[go: up one dir, main page]

JP2006339491A - Method for reflow soldering of semiconductor package and circuit board, and semiconductor device - Google Patents

Method for reflow soldering of semiconductor package and circuit board, and semiconductor device Download PDF

Info

Publication number
JP2006339491A
JP2006339491A JP2005163850A JP2005163850A JP2006339491A JP 2006339491 A JP2006339491 A JP 2006339491A JP 2005163850 A JP2005163850 A JP 2005163850A JP 2005163850 A JP2005163850 A JP 2005163850A JP 2006339491 A JP2006339491 A JP 2006339491A
Authority
JP
Japan
Prior art keywords
circuit board
semiconductor package
reflow soldering
spacer member
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005163850A
Other languages
Japanese (ja)
Inventor
Shinpei Tamura
新平 多村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005163850A priority Critical patent/JP2006339491A/en
Publication of JP2006339491A publication Critical patent/JP2006339491A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device and a method for reflow soldering of the same for improving fatigue resistance of the soldering part of the semiconductor device by making the soldering angle of a solder bump an obtuse angle to form the solder bump to be almost in a shape of a drum by a simple method. <P>SOLUTION: Between the semiconductor package and a circuit board, a spacer member is arranged. Thus, in the case of the reflow soldering, a gap between the semiconductor package and the circuit board is expanded longer than that before the reflow soldering by thermal expansion of the spacer member and thereafter, the solder is solidified with the gap kept therein, so that the soldering angle of the solder bump is made to be the obtuse angle to form the solder bump almost in the shape of the drum. The semiconductor device has a structure where stress and strain at the solder bump is dispersed during operation, so that the fatigue resistance strength at the soldering is improved in the fatigue life and reliability of the semiconductor device. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は半導体パッケージならびに該半導体パッケージを回路基板に実装した半導体装置に係り、特に、外部接続端子としてハンダバンプを具備する半導体パッケージを回路基板に電気的かつ機械的に接続された半導体装置ならびに、半導体パッケージと回路基板のリフローハンダ付け方法に関するものである。   The present invention relates to a semiconductor package and a semiconductor device in which the semiconductor package is mounted on a circuit board, and more particularly, a semiconductor device in which a semiconductor package having solder bumps as external connection terminals is electrically and mechanically connected to the circuit board, and a semiconductor The present invention relates to a reflow soldering method for a package and a circuit board.

従来において、外部接続端子にハンダバンプを用いた半導体パッケージとしてBGA(Ball Grid Array)やCSP(Chip Size Package または Chip Scale Package)が知られている。これらの半導体パッケージは電子機器の小型化、軽量化、高機能化に対応して開発されたもので、ハンダバンプをエリアアレイ状に配置することによって実装面積の縮小化および高密度化を狙い、半導体パッケージの軽薄短小化を実現している。図3は当該半導体パッケージをリフローハンダ付け方法により回路基板に電気的かつ機械的に接続したもの、いわゆる半導体装置の概略的な構造を示している。簡単に説明すると、半導体素子1は絶縁性部材2の一方表面の中央部にダイボンド材4によって搭載され、その絶縁性部材2の表面には半導体素子1と電気的に接続するための配線パターン3が形成されている。ボンディングワイヤー7により半導体素子1の一方表面の周辺に沿って設けられたボンディングパッド6と配線パターン3とが電気的に接続され、半導体素子1周辺は封止樹脂材8により封止される。そして、絶縁性部材2の他方表面には、ハンダバンプ9が配線パターン3と接続された状態で配置される。このハンダバンプ9の配置に対応して回路基板60を構成する絶縁性基板10に設けられた配線電極11がエリアアレイ状に配置され、その配線電極11上にリフローハンダ付けを経てハンダバンプ9の少なくともその一部を溶融し配線電極11とハンダバンプ9とを接合させて完成する。この半導体装置の構造上、電子機器の稼動中における大きな温度変化や電源の発停時において、半導体パッケージおよび回路基板の構成部材の熱膨張係数の相違に起因して発生する応力やひずみがハンダバンプ全体に繰り返し集中すると、ハンダバンプにクラックが発生して破断に至り半導体装置としての機能が停止してしまうことが従来から懸念されている。従って、ハンダ接合部における耐疲労強度の向上対策を講じることにより、半導体パッケージならびにそれを回路基板に実装した半導体装置の疲労寿命の向上を図る必要がある。   Conventionally, BGA (Ball Grid Array) and CSP (Chip Size Package or Chip Scale Package) are known as semiconductor packages using solder bumps for external connection terminals. These semiconductor packages were developed in response to miniaturization, weight reduction, and high functionality of electronic devices. By arranging solder bumps in an area array, the semiconductor package aims to reduce the mounting area and increase the density. The package is light, thin and small. FIG. 3 shows a schematic structure of a so-called semiconductor device in which the semiconductor package is electrically and mechanically connected to a circuit board by a reflow soldering method. Briefly, the semiconductor element 1 is mounted on the central portion of one surface of the insulating member 2 by a die bond material 4, and the wiring pattern 3 for electrically connecting to the semiconductor element 1 is formed on the surface of the insulating member 2. Is formed. The bonding pad 6 provided along the periphery of one surface of the semiconductor element 1 and the wiring pattern 3 are electrically connected by the bonding wire 7, and the periphery of the semiconductor element 1 is sealed with the sealing resin material 8. The solder bumps 9 are arranged on the other surface of the insulating member 2 in a state of being connected to the wiring pattern 3. Corresponding to the arrangement of the solder bumps 9, the wiring electrodes 11 provided on the insulating substrate 10 constituting the circuit board 60 are arranged in an area array, and at least the solder bumps 9 are subjected to reflow soldering on the wiring electrodes 11. A part is melt | dissolved and the wiring electrode 11 and the solder bump 9 are joined, and it completes. Due to the structure of this semiconductor device, the stress and strain generated due to the difference in the thermal expansion coefficient between the components of the semiconductor package and circuit board during the large temperature change during operation of the electronic equipment and the start / stop of the power supply When repeatedly concentrated on the solder bumps, there is a concern that the solder bumps are cracked to break and stop functioning as a semiconductor device. Therefore, it is necessary to improve the fatigue life of the semiconductor package and the semiconductor device in which the semiconductor package is mounted on the circuit board by taking measures to improve the fatigue strength at the solder joint.

そのための対策の1つに、ハンダバンプの接合角が鈍角となるように形成せしめることでハンダ接合部の対疲労強度を向上させることが知られている。図6に示すように従来のリフローハンダ付け方法では半導体パッケージの自重により半導体パッケージが降下するため、リフローハンダ付け後のハンダバンプの形状が太鼓型形状、すなわちハンダバンプの接合角が鋭角となり、ハンダ接合部に応力やひずみが集中しやすいために、ハンダバンプが破壊しやすいという問題があった。そこで、ハンダバンプの接合角が鈍角になるような形状、すなわち鼓型形状に形成せしめることにより、ハンダ接合部にかかる応力やひずみを分散させ破壊しにくくすることが可能となる。   As one of the countermeasures for this, it is known to improve the anti-fatigue strength of the solder joint portion by forming the solder bump so that the joint angle becomes an obtuse angle. As shown in FIG. 6, in the conventional reflow soldering method, the semiconductor package descends due to the weight of the semiconductor package, so that the solder bump shape after reflow soldering is a drum-shaped shape, that is, the solder bump joint angle is an acute angle, and the solder joint portion There is a problem that solder bumps are easily broken because stress and strain tend to concentrate on the surface. Therefore, by forming the solder bumps into a shape that makes the bonding angle obtuse, that is, a drum shape, it is possible to disperse the stress and strain applied to the solder bonding portion and make it difficult to break.

例えば特開平11−274682において、図4、図5に示すように半導体パッケージと回路基板との間に弾性部材を介在させて、前記弾性部材の圧縮変形を利用してハンダバンプを鼓型形状に形成する方法が開示されている。すなわち、図4に示すように、半導体パッケージ50を回路基板60に実装する際に、半導体パッケージ50と回路基板60との間に弾性部材20を介在させ、配線パターン3の位置が回路基板60の配線電極11上に対応するように吸着器具21で保持して半導体パッケージ50を位置決めして回路基板60に搭載した後に、吸着器具21によって半導体パッケージ50を加圧し弾性部材20を圧縮変形させる第1工程と、図5に示すように、この状態でハンダバンプ9を加熱溶融している最中に、吸着器具21を解除させて弾性部材20の圧縮変形を解除させることにより、ハンダバンプ9の形状を鼓型形状に形成する第2工程で構成されている。
特開平11−274682号公報
For example, in Japanese Patent Laid-Open No. 11-274682, an elastic member is interposed between a semiconductor package and a circuit board as shown in FIGS. 4 and 5, and solder bumps are formed in a drum shape using the compressive deformation of the elastic member. A method is disclosed. That is, as shown in FIG. 4, when the semiconductor package 50 is mounted on the circuit board 60, the elastic member 20 is interposed between the semiconductor package 50 and the circuit board 60, and the position of the wiring pattern 3 is located on the circuit board 60. First, the semiconductor package 50 is positioned and mounted on the circuit board 60 by being held by the suction tool 21 so as to correspond to the wiring electrode 11, and then the semiconductor package 50 is pressed by the suction tool 21 to compressively deform the elastic member 20. As shown in FIG. 5, while the solder bump 9 is heated and melted in this state, the suction tool 21 is released to release the compression deformation of the elastic member 20, thereby reducing the shape of the solder bump 9. It is comprised by the 2nd process formed in a mold shape.
JP 11-274682 A

しかしながら、上記従来の方法は、半導体パッケージを加圧・保持・解除することにより弾性部材の変形をコントロールして、ハンダバンプを鼓型形状に形成せしめるための大規模で複雑な吸着器具が必要となりコストも増加する。   However, the above-described conventional method requires a large-scale and complicated suction device for controlling the deformation of the elastic member by pressurizing, holding, and releasing the semiconductor package to form the solder bump into a drum shape. Will also increase.

本発明は上記の問題に鑑みてなされたもので、簡単な方法でハンダバンプの接合角を鈍角にし、概ね鼓型形状に形成せしめることで、半導体装置のハンダ接合部の耐疲労強度を向上させるための半導体装置およびそのリフローハンダ付け方法を提供することを目的としている。   SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and is intended to improve the fatigue strength of a solder joint portion of a semiconductor device by making the solder bump joint angle an obtuse angle and forming a generally drum shape by a simple method. An object of the present invention is to provide a semiconductor device and a reflow soldering method thereof.

上記本発明の目的を達成する本発明の構成は、リフローにより半導体パッケージを回路基板にハンダ接続させるリフローハンダ付け方法であって、前記半導体パッケージと前記回路基板との間にスペーサー部材を配置し、リフローハンダ付けの際、前記スペーサー部材の熱膨張により前記半導体パッケージと前記回路基板との間隔がリフローハンダ付け前よりも広がり、その後、その間隔を保ってハンダが固化されることを特徴とする半導体パッケージと回路基板のリフローハンダ付け方法である。   The configuration of the present invention that achieves the above object of the present invention is a reflow soldering method in which a semiconductor package is solder-connected to a circuit board by reflow, and a spacer member is disposed between the semiconductor package and the circuit board. In reflow soldering, the space between the semiconductor package and the circuit board is expanded more than before reflow soldering due to thermal expansion of the spacer member, and then the solder is solidified while maintaining the space. This is a reflow soldering method for a package and a circuit board.

本発明に従えば、半導体パッケージと回路基板とを接続するハンダバンプが、リフローハンダ付けの際、半導体パッケージと回路基板との間に配置したスペーサー部材の熱膨張により、膨張したスペーサー部材の高さまでハンダバンプが引き延ばされ、接合角が鈍角となり概ね鼓型形状に形成された状態で固化されるため、信頼性および対疲労性強度の高いハンダバンプの形成が可能である。また、吸着器具のようなコストのかかる大規模で複雑な装置が不要な簡単なリフローハンダ付け方法を提供することが可能である。   According to the present invention, the solder bumps connecting the semiconductor package and the circuit board are solder bumps up to the height of the expanded spacer member due to the thermal expansion of the spacer member disposed between the semiconductor package and the circuit board during reflow soldering. Is stretched and solidified in a state where the joining angle becomes an obtuse angle and is formed in a generally drum shape, so that it is possible to form a solder bump having high reliability and high strength against fatigue. Further, it is possible to provide a simple reflow soldering method that does not require a large-scale and complicated device such as a suction device.

また、リフローにより半導体パッケージを回路基板にハンダ接続させるリフローハンダ付け方法であって、前記半導体パッケージの自重をP、前記スペーサー部材の弾性係数をE、断面積(スペーサー部材が複数の場合は各スペーサー部材の断面積の総和)をA、リフローハンダ付けの際のリフロー温度差をΔtとしたときに、前記スペーサー部材の熱膨張率αがP/(A・E)/Δt<α<(2+(A・E))/Δtの範囲内に設定したことを特徴とする半導体パッケージと回路基板のリフローハンダ付け方法である。   Also, a reflow soldering method for soldering a semiconductor package to a circuit board by reflow, wherein the weight of the semiconductor package is P, the elastic modulus of the spacer member is E, and the cross-sectional area (if there are a plurality of spacer members, each spacer When the total cross-sectional area of the member is A and the reflow temperature difference during reflow soldering is Δt, the thermal expansion coefficient α of the spacer member is P / (A · E) / Δt <α <(2+ ( A · E)) / Δt is a reflow soldering method for a semiconductor package and a circuit board.

本発明に従えば、スペーサー部材の形状や熱膨張係数などを適切な値に設定することにより、ハンダバンプ高さやハンダバンプの形状を最適な状態に形成可能となる。   According to the present invention, the solder bump height and the solder bump shape can be optimally formed by setting the shape of the spacer member, the thermal expansion coefficient, and the like to appropriate values.

また、回路基板と前記回路基板の表面にリフローハンダ付け方法により実装された半導体パッケージとから構成される半導体装置であって、前記半導体パッケージと前記回路基板との間にスペーサー部材を配置し、リフローハンダ付けの際、前記スペーサー部材の熱膨張により前記半導体パッケージと前記回路基板との間隔がリフローハンダ付け前よりも広がり、その後、その間隔を保ってハンダが固化されることを特徴とする半導体装置である。   Further, the semiconductor device includes a circuit board and a semiconductor package mounted on a surface of the circuit board by a reflow soldering method, wherein a spacer member is disposed between the semiconductor package and the circuit board, and reflow When soldering, the space between the semiconductor package and the circuit board becomes wider than before reflow soldering due to thermal expansion of the spacer member, and then the solder is solidified while maintaining the space. It is.

本発明に従えば、半導体パッケージと回路基板とを接続するハンダバンプが、リフローハンダ付けの際、半導体パッケージと回路基板との間に配置したスペーサー部材の熱膨張により、膨張したスペーサー部材の高さまでハンダバンプが引き延ばされ、接合角が鈍角となり概ね鼓型形状に形成された状態で固化される。上記リフローハンダ付けによって構成された半導体装置は、半導体パッケージおよび回路基板の構成部材の熱膨張係数の相違に起因して発生する応力やひずみが分散される構造となり、クラックの発生を阻害することができ、ハンダ接合部における信頼性および耐疲労強度が向上し、半導体装置の寿命が改善される。また、吸着器具のようなコストのかかる大規模で複雑な装置を用いることなく、簡単な方法で信頼性の高い半導体装置を提供することが可能である。   According to the present invention, the solder bumps connecting the semiconductor package and the circuit board are solder bumps up to the height of the expanded spacer member due to the thermal expansion of the spacer member disposed between the semiconductor package and the circuit board during reflow soldering. Is stretched, the joint angle becomes an obtuse angle, and it is solidified in a state of being formed in a generally drum shape. The semiconductor device configured by the above reflow soldering has a structure in which stress and strain generated due to the difference in thermal expansion coefficients of the components of the semiconductor package and the circuit board are dispersed, and the generation of cracks may be hindered. In addition, reliability and fatigue strength at the solder joint are improved, and the life of the semiconductor device is improved. In addition, it is possible to provide a highly reliable semiconductor device by a simple method without using a costly large-scale and complicated device such as an adsorption tool.

また、回路基板と前記回路基板の表面にリフローハンダ付け方法により実装された半導体パッケージとから構成される半導体装置であって、前記半導体パッケージの自重をP、前記スペーサー部材の弾性係数をE、断面積(スペーサー部材が複数の場合は各スペーサー部材の断面積の総和)をA、リフローハンダ付けの際のリフロー温度差をΔtとしたときに、前記スペーサー部材の熱膨張率αがP/(A・E)/Δt<α<(2+(A・E))/Δtの範囲内に設定したことを特徴とする半導体装置である。   The semiconductor device includes a circuit board and a semiconductor package mounted on a surface of the circuit board by a reflow soldering method, wherein the weight of the semiconductor package is P, the elastic modulus of the spacer member is E, When the area (sum of cross-sectional areas of each spacer member when there are a plurality of spacer members) is A, and the reflow temperature difference during reflow soldering is Δt, the thermal expansion coefficient α of the spacer member is P / (A E) / Δt <α <(2+ (A · E)) / Δt The semiconductor device is characterized by being set.

本発明に従えば、スペーサー部材の形状や熱膨張係数などを適切な値に設定することにより、ハンダバンプ高さやハンダバンプの形状が、信頼性及び耐疲労強度に対して最適な状態に形成された半導体装置を提供することが可能となる。   According to the present invention, by setting the shape of the spacer member, the thermal expansion coefficient, etc. to appropriate values, the semiconductor is formed in a state where the solder bump height and the solder bump shape are optimal for reliability and fatigue resistance. An apparatus can be provided.

以上から、本発明に従えば、ハンダ接合部の信頼性および耐疲労強度の向上を実現せしめるリフローハンダ付けが可能となり、それによって構成された半導体装置の疲労寿命を飛躍的に延長することができる。   As described above, according to the present invention, it is possible to perform reflow soldering that realizes improvement of reliability and fatigue resistance of the solder joint portion, and the fatigue life of the semiconductor device constituted thereby can be dramatically extended. .

以上説明したように、半導体パッケージと回路基板とを接続するハンダバンプが、リフローハンダ付けの際、半導体パッケージと回路基板との間に配置したスペーサー部材の熱膨張により、膨張したスペーサー部材の高さまでハンダバンプが引き延ばされ、接合角が鈍角となり概ね鼓型形状に形成された状態で固化されるため、信頼性および対疲労性強度の高いハンダバンプの形成が可能である。また、吸着器具のようなコストのかかる大規模で複雑な装置が不要な簡単なリフローハンダ付け方法を提供することが可能である。   As described above, the solder bumps connecting the semiconductor package and the circuit board are solder bumps up to the height of the expanded spacer member due to the thermal expansion of the spacer member disposed between the semiconductor package and the circuit board during reflow soldering. Is stretched and solidified in a state where the joining angle becomes an obtuse angle and is formed in a generally drum shape, so that it is possible to form a solder bump having high reliability and high strength against fatigue. Further, it is possible to provide a simple reflow soldering method that does not require a large-scale and complicated device such as a suction device.

また、スペーサー部材の形状や熱膨張係数などを適切な値に設定することにより、ハンダバンプ高さやハンダバンプの形状を最適な状態に形成可能となる。   In addition, by setting the spacer member shape, the thermal expansion coefficient, etc. to appropriate values, the solder bump height and the solder bump shape can be formed in an optimum state.

また、半導体パッケージと回路基板とを接続するハンダバンプが、リフローハンダ付けの際、半導体パッケージと回路基板との間に配置したスペーサー部材の熱膨張により、膨張したスペーサー部材の高さまでハンダバンプが引き延ばされ、接合角が鈍角となり概ね鼓型形状に形成された状態で固化される。上記リフローハンダ付けによって構成された半導体装置は、半導体パッケージおよび回路基板の構成部材の熱膨張係数の相違に起因して発生する応力やひずみが分散される構造となり、クラックの発生を阻害することができ、ハンダ接合部における信頼性および耐疲労強度が向上し、半導体装置の寿命が改善される。また、吸着器具のようなコストのかかる大規模で複雑な装置を用いることなく、簡単な方法で信頼性の高い半導体装置を提供することが可能である。   In addition, the solder bump connecting the semiconductor package and the circuit board is extended to the height of the expanded spacer member due to the thermal expansion of the spacer member disposed between the semiconductor package and the circuit board during reflow soldering. Then, the joint angle becomes an obtuse angle and is solidified in a state of being formed in a generally drum shape. The semiconductor device configured by the above reflow soldering has a structure in which stress and strain generated due to the difference in thermal expansion coefficients of the components of the semiconductor package and the circuit board are dispersed, and the generation of cracks may be hindered. In addition, reliability and fatigue strength at the solder joint are improved, and the life of the semiconductor device is improved. In addition, it is possible to provide a highly reliable semiconductor device by a simple method without using a costly large-scale and complicated device such as an adsorption tool.

スペーサー部材の形状や熱膨張率などを適切な値に設定することにより、ハンダバンプ高さやハンダバンプの形状が、信頼性及び耐疲労強度に対して最適な状態に形成された半導体装置を提供することが可能となる。   By setting the shape of the spacer member and the coefficient of thermal expansion to appropriate values, it is possible to provide a semiconductor device in which the solder bump height and the solder bump shape are optimally set for reliability and fatigue resistance. It becomes possible.

以上から、本発明に従えば、ハンダ接合部の信頼性および耐疲労強度の向上を実現せしめるリフローハンダ付けが可能となり、それによって構成された半導体装置の疲労寿命を飛躍的に延長することができる。   As described above, according to the present invention, it is possible to perform reflow soldering that realizes improvement of reliability and fatigue resistance of the solder joint portion, and the fatigue life of the semiconductor device constituted thereby can be dramatically extended. .

以下、本発明の実施の形態を図面に基づいて詳細に説明する。以下の図面の記載において、同一または類似の部分には同一の記号を付与している。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description of the drawings, the same symbols are assigned to the same or similar parts.

図1は本発明の第1の実施の形態に係る半導体パッケージと回路基板のハンダ付け方法によって構成された半導体装置の模式的な断面図であり、図8は本発明の第1の実施の形態に係る半導体パッケージと回路基板のハンダ付け方法を示す模式図である。また、図7は本発明の第1の実施の形態に係る半導体パッケージと回路基板のハンダ付け方法によって構成された半導体装置におけるハンダ接合部の拡大図である。図1および図8に示すように本発明の第1の実施の形態に係る半導体パッケージは、絶縁性部材2の一方表面の中央部にダイボンド材4により半導体素子1を搭載し、この半導体素子1周辺を封止樹脂材8により封止した構造をしている。半導体素子1の一方表面にはその周辺に沿って複数のボンディングパッド6が設けられ、これらのボンディングパッド6と絶縁性部材2の一方表面に設けられた複数の配線パターン3がそれぞれボンディングワイヤー7で電気的に接続される。そして、絶縁性部材2に設けられた配線パターン3とハンダバンプ9が電気的に接合される。   FIG. 1 is a schematic cross-sectional view of a semiconductor device constructed by a method of soldering a semiconductor package and a circuit board according to the first embodiment of the present invention, and FIG. 8 is a first embodiment of the present invention. It is a schematic diagram which shows the semiconductor package which concerns on, and the soldering method of a circuit board. FIG. 7 is an enlarged view of a solder joint portion in the semiconductor device configured by the method of soldering the semiconductor package and the circuit board according to the first embodiment of the present invention. As shown in FIGS. 1 and 8, in the semiconductor package according to the first embodiment of the present invention, the semiconductor element 1 is mounted on the central portion of one surface of the insulating member 2 by the die bond material 4. The periphery is sealed with a sealing resin material 8. A plurality of bonding pads 6 are provided along the periphery of one surface of the semiconductor element 1, and the bonding pads 6 and the plurality of wiring patterns 3 provided on one surface of the insulating member 2 are bonded wires 7 respectively. Electrically connected. Then, the wiring pattern 3 provided on the insulating member 2 and the solder bump 9 are electrically joined.

絶縁性部材2は具体的には絶縁性のエラストマーであるポリイミド樹脂である。ポリイミド樹脂以外でも電気的絶縁性を有する材料であれば何でも良い。例えば、エポキシ樹脂、ガラスエポキシ樹脂、BT(ビスマレイド・トリアジン)樹脂、アラミド樹脂などがある。ハンダバンプ9の一部はアニール時の融解によって配線パターン3の一部である電極部と電気的に接合し凝固して埋設される。   The insulating member 2 is specifically a polyimide resin which is an insulating elastomer. Any material other than polyimide resin may be used as long as it is an electrically insulating material. For example, there are an epoxy resin, a glass epoxy resin, a BT (bismaleide triazine) resin, an aramid resin, and the like. A part of the solder bump 9 is electrically bonded to and solidified by an electrode part which is a part of the wiring pattern 3 by melting at the time of annealing.

配線パターン3は低抵抗導電材料である銅でできている。また、ボンディングワイヤー7も低抵抗導電材料である金あるいはアルミニウムでできている。このように配線パターン3あるいはボンディングワイヤー7の材料としては、ハンダと濡れが良く電気的に低抵抗な導電体が好ましく用いられる。   The wiring pattern 3 is made of copper which is a low resistance conductive material. The bonding wire 7 is also made of gold or aluminum which is a low resistance conductive material. As described above, as the material of the wiring pattern 3 or the bonding wire 7, a conductor that has good wettability with solder and low electrical resistance is preferably used.

封止樹脂材8は具体的にはエポキシ樹脂である。エポキシ樹脂以外でも電気的絶縁性を有する材料であれば何でも良い。例えば、ポリイミド樹脂、フェノール樹脂などがあり、前記絶縁性部材2と同一材料であってもよい。   Specifically, the sealing resin material 8 is an epoxy resin. Any material other than an epoxy resin may be used as long as it is an electrically insulating material. For example, there are polyimide resin and phenol resin, and the same material as the insulating member 2 may be used.

ハンダバンプ9はSn−Ag系で具体的にはSn−3.0Ag−0.5Cuである。この他にもSn−Zn系やSn−Bi系、Sn−Au系、Sn−Al系などPbフリーハンダであれば何でも良いし、鉛共晶であるSn−Pb系であっても良い。   The solder bumps 9 are Sn-Ag series, specifically Sn-3.0Ag-0.5Cu. In addition, any Pb-free solder such as Sn—Zn, Sn—Bi, Sn—Au, or Sn—Al may be used, and a lead eutectic Sn—Pb may be used.

上記構成の半導体パッケージは外形寸法は13mm×13×1.2で質量は約0.5gである。   The semiconductor package having the above configuration has an external dimension of 13 mm × 13 × 1.2 and a mass of about 0.5 g.

以下、本発明の第1の実施の形態における回路基板について説明する。本発明の第1の実施の形態における回路基板は、絶縁性基板10の一方表面に半導体パッケージのハンダバンプ9の配置に対応して配線電極11が配置され、絶縁性基板10の一方表面は絶縁性保護層12でコーディングされている。   The circuit board according to the first embodiment of the present invention will be described below. In the circuit board according to the first embodiment of the present invention, the wiring electrode 11 is arranged on one surface of the insulating substrate 10 corresponding to the arrangement of the solder bumps 9 of the semiconductor package, and the one surface of the insulating substrate 10 is insulative. It is coded with a protective layer 12.

絶縁性基板10は具体的には絶縁性材料であるガラスエポキシ樹脂である。また、配線電極11は低抵抗導電材料である銅でできている。   Specifically, the insulating substrate 10 is a glass epoxy resin which is an insulating material. The wiring electrode 11 is made of copper, which is a low resistance conductive material.

絶縁性基板10の材料は、電気的絶縁性を有する材料であれば何でも良く、例えば紙フェノール樹脂、ガラスエポキシ樹脂、ポリイミド樹脂、BT(ビスマレイド・トリアジン)樹脂などがある。   The material of the insulating substrate 10 may be anything as long as it is an electrically insulating material. Examples thereof include paper phenol resin, glass epoxy resin, polyimide resin, and BT (bismaleide triazine) resin.

配線電極11の材料としては、ハンダと濡れが良く、電気的に低抵抗な導電体が好ましく用いられる。   As a material for the wiring electrode 11, a conductor that has good solder and wettability and is electrically low in resistance is preferably used.

絶縁性保護層12の材料は、電気的絶縁性を有する材料であれば何でもよく、半導体パッケージを構成する絶縁性部材2と同一材料であってもよい。   The material of the insulating protective layer 12 may be any material having electrical insulation, and may be the same material as the insulating member 2 constituting the semiconductor package.

以下、本発明の第1の実施の形態における半導体パッケージと回路基板のリフローハンダ付け方法および、それによって構成される半導体装置について図8を用いて説明する。本発明の第1の実施の形態における半導体パッケージと回路基板のリフローハンダ付け方法は、前述した回路基板60にマスクを密着させスキージを移動させる方法などにより、配線電極11上にクリームハンダ15を印刷し、その上にディスペンサーにより接着剤(図示せず)を塗布し、スペーサー部材13を回路基板60上の適当な位置に設置する。このとき、スペーサー部材13はリフロー装置内におけるリフロー時の熱膨張の際に、ハンダバンプ9に接触することのないような位置に接着剤を用いて設置される(a)。本実施例では半導体パッケージ50の中央部に位置するように、回路基板60上にスペーサー部材を1つ設置しているが、半導体パッケージ50の中央部にハンダバンプが配列されている場合は図9に示すように半導体パッケージ50の角部分に位置するように回路基板60上にスペーサー部材を4つ設置すればよい。また、スペーサー部材の高さはリフローハンダ付け前のハンダバンプ9の高さと同様になるように設定される。上述のように、半導体パッケージの構造や半導体パッケージと回路基板との位置関係に対応して、スペーサー部材13の形状や位置、個数は最適化して配置される(a)。そして、マウンターなどにより前述した半導体パッケージ50のハンダバンプ9が配線電極11上に位置するように半導体パッケージをマウントする(b)。そして、その状態でリフロー装置内に搬送し、赤外線やレーザ光等の熱線照射あるいは加熱された雰囲気からの電動熱による熱風などによって、ハンダバンプ9の少なくともその一部を加熱・溶融させる。ハンダバンプ9がSn−3.0Ag−0.5Cuのときのリフローハンダ付けの際のリフロー温度の最大値は約260℃に設定される。(c)。このとき、半導体パッケージ50と回路基板60との間に配置したスペーサー部材13は熱膨張により鉛直上方向に伸長する。この熱膨張により半導体パッケージ50を鉛直上方向に押し上げる力が半導体パッケージ50の自重より大きいため、半導体パッケージ50と回路基板60との間隔がリフローハンダ付け前よりも広がる。この過程において、ハンダバンプは鉛直上方向に引き延ばされるために図7に示すようにハンダバンプの接合角が鈍角で中央部がくびれた鼓型形状を形成する(d)。そして、冷却工程においてハンダバンプが鼓型形状のままの状態で固化された後に、冷却装置から取り出され、回路基板に半導体パッケージが実装された半導体装置の完成となる(e)。   A semiconductor package and circuit board reflow soldering method and a semiconductor device constituted by the semiconductor package and the circuit board according to the first embodiment of the present invention will be described below with reference to FIG. The reflow soldering method for the semiconductor package and the circuit board according to the first embodiment of the present invention is to print the cream solder 15 on the wiring electrode 11 by the method of moving the squeegee with the mask in close contact with the circuit board 60 described above. Then, an adhesive (not shown) is applied thereon with a dispenser, and the spacer member 13 is placed at an appropriate position on the circuit board 60. At this time, the spacer member 13 is installed using an adhesive at a position where it does not come into contact with the solder bumps 9 during thermal expansion during reflow in the reflow apparatus (a). In this embodiment, one spacer member is provided on the circuit board 60 so as to be located at the center of the semiconductor package 50. However, when solder bumps are arranged at the center of the semiconductor package 50, FIG. As shown, four spacer members may be provided on the circuit board 60 so as to be positioned at the corners of the semiconductor package 50. The height of the spacer member is set to be the same as the height of the solder bump 9 before reflow soldering. As described above, the shape, position, and number of the spacer members 13 are optimized and arranged in accordance with the structure of the semiconductor package and the positional relationship between the semiconductor package and the circuit board (a). Then, the semiconductor package is mounted by a mounter or the like so that the solder bump 9 of the semiconductor package 50 described above is positioned on the wiring electrode 11 (b). Then, the solder bump 9 is transported into the reflow apparatus in that state, and at least a part of the solder bump 9 is heated and melted by hot air irradiation by heat rays such as infrared rays and laser light or electric heat from a heated atmosphere. The maximum value of the reflow temperature during reflow soldering when the solder bump 9 is Sn-3.0Ag-0.5Cu is set to about 260 ° C. (C). At this time, the spacer member 13 disposed between the semiconductor package 50 and the circuit board 60 extends vertically upward due to thermal expansion. Since the force that pushes the semiconductor package 50 upward in the vertical direction due to this thermal expansion is greater than the weight of the semiconductor package 50, the distance between the semiconductor package 50 and the circuit board 60 becomes wider than before reflow soldering. In this process, since the solder bumps are stretched vertically upward, as shown in FIG. 7, a drum-shaped shape is formed in which the solder bump has an obtuse angle and a narrow central portion (d). Then, after the solder bumps are solidified in the state of the drum shape in the cooling process, the solder bumps are taken out from the cooling device, and the semiconductor device in which the semiconductor package is mounted on the circuit board is completed (e).

本発明の第1の実施の形態におけるスペーサー部材について説明する。リフローハンダ付けの際に半導体パッケージ50と回路基板60の間に配置されるスペーサー部材13は、半導体パッケージ50の自重をP、スペーサー部材13の弾性係数をE、断面積(スペーサー部材が複数の場合は各スペーサー部材の断面積の総和)をA、リフローハンダ付けの際のリフロー温度差(リフロースタート時の温度とリフロー時の最高温度との差)をΔtとしたときに、そのスペーサー部材13の熱膨張率αはP/(A・E)/Δt<α<(2+(A・E))/Δtの範囲内に設定される。この熱膨張率の範囲内の設定については以下の理由による。すなわち、半導体パッケージ50の自重によりスペーサー部材13はΔL1=L・P/(A・E)だけ鉛直下方向に収縮する(Lはリフローハンダ付け前のスペーサー部材の鉛直方向の高さ)。一方、リフローハンダ付けの際の温度荷重によりスペーサー部材13はΔL2=L・α・Δtだけ鉛直上方向に伸長する。そして、リフローハンダ付け後のスペーサー部材の高さは両者の差ΔL2−ΔL1となり、それによって半導体パッケージ50と回路基板60の間隔が規定される。従って、リフローハンダ付け後の半導体パッケージ50と回路基板60の間隔が、リフローハンダ付け前のスペーサー部材の高さLより広く、前記リフローハンダ付け前のスペーサー部材の高さLの3倍(3L)より狭くなるように形成せしめるためにはスペーサー部材の熱膨張率αがP/(A・E)/Δt<α<(2+(A・E))/Δtの範囲内にあればよい。この範囲より小さいと、リフローハンダ付けの際の熱膨張によるスペーサー部材の伸長量よりも半導体パッケージの自重によるスペーサー部材の収縮量が大きいため、半導体パッケージが下降してしまいリフローハンダ付け後のハンダバンプは太鼓型形状となり、ハンダ接合部に応力やひずみが集中しやすく破壊しやすい。一方、この範囲より大きいと、リフローハンダ付けの際、ハンダバンプがスペーサー部材の伸長量に伴って引き延ばされて、リフローハンダ付け後のハンダバンプの中央部分の面積が非常に狭くなり、鉛直方向の荷重に対する機械的強度が確保されず、また、半導体パッケージと回路基板との電気的接続も確保できなくなる恐れも生じる。例えば、スペーサー部材13の材料を弾性係数E=18.0GPa、熱膨張係数α=15×10−6/℃、断面積A=0.05mmを有するエポキシ樹脂とすると、本発明の第1の実施の形態においてスペーサー部材の満たすべき熱膨張率αは2.42×10−9/℃<α<8.89×10−3/℃となり、エポキシ樹脂の熱膨張係数は上記範囲内であるため本発明における目的を達成することが可能である。もちろん、スペーサー部材13は金属、非金属を問わずその部材の熱膨張係数αがP/(A・E)/Δt<α<(2+(A・E))/Δtの範囲内にあれば何でも良いことはいうまでもない。 The spacer member in the 1st Embodiment of this invention is demonstrated. The spacer member 13 disposed between the semiconductor package 50 and the circuit board 60 during reflow soldering has a weight P of the semiconductor package 50, an elastic modulus E of the spacer member 13, and a cross-sectional area (when there are a plurality of spacer members). Is the sum of the cross-sectional areas of the spacer members) and A is the reflow temperature difference during reflow soldering (the difference between the temperature at the start of reflow and the maximum temperature at the reflow) is Δt. The thermal expansion coefficient α is set within the range of P / (A · E) / Δt <α <(2+ (A · E)) / Δt. The setting within the range of the coefficient of thermal expansion is as follows. That is, the spacer member 13 contracts vertically downward by ΔL1 = L · P / (A · E) due to the weight of the semiconductor package 50 (L is the vertical height of the spacer member before reflow soldering). On the other hand, the spacer member 13 extends vertically upward by ΔL2 = L · α · Δt due to the temperature load during reflow soldering. Then, the height of the spacer member after reflow soldering becomes the difference ΔL2−ΔL1 between them, thereby defining the distance between the semiconductor package 50 and the circuit board 60. Accordingly, the distance between the semiconductor package 50 after reflow soldering and the circuit board 60 is wider than the height L of the spacer member before reflow soldering, and is three times (3L) the height L of the spacer member before reflow soldering. In order to form the spacer member so as to be narrower, the thermal expansion coefficient α of the spacer member may be in the range of P / (A · E) / Δt <α <(2+ (A · E)) / Δt. If it is smaller than this range, the amount of shrinkage of the spacer member due to the weight of the semiconductor package is larger than the amount of expansion of the spacer member due to thermal expansion during reflow soldering, so the semiconductor package falls and the solder bumps after reflow soldering are It has a drum shape, and stress and strain tend to concentrate on the solder joints and break easily. On the other hand, if it is larger than this range, during reflow soldering, the solder bumps are stretched along with the extension amount of the spacer member, and the area of the center part of the solder bumps after reflow soldering becomes very narrow, and the vertical direction There is a risk that the mechanical strength against the load is not ensured and the electrical connection between the semiconductor package and the circuit board cannot be secured. For example, when the material of the spacer member 13 is an epoxy resin having an elastic coefficient E = 18.0 GPa, a thermal expansion coefficient α = 15 × 10 −6 / ° C., and a cross-sectional area A = 0.05 mm 2 , In the embodiment, the thermal expansion coefficient α to be satisfied by the spacer member is 2.42 × 10 −9 / ° C. <α <8.89 × 10 −3 / ° C., and the thermal expansion coefficient of the epoxy resin is within the above range. It is possible to achieve the object in the present invention. Of course, the spacer member 13 may be any metal or non-metal as long as its thermal expansion coefficient α is in the range of P / (A · E) / Δt <α <(2+ (A · E)) / Δt. It goes without saying that it is good.

本発明の第1の実施の形態によれば、半導体パッケージと回路基板とを接続するハンダバンプが、リフローハンダ付けの際、半導体パッケージと回路基板との間に配置したスペーサー部材の熱膨張により、膨張したスペーサー部材の高さまでハンダバンプが引き延ばされ、接合角が鈍角となり、図7に示すようにハンダバンプは概ね鼓型形状に形成された状態で固化されるため、信頼性および対疲労性強度の高いハンダバンプの形成が可能である。また、吸着器具のようなコストのかかる大規模で複雑な装置が不要な簡単なリフローハンダ付け方法を提供することが可能である。上記構成の半導体装置は、半導体パッケージおよび回路基板の構成部材の熱膨張係数の相違に起因して発生する応力やひずみが分散される構造となり、クラックの発生を阻害することができ、ハンダ接合部における信頼性および耐疲労強度が向上し半導体装置の寿命が改善される。   According to the first embodiment of the present invention, the solder bump connecting the semiconductor package and the circuit board expands due to the thermal expansion of the spacer member disposed between the semiconductor package and the circuit board during reflow soldering. The solder bumps are extended to the height of the spacer member, the joint angle becomes obtuse, and the solder bumps are solidified in a generally drum-shaped shape as shown in FIG. High solder bumps can be formed. Further, it is possible to provide a simple reflow soldering method that does not require a large-scale and complicated device such as a suction device. The semiconductor device having the above structure has a structure in which stress and strain generated due to differences in thermal expansion coefficients of the components of the semiconductor package and the circuit board are dispersed, which can inhibit the occurrence of cracks, and solder joints The reliability and fatigue strength of the semiconductor device are improved, and the life of the semiconductor device is improved.

図2は本発明の第2の実施の形態に係る半導体パッケージと回路基板のハンダ付け方法によって構成された半導体装置の模式的な断面図であり、図10は本発明の第2の実施の形態に係る半導体パッケージと回路基板のハンダ付け方法を示す模式図である。図2は半導体パッケージ50と回路基板60との間にスペーサー部材の他に固定部材を設置したことを特徴とする半導体装置である。その他の構成については第1の実施の形態と同じである。   FIG. 2 is a schematic cross-sectional view of a semiconductor device configured by a method of soldering a semiconductor package and a circuit board according to the second embodiment of the present invention, and FIG. 10 is a second embodiment of the present invention. It is a schematic diagram which shows the semiconductor package which concerns on, and the soldering method of a circuit board. FIG. 2 shows a semiconductor device in which a fixing member is installed between the semiconductor package 50 and the circuit board 60 in addition to the spacer member. Other configurations are the same as those in the first embodiment.

以下、本発明の第2の実施の形態における半導体パッケージと回路基板のリフローハンダ付け方法および、それによって構成される半導体装置について図10を用いて説明する。本発明の第2の実施の形態における半導体パッケージと回路基板のリフローハンダ付け方法は、回路基板60にマスクを密着させスキージを移動させる方法などにより、配線電極11上にクリームハンダ15を印刷し、その上にディスペンサーにより接着剤(図示せず)を塗布し、スペーサー部材を回路基板60上の適当な位置に設置する。このスペーサー部材については第1の実施の形態と同様にすればよい。また、このときに固定部材14を半導体パッケージ50の角部分に位置するように回路基板60上に4つ接着剤を用いて設置している。固定部材14はリフロー装置内におけるリフロー時の熱膨張の際に、ハンダバンプに接触することのないような位置であればどこでもよい。この固定部材14は半導体パッケージ50の自重を支えるだけの剛性を有していれば何でもよく、例えば銅、アルミ、鋼材などが用いられる。また、この固定部材の高さはリフローハンダ付け前のハンダバンプ9の高さと同様になるように設定される。上述のように、半導体パッケージの構造や半導体パッケージと回路基板との位置関係、スペース部材の位置に対応して、固定部材14の形状や位置、個数は最適化して配置される(a)。そして、マウンターなどにより半導体パッケージ50のハンダバンプ9が配線電極11上に位置するように半導体パッケージをマウントする(b)。そして、その状態でリフロー装置内に搬送し、赤外線やレーザ光等の熱線照射あるいは加熱された雰囲気からの電動熱による熱風などによって、ハンダバンプ9の少なくともその一部を加熱・溶融させる(c)。このとき、固定部材14が半導体パッケージ50の自重により半導体パッケージが降下するのを防止し、リフロー前より半導体パッケージ50と回路基板60の間隔が狭くならないようにしている。そして、半導体パッケージ50と回路基板60との間に配置されたスペーサー部材13は熱膨張により鉛直上方向に伸長する。この熱膨張により半導体パッケージ50を鉛直上方向に押し上げ、半導体パッケージ50と回路基板60との間隔がリフローハンダ付け前よりも広がる。この過程において、ハンダバンプは鉛直上方向に引き延ばされるために図7に示すようにハンダバンプの接合角が鈍角で中央部がくびれた鼓型形状を形成する(d)。そして、冷却工程においてハンダバンプが鼓型形状のままの状態で固化された後に、冷却装置から取り出され、回路基板に半導体パッケージが実装された半導体装置の完成となる(e)。   Hereinafter, a semiconductor package and circuit board reflow soldering method according to a second embodiment of the present invention, and a semiconductor device constituted thereby will be described with reference to FIG. The reflow soldering method of the semiconductor package and the circuit board in the second embodiment of the present invention is to print the cream solder 15 on the wiring electrode 11 by a method of moving the squeegee while bringing the mask into close contact with the circuit board 60, An adhesive (not shown) is applied thereon with a dispenser, and the spacer member is placed at an appropriate position on the circuit board 60. This spacer member may be the same as in the first embodiment. At this time, the four fixing members 14 are installed on the circuit board 60 by using an adhesive so as to be positioned at the corners of the semiconductor package 50. The fixing member 14 may be anywhere as long as it does not come into contact with the solder bump during thermal expansion during reflow in the reflow apparatus. The fixing member 14 may be anything as long as it has sufficient rigidity to support the weight of the semiconductor package 50. For example, copper, aluminum, steel, or the like is used. The height of the fixing member is set to be the same as the height of the solder bump 9 before reflow soldering. As described above, the shape, position, and number of the fixing members 14 are optimized and arranged in accordance with the structure of the semiconductor package, the positional relationship between the semiconductor package and the circuit board, and the position of the space member (a). Then, the semiconductor package is mounted by a mounter or the like so that the solder bump 9 of the semiconductor package 50 is positioned on the wiring electrode 11 (b). Then, it is conveyed into the reflow apparatus in that state, and at least a part of the solder bump 9 is heated and melted by hot-air irradiation with heat rays such as infrared rays or laser light or electric heat from a heated atmosphere (c). At this time, the fixing member 14 prevents the semiconductor package from dropping due to its own weight, so that the distance between the semiconductor package 50 and the circuit board 60 does not become narrower than before reflow. The spacer member 13 disposed between the semiconductor package 50 and the circuit board 60 extends vertically upward due to thermal expansion. Due to this thermal expansion, the semiconductor package 50 is pushed vertically upward, and the distance between the semiconductor package 50 and the circuit board 60 becomes wider than before reflow soldering. In this process, since the solder bumps are stretched vertically upward, as shown in FIG. 7, a drum-shaped shape is formed in which the solder bump has an obtuse angle and a narrow central portion (d). Then, after the solder bumps are solidified in the state of the drum shape in the cooling process, the solder bumps are taken out from the cooling device, and the semiconductor device in which the semiconductor package is mounted on the circuit board is completed (e).

本発明の第2の実施の形態によれば、半導体パッケージと回路基板とを接続するハンダバンプが、リフローハンダ付けの際、半導体パッケージと回路基板との間に配置したスペーサー部材の熱膨張により、膨張したスペーサー部材の高さまでハンダバンプが引き延ばされ、接合角が鈍角となり、図8に示すようにハンダバンプは概ね鼓型形状に形成された状態で固化されるため、信頼性および対疲労性強度の高いハンダバンプの形成が可能である。また、半導体パッケージと回路基板との間に配置した固定部材がリフローハンダ付けの際、半導体パッケージがそれ自身の自重により降下するのを防ぐため、半導体パッケージと回路基板の間隔を確実に広げることが可能である。上記構成の半導体装置は、半導体パッケージおよび回路基板の構成部材の熱膨張係数の相違に起因して発生する応力やひずみが分散される構造となり、クラックの発生を阻害することができ、ハンダ接合部における信頼性および耐疲労強度が向上し半導体装置の寿命が改善される。   According to the second embodiment of the present invention, the solder bump connecting the semiconductor package and the circuit board expands due to the thermal expansion of the spacer member disposed between the semiconductor package and the circuit board during reflow soldering. The solder bumps are extended to the height of the spacer member, the joint angle becomes obtuse, and the solder bumps are solidified in a generally drum-shaped shape as shown in FIG. High solder bumps can be formed. Further, when the fixing member disposed between the semiconductor package and the circuit board is subjected to reflow soldering, the distance between the semiconductor package and the circuit board can be surely increased in order to prevent the semiconductor package from dropping due to its own weight. Is possible. The semiconductor device having the above structure has a structure in which stress and strain generated due to differences in thermal expansion coefficients of the components of the semiconductor package and the circuit board are dispersed, which can inhibit the occurrence of cracks, and solder joints The reliability and fatigue strength of the semiconductor device are improved, and the life of the semiconductor device is improved.

以上から、本発明に従えば、ハンダ接合部の信頼性および耐疲労強度の向上を実現せしめるリフローハンダ付けが可能となり、それによって構成された半導体装置の疲労寿命を飛躍的に延長することができる。   As described above, according to the present invention, it is possible to perform reflow soldering that realizes improvement of reliability and fatigue resistance of the solder joint portion, and the fatigue life of the semiconductor device constituted thereby can be dramatically extended. .

なお、上述の実施形態は本発明の好適な実施の一例である。ただし、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々変形実施が可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention.

本発明の第1の実施の形態に係る半導体装置を示す模式的断面図である。1 is a schematic cross-sectional view showing a semiconductor device according to a first embodiment of the present invention. 本発明の第2の実施の形態に係る半導体装置を示す模式的断面図である。It is a typical sectional view showing a semiconductor device concerning a 2nd embodiment of the present invention. 半導体装置の概略を示す模式的断面図である。It is typical sectional drawing which shows the outline of a semiconductor device. 従来の半導体装置を示す模式的断面図である。It is typical sectional drawing which shows the conventional semiconductor device. 従来の半導体装置を示す模式的断面図である。It is typical sectional drawing which shows the conventional semiconductor device. 従来の半導体装置におけるハンダ接合部の拡大図である。It is an enlarged view of a solder joint in a conventional semiconductor device. 本発明の半導体装置におけるハンダ接合部の拡大図である。It is an enlarged view of the solder joint part in the semiconductor device of this invention. 本発明の第1の実施の形態に係る半導体パッケージと回路基板のリフローハンダ付け方法を示す模式図である。It is a schematic diagram which shows the reflow soldering method of the semiconductor package and circuit board which concern on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る半導体パッケージと回路基板のリフローハンダ付け方法を示す模式図である。It is a schematic diagram which shows the reflow soldering method of the semiconductor package and circuit board which concern on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る半導体パッケージと回路基板のリフローハンダ付け方法を示す模式図である。It is a schematic diagram which shows the reflow soldering method of the semiconductor package and circuit board which concern on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 半導体素子
2 絶縁性部材
3 配線パターン
4 ダイボンド材
5 絶縁性保護膜
6 ボンディングパッド
7 ボンディングワイヤー
8 封止樹脂材
9 ハンダバンプ
10 絶縁性基板
11 配線電極
12 絶縁性保護層
13 スペーサー部材
14 固定部材
15 クリームハンダ
20 弾性部材
21 吸着器具
50 半導体パッケージ
60 回路基板
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Insulating member 3 Wiring pattern 4 Die bond material 5 Insulating protective film 6 Bonding pad 7 Bonding wire 8 Sealing resin material 9 Solder bump 10 Insulating substrate 11 Wiring electrode 12 Insulating protective layer 13 Spacer member 14 Fixing member 15 Cream solder 20 Elastic member 21 Adsorption device 50 Semiconductor package 60 Circuit board

Claims (4)

リフローにより半導体パッケージを回路基板にハンダ接続させるリフローハンダ付け方法であって、前記半導体パッケージと前記回路基板との間にスペーサー部材を配置し、リフローハンダ付けの際、前記スペーサー部材の熱膨張により前記半導体パッケージと前記回路基板との間隔がリフローハンダ付け前よりも広がり、その後、その間隔を保ってハンダが固化されることを特徴とする半導体パッケージと回路基板のリフローハンダ付け方法。   A reflow soldering method for solder-connecting a semiconductor package to a circuit board by reflow, wherein a spacer member is disposed between the semiconductor package and the circuit board, and the reflow soldering causes the thermal expansion of the spacer member to A reflow soldering method for a semiconductor package and a circuit board, wherein the distance between the semiconductor package and the circuit board is larger than that before reflow soldering, and then the solder is solidified while maintaining the distance. リフローにより半導体パッケージを回路基板にハンダ接続させるリフローハンダ付け方法であって、前記半導体パッケージの自重をP、前記スペーサー部材の弾性係数をE、断面積(スペーサー部材が複数の場合は各スペーサー部材の断面積の総和)をA、リフローハンダ付けの際のリフロー温度差をΔtとしたときに、前記スペーサー部材の熱膨張率αがP/(A・E)/Δt<α<(2+(A・E))/Δtの範囲内に設定したことを特徴とする請求項1に記載の半導体パッケージと回路基板のリフローハンダ付け方法。   A reflow soldering method in which a semiconductor package is solder-connected to a circuit board by reflow, wherein the weight of the semiconductor package is P, the elastic modulus of the spacer member is E, and the cross-sectional area (if there are a plurality of spacer members, When the total cross-sectional area) is A and the reflow temperature difference during reflow soldering is Δt, the thermal expansion coefficient α of the spacer member is P / (A · E) / Δt <α <(2+ (A · 2. The reflow soldering method for a semiconductor package and a circuit board according to claim 1, wherein the reflow soldering is set within a range of E)) / Δt. 回路基板と前記回路基板の表面にリフローハンダ付け方法により実装された半導体パッケージとから構成される半導体装置であって、前記半導体パッケージと前記回路基板との間にスペーサー部材を配置し、リフローハンダ付けの際、前記スペーサー部材の熱膨張により前記半導体パッケージと前記回路基板との間隔がリフローハンダ付け前よりも広がり、その後、その間隔を保ってハンダが固化されることを特徴とする半導体装置。   A semiconductor device comprising a circuit board and a semiconductor package mounted on the surface of the circuit board by a reflow soldering method, wherein a spacer member is disposed between the semiconductor package and the circuit board, and reflow soldering is performed. In this case, the space between the semiconductor package and the circuit board becomes larger than that before reflow soldering due to thermal expansion of the spacer member, and then the solder is solidified while maintaining the space. 回路基板と前記回路基板の表面にリフローハンダ付け方法により実装された半導体パッケージとから構成される半導体装置であって、前記半導体パッケージの自重をP、前記スペーサー部材の弾性係数をE、断面積(スペーサー部材が複数の場合は各スペーサー部材の断面積の総和)をA、リフローハンダ付けの際のリフロー温度差をΔtとしたときに、前記スペーサー部材の熱膨張率αがP/(A・E)/Δt<α<(2+(A・E))/Δtの範囲内に設定したことを特徴とする請求項3に記載の半導体装置。   A semiconductor device comprising a circuit board and a semiconductor package mounted on the surface of the circuit board by a reflow soldering method, wherein the weight of the semiconductor package is P, the elastic modulus of the spacer member is E, and the cross-sectional area ( When there are a plurality of spacer members, the thermal expansion coefficient α of the spacer member is P / (A · E) where A is the sum of the cross-sectional areas of the spacer members and Δt is the reflow temperature difference during reflow soldering. 4. The semiconductor device according to claim 3, wherein the semiconductor device is set within a range of:) / Δt <α <(2+ (A · E)) / Δt.
JP2005163850A 2005-06-03 2005-06-03 Method for reflow soldering of semiconductor package and circuit board, and semiconductor device Withdrawn JP2006339491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005163850A JP2006339491A (en) 2005-06-03 2005-06-03 Method for reflow soldering of semiconductor package and circuit board, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005163850A JP2006339491A (en) 2005-06-03 2005-06-03 Method for reflow soldering of semiconductor package and circuit board, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2006339491A true JP2006339491A (en) 2006-12-14

Family

ID=37559764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005163850A Withdrawn JP2006339491A (en) 2005-06-03 2005-06-03 Method for reflow soldering of semiconductor package and circuit board, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2006339491A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226946A (en) * 2007-03-09 2008-09-25 Nec Corp Semiconductor device and its manufacturing method
EP2413678A1 (en) 2010-07-30 2012-02-01 Fujitsu Limited Printed circuit board unit, method for manufacturing printed circuit board unit, and electronic apparatus
US9041200B2 (en) 2013-06-03 2015-05-26 Samsung Electronics Co., Ltd. Semiconductor devices having solder terminals spaced apart from mold layers and related methods
WO2015175554A3 (en) * 2014-05-12 2016-01-07 Invensas Corporation Forming a conductive connection by melting a solder portion without melting another solder portion with the same melting point and a corresponding conductive connection
US9793198B2 (en) 2014-05-12 2017-10-17 Invensas Corporation Conductive connections, structures with such connections, and methods of manufacture
DE102023132186A1 (en) * 2023-08-03 2025-02-06 Taiwan Semiconductor Manufacturing Co., Ltd. PACKAGE CONNECTORS IN SEMICONDUCTOR PACKAGES AND METHODS FOR THEIR FORMATION

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226946A (en) * 2007-03-09 2008-09-25 Nec Corp Semiconductor device and its manufacturing method
EP2413678A1 (en) 2010-07-30 2012-02-01 Fujitsu Limited Printed circuit board unit, method for manufacturing printed circuit board unit, and electronic apparatus
US9041200B2 (en) 2013-06-03 2015-05-26 Samsung Electronics Co., Ltd. Semiconductor devices having solder terminals spaced apart from mold layers and related methods
WO2015175554A3 (en) * 2014-05-12 2016-01-07 Invensas Corporation Forming a conductive connection by melting a solder portion without melting another solder portion with the same melting point and a corresponding conductive connection
US9437566B2 (en) 2014-05-12 2016-09-06 Invensas Corporation Conductive connections, structures with such connections, and methods of manufacture
US9793198B2 (en) 2014-05-12 2017-10-17 Invensas Corporation Conductive connections, structures with such connections, and methods of manufacture
US10049998B2 (en) 2014-05-12 2018-08-14 Invensas Corporation Conductive connections, structures with such connections, and methods of manufacture
US10090231B2 (en) 2014-05-12 2018-10-02 Invensas Corporation Conductive connections, structures with such connections, and methods of manufacture
DE102023132186A1 (en) * 2023-08-03 2025-02-06 Taiwan Semiconductor Manufacturing Co., Ltd. PACKAGE CONNECTORS IN SEMICONDUCTOR PACKAGES AND METHODS FOR THEIR FORMATION
DE102023132186B4 (en) * 2023-08-03 2025-07-24 Taiwan Semiconductor Manufacturing Co., Ltd. PACKAGE CONNECTORS IN SEMICONDUCTOR PACKAGES AND METHODS FOR THEIR FORMATION

Similar Documents

Publication Publication Date Title
US6458623B1 (en) Conductive adhesive interconnection with insulating polymer carrier
WO2009116517A1 (en) Electronic device and method for manufacturing the same
EP0473929B1 (en) Method of forming a thin film electronic device
KR101014756B1 (en) How to Mount Electronic Devices and Electronic Components
KR19990023296A (en) Mounting Structure of Semiconductor Device
US20070063324A1 (en) Structure and method for reducing warp of substrate
JP2015038927A (en) Electronic device and manufacturing method of electronic device
US5844319A (en) Microelectronic assembly with collar surrounding integrated circuit component on a substrate
US5115964A (en) Method for bonding thin film electronic device
KR100743272B1 (en) Highly reliable semiconductor device using hermetic sealing of electrodes
JP4154397B2 (en) Electronic device, standoff member, and method of manufacturing electronic device
KR20020044577A (en) Advanced flip-chip join package
JP4692101B2 (en) Part joining method
JP2006339491A (en) Method for reflow soldering of semiconductor package and circuit board, and semiconductor device
JP2007157863A (en) Power semiconductor device and manufacturing method thereof
US20030202332A1 (en) Second level packaging interconnection method with improved thermal and reliability performance
JP4557804B2 (en) Semiconductor device and manufacturing method thereof
JP3847602B2 (en) Stacked semiconductor device, method for manufacturing the same, motherboard mounted with semiconductor device, and method for manufacturing motherboard mounted with semiconductor device
US7064451B2 (en) Area array semiconductor device and electronic circuit board utilizing the same
WO2004018719A1 (en) Negative volume expansion lead-free electrical connection
JP2001168224A (en) Semiconductor device, electronic circuit device, and its manufacturing method
JP2006086161A (en) Semiconductor device
JP2003060336A (en) Method for mounting semiconductor device and semiconductor package
JPH11233682A (en) External connection terminal of semiconductor device
JP5126073B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805