正極活物質の組成は、どの範囲においても、組成式Li1.05Ni0.82Co0.15Mo0.03O2を満たすものであった。 The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the L line of Mo was measured regardless of the range of the metal composite oxide. The average value of the intensity ratio I Mo / I Ni between the peak intensity of the L line of I Mo and Ni and I Ni was 0.178, and the standard deviation thereof was 0.051. The standard deviation was less than ½ of the average value, and the composition of the positive electrode active material obtained satisfied the composition formula Li 1.05 Ni 0.82 Co 0.15 Mo 0.03 O 2 in any range.
得られた正極活物質の初期容量の評価および正極の発熱挙動の評価は実施例1と同様に行った。得られた正極活物質の初期放電容量と発熱速度を表1に示す。 Evaluation of the initial capacity of the obtained positive electrode active material and evaluation of the heat generation behavior of the positive electrode were carried out in the same manner as in Example 1. Table 1 shows the initial discharge capacity and heat generation rate of the positive electrode active material obtained.
(実施例5)
ニッケル:コバルト:モリブデンのモル比が84:15:1で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
(Example 5)
A metal composite hydroxide having a molar ratio of nickel: cobalt: molybdenum of 84: 15: 1 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours, and then heated at a rate of 5 ° C./min. After heating up to 730 ° C. and baking for 10 hours, the furnace was cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.84Co0.15Mo0.01O2)であった。マイクロトラックで測定した粒度分布のd50は6.1μm、タップ密度は1.56g/mLであった。 When the obtained fired product was analyzed by X-ray diffraction, it was a positive electrode active material (Li 1.05 Ni 0.84 Co 0.15 Mo 0.01 O 2 ) having a hexagonal layered structure. The particle size distribution d50 measured by Microtrac was 6.1 μm, and the tap density was 1.56 g / mL.
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、MoのL線のピーク強度IMoとNiのL線のピーク強度INiとの強度比IMo/INiの平均値は0.050であり、その標準偏差は0.010であった。標準偏差は平均値の1/2未満であり、得られた正極活物質の組成は、どの範囲においても、組成式Li1.05Ni0.84Co0.15Mo0.01O2を満たすものであった。 The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the L line of Mo was measured regardless of the range of the metal composite oxide. the average value of the intensity ratio I Mo / I Ni of the peak intensity I Ni of L lines I Mo and Ni is 0.050, a standard deviation of 0.010. The standard deviation was less than 1/2 of the average value, and the composition of the obtained positive electrode active material satisfied the composition formula Li 1.05 Ni 0.84 Co 0.15 Mo 0.01 O 2 in any range.
得られた正極活物質の初期容量の評価および正極の発熱挙動の評価は実施例1と同様に行った。得られた正極活物質の初期放電容量と発熱速度を表1に示す。 Evaluation of the initial capacity of the obtained positive electrode active material and evaluation of the heat generation behavior of the positive electrode were carried out in the same manner as in Example 1. Table 1 shows the initial discharge capacity and heat generation rate of the positive electrode active material obtained.
(実施例6)
ニッケル:コバルト:モリブデンのモル比が75.5:21:3.5で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
(Example 6)
A metal composite hydroxide in which the molar ratio of nickel: cobalt: molybdenum was 75.5: 21: 3.5 was prepared by the same method as in Example 1, and this was performed in the same manner as in Example 1. The mixture was mixed so that the molar ratio of lithium to metal was 1.05: 1, calcined at 500 ° C. for 2 hours in an oxygen stream with a flow rate of 3 L / min using a closed electric furnace, and then the temperature rising rate was 5 The temperature was raised to 730 ° C. at a rate of ° C./min, baked for 10 hours, and then cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.755Co0.21Mo0.035O2)であった。マイクロトラックで測定した粒度分布のd50は5.3μm、タップ密度は0.89g/mLであった。 When the obtained fired product was analyzed by X-ray diffraction, it was a positive electrode active material (Li 1.05 Ni 0.755 Co 0.21 Mo 0.035 O 2 ) having a hexagonal layered structure. D50 of the particle size distribution measured by Microtrac was 5.3 μm, and the tap density was 0.89 g / mL.
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、MoのL線のピーク強度IMoとNiのL線のピーク強度INiとの強度比IMo/INiの平均値は0.185であり、その標準偏差は0.047であった。標準偏差は平均値の1/2未満であり、得られた正極活物質の組成は、どの範囲においても、組成式Li1.05Ni0.755Co0.21Mo0.035O2を満たすものであった。 The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the L line of Mo was measured regardless of the range of the metal composite oxide. the average value of the intensity ratio I Mo / I Ni of the peak intensity I Ni of L lines I Mo and Ni are 0.185, a standard deviation of 0.047. The standard deviation was less than 1/2 of the average value, and the composition of the obtained positive electrode active material satisfied the composition formula Li 1.05 Ni 0.755 Co 0.21 Mo 0.035 O 2 in any range.
得られた正極活物質の初期容量の評価および正極の発熱挙動の評価は実施例1と同様に行った。得られた正極活物質の初期放電容量と発熱速度を表1に示す。 Evaluation of the initial capacity of the obtained positive electrode active material and evaluation of the heat generation behavior of the positive electrode were carried out in the same manner as in Example 1. Table 1 shows the initial discharge capacity and heat generation rate of the positive electrode active material obtained.
(実施例7)
ニッケル:コバルト:モリブデンのモル比が87:10:3で固溶している金属複合酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
(Example 7)
A metal composite oxide in which the molar ratio of nickel: cobalt: molybdenum was 87: 10: 3 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. The mixture was mixed so that the molar ratio was 1.05: 1, calcined at 500 ° C. for 2 hours in an oxygen stream with a flow rate of 3 L / min using a sealed electric furnace, and then 730 at a heating rate of 5 ° C./min. The temperature was raised to 0 ° C., baked for 10 hours, and then cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.87Co0.10Mo0.03O2)であった。マイクロトラックで測定した粒度分布のd50は7.2μm、タップ密度は1.00g/mLであった。 When the obtained fired product was analyzed by X-ray diffraction, it was a positive electrode active material (Li 1.05 Ni 0.87 Co 0.10 Mo 0.03 O 2 ) having a hexagonal layered structure. D50 of the particle size distribution measured by Microtrac was 7.2 μm, and the tap density was 1.00 g / mL.
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、MoのL線のピーク強度IMoとNiのL線のピーク強度INiとの強度比IMo/INiの平均値は0.162であり、その標準偏差は0.040であった。標準偏差は平均値の1/2未満であり、得られた正極活物質の組成は、どの範囲においても、組成式Li1.05Ni0.87Co0.10Mo0.03O2を満たすものであった。 The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the L line of Mo was measured regardless of the range of the metal composite oxide. the average value of the intensity ratio I Mo / I Ni of the peak intensity I Ni of L lines I Mo and Ni are 0.162, a standard deviation of 0.040. The standard deviation was less than ½ of the average value, and the composition of the positive electrode active material obtained satisfied the composition formula Li 1.05 Ni 0.87 Co 0.10 Mo 0.03 O 2 in any range.
得られた正極活物質の初期容量の評価および正極の発熱挙動の評価は実施例1と同様に行った。得られた正極活物質の初期放電容量と発熱速度を表1に示す。 Evaluation of the initial capacity of the obtained positive electrode active material and evaluation of the heat generation behavior of the positive electrode were carried out in the same manner as in Example 1. Table 1 shows the initial discharge capacity and heat generation rate of the positive electrode active material obtained.
(実施例8)
ニッケル:コバルト:モリブデンのモル比が82:15:3となるように、硫酸ニッケルと硫酸コバルトの混合溶液およびモリブデン酸ナトリウム溶液とを準備し、金属複合水酸化物を実施例1と同様な方法で用意した。得られた複合水酸化物30gを5cm×12cm×3cmのマグネシア製の焼成容器に挿入し、密閉式電気炉を用いて、流量3L/minの空気気流中で昇温速度5℃/minで600℃まで昇温して10時間焼成した後、室温まで炉冷した。次にこれを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
(Example 8)
A mixed solution of nickel sulfate and cobalt sulfate and a sodium molybdate solution were prepared so that the molar ratio of nickel: cobalt: molybdenum was 82: 15: 3, and the metal composite hydroxide was treated in the same manner as in Example 1. Prepared with. 30 g of the obtained composite hydroxide was inserted into a 5 cm × 12 cm × 3 cm magnesia firing vessel, and 600 ° C. at a temperature rising rate of 5 ° C./min in an air stream with a flow rate of 3 L / min using a closed electric furnace. After heating up to 0 ° C. and firing for 10 hours, the furnace was cooled to room temperature. Next, this was mixed in the same manner as in Example 1 so that the molar ratio of lithium to metal was 1.05: 1, and using a closed electric furnace at 500 ° C. in an oxygen stream with a flow rate of 3 L / min. After calcining for 2 hours, the temperature was raised to 730 ° C. at a heating rate of 5 ° C./min, baked for 10 hours, and then cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.82Co0.15Mo0.03O2)であった。マイクロトラックで測定した粒度分布のd50は6.5μm、タップ密度は0.90g/mLであった。 When the obtained fired product was analyzed by X-ray diffraction, it was a positive electrode active material (Li 1.05 Ni 0.82 Co 0.15 Mo 0.03 O 2 ) having a hexagonal layered structure. D50 of the particle size distribution measured by Microtrac was 6.5 μm, and the tap density was 0.90 g / mL.
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、MoのL線のピーク強度IMoとNiのL線のピーク強度INiとの強度比IMo/INiの平均値は0.182であり、その標準偏差は0.059であった。標準偏差は平均値の1/2未満であり、得られた正極活物質の組成は、どの範囲においても、組成式Li1.05Ni0.82Co0.15Mo0.03O2を満たすものであった。 The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the L line of Mo was measured regardless of the range of the metal composite oxide. the average value of the intensity ratio I Mo / I Ni of the peak intensity I Ni of L lines I Mo and Ni are 0.182, a standard deviation of 0.059. The standard deviation was less than ½ of the average value, and the composition of the positive electrode active material obtained satisfied the composition formula Li 1.05 Ni 0.82 Co 0.15 Mo 0.03 O 2 in any range.
得られた正極活物質の初期容量の評価および正極の発熱挙動の評価は実施例1と同様に行った。得られた正極活物質の初期放電容量と発熱速度を表1に示す。 Evaluation of the initial capacity of the obtained positive electrode active material and evaluation of the heat generation behavior of the positive electrode were carried out in the same manner as in Example 1. Table 1 shows the initial discharge capacity and heat generation rate of the positive electrode active material obtained.
(実施例9)
ニッケル:コバルト:モリブデンのモル比が82:15:3となるように、硫酸ニッケルと硫酸コバルトの混合溶液およびモリブデン酸ナトリウム溶液とを準備し、金属複合水酸化物を実施例1と同様な方法で用意した。得られた複合水酸化物30gを5cm×12cm×3cmのマグネシア製の焼成容器に挿入し、密閉式電気炉を用いて、流量3L/minの空気気流中で昇温速度5℃/minで750℃まで昇温して10時間焼成した後、室温まで炉冷した。次にこれを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
Example 9
A mixed solution of nickel sulfate and cobalt sulfate and a sodium molybdate solution were prepared so that the molar ratio of nickel: cobalt: molybdenum was 82: 15: 3, and the metal composite hydroxide was treated in the same manner as in Example 1. Prepared with. 30 g of the obtained composite hydroxide was inserted into a 5 cm × 12 cm × 3 cm magnesia firing vessel, and 750 at a heating rate of 5 ° C./min in an air stream with a flow rate of 3 L / min using a sealed electric furnace. After heating up to 0 ° C. and firing for 10 hours, the furnace was cooled to room temperature. Next, this was mixed in the same manner as in Example 1 so that the molar ratio of lithium to metal was 1.05: 1, and using a closed electric furnace at 500 ° C. in an oxygen stream with a flow rate of 3 L / min. After calcining for 2 hours, the temperature was raised to 730 ° C. at a heating rate of 5 ° C./min, baked for 10 hours, and then cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.82Co0.15Mo0.03O2)であった。マイクロトラックで測定した粒度分布のd50は6.4μm、タップ密度は0.92g/mLであった。 When the obtained fired product was analyzed by X-ray diffraction, it was a positive electrode active material (Li 1.05 Ni 0.82 Co 0.15 Mo 0.03 O 2 ) having a hexagonal layered structure. D50 of the particle size distribution measured by Microtrac was 6.4 μm, and the tap density was 0.92 g / mL.
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、MoのL線のピーク強度IMoとNiのL線のピーク強度INiとの強度比IMo/INiの平均値は0.179であり、標準偏差は0.052であった。標準偏差は平均値の1/2未満であり、得られた正極活物質の組成は、どの範囲においても、組成式Li1.05Ni0.82Co0.15Mo0.03O2を満たすものであった。 The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the L line of Mo was measured regardless of the range of the metal composite oxide. the average value of the intensity ratio I Mo / I Ni of the peak intensity I Ni of L lines I Mo and Ni are 0.179 with a standard deviation of 0.052. The standard deviation was less than ½ of the average value, and the composition of the positive electrode active material obtained satisfied the composition formula Li 1.05 Ni 0.82 Co 0.15 Mo 0.03 O 2 in any range.
得られた正極活物質の初期容量の評価および正極の発熱挙動の評価は実施例1と同様に行った。得られた正極活物質の初期放電容量と発熱速度を表1に示す。 Evaluation of the initial capacity of the obtained positive electrode active material and evaluation of the heat generation behavior of the positive electrode were carried out in the same manner as in Example 1. Table 1 shows the initial discharge capacity and heat generation rate of the positive electrode active material obtained.
(比較例1)
ニッケル:コバルト:モリブデンのモル比が80:15:5となるように、硫酸ニッケルと硫酸コバルトとモリブデン酸アンモニウム水溶液を同時に混合し、その後、12.5%水酸化ナトリウム溶液を反応槽に添加し、pHを10〜11の範囲、反応温度を60℃〜80℃の範囲に一定に保ち、共沈法によってニッケルコバルトモリブデン複合水酸化物粒子を作製した。得られた複合水酸化物粒子は実施例1に比べて若干白っぽくなっていた(X線回折で調べたところ、ニッケルコバルトモリブデン水酸化物と酸化モリブデンの混合物であることがわかった)。その後、反応槽内の水酸化物スラリーを全量回収し、濾過、水洗後に乾燥させ、金属複合水酸化物の乾燥粉末を実施例1と同様にして作製した。実施例1に比べて、上記濾過に時間を要した。これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
(Comparative Example 1)
Nickel sulfate, cobalt sulfate, and ammonium molybdate aqueous solution were simultaneously mixed so that the molar ratio of nickel: cobalt: molybdenum was 80: 15: 5, and then 12.5% sodium hydroxide solution was added to the reaction vessel. The nickel cobalt molybdenum composite hydroxide particles were prepared by coprecipitation method while keeping the pH in the range of 10 to 11 and the reaction temperature in the range of 60 to 80 ° C. The obtained composite hydroxide particles were slightly whitish compared to Example 1 (when examined by X-ray diffraction, it was found to be a mixture of nickel cobalt molybdenum hydroxide and molybdenum oxide). Thereafter, the entire amount of hydroxide slurry in the reaction vessel was recovered, filtered, washed with water and dried, and a metal composite hydroxide dry powder was produced in the same manner as in Example 1. Compared to Example 1, the filtration required more time. This was mixed in the same manner as in Example 1 so that the molar ratio of lithium to metal was 1.05: 1, and using an enclosed electric furnace, in an oxygen stream at a flow rate of 3 L / min at 500 ° C. for 2 hours. After calcination, the temperature was raised to 730 ° C. at a temperature rising rate of 5 ° C./min, baked for 10 hours, and then cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.03Ni0.84Co0.16O2)とモリブデン酸リチウム(LiMoO4)の混合物であった。マイクロトラックで測定した粒度分布のd50は9.6μm、タップ密度は1.32g/mLであった。 When the obtained fired product was analyzed by X-ray diffraction, it was a mixture of a positive electrode active material (Li 1.03 Ni 0.84 Co 0.16 O 2 ) and a lithium molybdate (LiMoO 4 ) having a hexagonal layered structure. D50 of the particle size distribution measured by Microtrac was 9.6 μm, and the tap density was 1.32 g / mL.
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、MoのL線のピーク強度IMoとNiのL線のピーク強度INiとの強度比IMo/INiの平均値は0.171であり、標準偏差は0.110であった。標準偏差は平均値の1/2を上回っており、組成のばらつきが大きくなっている。正極活物質(Li1.03Ni0.84Co0.16O2)とモリブデン酸リチウム(LiMoO4)の混合物であることもあって、組成のばらつきが大きくなっていると考えられる。 The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the L line of Mo was measured regardless of the range of the metal composite oxide. the average value of the intensity ratio I Mo / I Ni of the peak intensity I Ni of L lines I Mo and Ni are 0.171 with a standard deviation of 0.110. The standard deviation exceeds 1/2 of the average value, and the variation in composition is large. It is considered that the dispersion of the composition is increased due to the mixture of the positive electrode active material (Li 1.03 Ni 0.84 Co 0.16 O 2 ) and lithium molybdate (LiMoO 4 ).
得られた正極活物質の初期容量の評価および正極の発熱挙動の評価は実施例1と同様に行った。得られた正極活物質の初期放電容量と発熱速度を表1に示す。 Evaluation of the initial capacity of the obtained positive electrode active material and evaluation of the heat generation behavior of the positive electrode were carried out in the same manner as in Example 1. Table 1 shows the initial discharge capacity and heat generation rate of the positive electrode active material obtained.
(比較例2)
ニッケル:コバルト:モリブデンのモル比が74:15:11で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
(Comparative Example 2)
A metal composite hydroxide in which the molar ratio of nickel: cobalt: molybdenum is 74:15:11 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours, and then heated at a rate of 5 ° C./min. After heating up to 730 ° C. and baking for 10 hours, the furnace was cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.74Co0.15Mo0.11O2)であった。マイクロトラックで測定した粒度分布のd50は2.2μm、タップ密度は0.80g/mLであった。 When the obtained fired product was analyzed by X-ray diffraction, it was a positive electrode active material (Li 1.05 Ni 0.74 Co 0.15 Mo 0.11 O 2 ) having a hexagonal layered structure. D50 of the particle size distribution measured by Microtrac was 2.2 μm, and the tap density was 0.80 g / mL.
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、MoのL線のピーク強度IMoとNiのL線のピーク強度INiとの強度比IMo/INiの平均値は0.764であり、標準偏差は0.480であった。標準偏差は平均値の1/2を上回っており、組成のばらつきが大きくなっている。 The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the L line of Mo was measured regardless of the range of the metal composite oxide. the average value of the intensity ratio I Mo / I Ni of the peak intensity I Ni of L lines I Mo and Ni are 0.764 with a standard deviation of 0.480. The standard deviation exceeds 1/2 of the average value, and the variation in composition is large.
得られた正極活物質の初期容量の評価および正極の発熱挙動の評価は実施例1と同様に行った。得られた正極活物質の初期放電容量と発熱速度を表1に示す。 Evaluation of the initial capacity of the obtained positive electrode active material and evaluation of the heat generation behavior of the positive electrode were carried out in the same manner as in Example 1. Table 1 shows the initial discharge capacity and heat generation rate of the positive electrode active material obtained.
(比較例3)
ニッケル:コバルトのモル比が81:19となるように、硫酸ニッケルと硫酸コバルトの混合溶液と12.5%水酸化ナトリウム溶液を反応槽に同時に添加し、pHを10〜11の範囲、反応温度を60℃〜80℃の範囲に一定に保ち、共沈法によってニッケルコバルト複合水酸化物粒子を作製した。作製したニッケルコバルト金属複合水酸化物を実施例1と同様にして、リチウムと金属とのモル比が1.05:1となるように混合した。そして、該混合物を、密閉式電気炉を用いて、流量3L/minの酸素気流中において500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し10時間焼成した後、室温まで炉冷した。
(Comparative Example 3)
A mixed solution of nickel sulfate and cobalt sulfate and a 12.5% sodium hydroxide solution were simultaneously added to the reaction vessel so that the molar ratio of nickel: cobalt was 81:19, and the pH was in the range of 10-11, reaction temperature. Was kept constant in the range of 60 ° C. to 80 ° C., and nickel cobalt composite hydroxide particles were produced by a coprecipitation method. The produced nickel cobalt metal composite hydroxide was mixed in the same manner as in Example 1 so that the molar ratio of lithium to metal was 1.05: 1. The mixture was calcined at 500 ° C. for 2 hours in an oxygen stream with a flow rate of 3 L / min using a closed electric furnace, and then heated to 730 ° C. at a rate of temperature increase of 5 ° C./min for 10 hours. Then, the furnace was cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.81Co0.19O2)であった。マイクロトラックで測定した粒度分布のd50は9.0μm、タップ密度は1.54g/mLであった。 When the obtained fired product was analyzed by X-ray diffraction, it was a positive electrode active material (Li 1.05 Ni 0.81 Co 0.19 O 2 ) having a hexagonal layered structure. D50 of the particle size distribution measured by Microtrac was 9.0 μm, and the tap density was 1.54 g / mL.
この金属複合酸化物からなる正極活物質についてはモリブデンが含まれていなかったため、エネルギー分散法による測定は行わなかった。 Since the positive electrode active material made of this metal composite oxide did not contain molybdenum, measurement by the energy dispersion method was not performed.
得られた正極活物質の初期容量の評価および正極の発熱挙動の評価は実施例1と同様に行った。得られた正極活物質の初期放電容量と発熱速度を表1に示す。 Evaluation of the initial capacity of the obtained positive electrode active material and evaluation of the heat generation behavior of the positive electrode were carried out in the same manner as in Example 1. Table 1 shows the initial discharge capacity and heat generation rate of the positive electrode active material obtained.
(比較例4)
ニッケル:コバルト:モリブデンのモル比が82:15:3で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように、混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで900℃まで昇温し、10時間焼成した後、室温まで炉冷した。
(Comparative Example 4)
A metal composite hydroxide in which the molar ratio of nickel: cobalt: molybdenum was 82: 15: 3 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. The mixture was mixed so that the molar ratio was 1.05: 1, and calcined at 500 ° C. for 2 hours in an oxygen stream with a flow rate of 3 L / min using a sealed electric furnace, and then the heating rate was 5 ° C./min. Then, the temperature was raised to 900 ° C., baked for 10 hours, and then cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.82Co0.15Mo0.03O2)であった。マイクロトラックで測定した粒度分布のd50は7.3μm、タップ密度は1.62g/mLであった。 When the obtained fired product was analyzed by X-ray diffraction, it was a positive electrode active material (Li 1.05 Ni 0.82 Co 0.15 Mo 0.03 O 2 ) having a hexagonal layered structure. D50 of the particle size distribution measured by Microtrac was 7.3 μm, and the tap density was 1.62 g / mL.
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、MoのL線のピーク強度IMoとNiのL線のピーク強度INiとの強度比IMo/INiの平均値は0.220であり、標準偏差は0.140であった。 The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the L line of Mo was measured regardless of the range of the metal composite oxide. the average value of the intensity ratio I Mo / I Ni of the peak intensity I Ni of L lines I Mo and Ni are 0.220 with a standard deviation of 0.140.
得られた正極活物質の初期容量の評価および正極の発熱挙動の評価は実施例1と同様に行った。得られた正極活物質の初期放電容量と発熱速度を表1に示す。 Evaluation of the initial capacity of the obtained positive electrode active material and evaluation of the heat generation behavior of the positive electrode were carried out in the same manner as in Example 1. Table 1 shows the initial discharge capacity and heat generation rate of the positive electrode active material obtained.
(比較例5)
ニッケル:コバルト:モリブデンのモル比が85:12:3で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで600℃まで昇温し、10時間焼成した後、室温まで炉冷した。
(Comparative Example 5)
A metal composite hydroxide in which the molar ratio of nickel: cobalt: molybdenum was 85: 12: 3 was prepared by the same method as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours, and then heated at a rate of 5 ° C./min. After heating up to 600 ° C. and baking for 10 hours, the furnace was cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.85Co0.12Mo0.03O2)と酸化ニッケルNiOの混合物であった。マイクロトラックで測定した粒度分布のd50は3.2μm、タップ密度は1.31g/mLであった。 When the obtained fired product was analyzed by X-ray diffraction, it was a mixture of a positive electrode active material having a hexagonal layered structure (Li 1.05 Ni 0.85 Co 0.12 Mo 0.03 O 2 ) and nickel oxide NiO. The particle size distribution d50 measured by Microtrac was 3.2 μm, and the tap density was 1.31 g / mL.
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、MoのL線のピーク強度IMoとNiのL線のピーク強度INiとの強度比IMo/INiの平均値は0.183であり、標準偏差は0.112であった。正極活物質(Li1.05Ni0.85Co0.12Mo0.03O2)と酸化ニッケルNiOの混合物であることもあり、組成のばらつきが比較的大きい。 The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the L line of Mo was measured regardless of the range of the metal composite oxide. the average value of the intensity ratio I Mo / I Ni of the peak intensity I Ni of L lines I Mo and Ni are 0.183 with a standard deviation of 0.112. There may be a mixture of the positive electrode active material (Li 1.05 Ni 0.85 Co 0.12 Mo 0.03 O 2 ) and nickel oxide NiO, and the variation in composition is relatively large.
得られた正極活物質の初期容量の評価および正極の発熱挙動の評価は実施例1と同様に行った。得られた正極活物質の初期放電容量と発熱速度を表1に示す。 Evaluation of the initial capacity of the obtained positive electrode active material and evaluation of the heat generation behavior of the positive electrode were carried out in the same manner as in Example 1. Table 1 shows the initial discharge capacity and heat generation rate of the positive electrode active material obtained.
(比較例6)
ニッケル:コバルト:モリブデンのモル比が75:22:3で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中において、500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
(Comparative Example 6)
A metal composite hydroxide in which the molar ratio of nickel: cobalt: molybdenum was 75: 22: 3 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined at 500 ° C. for 2 hours in an oxygen stream at a flow rate of 3 L / min using a closed electric furnace, and then heated at a rate of 5 ° C. / The temperature was raised to 730 ° C. for min, baked for 10 hours, and then cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.75Co0.22Mo0.03O2)であった。マイクロトラックで測定した粒度分布のd50は4.3μm、タップ密度は0.83g/mLであった。 When the obtained fired product was analyzed by X-ray diffraction, it was a positive electrode active material (Li 1.05 Ni 0.75 Co 0.22 Mo 0.03 O 2 ) having a hexagonal layered structure. D50 of the particle size distribution measured by Microtrac was 4.3 μm, and the tap density was 0.83 g / mL.
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、MoのL線のピーク強度IMoとNiのL線のピーク強度INiとの強度比IMo/INiの平均値は0.211であり、標準偏差は0.056であった。 The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the L line of Mo was measured regardless of the range of the metal composite oxide. the average value of the intensity ratio I Mo / I Ni of the peak intensity I Ni of L lines I Mo and Ni are 0.211 with a standard deviation of 0.056.
得られた正極活物質の初期容量の評価および正極の発熱挙動の評価は実施例1と同様に行った。得られた正極活物質の初期放電容量と発熱速度を表1に示す。 Evaluation of the initial capacity of the obtained positive electrode active material and evaluation of the heat generation behavior of the positive electrode were carried out in the same manner as in Example 1. Table 1 shows the initial discharge capacity and heat generation rate of the positive electrode active material obtained.
(比較例7)
ニッケル:コバルト:モリブデンのモル比が86:9:5で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中において、500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
(Comparative Example 7)
A metal composite hydroxide in which the molar ratio of nickel: cobalt: molybdenum was 86: 9: 5 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined at 500 ° C. for 2 hours in an oxygen stream at a flow rate of 3 L / min using a closed electric furnace, and then heated at a rate of 5 ° C. / The temperature was raised to 730 ° C. for min, baked for 10 hours, and then cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.86Co0.09Mo0.05O2)であった。マイクロトラックで測定した粒度分布のd50は6.1μm、タップ密度は1.05g/mLであった。 When the obtained fired product was analyzed by X-ray diffraction, it was a positive electrode active material (Li 1.05 Ni 0.86 Co 0.09 Mo 0.05 O 2 ) having a hexagonal layered structure. The d50 of the particle size distribution measured by Microtrac was 6.1 μm, and the tap density was 1.05 g / mL.
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、MoのL線のピーク強度IMoとNiのL線のピーク強度INiとの強度比IMo/INiの平均値は0.143であり、標準偏差は0.062であった。 The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the L line of Mo was measured regardless of the range of the metal composite oxide. the average value of the intensity ratio I Mo / I Ni of the peak intensity I Ni of L lines I Mo and Ni are 0.143 with a standard deviation of 0.062.
得られた正極活物質の初期容量の評価および正極の発熱挙動の評価は実施例1と同様に行った。得られた正極活物質の初期放電容量と発熱速度を表1に示す。 Evaluation of the initial capacity of the obtained positive electrode active material and evaluation of the heat generation behavior of the positive electrode were carried out in the same manner as in Example 1. Table 1 shows the initial discharge capacity and heat generation rate of the positive electrode active material obtained.
(比較例8)
ニッケル:コバルト:モリブデンのモル比が82:15:3で固溶している金属複合水酸化物を、実施例1と同様な方法で作製した。該金属複合水酸化物を焼成せずにリチウムと金属とのモル比が1.05:1となるように混合した以外は、実施例1と同様にして、密閉式電気炉を用いて、流量3L/minの酸素気流中において、500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
(Comparative Example 8)
A metal composite hydroxide in which the molar ratio of nickel: cobalt: molybdenum was 82: 15: 3 was produced in the same manner as in Example 1. A flow rate was measured using a closed electric furnace in the same manner as in Example 1 except that the metal composite hydroxide was mixed without being fired so that the molar ratio of lithium to metal was 1.05: 1. After calcining at 500 ° C. for 2 hours in an oxygen stream of 3 L / min, the temperature was raised to 730 ° C. at a rate of temperature increase of 5 ° C./min, calcined for 10 hours, and then cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.03Ni0.84Co0.16O2)とモリブデン酸リチウム(LiMoO4)の混合物であった。マイクロトラックで測定した粒度分布のd50は8.8μm、タップ密度は1.21g/mLであった。 When the obtained fired product was analyzed by X-ray diffraction, it was a mixture of a positive electrode active material (Li 1.03 Ni 0.84 Co 0.16 O 2 ) and a lithium molybdate (LiMoO 4 ) having a hexagonal layered structure. The particle size distribution d50 measured with Microtrac was 8.8 μm, and the tap density was 1.21 g / mL.
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、MoのL線のピーク強度IMoとNiのL線のピーク強度INiとの強度比IMo/INiの平均値は0.222であり、標準偏差は0.141であった。標準偏差は平均値の1/2を上回っており、組成のばらつきが大きくなっている。正極活物質(Li1.03Ni0.84Co0.16O2)とモリブデン酸リチウム(LiMoO4)の混合物であることもあって、組成のばらつきが大きくなっていると考えられる。 The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the L line of Mo was measured regardless of the range of the metal composite oxide. the average value of the intensity ratio I Mo / I Ni of the peak intensity I Ni of L lines I Mo and Ni are 0.222 with a standard deviation of 0.141. The standard deviation exceeds 1/2 of the average value, and the variation in composition is large. It is considered that the dispersion of the composition is increased due to the mixture of the positive electrode active material (Li 1.03 Ni 0.84 Co 0.16 O 2 ) and lithium molybdate (LiMoO 4 ).
得られた正極活物質の初期容量の評価および正極の発熱挙動の評価は実施例1と同様に行った。得られた正極活物質の初期放電容量と発熱速度を表1に示す。 Evaluation of the initial capacity of the obtained positive electrode active material and evaluation of the heat generation behavior of the positive electrode were carried out in the same manner as in Example 1. Table 1 shows the initial discharge capacity and heat generation rate of the positive electrode active material obtained.
(比較例9)
ニッケル:コバルト:モリブデンのモル比が82:15:3で固溶している金属複合水酸化物を、実施例1と同様な方法で作製した。該金属複合水酸化物を580℃で焼成して、リチウムと金属とのモル比が1.05:1となるように混合した以外は、実施例1と同様にして、密閉式電気炉を用いて、流量3L/minの酸素気流中において、500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
(Comparative Example 9)
A metal composite hydroxide in which the molar ratio of nickel: cobalt: molybdenum was 82: 15: 3 was produced in the same manner as in Example 1. A sealed electric furnace was used in the same manner as in Example 1 except that the metal composite hydroxide was fired at 580 ° C. and mixed so that the molar ratio of lithium to metal was 1.05: 1. Then, after calcining at 500 ° C. for 2 hours in an oxygen stream with a flow rate of 3 L / min, the temperature was raised to 730 ° C. at a rate of temperature increase of 5 ° C./min, calcined for 10 hours, and then cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.03Ni0.84Co0.16O2)とモリブデン酸リチウム(LiMoO4)の混合物であった。マイクロトラックで測定した粒度分布のd50は8.9μm、タップ密度は1.31g/mLであった。 When the obtained fired product was analyzed by X-ray diffraction, it was a mixture of a positive electrode active material (Li 1.03 Ni 0.84 Co 0.16 O 2 ) and a lithium molybdate (LiMoO 4 ) having a hexagonal layered structure. D50 of the particle size distribution measured by Microtrac was 8.9 μm, and the tap density was 1.31 g / mL.
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、MoのL線のピーク強度IMoとNiのL線のピーク強度INiとの強度比IMo/INiの平均値は0.182であり、標準偏差は0.121であった。標準偏差は平均値の1/2を上回っており、組成のばらつきが大きくなっている。正極活物質(Li1.03Ni0.84Co0.16O2)とモリブデン酸リチウム(LiMoO4)の混合物であることもあって、組成のばらつきが大きくなっていると考えられる。 The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the L line of Mo was measured regardless of the range of the metal composite oxide. the average value of the intensity ratio I Mo / I Ni of the peak intensity I Ni of L lines I Mo and Ni are 0.182 with a standard deviation of 0.121. The standard deviation exceeds 1/2 of the average value, and the variation in composition is large. It is considered that the dispersion of the composition is increased due to the mixture of the positive electrode active material (Li 1.03 Ni 0.84 Co 0.16 O 2 ) and lithium molybdate (LiMoO 4 ).
得られた正極活物質の初期容量の評価および正極の発熱挙動の評価は実施例1と同様に行った。得られた正極活物質の初期放電容量と発熱速度を表1に示す。 Evaluation of the initial capacity of the obtained positive electrode active material and evaluation of the heat generation behavior of the positive electrode were carried out in the same manner as in Example 1. Table 1 shows the initial discharge capacity and heat generation rate of the positive electrode active material obtained.
(比較例10)
ニッケル:コバルト:モリブデンのモル比が82:15:3で固溶している金属複合水酸化物を、実施例1と同様な方法で作製した。該金属複合水酸化物を900℃で焼成して、リチウムと金属とのモル比が1.05:1となるように混合した以外は、実施例1と同様にして、密閉式電気炉を用いて、流量3L/minの酸素気流中において、500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
(Comparative Example 10)
A metal composite hydroxide in which the molar ratio of nickel: cobalt: molybdenum was 82: 15: 3 was produced in the same manner as in Example 1. A sealed electric furnace was used in the same manner as in Example 1 except that the metal composite hydroxide was fired at 900 ° C. and mixed so that the molar ratio of lithium to metal was 1.05: 1. Then, after calcining at 500 ° C. for 2 hours in an oxygen stream with a flow rate of 3 L / min, the temperature was raised to 730 ° C. at a rate of temperature increase of 5 ° C./min, calcined for 10 hours, and then cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.03Ni0.84Co0.16O2)とモリブデン酸リチウム(LiMoO4)の混合物であった。マイクロトラックで測定した粒度分布のd50は9.1μm、タップ密度は1.45g/mLであった。 When the obtained fired product was analyzed by X-ray diffraction, it was a mixture of a positive electrode active material (Li 1.03 Ni 0.84 Co 0.16 O 2 ) and a lithium molybdate (LiMoO 4 ) having a hexagonal layered structure. D50 of the particle size distribution measured by Microtrac was 9.1 μm, and the tap density was 1.45 g / mL.
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、MoのL線のピーク強度IMoとNiのL線のピーク強度INiとの強度比IMo/INiの平均値は0.171であり、標準偏差は0.110であった。標準偏差は平均値の1/2を上回っており、組成のばらつきが大きくなっている。正極活物質(Li1.03Ni0.84Co0.16O2)とモリブデン酸リチウム(LiMoO4)の混合物であることもあって、組成のばらつきが大きくなっていると考えられる。 The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the L line of Mo was measured regardless of the range of the metal composite oxide. the average value of the intensity ratio I Mo / I Ni of the peak intensity I Ni of L lines I Mo and Ni are 0.171 with a standard deviation of 0.110. The standard deviation exceeds 1/2 of the average value, and the variation in composition is large. It is considered that the dispersion of the composition is increased due to the mixture of the positive electrode active material (Li 1.03 Ni 0.84 Co 0.16 O 2 ) and lithium molybdate (LiMoO 4 ).
得られた正極活物質の初期容量の評価および正極の発熱挙動の評価は実施例1と同様に行った。得られた正極活物質の初期放電容量と発熱速度を表1に示す。 Evaluation of the initial capacity of the obtained positive electrode active material and evaluation of the heat generation behavior of the positive electrode were carried out in the same manner as in Example 1. Table 1 shows the initial discharge capacity and heat generation rate of the positive electrode active material obtained.
表1に示すように、実施例1〜9で得られたリチウムニッケルコバルトモリブデン複合酸化物は、IMo/INiの標準偏差がIMo/INiの平均値の1/2未満であり、モリブデンが均一に固溶しているため、初期放電容量が170(mAh/g)を超え、リチウムコバルト複合酸化物(LiCoO2)に代わる新たな電池材料として使用可能な材料であることがわかる。 As shown in Table 1, lithium-nickel-cobalt molybdenum mixed oxide obtained in Examples 1 to 9, standard deviation of I Mo / I Ni is less than 1/2 of the average value of I Mo / I Ni, Since molybdenum is uniformly dissolved, it can be seen that the initial discharge capacity exceeds 170 (mAh / g), and is a material that can be used as a new battery material in place of lithium cobalt composite oxide (LiCoO 2 ).
また、DSCを用いた安全性の評価で、発熱速度が11.00J/sec/g以下に抑えられていれば、実電池としての安全性で実用上問題ないことを本発明者らは確認しているところ、実施例1〜9に示した正極活物質は、11.00J/sec/g以下の小さい発熱量となっており、安全性の高い材料であることがわかる。 Further, in the safety evaluation using DSC, the present inventors confirmed that there is no practical problem in terms of safety as an actual battery if the heat generation rate is suppressed to 11.00 J / sec / g or less. However, it can be seen that the positive electrode active materials shown in Examples 1 to 9 have a small calorific value of 11.00 J / sec / g or less and are highly safe materials.
一方、比較例1で得られたリチウムニッケルコバルトモリブデン複合酸化物は、モリブデン塩溶液としてモリブデン酸アンモニウムを投入した溶液を用いており、該溶液を硫酸ニッケルと硫酸コバルトとの混合溶液と混合した後に、水酸化ナトリウム溶液を反応槽に添加しているため、酸化モリブデンの析出が認められ、モリブデンが均一に固溶した共沈殿物が得られなかった。このため、該共沈殿物を用いて合成した正極活物質は、X線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.03Ni0.84Co0.16Mo0.05O2)とモリブデン酸リチウム(LiMoO4)の混合物となっており、モリブデンが偏析していた。エネルギー分散法による強度比IMo/INiでも標準偏差が大きくなっており、組成のばらつきが大きいことがわかる。このため、初期放電容量は170(mAh/g)以下となり、電池材料として望ましくない材料となっている。また、初期放電容量が低い上に、11.00J/sec/gを超える発熱量となっており、安全性についても望ましくない材料となっている。 On the other hand, the lithium nickel cobalt molybdenum composite oxide obtained in Comparative Example 1 uses a solution in which ammonium molybdate is added as a molybdenum salt solution, and after the solution is mixed with a mixed solution of nickel sulfate and cobalt sulfate. Since the sodium hydroxide solution was added to the reaction vessel, precipitation of molybdenum oxide was observed, and a coprecipitate in which molybdenum was uniformly dissolved was not obtained. Therefore, the positive electrode active material synthesized using the coprecipitate was analyzed by X-ray diffraction. As a result, a positive electrode active material having a hexagonal layered structure (Li 1.03 Ni 0.84 Co 0.16 Mo 0.05 O 2 ) and molybdenum It was a mixture of lithium acid (LiMoO 4 ), and molybdenum was segregated. It can be seen that the standard deviation is large even in the intensity ratio I Mo / I Ni obtained by the energy dispersion method, and the composition variation is large. For this reason, the initial discharge capacity is 170 (mAh / g) or less, which is an undesirable material as a battery material. In addition, the initial discharge capacity is low and the calorific value exceeds 11.00 J / sec / g, which is an undesirable material for safety.
比較例2はニッケル:コバルト:モリブデンのモル比が74:15:11にした例である。モリブデン量が多く安全性は問題ないが初期放電容量が低く、リチウムコバルト複合酸化物(LiCoO2)と比較して電圧が低いためエネルギー密度が低く実用上問題がある。エネルギー分散法による強度比IMo/INiでも標準偏差が大きくなっており、組成のばらつきが大きくなっている。 Comparative Example 2 is an example in which the molar ratio of nickel: cobalt: molybdenum is 74:15:11. Although the amount of molybdenum is large and safety is not a problem, the initial discharge capacity is low, and the voltage is lower than that of lithium cobalt composite oxide (LiCoO 2 ). Even in the intensity ratio I Mo / I Ni by the energy dispersion method, the standard deviation is large, and the variation in composition is large.
また、比較例3はモリブデンによる置換を行わなかった例であるが、発熱量が11.00J/sec/gを越える量となっており、安全上問題がある。 Moreover, although the comparative example 3 is an example which did not substitute with molybdenum, the emitted-heat amount exceeds 11.00 J / sec / g, There exists a safety | security problem.
比較例4は、焼成温度が900℃と本発明の範囲の上限値を上回った場合であり、初期放電容量が低くなっている。正極活物質の層状構造が乱れ、リチウムイオンの拡散パスが阻害されたものと思われる。 In Comparative Example 4, the firing temperature is 900 ° C., which is higher than the upper limit of the range of the present invention, and the initial discharge capacity is low. It seems that the layer structure of the positive electrode active material was disturbed and the lithium ion diffusion path was hindered.
比較例5は、焼成温度が600℃と本発明の範囲の下限値を下回った場合であり、所望の層状構造をもったリチウムニッケル複合酸化物の他に、酸化ニッケルが存在していることが分析からわかった。焼成温度が低く、リチウム化合物との反応が十分に進まなかったためと思われる。このため、初期放電容量が小さくなっている。 Comparative Example 5 is a case where the firing temperature is 600 ° C., which is lower than the lower limit of the range of the present invention. In addition to the lithium nickel composite oxide having a desired layered structure, nickel oxide is present. I understood from the analysis. This is probably because the firing temperature was low and the reaction with the lithium compound did not proceed sufficiently. For this reason, the initial discharge capacity is reduced.
比較例6はコバルト量が本発明の範囲の上限値を上回った場合である。特性的には問題はないが、高価なコバルトの使用量が多くなっている。 The comparative example 6 is a case where the amount of cobalt exceeds the upper limit of the range of the present invention. Although there is no problem in terms of characteristics, the amount of expensive cobalt used is increasing.
比較例7はコバルト量が本発明の範囲の下限値を下回った場合であり、初期放電容量が小さくなっている。 In Comparative Example 7, the amount of cobalt falls below the lower limit of the range of the present invention, and the initial discharge capacity is small.
比較例8、9、10は、それぞれ、水酸化物を焼成しなかった場合、水酸化物の焼成温度が本発明の範囲の下限値を下回った場合、水酸化物の焼成温度が本発明の範囲の上限値を上回った場合である。得られた正極活物質は、X線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.03Ni0.84Co0.16Mo0.05O2)とモリブデン酸リチウム(LiMoO4)の混合物となっており、モリブデンが偏析していた。エネルギー分散法による強度比IMo/INiでも標準偏差が大きくなっており、組成のばらつきが大きいことがわかる。このため、初期放電容量は170(mAh/g)以下となり、電池材料として望ましくない材料となっている。また、初期放電容量が低い上に、11.00J/sec/gを越える発熱量となっており、安全性についても望ましくない材料となっている。 In Comparative Examples 8, 9, and 10, when the hydroxide was not fired, the firing temperature of the hydroxide was lower than the lower limit of the range of the present invention. This is when the upper limit of the range is exceeded. The obtained positive electrode active material was analyzed by X-ray diffraction. As a result, a mixture of a positive electrode active material having a hexagonal layered structure (Li 1.03 Ni 0.84 Co 0.16 Mo 0.05 O 2 ) and lithium molybdate (LiMoO 4 ) The molybdenum was segregated. It can be seen that the standard deviation is large even in the intensity ratio I Mo / I Ni obtained by the energy dispersion method, and the composition variation is large. For this reason, the initial discharge capacity is 170 (mAh / g) or less, which is an undesirable material as a battery material. In addition, the initial discharge capacity is low and the calorific value exceeds 11.00 J / sec / g, which is an undesirable material for safety.
安全性に優れていながら高い初期容量を有しているという本発明の非水系電解質二次電池のメリットを活かすためには、常に高容量を要求される小型携帯電子機器の電源としての用途に好適である。 In order to take advantage of the non-aqueous electrolyte secondary battery of the present invention that has high initial capacity while being excellent in safety, it is suitable for use as a power source for small portable electronic devices that always require high capacity It is.
また、電気自動車用の電源においては、電池の大型化による安全性の確保が課題となっていることに加え、より高度な安全性を確保するための高価な保護回路の装着が必要不可欠であるが、本発明のリチウムイオン二次電池は優れた安全性を有しているため、安全性の確保が容易になるばかりでなく、高価な保護回路を簡略化し、より低コストにでき、電気自動車用電源として好適である。なお、電気自動車用電源とは、純粋に電気エネルギーで駆動する電気自動車のみならず、ガソリンエンジン、ディーゼルエンジン等の燃焼機関と併用する、いわゆるハイブリッド車用の電源も含む。 Moreover, in the power supply for electric vehicles, it is indispensable to install an expensive protection circuit for ensuring higher safety in addition to ensuring safety by increasing the size of the battery. However, since the lithium ion secondary battery of the present invention has excellent safety, not only is it easy to ensure safety, but also an expensive protection circuit can be simplified and the cost can be reduced, and the electric vehicle It is suitable as a power source for use. The electric vehicle power source includes not only an electric vehicle driven purely by electric energy but also a so-called hybrid vehicle power source used in combination with a combustion engine such as a gasoline engine or a diesel engine.
1 リチウム金属負極
2 セパレータ(電解液含浸)
3 正極(評価用電極)
4 ガスケット
5 負極缶
6 正極缶
7 集電体
1 Lithium metal anode 2 Separator (electrolyte impregnation)
3 Positive electrode (Evaluation electrode)
4 Gasket 5 Negative electrode can 6 Positive electrode can 7 Current collector
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005171714A JP2006344567A (en) | 2005-06-10 | 2005-06-10 | Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005171714A JP2006344567A (en) | 2005-06-10 | 2005-06-10 | Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006344567A true JP2006344567A (en) | 2006-12-21 |
Family
ID=37641359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005171714A Pending JP2006344567A (en) | 2005-06-10 | 2005-06-10 | Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006344567A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007280723A (en) * | 2006-04-05 | 2007-10-25 | Hitachi Metals Ltd | Manufacturing method of positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and nonaqueous lithium secondary battery using it |
JP2008146903A (en) * | 2006-12-07 | 2008-06-26 | Sumitomo Metal Mining Co Ltd | Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method as well as nonaqueous electrolyte secondary battery using this positive electrode active material |
JP4840545B1 (en) * | 2011-03-31 | 2011-12-21 | 住友金属鉱山株式会社 | Nickel composite hydroxide particles and non-aqueous electrolyte secondary battery |
CN102651473A (en) * | 2011-02-24 | 2012-08-29 | 株式会社日立制作所 | Cathode material, cathode, and lithium ion secondary battery |
WO2013042176A1 (en) * | 2011-09-20 | 2013-03-28 | 日立ビークルエナジー株式会社 | Lithium-ion battery |
JP2013134819A (en) * | 2011-12-26 | 2013-07-08 | Hitachi Ltd | Positive electrode material and lithium ion secondary battery |
JP5316726B2 (en) * | 2011-06-07 | 2013-10-16 | 住友金属鉱山株式会社 | Nickel composite hydroxide and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery |
JP2014053321A (en) * | 2013-11-11 | 2014-03-20 | Hitachi Ltd | Positive electrode active material, positive electrode, and lithium ion secondary battery |
CN104465129A (en) * | 2014-12-03 | 2015-03-25 | 哈尔滨工业大学 | Method for preparing foamed nickel/molybdenum oxide composite film |
JP2017014092A (en) * | 2015-06-30 | 2017-01-19 | 旭硝子株式会社 | Lithium-containing compound oxide, cathode active material, cathode for lithium ion secondary battery and lithium ion secondary battery |
JP2019220353A (en) * | 2018-06-20 | 2019-12-26 | Jx金属株式会社 | Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, all-solid-state lithium ion battery, and method of producing positive electrode active material for all-solid-state lithium ion battery |
JP2020087821A (en) * | 2018-11-29 | 2020-06-04 | 株式会社豊田自動織機 | Lithium nickel cobalt molybdenum oxide |
CN113054170A (en) * | 2021-02-05 | 2021-06-29 | 江苏大学 | Preparation method of nickel-nickel molybdenum oxide-graphene composite material and application of nickel-nickel molybdenum oxide-graphene composite material in lithium ion battery |
WO2022138104A1 (en) * | 2020-12-25 | 2022-06-30 | パナソニックIpマネジメント株式会社 | Nonaqueous electrolyte secondary battery |
WO2025091259A1 (en) * | 2023-10-31 | 2025-05-08 | 广东邦普循环科技有限公司 | Composite ternary positive electrode material, preparation method therefor and use thereof |
-
2005
- 2005-06-10 JP JP2005171714A patent/JP2006344567A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007280723A (en) * | 2006-04-05 | 2007-10-25 | Hitachi Metals Ltd | Manufacturing method of positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and nonaqueous lithium secondary battery using it |
JP2008146903A (en) * | 2006-12-07 | 2008-06-26 | Sumitomo Metal Mining Co Ltd | Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method as well as nonaqueous electrolyte secondary battery using this positive electrode active material |
US8828607B2 (en) | 2011-02-24 | 2014-09-09 | Hitachi, Ltd. | Cathode material, cathode, and lithium ion secondary battery |
CN102651473A (en) * | 2011-02-24 | 2012-08-29 | 株式会社日立制作所 | Cathode material, cathode, and lithium ion secondary battery |
JP2012174614A (en) * | 2011-02-24 | 2012-09-10 | Hitachi Ltd | Positive electrode active material, positive electrode, and lithium ion secondary battery |
WO2012131779A1 (en) * | 2011-03-31 | 2012-10-04 | 住友金属鉱山株式会社 | Composite nickel hydroxide particles and nonaqueous electrolyte secondary battery |
US9559351B2 (en) | 2011-03-31 | 2017-01-31 | Sumitomo Metal Mining Co., Ltd. | Nickel composite hydroxide particles and nonaqueous electrolyte secondary battery |
JP4840545B1 (en) * | 2011-03-31 | 2011-12-21 | 住友金属鉱山株式会社 | Nickel composite hydroxide particles and non-aqueous electrolyte secondary battery |
JP5316726B2 (en) * | 2011-06-07 | 2013-10-16 | 住友金属鉱山株式会社 | Nickel composite hydroxide and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery |
WO2013042176A1 (en) * | 2011-09-20 | 2013-03-28 | 日立ビークルエナジー株式会社 | Lithium-ion battery |
JPWO2013042176A1 (en) * | 2011-09-20 | 2015-03-26 | 日立オートモティブシステムズ株式会社 | Lithium ion battery |
JP2013134819A (en) * | 2011-12-26 | 2013-07-08 | Hitachi Ltd | Positive electrode material and lithium ion secondary battery |
JP2014053321A (en) * | 2013-11-11 | 2014-03-20 | Hitachi Ltd | Positive electrode active material, positive electrode, and lithium ion secondary battery |
CN104465129A (en) * | 2014-12-03 | 2015-03-25 | 哈尔滨工业大学 | Method for preparing foamed nickel/molybdenum oxide composite film |
JP2017014092A (en) * | 2015-06-30 | 2017-01-19 | 旭硝子株式会社 | Lithium-containing compound oxide, cathode active material, cathode for lithium ion secondary battery and lithium ion secondary battery |
WO2017135414A1 (en) * | 2015-06-30 | 2017-08-10 | 旭硝子株式会社 | Lithium-containing composite oxide, positive-electrode active material, positive electrode for lithium ion secondary cell, and lithium-ion secondary cell |
US11043695B2 (en) | 2015-06-30 | 2021-06-22 | Sumitomo Chemical Company, Limited | Lithium-containing composite oxide, cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP2019220353A (en) * | 2018-06-20 | 2019-12-26 | Jx金属株式会社 | Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, all-solid-state lithium ion battery, and method of producing positive electrode active material for all-solid-state lithium ion battery |
JP2020087821A (en) * | 2018-11-29 | 2020-06-04 | 株式会社豊田自動織機 | Lithium nickel cobalt molybdenum oxide |
JP7099286B2 (en) | 2018-11-29 | 2022-07-12 | 株式会社豊田自動織機 | Lithium Nickel Cobalt Molybdenum Oxide |
WO2022138104A1 (en) * | 2020-12-25 | 2022-06-30 | パナソニックIpマネジメント株式会社 | Nonaqueous electrolyte secondary battery |
CN113054170A (en) * | 2021-02-05 | 2021-06-29 | 江苏大学 | Preparation method of nickel-nickel molybdenum oxide-graphene composite material and application of nickel-nickel molybdenum oxide-graphene composite material in lithium ion battery |
WO2025091259A1 (en) * | 2023-10-31 | 2025-05-08 | 广东邦普循环科技有限公司 | Composite ternary positive electrode material, preparation method therefor and use thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102603503B1 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery | |
JP4595475B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same | |
JP5614513B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same | |
JP6578635B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same | |
JP5076448B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP5877817B2 (en) | Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material | |
JP6167822B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP6201277B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same | |
JP6578634B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same | |
JP5776996B2 (en) | Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material | |
JP4655599B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP4984593B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP5103923B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP6201146B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
JP5447248B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using this positive electrode active material | |
JP2008181839A (en) | Positive active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it | |
JP2006344567A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material | |
JP5109447B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP2006147500A (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this | |
JP4915227B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material | |
JP5181455B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP2019186175A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery | |
JP5045135B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP2006228604A (en) | Anode active substance for lithium ion secondary batterry, and its manufacturing method | |
JP2013033764A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same |