JP2006344517A - Manufacturing method of fuel cell - Google Patents
Manufacturing method of fuel cell Download PDFInfo
- Publication number
- JP2006344517A JP2006344517A JP2005169875A JP2005169875A JP2006344517A JP 2006344517 A JP2006344517 A JP 2006344517A JP 2005169875 A JP2005169875 A JP 2005169875A JP 2005169875 A JP2005169875 A JP 2005169875A JP 2006344517 A JP2006344517 A JP 2006344517A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte membrane
- slurry
- solvent
- temperature
- catalyst layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 49
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 239000012528 membrane Substances 0.000 claims abstract description 143
- 239000003792 electrolyte Substances 0.000 claims abstract description 120
- 239000002904 solvent Substances 0.000 claims abstract description 93
- 239000002002 slurry Substances 0.000 claims abstract description 83
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 33
- 238000000576 coating method Methods 0.000 claims abstract description 27
- 239000002861 polymer material Substances 0.000 claims abstract description 18
- 239000011248 coating agent Substances 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims description 32
- 239000005518 polymer electrolyte Substances 0.000 claims description 23
- 239000007787 solid Substances 0.000 claims description 22
- 239000007921 spray Substances 0.000 claims description 15
- 230000008961 swelling Effects 0.000 abstract description 20
- 230000037303 wrinkles Effects 0.000 abstract description 15
- 238000001035 drying Methods 0.000 abstract description 10
- 239000010410 layer Substances 0.000 description 115
- 239000003054 catalyst Substances 0.000 description 86
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 28
- 239000007789 gas Substances 0.000 description 21
- 238000009792 diffusion process Methods 0.000 description 20
- 239000007800 oxidant agent Substances 0.000 description 11
- 230000001590 oxidative effect Effects 0.000 description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 238000001704 evaporation Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000008020 evaporation Effects 0.000 description 6
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 6
- 239000012046 mixed solvent Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229920001940 conductive polymer Polymers 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- -1 polytetrafluoroethylene Polymers 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920000557 Nafion® Polymers 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 125000002843 carboxylic acid group Chemical group 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphonic acid group Chemical group P(O)(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
【課題】 電解質膜表面に直接スラリーを塗布、乾燥させて電極を形成する際に、電解質膜の膨潤を抑制することによって、電解質膜のシワ、電極のシワ及び割れを防止する燃料電池の製造方法を提供することを目的とする。
【解決手段】 少なくとも高分子材料と溶媒とを含むスラリーを、電解質膜に塗布する塗布工程を含む燃料電池の製造方法であって、前記塗布工程の雰囲気温度が、前記溶媒に含まれる溶媒成分のうち、少なくとも最も高い揮発性を有する溶媒成分の飽和蒸気圧が80kPa以上となる温度であることを特徴とする、燃料電池の製造方法。
【選択図】 なし
PROBLEM TO BE SOLVED: To prevent wrinkles of an electrolyte membrane, wrinkles and cracks of an electrode by suppressing swelling of the electrolyte membrane when an electrode is formed by directly applying a slurry to the surface of the electrolyte membrane and drying it to form a fuel cell. The purpose is to provide.
A manufacturing method of a fuel cell including a coating step of applying a slurry containing at least a polymer material and a solvent to an electrolyte membrane, wherein an atmospheric temperature of the coating step is a solvent component contained in the solvent. Of these, a method for producing a fuel cell, characterized in that at least the saturated vapor pressure of the solvent component having the highest volatility is 80 kPa or more.
[Selection figure] None
Description
本発明は、燃料電池の製造方法に関する。 The present invention relates to a method for manufacturing a fuel cell.
燃料電池は、燃料と酸化剤を電気的に接続された2つの電極に供給し、電気化学的に燃料の酸化を起こさせることで、化学エネルギーを直接電気エネルギーに変換する。火力発電とは異なり、カルノーサイクルの制約を受けないので、高いエネルギー変換効率を示すものである。燃料電池は、通常、電解質膜を燃料極及び酸化剤極で挟持した基本構造を有する単セルを複数積層して構成されており、中でも、電解質膜として固体高分子電解質膜を用いた固体高分子電解質型燃料電池は、小型化が容易であること、低い温度で作動すること、などの利点があることから、特に携帯用、移動体用電源として注目されている。 A fuel cell directly converts chemical energy into electrical energy by supplying fuel and an oxidant to two electrically connected electrodes and causing the fuel to be oxidized electrochemically. Unlike thermal power generation, it is not subject to the Carnot cycle, and exhibits high energy conversion efficiency. A fuel cell is usually configured by laminating a plurality of single cells having a basic structure in which an electrolyte membrane is sandwiched between a fuel electrode and an oxidant electrode, and among them, a solid polymer using a solid polymer electrolyte membrane as an electrolyte membrane Electrolytic fuel cells are particularly attracting attention as portable and mobile power sources because of their advantages such as easy miniaturization and operation at low temperatures.
固体高分子型燃料電池に設けられる電極は、通常、固体高分子電解質膜側から順に、触媒層、ガス拡散層を積層した多層構造を有している。このような構造を有する電極を、固体高分子電解質膜の両面に形成する方法としては、例えば、以下のような方法(1)〜(3)が知られている。すなわち、
(1)まず、ポリテトラフルオロエチレン等の基材上に触媒層用スラリーを塗布、乾燥させて触媒層を形成し、次に触媒層が形成された面が電解質膜側となるように基材と電解質膜とを圧着し、基材を剥がして触媒層を備える電解質膜を得、続いて、触媒層上にガス拡散層を形成する方法、
(2)その表面に触媒層用スラリーを塗布、乾燥させることによって触媒層が形成されたガス拡散層を、触媒層が電解質膜側となるように、電解質膜と圧着する方法、
(3)電解質膜上に触媒層用スラリーを直接塗布、乾燥させて触媒層を形成し、続いて触媒層上にガス拡散層を形成する方法。
上記(3)の方法は、圧着工程を少なくとも1回分省略できるので、上記(1)、(2)の方法よりも有利である。
The electrode provided in the polymer electrolyte fuel cell usually has a multilayer structure in which a catalyst layer and a gas diffusion layer are laminated in order from the polymer electrolyte membrane side. For example, the following methods (1) to (3) are known as methods for forming electrodes having such a structure on both surfaces of a solid polymer electrolyte membrane. That is,
(1) First, a catalyst layer slurry is applied onto a substrate such as polytetrafluoroethylene and dried to form a catalyst layer, and then the substrate on which the surface on which the catalyst layer is formed is on the electrolyte membrane side And the electrolyte membrane are pressure-bonded, the substrate is peeled off to obtain an electrolyte membrane having a catalyst layer, and then a gas diffusion layer is formed on the catalyst layer,
(2) A method of pressure-bonding the gas diffusion layer, on which the catalyst layer is formed by applying and drying the slurry for the catalyst layer on the surface, with the electrolyte membrane such that the catalyst layer is on the electrolyte membrane side,
(3) A method in which a catalyst layer slurry is directly applied on an electrolyte membrane and dried to form a catalyst layer, and then a gas diffusion layer is formed on the catalyst layer.
The method (3) is more advantageous than the methods (1) and (2) because the crimping step can be omitted at least once.
自動車用燃料電池等のように大面積の電解質膜を用いる燃料電池を、上記(3)の方法で生産する場合には、電解質膜表面への触媒層用スラリーの塗布工程は、常温・常圧条件下で行われてきた。この際、触媒層用スラリーに含有される溶媒が電解質膜内へと拡散し、電解質膜は膨潤状態となる。塗布工程に続く乾燥工程により、電解質膜上に塗布された触媒層用スラリー中の溶媒が蒸発し、触媒層が形成されるが、このとき、電解質膜中に染み込んだ触媒層用スラリーの溶媒が蒸発することによって、電解質膜が乾燥し収縮する。その結果、電解質膜にシワが発生し、これに伴って電解質膜上に形成された触媒層にもシワや割れが発生することとなる。
このように電解質膜や触媒層にシワ等が発生した状態では、続いて触媒層上に形成されるガス拡散層等その他の層との密着性が悪く、燃料電池の性能低下を引き起こしかねない。また、電極パターンの構成が限定されてしまう場合がある。さらに、触媒層の割れは、触媒層に圧力が加わった場合に、この割れが電解質膜に食い込む等の物理的なダメージを与えることによって、燃料電池の性能を低下させてしまうおそれがある。
When a fuel cell using an electrolyte membrane having a large area, such as a fuel cell for automobiles, is produced by the method (3) above, the coating process of the slurry for the catalyst layer on the surface of the electrolyte membrane is performed at room temperature and normal pressure. Has been done under conditions. At this time, the solvent contained in the catalyst layer slurry diffuses into the electrolyte membrane, and the electrolyte membrane is in a swollen state. The solvent in the catalyst layer slurry applied onto the electrolyte membrane evaporates by the drying step subsequent to the coating step, and a catalyst layer is formed. At this time, the solvent of the catalyst layer slurry soaked in the electrolyte membrane is removed. By evaporating, the electrolyte membrane dries and shrinks. As a result, wrinkles are generated in the electrolyte membrane, and accordingly, wrinkles and cracks are also generated in the catalyst layer formed on the electrolyte membrane.
Thus, when wrinkles or the like are generated in the electrolyte membrane or the catalyst layer, the adhesion with other layers such as a gas diffusion layer subsequently formed on the catalyst layer is poor, which may cause a decrease in the performance of the fuel cell. In addition, the configuration of the electrode pattern may be limited. Furthermore, the cracking of the catalyst layer may deteriorate the performance of the fuel cell due to physical damage such as the cracks biting into the electrolyte membrane when pressure is applied to the catalyst layer.
そこで、この電解質膜及び電極にシワ等が発生するのを抑制するために、様々な取り組みが行われている。例えば、電解質膜と電極との間に補強層を設けることにより電解質膜自体の膨潤・収縮の度合いを小さくしたり、或いは、触媒層用スラリーの溶媒成分として用いられているエタノールの濃度を上げ、スラリー中の溶媒の揮発性を向上させることにより電解質膜の膨潤を抑制する等の工夫がなされている。
しかしながら、電解質膜と電極との間に補強層を設けると、燃料電池の発電性能が低下するという問題がある。また、触媒層用スラリー中のエタノール濃度を高くすると、発火して触媒層用スラリーを調製することができない場合がある。
Therefore, various efforts have been made to suppress the occurrence of wrinkles and the like in the electrolyte membrane and the electrode. For example, by reducing the degree of swelling / shrinkage of the electrolyte membrane itself by providing a reinforcing layer between the electrolyte membrane and the electrode, or increasing the concentration of ethanol used as the solvent component of the catalyst layer slurry, A device has been devised such as suppressing the swelling of the electrolyte membrane by improving the volatility of the solvent in the slurry.
However, when a reinforcing layer is provided between the electrolyte membrane and the electrode, there is a problem that the power generation performance of the fuel cell is lowered. Further, when the ethanol concentration in the catalyst layer slurry is increased, there may be a case where the catalyst layer slurry cannot be prepared due to ignition.
燃料電池用セルの作製工程を減少させること及び均一な電極層を形成することを目的として、一定温度に保持した多孔質板上に真空引きにより固体高分子膜を保持した状態で、高分子材料を含むスラリーを固体高分子膜に塗布して電極層を形成する方法が提案されている(特許文献1)。特許文献1には、スラリーの溶媒としてエタノールを用い、多孔質板温度を60℃の一定温度に保持した実施例が記載されている。 In order to reduce the manufacturing process of the fuel cell and to form a uniform electrode layer, a polymer material in a state where the solid polymer film is held by vacuuming on a porous plate held at a constant temperature. A method has been proposed in which an electrode layer is formed by applying a slurry containing a catalyst to a solid polymer film (Patent Document 1). Patent Document 1 describes an example in which ethanol is used as a solvent for the slurry and the temperature of the porous plate is maintained at a constant temperature of 60 ° C.
しかしながら、特許文献1の実施例に記載された、多孔質板保持温度が60℃(エタノールの飽和蒸気圧約350mmHg=約47kPa)の条件では、エタノールの蒸発を促進させ、スラリーの乾燥を速めることはできても、エタノールは蒸発する前に電解質膜に染み込むため、電解質膜の膨潤を充分に抑制することができない。その結果、電解質膜のシワや電極のシワ、割れが発生してしまうことになる。
本発明は、上記問題を考慮して成し遂げられたものであり、電解質膜表面に直接スラリーを塗布、乾燥させて電極を形成する際に、電解質膜の膨潤を抑制することによって、電解質膜のシワ、電極のシワ及び割れを防止する燃料電池の製造方法を提供することを目的とする。
However, under the conditions described in the example of Patent Document 1 where the porous plate holding temperature is 60 ° C. (saturated vapor pressure of ethanol: about 350 mmHg = about 47 kPa), the evaporation of ethanol is accelerated and the drying of the slurry is accelerated. Even if it can, ethanol will permeate into the electrolyte membrane before it evaporates, and thus the swelling of the electrolyte membrane cannot be sufficiently suppressed. As a result, wrinkles and cracks in the electrolyte membrane and electrodes are generated.
The present invention has been accomplished in consideration of the above-mentioned problems. When an electrode is formed by directly applying a slurry to the surface of the electrolyte membrane and drying it, the electrolyte membrane is reduced by suppressing swelling of the electrolyte membrane. An object of the present invention is to provide a method of manufacturing a fuel cell that prevents wrinkling and cracking of an electrode.
本発明により提供される燃料電池の製造方法は、少なくとも高分子材料と溶媒とを含むスラリーを、電解質膜に塗布する塗布工程を含む燃料電池の製造方法であって、前記塗布工程の雰囲気温度が、前記溶媒に含まれる溶媒成分のうち、少なくとも最も高い揮発性を有する溶媒成分の飽和蒸気圧が80kPa以上となる温度であることを特徴とする。 A fuel cell manufacturing method provided by the present invention is a fuel cell manufacturing method including a coating step in which a slurry containing at least a polymer material and a solvent is applied to an electrolyte membrane, wherein the ambient temperature in the coating step is Among the solvent components contained in the solvent, the solvent component having at least the highest volatility is a temperature at which the saturated vapor pressure is 80 kPa or more.
本発明の燃料電池の製造方法によれば、電解質膜にスラリーを塗布する工程の雰囲気温度を、スラリーに含まれる溶媒成分のうち、少なくとも最も揮発性の高い溶媒成分純物質における飽和蒸気圧が80kPa以上となる温度、すなわち、溶媒成分が蒸発しやすい温度とすることによって、溶媒成分の蒸発を促進し、電解質膜内への溶媒成分の拡散を抑制することができる。その結果、電解質膜の膨潤を抑えることが可能である。 According to the method for manufacturing a fuel cell of the present invention, the atmospheric temperature in the step of applying the slurry to the electrolyte membrane is set so that the saturated vapor pressure in the pure substance having the highest volatility among the solvent components contained in the slurry is 80 kPa. By setting the temperature to the above, that is, the temperature at which the solvent component easily evaporates, the evaporation of the solvent component can be promoted, and the diffusion of the solvent component into the electrolyte membrane can be suppressed. As a result, it is possible to suppress swelling of the electrolyte membrane.
電解質膜内への溶媒成分の拡散をさらに抑制するためには、前記塗布工程の雰囲気温度を、飽和蒸気圧が80kPa以上となる1種又は2種以上の溶媒成分の割合が、スラリーの総溶媒量に対して50体積%以上となる温度とすることが好ましい。また、前記塗布工程の雰囲気温度を、前記飽和蒸気圧が90kPa以上となる温度とすることによっても、電解質膜内へ溶媒成分が拡散することを抑制することができる。 In order to further suppress the diffusion of the solvent component into the electrolyte membrane, the atmospheric temperature in the coating step is set such that the ratio of one or more solvent components having a saturated vapor pressure of 80 kPa or more is the total solvent in the slurry. The temperature is preferably 50% by volume or more based on the amount. Moreover, the diffusion of the solvent component into the electrolyte membrane can also be suppressed by setting the atmospheric temperature in the coating step to a temperature at which the saturated vapor pressure is 90 kPa or higher.
前記電解質膜として、特に膨潤性の高い固体高分子電解質膜を用いた場合、本発明の燃料電池の製造方法は好適である。
前記スラリーを電解質膜に塗布する方法は特に限定されないが、溶媒成分の蒸発性が高い点から、スプレー法が特に好ましい。
In the case where a solid polymer electrolyte membrane having a particularly high swellability is used as the electrolyte membrane, the fuel cell production method of the present invention is suitable.
The method for applying the slurry to the electrolyte membrane is not particularly limited, but the spray method is particularly preferable because the solvent component has high evaporability.
本発明の燃料電池の製造方法によれば、触媒層或いはその他の層を形成するためのスラリーを電解質膜上に塗布する際、電解質膜の膨潤を防止することによって、電解質膜のシワ、及び当該電解質膜上に形成される触媒層等の層のシワや割れの発生を抑制することができるため、当該電解質膜とその表面に形成される層間、さらには、当該電解質膜及びその表面に形成される層に積層される層間が密着性に優れたものとなる。従って、各層の密着性が悪いことによる電池性能の低下が防止される。また、電解質膜やその表面に形成される層の平滑性が保たれるので、電極パターンの構成が限定されず、電極の設計の自由度が高い。 According to the fuel cell manufacturing method of the present invention, when the slurry for forming the catalyst layer or other layers is applied on the electrolyte membrane, the electrolyte membrane is prevented from swelling, and the wrinkles of the electrolyte membrane Since it is possible to suppress the occurrence of wrinkles and cracks in layers such as the catalyst layer formed on the electrolyte membrane, it is formed on the electrolyte membrane and the interlayer formed on the surface thereof, and further on the electrolyte membrane and the surface thereof. The layer laminated on the layer is excellent in adhesion. Therefore, a decrease in battery performance due to poor adhesion of each layer is prevented. Further, since the smoothness of the electrolyte membrane and the layer formed on the surface thereof is maintained, the configuration of the electrode pattern is not limited, and the degree of freedom in electrode design is high.
しかも、スラリー塗布工程における電解質膜内への溶媒成分の拡散そのものが抑制されているので、膨潤しやすい電解質膜を用いた場合でも、その膨潤を抑えることが可能である。従って、本発明の製造方法は、電解質膜の材料の選択性に富むものである。
また、本発明の方法は、電解質膜の膨潤を防止するために新たな機能層を設けたり、揮発性に優れた溶剤を調合したり、真空引き装置を使用する等の手間やコストを要しない簡便な方法である。
In addition, since the diffusion of the solvent component itself into the electrolyte membrane in the slurry application step is suppressed, the swelling can be suppressed even when an electrolyte membrane that easily swells is used. Therefore, the manufacturing method of the present invention is rich in the selectivity of the electrolyte membrane material.
In addition, the method of the present invention does not require labor and cost such as providing a new functional layer to prevent swelling of the electrolyte membrane, preparing a solvent having excellent volatility, and using a vacuum drawing device. It is a simple method.
本発明の燃料電池の製造方法は、少なくとも高分子材料と溶媒とを含むスラリーを、電解質膜に塗布する塗布工程を含む燃料電池の製造方法であって、前記塗布工程の雰囲気温度が、前記溶媒に含まれる溶媒成分のうち、少なくとも最も高い揮発性を有する溶媒成分の飽和蒸気圧が80kPa以上となる温度であることを特徴とする。 The method for producing a fuel cell according to the present invention is a method for producing a fuel cell comprising a coating step in which a slurry containing at least a polymer material and a solvent is applied to an electrolyte membrane, wherein the ambient temperature in the coating step is the solvent. Is a temperature at which the saturated vapor pressure of the solvent component having the highest volatility is 80 kPa or more.
本発明は、スラリーに含まれる溶媒成分のうち、少なくとも最も揮発性の高い溶媒成分純物質における飽和蒸気圧が80kPa以上となる温度、すなわち、溶媒成分が蒸発しやすい雰囲気温度下でスラリーを塗布することに特徴を有するものである。溶媒成分の蒸発を促進し、電解質膜内への溶媒成分の拡散を抑制することによって、電解質膜の膨潤が抑えられるため、膜の膨潤・収縮によるシワの発生を防止することできる。さらに、電解質膜の膨潤・収縮、シワの発生を防止することによって、当該膜上にスラリーを塗布することで形成される層(スラリー層)のシワや割れの発生を防止することができる。 The present invention applies the slurry at a temperature at which the saturated vapor pressure of at least the most volatile solvent component pure substance among the solvent components contained in the slurry is 80 kPa or more, that is, at an atmospheric temperature at which the solvent components are likely to evaporate. It has a special feature. By promoting the evaporation of the solvent component and suppressing the diffusion of the solvent component into the electrolyte membrane, the swelling of the electrolyte membrane is suppressed, so that the generation of wrinkles due to the swelling / shrinkage of the membrane can be prevented. Furthermore, by preventing swelling and shrinkage of the electrolyte membrane and generation of wrinkles, it is possible to prevent generation of wrinkles and cracks in a layer (slurry layer) formed by applying slurry on the membrane.
このように電解質膜にシワが寄るのを抑制すると同時にその表面に平滑な面を有するスラリー層を形成することによって、当該電解質膜とその表面に形成されるスラリー層間、さらには、当該電解質膜及びその表面に形成されるスラリー層に積層される層間の密着性が良好となり、電池性能が向上する。さらに、スラリー層上に形成される層又はスラリー層が形成された面とは逆側の電解質膜面に形成される層の電極パターンが制限されないため、燃料電池の設計の自由度が上がる。また、スラリー層に発生した割れによる電解質膜への物理的ダメージを抑制することができるため、電池性能の低下をさらに防止することができる。しかも、膨潤性の高い電解質膜に対しても、平滑なスラリー層を形成することができるため、使用する電解質膜の選択性が広くなるという利点もある。 In this way, by forming a slurry layer having a smooth surface on the surface thereof while suppressing wrinkles on the electrolyte membrane, the electrolyte membrane and the slurry layer formed on the surface, and further, the electrolyte membrane and The adhesion between the layers laminated on the slurry layer formed on the surface is improved, and the battery performance is improved. Furthermore, since the electrode pattern of the layer formed on the slurry layer or the surface of the electrolyte membrane opposite to the surface on which the slurry layer is formed is not limited, the degree of freedom in designing the fuel cell is increased. Moreover, since physical damage to the electrolyte membrane due to cracks generated in the slurry layer can be suppressed, it is possible to further prevent the battery performance from being lowered. In addition, since a smooth slurry layer can be formed even for highly swellable electrolyte membranes, there is an advantage that the selectivity of the electrolyte membrane to be used is widened.
また、本発明の方法は、塗布工程の雰囲気温度を最適に設定することで電解質膜の膨潤を抑制するものであり、電解質膜の膨潤を防止するために新たな機能層を設けたり、揮発性に優れた溶剤を調合したり、真空引き装置を使用する等の手間やコストが必要ない。しかも、上記したような塗布雰囲気の温度は、使用する溶媒成分の純物質における飽和蒸気圧を指標として設定されているので、使用する溶媒成分に応じて、雰囲気温度をいちいち試行錯誤等により把握する工程を要せずに、容易に適した温度とすることができる。 In addition, the method of the present invention suppresses the swelling of the electrolyte membrane by optimally setting the atmospheric temperature in the coating process, and a new functional layer is provided to prevent the electrolyte membrane from swelling, This eliminates the need for labor and costs such as the preparation of an excellent solvent and the use of a vacuuming device. Moreover, since the temperature of the coating atmosphere as described above is set using the saturated vapor pressure in the pure substance of the solvent component to be used as an index, the ambient temperature is grasped by trial and error according to the solvent component to be used. A suitable temperature can be easily obtained without requiring a process.
本発明において、塗布工程の雰囲気温度(以下、雰囲気温度Tということがある)とは、電解質膜そのものの温度、又は電解質膜の周囲の温度を指す。例えば、電解質膜そのものを直接、加熱装置等を用いてその温度を制御する場合には、電解質膜そのものの温度或いは当該加熱装置の加熱部温度を指し、電解質膜の周囲を加熱等してその温度を制御する場合には、電解質膜の周囲を加熱する加熱装置、例えば、ヒーター庫内温度の温度等を指す。 In the present invention, the atmospheric temperature in the coating process (hereinafter sometimes referred to as the atmospheric temperature T) refers to the temperature of the electrolyte membrane itself or the temperature around the electrolyte membrane. For example, when controlling the temperature of the electrolyte membrane directly using a heating device or the like, it refers to the temperature of the electrolyte membrane itself or the temperature of the heating part of the heating device, and the temperature around the electrolyte membrane is heated. Is controlled by a heating device that heats the periphery of the electrolyte membrane, for example, the temperature inside the heater cabinet.
本発明において、塗布工程の雰囲気温度Tは、スラリー中の溶媒に含まれる溶媒成分のうち、少なくとも最も高い揮発性を有する溶媒成分の飽和蒸気圧が、80kPa以上となるような温度に設定する。ここで、溶媒成分の飽和蒸気圧(以下、単に飽和蒸気圧ということがある)とは、対象となる溶媒成分が純物質、すなわち、1成分系において示す飽和蒸気圧のことである。各溶媒成分の具体的な飽和蒸気圧は、実測による他、様々な文献から知ることもでき、多くの物質について温度と飽和蒸気圧との関係を示す蒸気圧曲線等が与えられている。入手しやすい文献としては、例えば、理科年表(国立天文台著、出版社:丸善)等がある。 In the present invention, the atmospheric temperature T in the coating process is set to a temperature at which the saturated vapor pressure of the solvent component having the highest volatility among the solvent components contained in the solvent in the slurry is 80 kPa or more. Here, the saturated vapor pressure of the solvent component (hereinafter sometimes simply referred to as a saturated vapor pressure) is a saturated vapor pressure that the target solvent component shows in a pure substance, that is, a one-component system. The specific saturated vapor pressure of each solvent component can be obtained from various documents in addition to actual measurement, and a vapor pressure curve indicating the relationship between temperature and saturated vapor pressure is given for many substances. Examples of readily available literature include a chronology of science (written by NAOJ, publisher: Maruzen).
溶媒成分のうち、少なくとも最も高い揮発性を有する溶媒成分の飽和蒸気圧が80kPa未満となる温度では、溶媒の蒸発を充分に速めることができず、溶媒が電解質膜内へと広く拡散してしまい、膨潤してしまう。電解質膜の膨潤をより確実に抑制するためには、上記飽和蒸気圧が90kPa以上となるような雰囲気温度Tとすることが好ましい。
一方、上記飽和蒸気圧が過大となるような塗布工程雰囲気温度Tとすると、スラリー中の溶媒成分が早く蒸発しすぎるため、得られるスラリー層に割れが生じる可能性がある。このような観点から、塗布工程雰囲気温度Tは、上記飽和蒸気圧が200kPa以下、特に150kPa以下程度となるような温度に設定することが好ましい。
Among the solvent components, at a temperature at which the saturated vapor pressure of the solvent component having the highest volatility is less than 80 kPa, the evaporation of the solvent cannot be accelerated sufficiently, and the solvent diffuses widely into the electrolyte membrane. Swell. In order to more reliably suppress the swelling of the electrolyte membrane, it is preferable to set the ambient temperature T so that the saturated vapor pressure is 90 kPa or more.
On the other hand, if the coating process atmosphere temperature T is such that the saturated vapor pressure becomes excessive, the solvent component in the slurry evaporates too quickly, so that the resulting slurry layer may be cracked. From such a viewpoint, it is preferable that the coating process atmosphere temperature T is set to a temperature at which the saturated vapor pressure is 200 kPa or less, particularly 150 kPa or less.
また、スラリー中の溶媒は、1種類の溶媒成分からなるものであってもよいし、2種類以上の溶媒成分を組み合わせたものであってもよい。本発明は、雰囲気温度Tを、溶媒に含まれる溶媒成分のうち、少なくとも最も高い揮発性を有する溶媒成分の飽和蒸気圧が80kPa以上となる温度とするものであるから、溶媒が1種類の溶媒成分からなる場合は、当該溶媒成分の飽和蒸気圧が80kPa以上となる温度とし、2種類以上の溶媒成分からなる場合は、少なくとも最も揮発性の高い溶媒成分の飽和蒸気圧が80kPa以上となる温度とすればよいが、特に90kPa以上となる温度とすることが好ましい。 Further, the solvent in the slurry may be composed of one type of solvent component, or may be a combination of two or more types of solvent components. In the present invention, the atmospheric temperature T is set to a temperature at which the saturated vapor pressure of the solvent component having the highest volatility among the solvent components contained in the solvent is 80 kPa or more. When composed of components, the temperature at which the saturated vapor pressure of the solvent component is 80 kPa or more, and when composed of two or more types of solvent components, the temperature at which the saturated vapor pressure of at least the most volatile solvent component is at least 80 kPa However, the temperature is particularly preferably 90 kPa or more.
電解質膜の膨潤を防止するために溶媒成分の蒸発を促す観点から、雰囲気温度Tは、より多くの溶媒成分が蒸発しやすい温度、すなわち、より多くの溶媒成分の飽和蒸気圧が80kPa以上となる温度とすることが好ましい。具体的には、飽和蒸気圧が80kPa以上となる1種又は2種以上の溶媒成分の割合が、スラリーの総溶媒量に対して50体積%以上となる温度とすることが好ましく、さらに、スラリーに含まれる全溶媒成分の飽和蒸気圧が80kPa以上となる温度とすることが好ましい。 From the viewpoint of promoting evaporation of the solvent component in order to prevent the electrolyte membrane from swelling, the ambient temperature T is a temperature at which more solvent component is easily evaporated, that is, the saturated vapor pressure of more solvent component is 80 kPa or more. It is preferable to set the temperature. Specifically, it is preferable that the ratio of the one or two or more solvent components having a saturated vapor pressure of 80 kPa or more is a temperature at which 50% by volume or more with respect to the total amount of the solvent in the slurry. It is preferable to set the temperature so that the saturated vapor pressure of all the solvent components contained in is 80 kPa or more.
溶媒成分の飽和蒸気圧が80kPa以上となるような塗布工程の雰囲気温度Tは、当該溶媒成分の沸点Tboil(℃)より15℃低い温度(Tboil−15℃)と、塗布工程雰囲気温度Tとの関係が、T>Tboil−15℃となるような温度を目安にして、容易に設定することができる。例えば、溶媒に含まれる溶媒成分のうち、複数の溶媒成分の飽和蒸気圧が80kPa以上となる温度は、当該複数の溶媒成分のうち最も高い沸点を有する溶媒成分の沸点より15℃低い温度を目安に雰囲気温度Tを設定すればよい。 The atmospheric temperature T of the coating process in which the saturated vapor pressure of the solvent component is 80 kPa or more is a temperature ( Tboil −15 ° C.) that is 15 ° C. lower than the boiling point T boil (° C.) of the solvent component, and the coating process atmospheric temperature T Can be easily set with reference to a temperature such that T> T boil −15 ° C. For example, among the solvent components contained in the solvent, the temperature at which the saturated vapor pressure of the plurality of solvent components is 80 kPa or more is a temperature that is 15 ° C. lower than the boiling point of the solvent component having the highest boiling point among the plurality of solvent components. The atmospheric temperature T may be set to.
塗布工程の雰囲気温度Tは、使用する溶媒成分(沸点、発火性等の物性)、溶媒成分の組み合わせ、溶媒成分の濃度等の揮発性に影響を与える条件を考慮するほか、電解質膜の耐熱性等プロセス全体のバランスを考慮して、適宜設定することが好ましい。 The atmospheric temperature T in the coating process takes into consideration the conditions that affect the volatility such as the solvent components used (physical properties such as boiling point and ignitability), the combination of the solvent components, the concentration of the solvent components, and the heat resistance of the electrolyte membrane. It is preferable to set appropriately considering the balance of the entire process.
なお、本発明において、スラリーとは、少なくとも高分子材料と溶媒とを含むものであって、電解質膜に直接塗布、乾燥することによって層を形成するためのスラリーであれば特に限定されず、例えば、触媒層用スラリーや、燃料電池の性能向上を目的として付加的に設けられる層を形成するためのスラリー等を含む。スラリーに含まれる高分子材料及び溶媒も、これらを含むスラリーを用いて、電解質膜表面に層を形成することができるものであれば特に限定されない。
また、電解質膜とは、溶剤と接触したときに膨潤性を示すものであれば特に限定されず、有機物でも、無機物であってもよく、例えば、プロトン伝導性固体高分子電解質膜や、酸化物イオンや水酸化物イオン等のイオン伝導性固体高分子電解質膜等の固体高分子電解質膜が挙げられる。中でも、パーフルオロスルホン酸ポリマー膜に代表される特に高い膨潤性を有するプロトン伝導性固体高分子電解質膜を用いる場合に、本発明の製造方法は好適である。
In the present invention, the slurry includes at least a polymer material and a solvent, and is not particularly limited as long as it is a slurry for forming a layer by directly applying to an electrolyte membrane and drying. And slurry for forming a layer additionally provided for the purpose of improving the performance of the fuel cell. The polymer material and the solvent contained in the slurry are not particularly limited as long as a layer can be formed on the electrolyte membrane surface using the slurry containing them.
The electrolyte membrane is not particularly limited as long as it shows swelling when contacted with a solvent, and may be organic or inorganic, such as a proton conductive solid polymer electrolyte membrane or an oxide. Examples thereof include solid polymer electrolyte membranes such as ion conductive solid polymer electrolyte membranes such as ions and hydroxide ions. Among these, the production method of the present invention is suitable when using a proton conductive solid polymer electrolyte membrane having a particularly high swellability typified by a perfluorosulfonic acid polymer membrane.
また、電解質膜がプロトン伝導性固体高分子電解質膜であり、且つスラリーが高分子材料と触媒材料と溶媒とを含む触媒層用スラリーである場合、本発明により得られる効果は特に高いものとなる。固体高分子電解質膜と触媒層との密着性は、燃料電池の電池性能に与える影響が大きく、また、プロトン伝導性固体高分子電解質膜は膨潤しやすい性質を持っているからである。 Further, when the electrolyte membrane is a proton conductive solid polymer electrolyte membrane and the slurry is a slurry for a catalyst layer containing a polymer material, a catalyst material and a solvent, the effect obtained by the present invention is particularly high. . This is because the adhesion between the solid polymer electrolyte membrane and the catalyst layer has a great influence on the cell performance of the fuel cell, and the proton conductive solid polymer electrolyte membrane has a property of easily swelling.
以下、電解質膜がプロトン伝導性固体高分子電解質膜、スラリーが高分子材料と触媒材料と溶媒とを含む触媒層用スラリーである場合を例に、本発明の燃料電池の製造方法を詳しく説明する。 Hereinafter, the production method of the fuel cell of the present invention will be described in detail by taking as an example the case where the electrolyte membrane is a proton conductive solid polymer electrolyte membrane and the slurry is a slurry for a catalyst layer containing a polymer material, a catalyst material and a solvent. .
ここで、図1を用いて固体高分子型燃料電池の一構成例を説明する。図1において、プロトン伝導性固体高分子電解質膜1の片面に燃料極触媒層2、もう一面に酸化剤極触媒層3が設けられている。さらに触媒層2、3の外面には、電気伝導性及びガス拡散性を有するガス拡散層4、5が通常は形成されており、燃料極6は燃料極触媒層2及びガス拡散層4から構成され、酸化剤極7は酸化剤極触媒層3及びガス拡散層5から構成される。通常、燃料極6、電解質膜1、酸化剤極7から構成される膜−電極接合体の各電極に反応ガス(燃料ガス又は酸化剤ガス)を供給し、且つ電気化学反応により生成する水分や余剰のガスを排出するため、各電極の外側にはガス流路8、9を画成するセパレータ10、11が設けられている。
Here, a configuration example of a polymer electrolyte fuel cell will be described with reference to FIG. In FIG. 1, a fuel electrode catalyst layer 2 is provided on one side of a proton conductive solid polymer electrolyte membrane 1, and an oxidant electrode catalyst layer 3 is provided on the other side. Further, gas diffusion layers 4 and 5 having electric conductivity and gas diffusibility are usually formed on the outer surfaces of the catalyst layers 2 and 3, and the fuel electrode 6 is composed of the fuel electrode catalyst layer 2 and the gas diffusion layer 4. The oxidant electrode 7 includes the oxidant electrode catalyst layer 3 and the gas diffusion layer 5. Usually, a reactive gas (fuel gas or oxidant gas) is supplied to each electrode of a membrane-electrode assembly composed of the fuel electrode 6, the electrolyte membrane 1, and the oxidant electrode 7. In order to discharge excess gas,
まず、プロトン伝導性固体高分子電解質膜(以下、本実施形態においては、単に電解質膜ということがある)を準備する。プロトン伝導性固体高分子電解質膜としては、プロトンを伝導することが可能な固体高分子電解質膜であればよく、特に限定されるものではないが、ナフィオン(商品名、デュポン社製)に代表されるような含フッ素ポリマー或いは非フッ素系炭化水素ポリマーを骨格として少なくともスルホン酸基、カルボン酸基、ホスホン酸基、リン酸基等のプロトン交換基を有するものを挙げることができる。電解質膜は、成膜された市販品を用いることもできる。 First, a proton conductive solid polymer electrolyte membrane (hereinafter, simply referred to as an electrolyte membrane in the present embodiment) is prepared. The proton conductive solid polymer electrolyte membrane is not particularly limited as long as it is a solid polymer electrolyte membrane capable of conducting protons, but it is represented by Nafion (trade name, manufactured by DuPont). Such fluorine-containing polymers or non-fluorinated hydrocarbon polymers having at least a proton exchange group such as a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, and a phosphoric acid group can be exemplified. As the electrolyte membrane, a commercially available product can be used.
次に高分子材料と触媒材料と溶媒とを含む触媒層用スラリーを調製する。
触媒層用スラリーに含有される高分子材料としては、通常、プロトン伝導性を有する高分子材料が用いられる。プロトン伝導性高分子としては、プロトンを伝導することが可能な高分子材料であればよく、有機物、無機物、特に限定するものではないが、パーフルオロスルホン酸ポリマーに代表されるような、含フッ素ポリマーあるいは非フッ素系炭化水素ポリマーを骨格として少なくともスルホン酸基、カルボン酸基、ホスホン酸基、リン酸基等のプロトン交換基を有するものを挙げることができる。これらのプロトン伝導性高分子は、電解質膜を構成する材料と同じものを用いてもよく、また異なるものを用いてもよい。触媒層用スラリーに含有される高分子材料は、プロトン伝導性高分子に限定されるものではなく、撥水性高分子や結着剤等その他の高分子材料を用いることができ、これらの材料を組み合わせてもよい。
Next, a slurry for a catalyst layer containing a polymer material, a catalyst material, and a solvent is prepared.
As the polymer material contained in the catalyst layer slurry, a polymer material having proton conductivity is usually used. The proton-conducting polymer may be a polymer material capable of conducting protons, and is not limited to organic materials and inorganic materials. However, fluorine-containing polymers represented by perfluorosulfonic acid polymers are not particularly limited. Examples thereof include those having a proton exchange group such as at least a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, and a phosphoric acid group with a polymer or a non-fluorinated hydrocarbon polymer as a skeleton. These proton conductive polymers may be the same as the material constituting the electrolyte membrane or may be different. The polymer material contained in the slurry for the catalyst layer is not limited to the proton conductive polymer, and other polymer materials such as a water-repellent polymer and a binder can be used. You may combine.
触媒材料としては、触媒成分を炭素質粒子、炭素質繊維のような炭素材料等の導電性材料に担持させた触媒粒が好適に用いられる。触媒成分としては、燃料極における水素の酸化反応、酸化剤極における酸素の還元反応に対して触媒作用を有するものであれば特に限定されず、例えば、白金、又は、ルテニウム、鉄、ニッケル、マンガン等の金属と白金との合金等を用いることができる。 As the catalyst material, catalyst particles in which a catalyst component is supported on a conductive material such as a carbon material such as carbonaceous particles and carbonaceous fibers are preferably used. The catalyst component is not particularly limited as long as it has a catalytic action on the hydrogen oxidation reaction at the fuel electrode and the oxygen reduction reaction at the oxidant electrode. For example, platinum, ruthenium, iron, nickel, manganese An alloy of a metal such as platinum and the like can be used.
触媒層用スラリーは上記高分子材料と触媒材料、さらに必要に応じてその他の成分を、溶媒に混合・分散させることにより得られる。
溶媒としては、特に限定されず、例えば、エタノールと水の混合溶媒や、メタノールと水の混合溶媒、プロパノールと水との混合溶媒、エタノールとブタノールと水の混合溶媒等が挙げられる。各溶媒成分の濃度は、高分子材料の分散性や得られる触媒層用スラリーの塗布性、発火性、乾燥性、粘弾性、たれ性等を考慮して適宜選択する。例えば、溶媒として、エタノールと水との混合溶媒を用いる場合には、得られる混合溶媒の揮発性及びエタノールの発火性を共に考慮して、通常、エタノール:水=0.5:1〜3:1の体積比で混合したものを使用することが好ましい。
触媒層用スラリー中の各成分の濃度は、特に限定されるものではなく、高分子材料としてプロトン伝導性高分子を0.05〜5重量%、触媒成分を0.01〜10重量%程度とすればよい。
The slurry for the catalyst layer can be obtained by mixing and dispersing the above polymer material, catalyst material, and other components as required in a solvent.
The solvent is not particularly limited, and examples thereof include a mixed solvent of ethanol and water, a mixed solvent of methanol and water, a mixed solvent of propanol and water, and a mixed solvent of ethanol, butanol and water. The concentration of each solvent component is appropriately selected in consideration of the dispersibility of the polymer material, the applicability of the resulting slurry for the catalyst layer, ignition, drying, viscoelasticity, dripping, and the like. For example, when a mixed solvent of ethanol and water is used as the solvent, ethanol: water = 0.5: 1-3: is usually considered in consideration of both the volatility of the resulting mixed solvent and the ignition of ethanol. It is preferable to use a mixture with a volume ratio of 1.
The concentration of each component in the slurry for the catalyst layer is not particularly limited, and as a polymer material, the proton conductive polymer is 0.05 to 5% by weight, and the catalyst component is about 0.01 to 10% by weight. do it.
続いて、得られた触媒層用スラリーを電解質膜表面に塗布する。本発明の製造方法は、この塗布工程における雰囲気温度Tを、触媒層用スラリー中の溶媒に含まれる溶媒成分うち、少なくとも最も高い揮発性を有する溶媒成分の飽和蒸気圧が80kPa以上となる温度にする。雰囲気温度Tを制御(調節)する方法は、特に限定されず、例えば、電解質膜を加熱プレート上に設置し、当該電解質膜を直接加熱したり、或いは、加熱状態のヒーター庫内に電解質膜を設置し、当該電解質膜の周囲を加熱した状態で、電解質膜に触媒層用スラリーを塗布する方法等が挙げられる。
電解質膜に触媒層用スラリーを塗布する方法としては、例えば、スプレー法、スクリーン印刷法、刷毛塗り、ダイコート法等が挙げられ、特に限定されるものではないが、スプレー法が特に好ましい。スプレー法は、スラリーを電解質膜の表面に均一に塗布することができるほか、噴霧時に溶媒の蒸発が促進されるため、より電解質膜の膨潤を抑制することができる。
Subsequently, the obtained catalyst layer slurry is applied to the electrolyte membrane surface. In the production method of the present invention, the atmospheric temperature T in this coating step is set to a temperature at which the saturated vapor pressure of the solvent component having the highest volatility among the solvent components contained in the catalyst layer slurry is 80 kPa or more. To do. The method of controlling (adjusting) the atmospheric temperature T is not particularly limited. For example, the electrolyte membrane is placed on a heating plate and the electrolyte membrane is directly heated, or the electrolyte membrane is placed in a heated heater cabinet. For example, a method of applying the catalyst layer slurry to the electrolyte membrane in a state where the electrolyte membrane is installed and the periphery of the electrolyte membrane is heated.
Examples of the method for applying the slurry for the catalyst layer to the electrolyte membrane include a spray method, a screen printing method, a brush coating method, and a die coating method, and are not particularly limited, but the spray method is particularly preferable. In the spray method, the slurry can be uniformly applied to the surface of the electrolyte membrane, and since evaporation of the solvent is promoted during spraying, the swelling of the electrolyte membrane can be further suppressed.
以下、触媒層をスプレー法を用いて形成する方法について説明する。
触媒層用スラリーを電解質膜に直接吹き付けるスプレー装置としては、例えば、先端にノズルを有したスプレーガン16と、このスプレーガン16に接続された、触媒層用スラリー15を収容したスラリーポット(図示せず)と、スプレーガン16に電気的に接続されたコンプレッサ(図示せず)とを具備した構成のものが挙げられる(図2参照)。
Hereinafter, a method for forming the catalyst layer using the spray method will be described.
As a spray device for directly spraying the catalyst layer slurry onto the electrolyte membrane, for example, a
プレート12上に電解質膜13を配置し、所望の形状を有する触媒層を形成するためのマスク14を介して、上記したようなスプレー装置により、触媒層スラリー15を電解質膜13表面に吹き付ける。
触媒層用スラリーを電解質膜に吹き付ける時の条件は、霧化エア圧力0.1〜1.0MPa、吹き付け高さ10〜200mm、液滴径0.001〜0.1mmが好ましい。ここで、「吹き付け高さ」とは、電解質膜からスプレノズルヘッドのノズル先端までの距離を意味する。エア圧力が0.1MPa未満の場合には、エア圧力が小さいため液滴が大きくなり、スラリーを電解質膜にきれいに塗布することができない。一方、エア圧力が1.0MPaを超える場合には、エア圧力が大きいため液滴が小さくなり、スラリーが飛び散って、歩留まりが低下してしまう。
The
The conditions for spraying the catalyst layer slurry onto the electrolyte membrane are preferably an atomizing air pressure of 0.1 to 1.0 MPa, a spraying height of 10 to 200 mm, and a droplet diameter of 0.001 to 0.1 mm. Here, “spraying height” means the distance from the electrolyte membrane to the nozzle tip of the spray nozzle head. When the air pressure is less than 0.1 MPa, since the air pressure is small, the droplets become large and the slurry cannot be applied neatly to the electrolyte membrane. On the other hand, when the air pressure exceeds 1.0 MPa, since the air pressure is large, the droplets are small, the slurry is scattered, and the yield is lowered.
また、吹き付け高さが、10mm未満の場合には、電解質膜と上記ノズル先端とが近すぎて吹き付けが困難であり、200mmを超える場合には、スラリーが周囲に飛び散り、歩留りが低下してしまう。また、液滴径が0.001mm未満の場合には、スラリーが周囲に飛び散り歩留りが低下してしまう。一方、液滴径が0.1mmを超える場合には、電解質膜上でのスラリー中の溶媒の乾燥が遅く、電解質膜の膨潤抑制効果が低下するおそれがある。
以上のような温度条件のもと塗付された触媒層用スラリーを、別途乾燥工程を設け、乾燥させることで触媒層が形成される。このとき、触媒層の単位面積あたりの触媒成分量が0.01〜5mg/cm2程度となるように触媒層を形成することが好ましい。
Further, when the spray height is less than 10 mm, the electrolyte membrane and the nozzle tip are too close to be sprayed, and when it exceeds 200 mm, the slurry is scattered around and the yield is lowered. . On the other hand, when the droplet diameter is less than 0.001 mm, the slurry scatters around and the yield decreases. On the other hand, when the droplet diameter exceeds 0.1 mm, the drying of the solvent in the slurry on the electrolyte membrane is slow, which may reduce the swelling suppression effect of the electrolyte membrane.
A catalyst layer is formed by providing a drying step and drying the slurry for the catalyst layer applied under the above temperature conditions. At this time, it is preferable to form the catalyst layer so that the amount of the catalyst component per unit area of the catalyst layer is about 0.01 to 5 mg / cm 2 .
以上のようにして一方の面に触媒層が形成された電解質膜は、通常、他方の面にも触媒層が形成される。
電解質膜表面に形成された触媒層上には、通常、ガス拡散層が形成される。ガス拡散層としては、カーボンペーパー、カーボンクロス、カーボンフェルトなどの導電性多孔質体の表面をポリテトラフルオロエチレン等によってコーティングすることで撥水化したものを挙げることができ、これらは燃料極ガス拡散層及び酸化剤極ガス拡散層の何れにも用いることができる。触媒層が形成された電解質膜を2枚のガス拡散層で挟持、接合することによって、膜−電極接合体が得られる。
得られた膜−電極接合体は、一般的な方法によりセパレータで挟持することによって燃料電池セルとし、燃料電池セルを複数積層することによって燃料電池が得られる。
As described above, an electrolyte membrane having a catalyst layer formed on one surface usually has a catalyst layer also formed on the other surface.
A gas diffusion layer is usually formed on the catalyst layer formed on the electrolyte membrane surface. Examples of the gas diffusion layer include those made water-repellent by coating the surface of a conductive porous material such as carbon paper, carbon cloth, carbon felt with polytetrafluoroethylene. It can be used for both the diffusion layer and the oxidant electrode gas diffusion layer. A membrane-electrode assembly is obtained by sandwiching and joining the electrolyte membrane having the catalyst layer formed between two gas diffusion layers.
The obtained membrane-electrode assembly is made into a fuel cell by sandwiching it with a separator by a general method, and a fuel cell is obtained by laminating a plurality of fuel cells.
尚、ここでは、電解質膜がプロトン伝導性固体高分子電解質膜、スラリーが触媒層用スラリーである場合を例に説明したが、電解質膜としては、例えば、酸化物イオン、水酸化物イオン等のプロトン以外のイオン伝導性固体高分子電解質膜等を用いることもできる。 Here, the case where the electrolyte membrane is a proton conductive solid polymer electrolyte membrane and the slurry is a slurry for a catalyst layer has been described as an example, but examples of the electrolyte membrane include oxide ions and hydroxide ions. An ion conductive solid polymer electrolyte membrane other than protons can also be used.
<触媒層付き電解質膜の作製>
(実施例)
まず、白金を重量比で40%担持したカーボン粒子5gと、パーフルオロスルホン酸樹脂(商品名ナフィオン、DuPont製)3gと、溶媒(体積比でエタノール:水=1:1の混合液)150mlとを混練し、触媒層用スラリーを調製した。次に、温度調節機能付きプレート上に配置されたパーフルオロスルホン酸膜(厚さ50μm、商品名ナフィオン、DuPont製)表面に、得られた触媒層用スラリーをマスクを介してスプレーガンにより塗布(白金塗布量が0.5mg/cm2になるように)し、触媒層を形成した(図2参照)。このとき、プレートの温度を80℃(エタノールの飽和蒸気圧約800mmHg=約107kPa)に設定した。続いて、パーフルオロスルホン酸膜の触媒層が形成された面とは異なる面にも、同様の方法(プレート温度も同じ)にて触媒層を形成し、触媒層付き電解質膜を得た。
<Production of electrolyte membrane with catalyst layer>
(Example)
First, 5 g of carbon particles carrying 40% by weight of platinum, 3 g of perfluorosulfonic acid resin (trade name Nafion, manufactured by DuPont), and 150 ml of a solvent (mixture of ethanol: water = 1: 1 by volume) Was kneaded to prepare a slurry for the catalyst layer. Next, the obtained catalyst layer slurry was applied to the surface of a perfluorosulfonic acid film (thickness 50 μm, trade name Nafion, manufactured by DuPont) placed on a plate with a temperature control function with a spray gun through a mask ( The platinum coating amount was 0.5 mg / cm 2 ) to form a catalyst layer (see FIG. 2). At this time, the temperature of the plate was set to 80 ° C. (saturated vapor pressure of ethanol: about 800 mmHg = about 107 kPa). Subsequently, a catalyst layer was formed on a surface different from the surface on which the catalyst layer of the perfluorosulfonic acid film was formed by the same method (the plate temperature was the same) to obtain an electrolyte membrane with a catalyst layer.
(比較例)
上記実施例の膜−電極接合体の作製において、プレート温度を30℃(エタノールの飽和蒸気圧約80mmHg=約11kPa)とした以外は、同様の方法によって、触媒層付き電解質膜を作製した。
(Comparative example)
An electrolyte membrane with a catalyst layer was produced by the same method except that the plate temperature was 30 ° C. (saturated vapor pressure of ethanol: about 80 mmHg = about 11 kPa) in the production of the membrane-electrode assembly of the above example.
<触媒層付き電解質膜の目視による評価>
プレート温度を80℃に設定して触媒層用スラリーを塗布した実施例の電解質膜は、プレート温度を30℃に設定して触媒装用スラリーを塗布した比較例の電解質膜と比較して、大幅にシワの少ない状態であり、その表面に形成された触媒層もシワが少なく、割れの発生が見られなかった。
<Evaluation by visual observation of electrolyte membrane with catalyst layer>
The electrolyte membrane of the example in which the plate temperature was set to 80 ° C. and the slurry for the catalyst layer was applied was significantly larger than the electrolyte membrane of the comparative example in which the plate temperature was set to 30 ° C. and the slurry for catalyst loading was applied. There was little wrinkle, and the catalyst layer formed on the surface had few wrinkles, and no cracks were observed.
1…プロトン伝導性固体高分子電解質膜
2…燃料極触媒層
3…酸化剤極触媒層
4…ガス拡散層
5…ガス拡散層
6…燃料極
7…酸化剤極
8…ガス流路
9…ガス流路
10…セパレータ
11…セパレータ
12…温度調節機能付きプレート
13…電解質膜(パーフルオロスルホン酸膜)
14…マスク
15…触媒層用スラリー
16…スプレーガン
DESCRIPTION OF SYMBOLS 1 ... Proton conductive solid polymer electrolyte membrane 2 ... Fuel electrode catalyst layer 3 ... Oxidant electrode catalyst layer 4 ... Gas diffusion layer 5 ... Gas diffusion layer 6 ... Fuel electrode 7 ... Oxidant electrode 8 ... Gas flow path 9 ...
14 ...
Claims (5)
前記塗布工程の雰囲気温度が、前記溶媒に含まれる溶媒成分のうち、少なくとも最も高い揮発性を有する溶媒成分の飽和蒸気圧が80kPa以上となる温度であることを特徴とする、燃料電池の製造方法。 A method for producing a fuel cell comprising a coating step of applying a slurry containing at least a polymer material and a solvent to an electrolyte membrane,
The method for producing a fuel cell, wherein the atmospheric temperature in the coating step is a temperature at which a saturated vapor pressure of at least the highest volatile solvent component among the solvent components contained in the solvent is 80 kPa or more .
The method for manufacturing a fuel cell according to claim 1, wherein the method of applying the slurry to the electrolyte membrane is a spray method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005169875A JP2006344517A (en) | 2005-06-09 | 2005-06-09 | Manufacturing method of fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005169875A JP2006344517A (en) | 2005-06-09 | 2005-06-09 | Manufacturing method of fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006344517A true JP2006344517A (en) | 2006-12-21 |
Family
ID=37641316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005169875A Pending JP2006344517A (en) | 2005-06-09 | 2005-06-09 | Manufacturing method of fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006344517A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010238641A (en) * | 2009-03-31 | 2010-10-21 | Honda Motor Co Ltd | Membrane electrode assembly manufacturing method and manufacturing apparatus thereof |
JP2010250956A (en) * | 2009-04-10 | 2010-11-04 | Toyota Motor Corp | Method for forming catalyst layer of fuel cell |
JP2014194920A (en) * | 2013-11-05 | 2014-10-09 | Dainippon Printing Co Ltd | Electrode for air cell and air cell module using the same |
JP2017174572A (en) * | 2016-03-22 | 2017-09-28 | 凸版印刷株式会社 | Manufacturing method of membrane/electrode assembly for fuel cell |
JP2018022587A (en) * | 2016-08-02 | 2018-02-08 | 凸版印刷株式会社 | Manufacturing method for membrane electrode assembly |
JP2023511038A (en) * | 2020-12-16 | 2023-03-16 | コーロン インダストリーズ インク | MEMBRANE ELECTRODE ASSEMBLY AND MANUFACTURING METHOD THEREOF |
CN115954434A (en) * | 2023-03-09 | 2023-04-11 | 四川新能源汽车创新中心有限公司 | Battery pole piece, preparation method and all-solid-state battery |
-
2005
- 2005-06-09 JP JP2005169875A patent/JP2006344517A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010238641A (en) * | 2009-03-31 | 2010-10-21 | Honda Motor Co Ltd | Membrane electrode assembly manufacturing method and manufacturing apparatus thereof |
JP2010250956A (en) * | 2009-04-10 | 2010-11-04 | Toyota Motor Corp | Method for forming catalyst layer of fuel cell |
JP2014194920A (en) * | 2013-11-05 | 2014-10-09 | Dainippon Printing Co Ltd | Electrode for air cell and air cell module using the same |
JP2017174572A (en) * | 2016-03-22 | 2017-09-28 | 凸版印刷株式会社 | Manufacturing method of membrane/electrode assembly for fuel cell |
JP2018022587A (en) * | 2016-08-02 | 2018-02-08 | 凸版印刷株式会社 | Manufacturing method for membrane electrode assembly |
JP2023511038A (en) * | 2020-12-16 | 2023-03-16 | コーロン インダストリーズ インク | MEMBRANE ELECTRODE ASSEMBLY AND MANUFACTURING METHOD THEREOF |
JP7331265B2 (en) | 2020-12-16 | 2023-08-22 | コーロン インダストリーズ インク | MEMBRANE ELECTRODE ASSEMBLY AND MANUFACTURING METHOD THEREOF |
CN115954434A (en) * | 2023-03-09 | 2023-04-11 | 四川新能源汽车创新中心有限公司 | Battery pole piece, preparation method and all-solid-state battery |
CN115954434B (en) * | 2023-03-09 | 2023-06-16 | 四川新能源汽车创新中心有限公司 | Battery pole piece, preparation method and all-solid-state battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3866077B2 (en) | Method for preparing a membrane electrode assembly | |
JP4082999B2 (en) | Method for producing a membrane electrode assembly for a membrane fuel cell | |
JP5551215B2 (en) | Method for producing polymer electrolyte fuel cell | |
US8323848B2 (en) | Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same | |
CN101136480A (en) | Membrane electrode assembly for fuel cell, its preparation method and fuel cell system | |
JP2006012832A (en) | ELECTRODE FOR FUEL CELL, MEMBRANE-ELECTRODE ASSEMBLY INCLUDING THE SAME AND FUEL CELL | |
JP2022549103A (en) | Membrane electrode assembly | |
JP2017514269A (en) | Catalyst layer for fuel cell and method for producing such catalyst layer | |
JP2008311180A (en) | Membrane electrode assembly, method for producing the same, and fuel cell using the membrane electrode assembly | |
JP2009117248A (en) | Fuel cell | |
KR100670284B1 (en) | Fuel cell | |
JP2014514697A (en) | Improved process for making membrane electrode assemblies (MEAs) | |
JP2010129309A (en) | Gas diffusion layer for fuel cell, and manufacturing method thereof | |
JP4919005B2 (en) | Method for producing electrode for fuel cell | |
JP2006344517A (en) | Manufacturing method of fuel cell | |
JP2003059511A (en) | Electrolyte membrane-electrode assembly for fuel cell, method for producing the same, and polymer electrolyte fuel cell | |
JP2009140618A (en) | Liquid fuel supply type fuel cell | |
JP2007095582A (en) | Manufacturing method of membrane electrode assembly | |
JP4649094B2 (en) | Manufacturing method of membrane electrode assembly for fuel cell | |
US20080102341A1 (en) | High intensity complex membrane and membrane-electrode assembly including the same | |
JP2008311181A (en) | Membrane electrode assembly, method for producing the same, and fuel cell using the membrane electrode assembly | |
JP2008276990A (en) | Electrode for fuel cell, and fuel cell | |
JP2007234473A (en) | Catalyst electrode layer for fuel cell and method for producing the same | |
JP4529345B2 (en) | Method for producing polymer electrolyte fuel cell | |
JP5205730B2 (en) | Catalyst transfer film for polymer electrolyte fuel cells |