[go: up one dir, main page]

JP2006331997A - Electron source and electron beam application device equipped with the same - Google Patents

Electron source and electron beam application device equipped with the same Download PDF

Info

Publication number
JP2006331997A
JP2006331997A JP2005157594A JP2005157594A JP2006331997A JP 2006331997 A JP2006331997 A JP 2006331997A JP 2005157594 A JP2005157594 A JP 2005157594A JP 2005157594 A JP2005157594 A JP 2005157594A JP 2006331997 A JP2006331997 A JP 2006331997A
Authority
JP
Japan
Prior art keywords
electron
cathode
electrons
electron source
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005157594A
Other languages
Japanese (ja)
Inventor
Tetsuya Kaneko
哲弥 金子
Hirohisa Hiraki
博久 平木
Hirooki O
宏興 王
Minami Ko
南 江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dialight Japan Co Ltd
Original Assignee
Dialight Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dialight Japan Co Ltd filed Critical Dialight Japan Co Ltd
Priority to JP2005157594A priority Critical patent/JP2006331997A/en
Publication of JP2006331997A publication Critical patent/JP2006331997A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that a conventional device is specialized for keeping a vacuum chamber to an ultrahigh vacuum, needs a complicated and expensive differential exhaust system, is high in manufacturing cost, and complicated in handling operation. <P>SOLUTION: An electron source is provided with a cathode 31 for electron discharge, a control electrode 32 which controls an intake of electron from the cathode 31 according to a control voltage and an anode 33 which accelerates the speed of an electron by impressing a high voltage between the cathode 31 and the anode, and the cathode 31 is made a low vacuum type by forming an orienting carbon nano-wall film 31b of which the electron discharge surface is oriented on the surface of a conductor 31a. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、走査型電子顕微鏡(SEM)等の電子線応用装置に用いる電子源およびその電子線応用装置に関するものである。電子線応用装置には、その走査型電子顕微鏡以外に、例えば透過型顕微鏡(TEM)、オージェ電子分光分析装置(AES)、ならびに反射高速電子線回折(RHEED)や低速電子線回折(LEED)等の装置がある。   The present invention relates to an electron source used in an electron beam application apparatus such as a scanning electron microscope (SEM) and the electron beam application apparatus. In addition to the scanning electron microscope, for example, transmission electron microscopes (TEM), Auger electron spectroscopy analyzers (AES), reflection high-energy electron diffraction (RHEED), low-energy electron diffraction (LEED), etc. There is a device.

このような電子線応用装置は特許文献1等にこれまで多数提案されている。このような電子線応用装置の中で例えば環境制御型の走査型電子顕微鏡では電子線を発生する電子源が収納された真空室と試料が配置された試料室とが圧力制限開口を介して接している。このような走査型電子顕微鏡では、試料室の圧力は観察窓から試料の観察を可能にするため真空ポンプにより例えば準大気圧(103ないし104Pa)に保たれる一方で、真空室は例えば10-8Pa以上の超高真空に設定される。このように真空室はオリフィスにより複数の部屋に区分され、それぞれの部屋は別々の真空ポンプで真空排気される、いわゆる差動排気される。すなわち、真空室の中で最上部の電子源設置空間は超高真空空間となっている。しかしながら、真空室を超高真空に保つには装置構造を特殊にする必要があり、また、複雑かつ高価な差動排気システムが必要であるなどから、走査型電子顕微鏡の製造価格が高価なものとなり、また、超高真空であるが故に取り扱い操作も煩雑化するなど不便である。
特開2002−350731号
Many such electron beam application apparatuses have been proposed in Patent Document 1 and the like. In such an electron beam application apparatus, for example, in an environmental control type scanning electron microscope, a vacuum chamber in which an electron source for generating an electron beam is housed and a sample chamber in which a sample is placed are in contact with each other through a pressure limiting opening. ing. In such a scanning electron microscope, the pressure in the sample chamber is maintained at, for example, quasi-atmospheric pressure (10 3 to 10 4 Pa) by a vacuum pump in order to enable observation of the sample from the observation window. For example, an ultrahigh vacuum of 10 −8 Pa or higher is set. Thus, the vacuum chamber is divided into a plurality of chambers by the orifice, and each chamber is evacuated by a separate vacuum pump, so-called differential evacuation. That is, the uppermost electron source installation space in the vacuum chamber is an ultra-high vacuum space. However, in order to keep the vacuum chamber in an ultra-high vacuum, it is necessary to specialize the structure of the apparatus, and since a complicated and expensive differential pumping system is required, the manufacturing cost of the scanning electron microscope is expensive. In addition, the handling operation is complicated due to the ultra-high vacuum, which is inconvenient.
JP 2002-350731 A

したがって、本発明により解決すべき課題は、電子源を低真空型となして真空室を低真空としても準大気圧の試料室内部の試料の分析、解析、計測、観察等に必要とする電子線を照射することができる電子源を提供することである。また、本発明により解決すべき課題は、このような電子源を備えた電子線応用装置を提供することである。   Therefore, the problem to be solved by the present invention is that the electrons required for analysis, analysis, measurement, observation, etc. of the sample in the sub-atmospheric pressure sample chamber even if the electron source is of a low vacuum type and the vacuum chamber is low vacuum. It is to provide an electron source capable of irradiating a line. Moreover, the problem which should be solved by this invention is providing the electron beam application apparatus provided with such an electron source.

本発明による電子源は、電子線応用装置の真空室に配置され試料室内部へ試料の元素分析、解析、計測、観察などのために電子を放出する電子源であって、電子放出用の陰極と、制御電圧に応じて上記陰極から電子引き出しを制御する制御電極と、上記陰極との間で高電圧を印加されて上記電子を加速させる陽極とを備え、上記陰極を、導電体の表面に電子放出面が配向された配向性カーボンナノウォール膜を形成して低真空型としたことを特徴とするものである。   An electron source according to the present invention is an electron source that is arranged in a vacuum chamber of an electron beam application apparatus and emits electrons into a sample chamber for elemental analysis, analysis, measurement, observation, etc., and is a cathode for electron emission And a control electrode that controls extraction of electrons from the cathode according to the control voltage, and an anode that accelerates the electrons by applying a high voltage between the cathode and the cathode on the surface of the conductor. This is characterized in that an oriented carbon nanowall film having an oriented electron emission surface is formed into a low vacuum type.

このカーボンナノウォール膜は、多数のナノオーダの壁状炭素薄片(壁状部)が所定の電子放出方向に高配向しかつ集合連成された形態であり、電気伝導度の高いグラファイトに近い結晶構造を持ち、数十層のグラフェンシートからなり、電圧印加により端部である壁状上面で高い電界集中が起こって電子放出するものである。   This carbon nanowall film is a form in which a large number of nano-order wall-like carbon flakes (wall-like portions) are highly oriented in the predetermined electron emission direction and are aggregated and coupled, and has a crystal structure close to that of graphite with high electrical conductivity. It consists of several dozen layers of graphene sheets, and when a voltage is applied, a high electric field concentration occurs on the wall-shaped upper surface which is an end, and electrons are emitted.

本発明の電子源は、例えば真空室の真空度が10-1ないし10-2Paの低真空であっても陰極と陽極との間の電界強度が例えば2.5ないし3.0(MV/m)のとき電界放出電流は例えば1E−4ないし1E−3(A)を得ることができ、十分な電子放出を得ることができる。また、陽極電圧3.0kV以上の飽和領域においては一定の陽極電流を得ることができ、この陽極電流を制御電圧により制御することができるから、制御性に優れた安定な電子放出を得ることができる。 The electron source of the present invention has, for example, an electric field strength between the cathode and the anode of 2.5 to 3.0 (MV / m) even when the vacuum chamber has a low vacuum of 10 −1 to 10 −2 Pa. In the case of m), for example, 1E-4 to 1E-3 (A) can be obtained as the field emission current, and sufficient electron emission can be obtained. In addition, a constant anode current can be obtained in the saturation region where the anode voltage is 3.0 kV or more, and this anode current can be controlled by the control voltage, so that stable electron emission excellent in controllability can be obtained. it can.

すなわち、本発明では、電子放出素子である陰極が導電体表面に陽極方向に電子放出面が配向された配向性カーボンナノウォール膜を形成した電界放射型冷陰極で構成されているから、10-1ないし10-2Paという低真空の真空室内に設置されても103ないし104Paという準大気圧の試料室内部の試料に対して元素分析、解析、計測、観察等のために必要とする電子線を十分な量と強度とで照射することができる。したがって、本発明では、真空室を超高真空ではなく低真空に保つとよいので、真空室を従来のごとく超高真空にする必要がなくなり、装置構造を特殊ではなく簡易化することが可能となり、また、差動排気システムも簡易なもので済むので、電子線応用装置の製造価格を大幅に低減することができるうえに超高真空とは異なり低真空であるから取り扱い操作も簡単化する。 That is, in the present invention, since a cathode is an electron-emitting device the electron emission surface in the anode direction to the conductor surface is composed of a field-emission cold cathode forming an oriented carbon nano wall film oriented, 10 - Even if it is installed in a vacuum chamber of low vacuum of 1 to 10 -2 Pa, it is necessary for elemental analysis, analysis, measurement, observation, etc. of the sample inside the sample chamber of sub-atmospheric pressure of 10 3 to 10 4 Pa Can be irradiated with a sufficient amount and intensity. Therefore, in the present invention, the vacuum chamber should be kept at a low vacuum instead of an ultra-high vacuum, so there is no need to make the vacuum chamber an ultra-high vacuum as in the prior art, and the device structure can be simplified rather than specially. In addition, since the differential pumping system can be simple, the manufacturing cost of the electron beam application device can be greatly reduced, and the handling operation is simplified because it is low vacuum unlike ultra high vacuum.

本発明によれば、電子線応用装置の製造価格を低減することができ、かつ、取り扱い操作も簡単化する。   According to the present invention, the manufacturing cost of the electron beam application apparatus can be reduced, and the handling operation is simplified.

以下、添付した図面を参照して、本発明の実施の形態に係る電子線応用装置を説明する。実施の形態では電子線応用装置の一例として環境制御型の走査型電子顕微鏡に適用して説明するが、本発明はこの走査型電子顕微鏡に限定されず、電子を応用して試料の元素分析、解析、計測、観察等を行う電子線応用装置全般に適用することができる。   Hereinafter, an electron beam application apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings. In the embodiment, the present invention is applied to an environment-controlled scanning electron microscope as an example of an electron beam application apparatus, but the present invention is not limited to this scanning electron microscope. The present invention can be applied to any electron beam application apparatus that performs analysis, measurement, observation, and the like.

図1は、環境制御型の走査型電子顕微鏡を簡略化して示す図、図2は図1の電子源の概念的な構成を示す図、図3は図2の陰極においてA部とB部それぞれを拡大して示す図、図4は電子源の動作特性を示す図、図5は陰極表面への配向性カーボンナノウォール膜の成膜方法を示す図である。   1 is a diagram showing a simplified scanning electron microscope of an environmental control type, FIG. 2 is a diagram showing a conceptual configuration of the electron source of FIG. 1, and FIG. 3 is a portion A and a portion B in the cathode of FIG. FIG. 4 is a diagram showing the operating characteristics of the electron source, and FIG. 5 is a diagram showing a method for forming an oriented carbon nanowall film on the cathode surface.

図1を参照して本実施の形態の走査型電子顕微鏡1は、真空室2の上段部に電子源3が配置され、真空室2の中段部の外側にはコンデンサレンズ4が配置され、真空室2の下段部の外側にはスキャン(走査)コイル5が配置されている。真空室2は概念的に一つの部屋で示している。真空室2と試料室6は差動排気部7を介して接している。試料室6には図示略の気体供給源よりガス増幅を行う気体(例えば水蒸気)が供給されると共に、試料室6の気体の圧力は図示略の真空ポンプにより準大気圧に保たれている。真空室2は図示略の真空ポンプにより低真空(10-1ないし10-2Pa)に維持されている。上記以外にも走査型電子顕微鏡1は2次電子検出器やアンプ等を有するがいずれも説明の簡略化のため図示ならびにその説明を略する。 Referring to FIG. 1, a scanning electron microscope 1 according to the present embodiment has an electron source 3 disposed in an upper stage portion of a vacuum chamber 2 and a condenser lens 4 disposed outside a middle stage portion of the vacuum chamber 2 so that a vacuum can be obtained. A scan coil 5 is disposed outside the lower part of the chamber 2. The vacuum chamber 2 is conceptually shown as one room. The vacuum chamber 2 and the sample chamber 6 are in contact with each other via a differential exhaust unit 7. A gas (for example, water vapor) for performing gas amplification is supplied to the sample chamber 6 from a gas supply source (not shown), and the pressure of the gas in the sample chamber 6 is maintained at a quasi-atmospheric pressure by a vacuum pump (not shown). The vacuum chamber 2 is maintained at a low vacuum (10 −1 to 10 −2 Pa) by a vacuum pump (not shown). In addition to the above, the scanning electron microscope 1 has a secondary electron detector, an amplifier, and the like, but the illustration and description thereof are omitted for simplification of description.

電子源3から放出された電子は、コンデンサレンズ4により集束され試料室6内部の試料8に照射される。電子はスキャンコイル5により試料8上で走査されると共に、対物レンズ9により試料8上で集束される。電子照射により試料8から2次電子が発生し、この2次電子を用いて走査型電子顕微鏡1において周知の試料8の元素分析、解析、計測、観察等のための処理が行われる。   The electrons emitted from the electron source 3 are focused by the condenser lens 4 and irradiated onto the sample 8 inside the sample chamber 6. The electrons are scanned on the sample 8 by the scan coil 5 and are focused on the sample 8 by the objective lens 9. Secondary electrons are generated from the sample 8 by the electron irradiation, and processing for elemental analysis, analysis, measurement, observation, and the like of the sample 8 is performed in the scanning electron microscope 1 using the secondary electrons.

以上の構成を備えた走査型電子顕微鏡1においては、電子源3が以下の構成を備えたことを特徴とするものである。   The scanning electron microscope 1 having the above configuration is characterized in that the electron source 3 has the following configuration.

電子源3は、電子放出用の陰極31と、制御電圧に応じて陰極31から電子引き出しを制御する制御電極32と、陰極31との間で高電圧を印加されて電子を試料室6へ向けて加速させる陽極33とを備える。陰極31は、導電体31aの表面に陽極33方向に電子放出面31cが配向された配向性カーボンナノウォール膜31bを形成して構成されている。導電体31aは円錐状ないし円錐台状をなす先端部31a1を備える。配向性カーボンナノウォール膜31bは導電体31aの先端部31a1の表面に円錐軸方向に壁状に成膜されて電子34が円錐軸方向に収束して放出するよう配向されている。具体的に図2の円Aで囲む部分は電子放出面31cの頂部であり、この頂部は比較的平坦である。この部分は図3に示すように配向性カーボンナノウォール膜31bの壁部分31b1がその頂部平坦面にほぼ垂直に成膜されて配向されている。図2の円Bで囲む部分は電子放出面31cの斜面部である。この斜面部は図3に示すように配向性カーボンナノウォール膜31bの壁部分31b1がその斜面部に対して斜めであるが円錐軸方向にほぼ平行に成膜されて配向されている。したがって、この電子源3の陰極31の配向性カーボンナノウォール膜31bからはその全体が円錐軸方向に向けて電子を放出することができる。   The electron source 3 is applied with a high voltage between the cathode 31 for electron emission, the control electrode 32 for controlling extraction of electrons from the cathode 31 according to the control voltage, and the cathode 31, and directs electrons to the sample chamber 6. And an anode 33 to be accelerated. The cathode 31 is formed by forming an oriented carbon nanowall film 31b having an electron emission surface 31c oriented in the direction of the anode 33 on the surface of the conductor 31a. The conductor 31a includes a tip 31a1 having a conical shape or a truncated cone shape. The oriented carbon nanowall film 31b is formed in the shape of a wall in the direction of the cone axis on the surface of the tip 31a1 of the conductor 31a, and is oriented so that the electrons 34 converge and emit in the direction of the cone axis. Specifically, the portion surrounded by circle A in FIG. 2 is the top of the electron emission surface 31c, and this top is relatively flat. As shown in FIG. 3, the wall portion 31b1 of the oriented carbon nanowall film 31b is formed in this portion so as to be substantially perpendicular to the top flat surface and oriented. A portion surrounded by a circle B in FIG. 2 is a slope portion of the electron emission surface 31c. As shown in FIG. 3, the slope portion is oriented with the wall portion 31b1 of the orientational carbon nanowall film 31b formed obliquely to the slope portion but substantially parallel to the cone axis direction. Therefore, the whole can emit electrons from the oriented carbon nanowall film 31b of the cathode 31 of the electron source 3 toward the direction of the cone axis.

以上の電子源3においては、陰極31と陽極33との間に陽極電圧Vaが印加され、陰極31と制御電極32との間に制御電圧Vgが印加される。そして、横軸を陽極電圧Va(kV)、縦軸を陽極電流Ip(μA)とする図4に示すように、陽極電圧Vaが4kV以上では陽極電流Ipが飽和しており、この飽和領域では制御電圧Vgにより陽極電流Ipを制御することができる。したがって、実施の形態の電子源3は、電子放出の制御性に優れた電子源である。   In the electron source 3 described above, the anode voltage Va is applied between the cathode 31 and the anode 33, and the control voltage Vg is applied between the cathode 31 and the control electrode 32. As shown in FIG. 4, the horizontal axis represents the anode voltage Va (kV) and the vertical axis represents the anode current Ip (μA). When the anode voltage Va is 4 kV or more, the anode current Ip is saturated. The anode current Ip can be controlled by the control voltage Vg. Therefore, the electron source 3 of the embodiment is an electron source excellent in controllability of electron emission.

以上説明した配向性カーボンナノウォール膜31bは、図5で示すように、直流プラズマCVD法等により導電体31aの表面に成膜することができる。すなわち、この配向性カーボンナノウォール膜31bは、CH4/H2の原料ガスを導入しこのガス雰囲気において陽極40と陰極50との間に直流電圧を印加してプラズマ60を発生し、陽極40上に載置した導電体31a上に配向性カーボンナノウォール膜31bを成膜することができる。   The oriented carbon nanowall film 31b described above can be formed on the surface of the conductor 31a by a direct current plasma CVD method or the like, as shown in FIG. That is, the oriented carbon nanowall film 31b introduces a source gas of CH4 / H2 and applies a DC voltage between the anode 40 and the cathode 50 in this gas atmosphere to generate plasma 60 on the anode 40. An oriented carbon nanowall film 31b can be formed on the placed conductor 31a.

以上説明した本実施の形態の電子源3においてはその要求真空度は、10-1ないし10-2Paの低真空であり、回転ポンプ単体で到達可能である。この真空度は、常温型電界電子放出素子としては従来型の常温動作のタングステン冷陰極と比較して100万倍、タングステン熱フィラメントと比較して100倍程度緩和される。実施の形態では、上記電子源3を備えたことにより、電子源3を設置してある真空室2を低真空にすることができるので、従来のような高価な差動排気システムが必要でなくなり、走査型電子顕微鏡を安価に製造することができ、また、取り扱い操作も容易なものとなる。 In the electron source 3 of the present embodiment described above, the required vacuum is a low vacuum of 10 −1 to 10 −2 Pa, and can be reached by a single rotary pump. This degree of vacuum is relaxed about 1 million times as compared with a conventional cold cathode operated at room temperature, and about 100 times as compared with a tungsten hot filament. In the embodiment, since the electron source 3 is provided, the vacuum chamber 2 in which the electron source 3 is installed can be set to a low vacuum, so that an expensive differential exhaust system as in the prior art is not necessary. The scanning electron microscope can be manufactured at a low cost, and the handling operation is easy.

本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲に記載した範囲内で、種々な変更ないしは変形を含むものである。   The present invention is not limited to the above-described embodiment, and includes various changes or modifications within the scope described in the claims.

本発明の実施の形態に係る環境制御型の走査型電子顕微鏡の構成を示す図である。It is a figure which shows the structure of the scanning electron microscope of an environment control type | mold which concerns on embodiment of this invention. 図1の電子源の構成を示す図である。It is a figure which shows the structure of the electron source of FIG. 電子源の冷陰極を拡大して示す図である。It is a figure which expands and shows the cold cathode of an electron source. 電子源の動作特性を示す図である。It is a figure which shows the operating characteristic of an electron source. 導電性基板表面にCNW膜を成膜する直流プラズマ成膜法を示す図である。It is a figure which shows the direct-current plasma film-forming method which forms a CNW film into a conductive substrate surface.

符号の説明Explanation of symbols

1 走査型電子顕微鏡
2 真空室
3 電子源
31 陰極(導電体31a、配向性カーボンナノウォール膜31b)
32 制御電極
33 陽極
4 コンデンサレンズ
5 スキャンコイル
6 試料室
7 対物レンズ
8 試料
DESCRIPTION OF SYMBOLS 1 Scanning electron microscope 2 Vacuum chamber 3 Electron source 31 Cathode (conductor 31a, oriented carbon nanowall film 31b)
32 Control electrode 33 Anode 4 Condenser lens 5 Scan coil 6 Sample chamber 7 Objective lens 8 Sample

Claims (6)

電子線応用装置の真空室に配置され試料室内部へ試料の元素分析、解析、計測、観察などのために電子を放出する電子源であって、電子放出用の陰極と、制御電圧に応じて上記陰極から電子引き出しを制御する制御電極と、上記陰極との間で高電圧を印加されて上記電子を加速させる陽極とを備え、上記陰極を、導電体の表面に電子放出面が配向された配向性カーボンナノウォール膜を形成して低真空型とした、ことを特徴とする電子源。   An electron source that is arranged in the vacuum chamber of an electron beam application device and emits electrons into the sample chamber for elemental analysis, analysis, measurement, observation, etc., according to the cathode for electron emission and the control voltage A control electrode for controlling extraction of electrons from the cathode; and an anode for accelerating the electrons by applying a high voltage between the cathode, and the electron emission surface is oriented on the surface of the conductor. An electron source characterized in that an oriented carbon nanowall film is formed into a low vacuum type. 上記陰極の導電体が円錐状ないし円錐台状をなす先端部を備え、
上記配向性カーボンナノウォール膜が上記先端部の表面に円錐軸方向に壁状に成膜されて電子が円錐軸方向に収束して放出するよう配向されている、ことを特徴とする電子源。
The cathode conductor has a conical or frustoconical tip,
An electron source characterized in that the oriented carbon nanowall film is formed in a wall shape in the direction of the conical axis on the surface of the tip, and is oriented so that electrons are converged and emitted in the direction of the conical axis.
上記低真空が、10-1〜10-2Paである、ことを特徴とする請求項1または2に記載の電子源。 The electron source according to claim 1 or 2, wherein the low vacuum is 10 -1 to 10 -2 Pa. 真空室に電子源を配置しこの電子源からの電子を試料室内部へ試料の元素分析、解析、計測、観察等のために照射する電子線応用装置において、上記真空室を低真空に保ち、上記電子源を、電子放出用の陰極と、制御電圧に応じて上記陰極から電子引き出しを制御する制御電極と、上記陰極との間で高電圧を印加されて上記電子を上記試料室へ向けて加速させる陽極とを備え、上記陰極を、導電体の表面に上記陽極方向に電子放出面が配向された配向性カーボンナノウォール膜を形成した低真空型となした、ことを特徴とする電子線応用装置。   In an electron beam application apparatus that arranges an electron source in a vacuum chamber and irradiates electrons from this electron source into the sample chamber for elemental analysis, analysis, measurement, observation, etc., the vacuum chamber is kept at a low vacuum, A high voltage is applied between the electron source, a cathode for electron emission, a control electrode for controlling extraction of electrons from the cathode according to a control voltage, and the cathode to direct the electrons to the sample chamber. An electron beam comprising: an anode for acceleration, wherein the cathode is a low vacuum type in which an oriented carbon nanowall film having an electron emission surface oriented in the anode direction is formed on the surface of a conductor. Applied equipment. 上記陰極の導電体が円錐状ないし円錐台状をなす先端部を備え、
上記配向性カーボンナノウォール膜が上記先端部の表面に円錐軸方向に壁状に成膜されて電子が円錐軸方向に収束して放出するよう配向されている、ことを特徴とする請求項4に記載の電子線応用装置。
The cathode conductor has a conical or frustoconical tip,
5. The oriented carbon nanowall film is formed in a wall shape in the direction of a conical axis on the surface of the tip, and is oriented so that electrons converge and emit in the direction of the conical axis. The electron beam application apparatus described in 1.
上記真空室が10-1〜10-2Paの低真空に保たれる、ことを特徴とする請求項4または5に記載の電子線応用装置。 6. The electron beam application apparatus according to claim 4, wherein the vacuum chamber is maintained at a low vacuum of 10 −1 to 10 −2 Pa.
JP2005157594A 2005-05-30 2005-05-30 Electron source and electron beam application device equipped with the same Pending JP2006331997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005157594A JP2006331997A (en) 2005-05-30 2005-05-30 Electron source and electron beam application device equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005157594A JP2006331997A (en) 2005-05-30 2005-05-30 Electron source and electron beam application device equipped with the same

Publications (1)

Publication Number Publication Date
JP2006331997A true JP2006331997A (en) 2006-12-07

Family

ID=37553452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005157594A Pending JP2006331997A (en) 2005-05-30 2005-05-30 Electron source and electron beam application device equipped with the same

Country Status (1)

Country Link
JP (1) JP2006331997A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166822A (en) * 2007-01-03 2008-07-17 Samsung Electronics Co Ltd Etching system using neutral beam
JP2009158304A (en) * 2007-12-26 2009-07-16 Stanley Electric Co Ltd Field emission electron source
CN104766776A (en) * 2014-01-07 2015-07-08 中国科学院物理研究所 Multifunctional Ultrafast Transmission Electron Microscopy Electron Gun
WO2018217167A1 (en) * 2017-05-25 2018-11-29 National University Of Singapore Cathode structure for cold field electron emission and method of fabricating the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166822A (en) * 2007-01-03 2008-07-17 Samsung Electronics Co Ltd Etching system using neutral beam
JP2009158304A (en) * 2007-12-26 2009-07-16 Stanley Electric Co Ltd Field emission electron source
CN104766776A (en) * 2014-01-07 2015-07-08 中国科学院物理研究所 Multifunctional Ultrafast Transmission Electron Microscopy Electron Gun
CN104766776B (en) * 2014-01-07 2016-09-28 中国科学院物理研究所 Multi-functional ultra-fast transmission electron microscope electron gun
WO2018217167A1 (en) * 2017-05-25 2018-11-29 National University Of Singapore Cathode structure for cold field electron emission and method of fabricating the same
CN110709959A (en) * 2017-05-25 2020-01-17 新加坡国立大学 Cathode structure for cold field electron emission and preparation method thereof
US11158479B2 (en) 2017-05-25 2021-10-26 National University Of Singapore Cathode structure for cold field electron emission and method of fabricating the same
CN110709959B (en) * 2017-05-25 2022-05-13 新加坡国立大学 Cathode structure for cold field electron emission and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4783239B2 (en) Electron emitter material and electron emission application device
JP5514472B2 (en) Charged particle beam equipment
JP4636897B2 (en) Scanning electron microscope
JP5178926B2 (en) Charged particle microscope and ion microscope
JP5571355B2 (en) Scanning transmission electron microscope using gas amplification
US20080283745A1 (en) Emitter chamber, charged partical apparatus and method for operating same
JP5762411B2 (en) Carbon nanotube arrays for focused field emission
JP4390847B1 (en) Electron emitter and field emission device having electron emitter
Tang et al. A HfC nanowire point electron source with oxycarbide surface of lower work function for high-brightness and stable field-emission
US20080284332A1 (en) Gun chamber, charged particle beam apparatus and method of operating same
JP2008041289A (en) Field emission electron gun and electron beam application apparatus using the same
US7722425B2 (en) Electron source manufacturing method
US7556749B2 (en) Electron source
EP3096343B1 (en) Method of imaging a sample with charged particle beam using an imaging gas
JP2006331997A (en) Electron source and electron beam application device equipped with the same
US10804084B2 (en) Vacuum apparatus
JP4987379B2 (en) Carbon nanotube forming device
JP5114168B2 (en) Field emission electron source and electron beam application apparatus using the same
JP5063002B2 (en) Electron emitter
JP6377920B2 (en) High intensity electron gun, system using high intensity electron gun, and method of operating high intensity electron gun
Chepusov et al. Study of Changes in the Characteristics of Massive Field Electron Emission Cathodes Made of Industrial Carbon Materials Under Ar+ Ion Bombardment
JP2013541150A (en) Electron gun that emits under high voltage, configured for electron microscopy
JP5406748B2 (en) Field emission electron source and manufacturing method thereof
Jeon et al. A novel vacuum-sealed field emission x-ray tube with graphene-gated carbon nanotube emitters
US20220406556A1 (en) Electron source for generating an electron beam