[go: up one dir, main page]

JP2006339010A - Electrolytic solution for electrochemical device - Google Patents

Electrolytic solution for electrochemical device Download PDF

Info

Publication number
JP2006339010A
JP2006339010A JP2005161665A JP2005161665A JP2006339010A JP 2006339010 A JP2006339010 A JP 2006339010A JP 2005161665 A JP2005161665 A JP 2005161665A JP 2005161665 A JP2005161665 A JP 2005161665A JP 2006339010 A JP2006339010 A JP 2006339010A
Authority
JP
Japan
Prior art keywords
trifluoro
less
electrolyte solution
nonionic surfactant
electrochemical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005161665A
Other languages
Japanese (ja)
Inventor
Hidesato Saruwatari
秀郷 猿渡
Hirotaka Inagaki
浩貴 稲垣
Norio Takami
則雄 高見
Shoichi Tsujioka
辻岡  章一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Central Glass Co Ltd
Original Assignee
Toshiba Corp
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Central Glass Co Ltd filed Critical Toshiba Corp
Priority to JP2005161665A priority Critical patent/JP2006339010A/en
Publication of JP2006339010A publication Critical patent/JP2006339010A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic solution for an electrochemical device superior in thermal stability and having high impregnating performance. <P>SOLUTION: The electrolytic solution for the electrochemical device contains difluoro (trifluoro-2-oxide-2-trifluoro-methylpropionate(2-)-0, 0) boric acid ion as expressed by the chemical formula 0.2 M or more and 3 M or less and a non-ionic surfactant 0.1 wt% or more and 3 wt% or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気化学デバイス用電解液に関するものである。   The present invention relates to an electrolyte for an electrochemical device.

現在実用化されているLiPF6またはLiBF4にかわるLi塩としてジフルオロ(トリフルオロ−2−オキシド−2−トリフルオロ−メチルプロピオナト(2−)−0,0)ホウ酸リチウム(LiBF2(OOCOC(CF3)2)(LiBF2(HHIB)と略す))がある(特許文献1)。このLi塩は、LiPF6及びLiBF4に比較して熱安定性が高い。しかしながら、このジフルオロ(トリフルオロ−2−オキシド−2−トリフルオロ−メチルプロピオナト(2−)−0,0)ホウ酸リチウムを含む電解液は、リチウム塩濃度を高くした場合の粘度上昇が大きいため、電気化学デバイスへの含浸が困難であるという問題を有する。
特開2001−110450号公報
Difluoro (trifluoro-2-oxide-2-trifluoro-methylpropionate (2-)-0,0) lithium borate (LiBF 2 (OOCOC) as a Li salt in place of LiPF 6 or LiBF 4 that is currently in practical use (CF 3 ) 2 ) (abbreviated as LiBF 2 (HHIB))) (Patent Document 1). This Li salt has higher thermal stability than LiPF 6 and LiBF 4 . However, the electrolyte containing this difluoro (trifluoro-2-oxide-2-trifluoro-methylpropionate (2-)-0,0) lithium borate has a large increase in viscosity when the lithium salt concentration is increased. Therefore, there is a problem that it is difficult to impregnate the electrochemical device.
JP 2001-110450 A

本発明の目的は、含浸性の高い電気化学デバイス用電解液を提供することにある。   The objective of this invention is providing the electrolyte solution for electrochemical devices with high impregnation property.

本発明に係る電気化学デバイス用電解液は、下記化3に示されるジフルオロ(トリフルオロ−2−オキシド−2−トリフルオロ−メチルプロピオナト(2−)−0,0)ホウ酸イオンを0.2M以上、3M以下と、
0.1重量%以上、3重量%以下の非イオン性界面活性剤と
を含むことを特徴とする。

Figure 2006339010
The electrolytic solution for an electrochemical device according to the present invention contains difluoro (trifluoro-2-oxide-2-trifluoro-methylpropionate (2-)-0,0) borate ion represented by the following chemical formula 0. 2M or more, 3M or less,
And 0.1 wt% or more and 3 wt% or less of a nonionic surfactant.
Figure 2006339010

本発明によれば、含浸性の高い電気化学デバイス用電解液を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrolyte solution for electrochemical devices with high impregnation property can be provided.

本発明によれば、含浸性の高い電気化学デバイス用電解液を得ることができる。粘度の大きい電気化学デバイス用電解液の電気化学デバイス内への含浸性を向上させるために鋭意研究を進めた結果、電解質成分としてジフルオロ(トリフルオロ−2−オキシド−2−トリフルオロ−メチルプロピオナト(2−)−0,0)ホウ酸イオンを0.2M以上、3M以下含む電解液に非イオン性界面活性剤を0.1重量%以上、3重量%以下添加することで、電気化学デバイス内への含浸性が大幅に向上されることを見出した。また、この電解液は、高い熱安定性も実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrolyte solution for electrochemical devices with high impregnation property can be obtained. As a result of diligent research in order to improve the impregnation of electrochemical solutions for electrochemical devices with high viscosity into electrochemical devices, difluoro (trifluoro-2-oxide-2-trifluoro-methylpropionate) was used as an electrolyte component. (2-)-0,0) Electrochemical device by adding 0.1 wt% or more and 3 wt% or less of nonionic surfactant to electrolyte containing 0.2M or more and 3M or less of borate ion It has been found that the impregnation property is greatly improved. Moreover, this electrolyte solution can also realize high thermal stability.

上記ホウ酸イオンは、下記化4に示すホウ酸塩から提供されることが望ましい。

Figure 2006339010
It is desirable that the borate ion is provided from a borate shown in Chemical Formula 4 below.
Figure 2006339010

但し、Aa+は、金属イオン、水素イオンまたはオニウムイオンで、a及びbはa=bで、1以上、3以下を満たす。このホウ酸塩のカチオンは特に限定されないが、リチウムイオンが好ましい。 However, A a + is a metal ion, a hydrogen ion, or an onium ion, and a and b are a = b, and satisfy 1 or more and 3 or less. The cation of the borate is not particularly limited, but lithium ion is preferable.

非イオン性界面活性剤による含浸性向上の効果は、電解質成分であるジフルオロ(トリフルオロ−2−オキシド−2−トリフルオロ−メチルプロピオナト(2−)−0,0)ホウ酸イオンの濃度を0.2M以上、3M以下の範囲内にした際に得ることができる。0.2Mより小さいと粘度上昇も小さいため非イオン性界面活性剤の添加による効果は得られない。一方、3Mより大きい濃度では、非イオン性界面活性剤を添加しても電解液粘度がほとんど低下しない。より好ましい範囲は、0.5M以上、3M以下である。   The effect of improving the impregnation property by the nonionic surfactant is that the concentration of difluoro (trifluoro-2-oxide-2-trifluoro-methylpropionate (2-)-0,0) borate ion as the electrolyte component is adjusted. It can be obtained when it is within the range of 0.2M or more and 3M or less. If it is less than 0.2M, the increase in viscosity is small, so the effect of adding a nonionic surfactant cannot be obtained. On the other hand, at a concentration higher than 3M, the electrolyte solution viscosity hardly decreases even when a nonionic surfactant is added. A more preferable range is 0.5M or more and 3M or less.

また、非イオン性界面活性剤の量は、0.1重量%未満であると含浸性向上の効果は得られず、3重量%より大きいと導電性が低下するため電解液として不利となる。より好ましい範囲は0.5重量%以上、1重量%以下である。また、非イオン性界面活性剤としては、化5に示すトリアルキルフォスフェートが好ましく、中でもトリオクチルフォスフェート(TOP)がさらに好ましい。ここに示した界面活性剤を添加することで含浸性の向上を達成することができる。

Figure 2006339010
On the other hand, if the amount of the nonionic surfactant is less than 0.1% by weight, the effect of improving the impregnation property cannot be obtained, and if it is more than 3% by weight, the conductivity is lowered, which is disadvantageous as an electrolytic solution. A more preferable range is 0.5% by weight or more and 1% by weight or less. Further, as the nonionic surfactant, a trialkyl phosphate shown in Chemical formula 5 is preferable, and trioctyl phosphate (TOP) is more preferable among them. Improvement of impregnation can be achieved by adding the surfactant shown here.
Figure 2006339010

但し、Rはアルキル基である。   However, R is an alkyl group.

また、電解質成分としてジフルオロ(トリフルオロ−2−オキシド−2−トリフルオロ−メチルプロピオナト(2−)−0,0)ホウ酸イオン以外に、LiBF4、LiPF6、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22及びLi(C49)SO3よりなる群から選択される1種類以上を加えてよい。電解質成分を複数種にする場合、電解質成分濃度を1M以上、3M以下とし、かつホウ酸イオン濃度を0.2M以上、3M以下(より好ましくは0.5M以上、3M以下)にすることが望ましい。 In addition to difluoro (trifluoro-2-oxide-2-trifluoro-methylpropionate (2-)-0,0) borate ions as electrolyte components, LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiN ( One or more selected from the group consisting of CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and Li (C 4 F 9 ) SO 3 may be added. When a plurality of electrolyte components are used, it is desirable that the electrolyte component concentration be 1M or more and 3M or less and the borate ion concentration be 0.2M or more and 3M or less (more preferably 0.5M or more and 3M or less). .

溶媒成分としては、例えば、有機溶媒、イオン性液体等を挙げることができる。有機溶媒としては、特に限定されるものではないが、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、1,2−ジメトキシエタン(DME)、γ−ブチロラクトン(GBL)、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン(2−MeHF)、1,3−ジオキソラン、スルホラン、アセトニトリル(AN)、ジエチルカーボネート(DEC)、ジメチルカーボネイト(DMC)、メチルエチルカーボネイト(MEC)、ジプロピルカーボネート(DPC)などを挙げることができる。また、イオン性液体としては、イミダゾリウム塩、四級アンモニウム塩、ピロリジウム塩及びピペリジウム塩よりなる群から選択されるカチオン種と、BF4、PF6、ビストリフルオロメタンスルホニルアミドアニオン(TFSI)、トリフルオロメチルトリフレート(TFS)、ビスペンタフルオロエタンスルホニルアミドアニオン(BETI)、ジシアナミドアニオン(DCA)及びClよりなる群から選択されるアニオン種とを備えるものを挙げることができる。前記溶媒成分は1種類でもよいし2種類以上含んでもよい。この中でも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)およびγ−ブチロラクトン(GBL)よりなる群から選択される少なくとも2種類の溶媒を含むことが望ましい。EC、PC、GBLの誘電率は、それぞれ90,65,42と大きい。一方、ジフルオロ(トリフルオロ−2−オキシド−2−トリフルオロ−メチルプロピオナト(2−)−0,0)ホウ酸塩は、フッ素塩であるテトラフルオロホウ酸塩やヘキサフルオロリン酸塩に比して解離度が小さい。EC、PC及びGBLのうちから2種類以上を組み合わせて使用することにより、溶媒の誘電率と併せてエントロピーを向上させることができるため、ジフルオロ(トリフルオロ−2−オキシド−2−トリフルオロ−メチルプロピオナト(2−)−0,0)ホウ酸塩の解離を促すことができる。EC、PC及びGBLの三種類全てを使用することにより、ホウ酸塩の解離促進と電解液の熱安定性をさらに向上することができる。 Examples of the solvent component include organic solvents and ionic liquids. The organic solvent is not particularly limited, but propylene carbonate (PC), ethylene carbonate (EC), 1,2-dimethoxyethane (DME), γ-butyrolactone (GBL), tetrahydrofuran (THF), 2- Examples include methyltetrahydrofuran (2-MeHF), 1,3-dioxolane, sulfolane, acetonitrile (AN), diethyl carbonate (DEC), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), dipropyl carbonate (DPC) and the like. Can do. Examples of the ionic liquid include cation species selected from the group consisting of imidazolium salts, quaternary ammonium salts, pyrrolidinium salts, and piperidinium salts, BF 4 , PF 6 , bistrifluoromethanesulfonylamide anion (TFSI), And an anionic species selected from the group consisting of fluoromethyl triflate (TFS), bispentafluoroethanesulfonylamide anion (BETI), dicyanamide anion (DCA) and Cl. The solvent component may be one kind or two or more kinds. Among these, it is desirable to include at least two types of solvents selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC), and γ-butyrolactone (GBL). The dielectric constants of EC, PC, and GBL are as large as 90, 65, and 42, respectively. On the other hand, difluoro (trifluoro-2-oxide-2-trifluoro-methylpropionate (2-)-0,0) borate is different from tetrafluoroborate and hexafluorophosphate which are fluorine salts. The degree of dissociation is small. By using two or more of EC, PC and GBL in combination, the entropy can be improved together with the dielectric constant of the solvent, so difluoro (trifluoro-2-oxide-2-trifluoro-methyl Dissociation of propionate (2-)-0,0) borate can be promoted. By using all three types of EC, PC and GBL, it is possible to further improve the borate dissociation promotion and the thermal stability of the electrolyte.

ホウ酸塩の解離促進のため、EC、PC及びGBLのうちの2種類以上の溶媒は、溶媒成分中に33体積%以上、100体積%以下含むことが望ましい。より好ましい範囲は、80体積%以上、100体積%以下である。   In order to promote dissociation of borate, it is desirable that two or more kinds of solvents among EC, PC, and GBL are contained in the solvent component in an amount of 33% by volume to 100% by volume. A more preferable range is 80 volume% or more and 100 volume% or less.

また電気化学デバイス用電解液内に添加剤を含んでもよい。添加剤としては、特に限定されるものではないが、ビニレンカーボネイト(VC)、ビニレンアセテート(VA)、ビニレンブチレート、ビニレンヘキサネート、ビニレンクロトネート、カテコールカーボネートなどが挙げられる。添加剤の種類は1種類もしくは2種類以上にすることができる。添加剤の濃度は、電解液の0.1重量%以上、3重量%以下の間が好ましい。さらに好ましい範囲は、0.5〜1重量%である。   Moreover, you may include an additive in the electrolyte solution for electrochemical devices. Although it does not specifically limit as an additive, Vinylene carbonate (VC), vinylene acetate (VA), vinylene butyrate, vinylene hexanate, vinylene crotonate, catechol carbonate, etc. are mentioned. One kind or two or more kinds of additives can be used. The concentration of the additive is preferably between 0.1% by weight and 3% by weight of the electrolytic solution. A more preferable range is 0.5 to 1% by weight.

本発明における電気化学デバイス用電解液に最適な電気化学デバイスとしては、電気化学反応を応用した発光素子、発電素子、蓄電素子、センサー等が挙げられる。中でもリチウムイオン二次電池、電気二重層キャパシタが好ましい。最も好ましいのは、リチウムイオン二次電池である。また、電気化学デバイスは、高温環境下での使用が想定されるものに組み込まれることが好ましい。具体的には、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車等の車載用や電子機器の非常用が挙げられる。   Examples of the electrochemical device most suitable for the electrolytic solution for electrochemical devices in the present invention include a light emitting device, a power generation device, a storage device, a sensor, and the like applying an electrochemical reaction. Of these, lithium ion secondary batteries and electric double layer capacitors are preferred. Most preferred is a lithium ion secondary battery. Moreover, it is preferable that an electrochemical device is incorporated in the thing assumed to be used in a high temperature environment. Specific examples include in-vehicle use such as two-wheel to four-wheel hybrid electric vehicles, two-wheel to four-wheel electric vehicles, and assist bicycles, and emergency use of electronic devices.

[実施例]
以下、本発明の実施例を図面を参照して詳細に説明する。
[Example]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施例1)
エチレンカーボネート(EC)とγ−ブチロラクトン(GBL)の体積比が1:2である混合溶媒に1Mのジフルオロ(トリフルオロ−2−オキシド−2−トリフルオロ−メチルプロピオナト(2−)−0,0)ホウ酸リチウム{LiBF2(HHIB)}を溶かしたものに、0.5重量%のトリオクチルフォスフェートを混合した電気化学デバイス用電解液を調製した。
Example 1
In a mixed solvent in which the volume ratio of ethylene carbonate (EC) and γ-butyrolactone (GBL) is 1: 2, 1M difluoro (trifluoro-2-oxide-2-trifluoro-methylpropionate (2-)-0, 0) An electrolytic solution for an electrochemical device was prepared by mixing 0.5% by weight of trioctyl phosphate with a solution of lithium borate {LiBF 2 (HHIB)}.

(実施例2〜19)
溶媒および電解質成分とその濃度および界面活性剤の種類とその量を表1〜2に示すような電気化学デバイス用電解液を調製した。実施例8,9においては、LiBF2(HHIB)を0.5Mと、LiPF6またはLiTFSIを0.5Mとを混合し、Li濃度が1Mになるように調製した電解液を用いた。
(Examples 2 to 19)
Electrolytes for electrochemical devices as shown in Tables 1 and 2 were prepared with the solvent and electrolyte components, their concentrations, and the types and amounts of surfactants. In Examples 8 and 9, an electrolytic solution prepared by mixing LiBF 2 (HHIB) with 0.5M and LiPF 6 or LiTFSI with 0.5M to have a Li concentration of 1M was used.

(比較例1)
エチレンカーボネートとγ−ブチロラクトンの体積比1:2である混合溶媒に1Mのジフルオロ(トリフルオロ−2−オキシド−2−トリフルオロ−メチルプロピオナト(2−)−0,0)ホウ酸リチウムを溶かした電気化学デバイス用電解液を調製した。
(Comparative Example 1)
Dissolve 1M lithium difluoro (trifluoro-2-oxide-2-trifluoro-methylpropionate (2-)-0,0) borate in a mixed solvent of ethylene carbonate and γ-butyrolactone in a volume ratio of 1: 2. An electrolyte for an electrochemical device was prepared.

(比較例2〜9)
溶媒および電解質成分とその濃度および界面活性剤の種類とその量を表1に示すような電気化学デバイス用電解液を調製した。
(Comparative Examples 2-9)
Electrolytes for electrochemical devices as shown in Table 1 were prepared with the solvent and electrolyte components, their concentrations, and the types and amounts of surfactants.

下記表1,2において、LiTFSIはビストリフルオロメタンスルホニルアミドリチウム、EMIBF4は4フッ化ホウ酸1−エチル3−メチルイミダゾリウム、EMITFSIは1−エチル3−メチルイミダゾリウムビストリフルオロメタンスルホニルアミド、
1124NTFSIはジメチルエチルブチルアンモニウムビストリフルオロメタンスルホニルアミドを示す。
In Tables 1 and 2 below, LiTFSI is bistrifluoromethanesulfonylamide lithium, EMIBF 4 is 1-ethyl 3-methylimidazolium tetrafluoroborate, EMITFSI is 1-ethyl 3-methylimidazolium bistrifluoromethanesulfonylamide,
1124NTFSI indicates dimethylethylbutylammonium bistrifluoromethanesulfonylamide.

(含浸性の評価)
グラファイト粉末(KS−6)を90重量部と、結着剤としてPVdFを10重量部とを、N−メチルピロリドン(NMP)溶液中で混合することによりスラリーを調製した。得られたスラリーを厚さ15μmのアルミニウム箔からなる集電体に塗布し、乾燥し、プレスすることによりグラファイト電極を作製した。作製したグラファイト電極1を二枚用意し、図1に示す試験セルを作製した。グラファイト電極1の間にセパレータとして厚さ30μmのポリプロピレンフィルム2を挟み、得られた電極体をガラス容器3内の電解液4に浸漬した。電解液4には、実施例1〜19及び比較例1〜9で調製した電気化学デバイス用電解液を使用した。インピーダンスアナライザー5により電極体のインピーダンスの経時変化を測定することにより含浸性の評価を行った。なお、インピーダンスの値はCole−coleプロットから求めた。Cole−coleプロットの一例を図2に示す。Cole−coleプロットにおけるRcの値は、ポリプロピレンフィルム2からなるセパレータの抵抗値を近似的に表している。試験セルを作製してから10分後及び120分後のRcの抵抗値と、10分後から120分後までの抵抗減少率(%)を下記表1〜2に示す。

Figure 2006339010
(Evaluation of impregnation)
A slurry was prepared by mixing 90 parts by weight of graphite powder (KS-6) and 10 parts by weight of PVdF as a binder in an N-methylpyrrolidone (NMP) solution. The obtained slurry was applied to a current collector made of an aluminum foil having a thickness of 15 μm, dried and pressed to produce a graphite electrode. Two prepared graphite electrodes 1 were prepared, and a test cell shown in FIG. 1 was prepared. A polypropylene film 2 having a thickness of 30 μm was sandwiched between the graphite electrodes 1 as a separator, and the obtained electrode body was immersed in the electrolytic solution 4 in the glass container 3. As the electrolytic solution 4, the electrolytic solutions for electrochemical devices prepared in Examples 1 to 19 and Comparative Examples 1 to 9 were used. The impregnation property was evaluated by measuring the change in impedance of the electrode body over time with the impedance analyzer 5. The impedance value was obtained from the Cole-coll plot. An example of a Cole-core plot is shown in FIG. The value of Rc in the Cole-Cole plot approximately represents the resistance value of the separator made of the polypropylene film 2. Tables 1 and 2 below show the resistance values of Rc 10 minutes and 120 minutes after the production of the test cell and the resistance reduction rate (%) from 10 minutes to 120 minutes.
Figure 2006339010

Figure 2006339010
Figure 2006339010

表1及び表2から明らかなように、非イオン性界面活性剤の量を0.1重量%以上、3重量%以下の範囲内にし、かつLiBF2(HHIB)濃度を0.2M以上、3M以下とした実施例1〜19の電解液によると、抵抗減少率が、比較例1〜9に比較して大きくなった。 As apparent from Tables 1 and 2, the amount of the nonionic surfactant is within the range of 0.1 wt% or more and 3 wt% or less, and the LiBF 2 (HHIB) concentration is 0.2 M or more, 3 M According to the electrolytic solutions of Examples 1 to 19 described below, the resistance reduction rate was larger than those of Comparative Examples 1 to 9.

LiBF2(HHIB)濃度について検討するため、実施例1,8,9,13〜16及び比較例4,5を比較する。LiBF2(HHIB)濃度が0.2M未満の比較例4の電解液では、非イオン性界面活性剤が0.5重量%添加されているものの、抵抗変化が全く見られなかった。また、LiBF2(HHIB)濃度が3Mを超えている比較例5の電解液では、抵抗減少率が20%と少なかった。LiBF2(HHIB)濃度が0.2M以上、3M以下の実施例1,8,9,13〜16では、比較例4,5に比較して抵抗減少率が大きくなったものの、LiBF2(HHIB)濃度が0.2Mの実施例13の抵抗減少率は他の実施例に比べて十分でなかった。よって、含浸性を向上させるには、LiBF2(HHIB)濃度を0.5M以上、3M以下にすることが望ましい。 In order to examine the LiBF 2 (HHIB) concentration, Examples 1, 8, 9, 13 to 16 and Comparative Examples 4 and 5 are compared. In the electrolytic solution of Comparative Example 4 having a LiBF 2 (HHIB) concentration of less than 0.2M, no change in resistance was observed although 0.5% by weight of the nonionic surfactant was added. Further, in the electrolytic solution of Comparative Example 5 in which the LiBF 2 (HHIB) concentration exceeded 3M, the resistance reduction rate was as small as 20%. In Examples 1, 8, 9, and 13 to 16 in which the LiBF 2 (HHIB) concentration was 0.2 M or more and 3 M or less, the resistance reduction rate was larger than that of Comparative Examples 4 and 5, but LiBF 2 (HHIB) ) The resistance reduction rate of Example 13 having a concentration of 0.2M was not sufficient as compared with the other examples. Therefore, in order to improve the impregnation property, it is desirable that the LiBF 2 (HHIB) concentration be 0.5 M or more and 3 M or less.

非イオン性界面活性剤濃度について検討するため、電解質塩、溶媒組成及び界面活性剤の種類が同じ実施例1,10〜12及び比較例2,3を比較する。界面活性剤濃度が0.1重量%未満の比較例2と、界面活性剤濃度が3重量%を超える比較例3は、いずれも、抵抗減少率が10%台と小さかった。界面活性剤濃度が0.1重量%以上、3重量%以下の実施例1,10〜12によると、抵抗減少率が比較例2,3に比して大きくなり、中でも、界面活性剤濃度が0.5重量%以上、1重量%以下の実施例1,11において大きな抵抗減少率が得られた。   In order to examine the nonionic surfactant concentration, Examples 1, 10 to 12 and Comparative Examples 2 and 3 having the same electrolyte salt, solvent composition and surfactant type are compared. In Comparative Example 2 in which the surfactant concentration was less than 0.1% by weight and Comparative Example 3 in which the surfactant concentration exceeded 3% by weight, the resistance reduction rate was as small as 10%. According to Examples 1 to 10-12 in which the surfactant concentration is 0.1 wt% or more and 3 wt% or less, the resistance reduction rate is larger than that of Comparative Examples 2 and 3, and among them, the surfactant concentration is In Examples 1 and 11 of 0.5% by weight or more and 1% by weight or less, a large resistance reduction rate was obtained.

界面活性剤の種類については、実施例1〜5のうち、トリオクチルフォスフェートを使用した実施例1、トリノニルフォスフェートを使用した実施例4、トリデシルフォスフェートを使用した実施例5において、大きな抵抗減少率が得られた。   Regarding the type of surfactant, in Examples 1 to 5, Example 1 using trioctyl phosphate, Example 4 using trinonyl phosphate, Example 5 using tridecyl phosphate, A large resistance reduction rate was obtained.

非水溶媒の種類については、実施例1,6,7のうち、EC,PC及びGBLの三成分を使用した実施例6において、最も大きな抵抗減少率が得られた。   About the kind of nonaqueous solvent, the largest resistance reduction rate was obtained in Example 6 using three components of EC, PC, and GBL among Examples 1, 6, and 7.

さらに、比較例6〜9の結果から、電解質成分としてLiPF6やLiBF4のようなフッ素系のリチウム塩を用いる電解液においては、もともと低粘度であるために界面活性剤添加の効果を得られず、一方、LiPF4(OOCOC(CF32)あるいはLiB(CH(CF32O)2(OOCOC(CF32を用いる電解液においては、元の粘度が高すぎるために界面活性剤で効果が得られないことが理解できる。 Furthermore, from the results of Comparative Examples 6 to 9, in the electrolytic solution using a fluorine-based lithium salt such as LiPF 6 or LiBF 4 as an electrolyte component, the effect of adding a surfactant can be obtained because it is originally low in viscosity. On the other hand, in the electrolyte solution using LiPF 4 (OOCOC (CF 3 ) 2 ) or LiB (CH (CF 3 ) 2 O) 2 (OOCOC (CF 3 ) 2 , the surface viscosity is too high. It can be understood that the effect cannot be obtained with the agent.

(導電率の測定)
実施例1および比較例3,5の電気化学デバイス用電解液について、東亜電波工業社製ディジタル電気伝導率計CM−30Vにより測定した25℃の導電率の結果を表3に示す。

Figure 2006339010
(Measurement of conductivity)
Table 3 shows the results of electrical conductivity at 25 ° C. measured for the electrolytic devices for electrochemical devices of Example 1 and Comparative Examples 3 and 5 using a digital conductivity meter CM-30V manufactured by Toa Denpa Kogyo Co., Ltd.
Figure 2006339010

表3を見てわかるように、比較例3のように非イオン性界面活性剤の濃度が3重量%を超えると導電率が大きく下がる。また、比較例5のようにジフルオロ(トリフルオロ−2−オキシド−2−トリフルオロ−メチルプロピオナト(2−)−0,0)ホウ酸イオンの濃度が3Mを超えると導電率が大きく下がり電気化学デバイス用電解液としては不利となる。   As can be seen from Table 3, when the concentration of the nonionic surfactant exceeds 3% by weight as in Comparative Example 3, the conductivity greatly decreases. Further, as in Comparative Example 5, when the concentration of difluoro (trifluoro-2-oxide-2-trifluoro-methylpropionate (2-)-0,0) borate ion exceeds 3M, the conductivity is greatly reduced and electricity is reduced. This is disadvantageous as an electrolyte for chemical devices.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

実施例で使用される試験セルを示す模式図。The schematic diagram which shows the test cell used in an Example. 実施例で行ったインピーダンス測定で得られるCole−coleプロットを示す特性図。The characteristic view which shows the Cole-coll plot obtained by the impedance measurement performed in the Example.

符号の説明Explanation of symbols

1…グラファイト電極、2…プロピレンフィルム、3…容器、4…電解液、5…インピーダンスアナライザー。   DESCRIPTION OF SYMBOLS 1 ... Graphite electrode, 2 ... Propylene film, 3 ... Container, 4 ... Electrolyte solution, 5 ... Impedance analyzer.

Claims (5)

下記化1に示されるジフルオロ(トリフルオロ−2−オキシド−2−トリフルオロ−メチルプロピオナト(2−)−0,0)ホウ酸イオンを0.2M以上、3M以下と、
0.1重量%以上、3重量%以下の非イオン性界面活性剤と
を含むことを特徴とする電気化学デバイス用電解液。
Figure 2006339010
Difluoro (trifluoro-2-oxide-2-trifluoro-methylpropionate (2-)-0,0) borate ion represented by the following chemical formula 1 is 0.2M or more and 3M or less,
An electrolyte solution for electrochemical devices, comprising 0.1% by weight or more and 3% by weight or less of a nonionic surfactant.
Figure 2006339010
前記非イオン性界面活性剤は、下記化2に示されるトリアルキルフォスフェートを含むことを特徴とする請求項1の電気化学デバイス用電解液。
Figure 2006339010
但し、Rはアルキル基である。
The said nonionic surfactant contains the trialkyl phosphate shown by following Chemical formula 2, The electrolyte solution for electrochemical devices of Claim 1 characterized by the above-mentioned.
Figure 2006339010
However, R is an alkyl group.
前記非イオン界面活性剤は、トリオクチルフォスフェートを含むことを特徴とする請求項1の電気化学デバイス用電解液。   The electrolyte solution for an electrochemical device according to claim 1, wherein the nonionic surfactant includes trioctyl phosphate. エチレンカーボネート、プロピレンカーボネートおよびγ−ブチロラクトンよりなる群から選択される少なくとも2種類の溶媒をさらに含むことを特徴とする請求項1〜3いずれか1項記載の電気化学デバイス用電解液。   The electrolytic solution for an electrochemical device according to any one of claims 1 to 3, further comprising at least two kinds of solvents selected from the group consisting of ethylene carbonate, propylene carbonate, and γ-butyrolactone. イミダゾリウム塩、四級アンモニウム塩、ピロリジウム塩及びピペリジウム塩よりなる群から選択されるカチオン種と、BF4、PF6、ビストリフルオロメタンスルホニルアミドアニオン(TFSI)、トリフルオロメチルトリフレート(TFS)、ビスペンタフルオロエタンスルホニルアミドアニオン(BETI)、ジシアナミドアニオン(DCA)及びClよりなる群から選択されるアニオン種とを備えるイオン液体をさらに含むことを特徴とする請求項1〜3いずれか1項記載の電気化学デバイス用電解液。 A cation species selected from the group consisting of imidazolium salts, quaternary ammonium salts, pyrrolidinium salts and piperidinium salts, BF 4 , PF 6 , bistrifluoromethanesulfonylamide anion (TFSI), trifluoromethyl triflate (TFS), The ionic liquid further comprising an ionic liquid selected from the group consisting of bispentafluoroethanesulfonylamide anion (BETI), dicyanamide anion (DCA) and Cl. Electrolyte solution for electrochemical devices as described.
JP2005161665A 2005-06-01 2005-06-01 Electrolytic solution for electrochemical device Pending JP2006339010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005161665A JP2006339010A (en) 2005-06-01 2005-06-01 Electrolytic solution for electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161665A JP2006339010A (en) 2005-06-01 2005-06-01 Electrolytic solution for electrochemical device

Publications (1)

Publication Number Publication Date
JP2006339010A true JP2006339010A (en) 2006-12-14

Family

ID=37559393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161665A Pending JP2006339010A (en) 2005-06-01 2005-06-01 Electrolytic solution for electrochemical device

Country Status (1)

Country Link
JP (1) JP2006339010A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054288A (en) * 2007-08-23 2009-03-12 Sony Corp Electrolyte and secondary battery
JP2009054407A (en) * 2007-08-27 2009-03-12 Sony Corp Electrolyte solution and secondary battery
WO2010004012A1 (en) * 2008-07-11 2010-01-14 Commissariat A L'energie Atomique Ionic liquid electrolytes that include an anionic surfactant and electrochemical devices such as storage batteries comprising them
US9153836B2 (en) 2007-08-23 2015-10-06 Sony Corporation Electrolytic solutions and battery
WO2016125770A1 (en) * 2015-02-02 2016-08-11 日立化成株式会社 Electrolyte for lithium ion capacitor and lithium ion capacitor
WO2017018328A1 (en) * 2015-07-27 2017-02-02 日本化学工業株式会社 Additive for light-emitting layer in electrochemiluminescent cell, composition for forming light-emitting layer in electrochemiluminescent cell, and electrochemiluminescent cell
CN107851725A (en) * 2015-07-27 2018-03-27 日本化学工业株式会社 Electrochemical luminescence unit luminescent layer additive, electrochemical luminescence unit luminescent layer formation composition and electrochemical luminescence unit
CN111448691A (en) * 2017-12-26 2020-07-24 昭和电工株式会社 Binder for nonaqueous battery electrode, slurry for nonaqueous battery electrode, and nonaqueous battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054288A (en) * 2007-08-23 2009-03-12 Sony Corp Electrolyte and secondary battery
US9153836B2 (en) 2007-08-23 2015-10-06 Sony Corporation Electrolytic solutions and battery
JP2009054407A (en) * 2007-08-27 2009-03-12 Sony Corp Electrolyte solution and secondary battery
FR2933814A1 (en) * 2008-07-11 2010-01-15 Commissariat Energie Atomique IONIC LIQUID ELECTROLYTES COMPRISING A SURFACTANT AND ELECTROCHEMICAL DEVICES SUCH AS ACCUMULATORS COMPRISING THEM
JP2011527495A (en) * 2008-07-11 2011-10-27 コミサリア ア レネルジ アトミ−ク エ オエネルジー アルテルナティヴ Electrochemical devices such as ionic liquid electrolytes containing anionic surfactants and storage batteries containing them
US9123972B2 (en) 2008-07-11 2015-09-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Ionic liquid electrolytes comprising an anionic surfactant and electrochemical devices such as accumulators comprising them
WO2010004012A1 (en) * 2008-07-11 2010-01-14 Commissariat A L'energie Atomique Ionic liquid electrolytes that include an anionic surfactant and electrochemical devices such as storage batteries comprising them
WO2016125770A1 (en) * 2015-02-02 2016-08-11 日立化成株式会社 Electrolyte for lithium ion capacitor and lithium ion capacitor
WO2017018328A1 (en) * 2015-07-27 2017-02-02 日本化学工業株式会社 Additive for light-emitting layer in electrochemiluminescent cell, composition for forming light-emitting layer in electrochemiluminescent cell, and electrochemiluminescent cell
CN107851725A (en) * 2015-07-27 2018-03-27 日本化学工业株式会社 Electrochemical luminescence unit luminescent layer additive, electrochemical luminescence unit luminescent layer formation composition and electrochemical luminescence unit
US20180366646A1 (en) * 2015-07-27 2018-12-20 Nippon Chemical Industrial Co., Ltd. Additive for light-emitting layer in light-emitting electrochemical cell, composition for forming light-emitting layer in light-emitting electrochemical cell, and light-emitting electrochemical cell
US10439143B2 (en) 2015-07-27 2019-10-08 Nippon Chemical Industrial Co., Ltd. Additive for light-emitting layer in light-emitting electrochemical cell, composition for forming light-emitting layer in light-emitting electrochemical cell, and light-emitting electrochemical cell
CN107851725B (en) * 2015-07-27 2019-12-10 日本化学工业株式会社 Additive for light-emitting layer of electrochemiluminescence unit, composition for forming light-emitting layer of electrochemiluminescence unit, and electrochemiluminescence unit
CN111448691A (en) * 2017-12-26 2020-07-24 昭和电工株式会社 Binder for nonaqueous battery electrode, slurry for nonaqueous battery electrode, and nonaqueous battery
US11764359B2 (en) 2017-12-26 2023-09-19 Resonac Corporation Binder including copolymer of styrene, (meth)acrylate, and surfactant having unsaturated bond, slurry having the same, nonaqueous battery electrode using the same, and nonaqueous battery using the same

Similar Documents

Publication Publication Date Title
Xie et al. Molecular crowding electrolytes for high-voltage aqueous batteries
Park et al. Comparative study on lithium borates as corrosion inhibitors of aluminum current collector in lithium bis (fluorosulfonyl) imide electrolytes
Guerfi et al. Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance
WO2016080063A1 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte lithium battery
WO2021015264A1 (en) Nonaqueous electrolyte solution, nonaqueous electrolyte battery and compound
JP6476611B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
JP2016201177A (en) Nonaqueous electrolyte for battery, and lithium secondary battery
JP7270210B2 (en) Non-aqueous electrolyte, semi-solid electrolyte layer, sheet for secondary battery and secondary battery
CN107565158A (en) Sodium-ion battery electrolyte, preparation method and the sodium-ion battery for including the sodium-ion battery electrolyte
CN107293793A (en) Electrolyte and electrochemical cell
CN114024036A (en) A low-concentration lithium-ion battery electrolyte and its prepared lithium-ion battery
JP4281030B2 (en) Non-aqueous electrolyte battery
US20110151340A1 (en) Non-aqueous electrolyte containing as a solvent a borate ester and/or an aluminate ester
WO2021111847A1 (en) Non-aqueous electrolyte, semi-solid electrolyte layer, sheet for secondary battery, and secondary battery
KR102294200B1 (en) Semi-solid electrolyte, semi-solid electrolyte, semi-solid electrolyte layer and secondary battery
JP2006339010A (en) Electrolytic solution for electrochemical device
JP5259996B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery
CN112490500A (en) Electrolyte for electricity storage device, and method for manufacturing electricity storage device
CN110521049B (en) Semi-solid electrolyte, electrode, electrode with semi-solid electrolyte layer, and secondary battery
CN111354977A (en) Lithium ion battery electrolyte, preparation method thereof and lithium battery comprising lithium ion battery electrolyte
JP2020004598A (en) battery
JP4903983B2 (en) Non-aqueous electrolyte and secondary battery using the same
CN112635836A (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2009021060A (en) Lithium ion secondary battery using ionic liquid
Lemordant et al. Physicochemical properties of fluorine-containing electrolytes for lithium batteries

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909