[go: up one dir, main page]

JP2006331804A - Contact member for push-button switch - Google Patents

Contact member for push-button switch Download PDF

Info

Publication number
JP2006331804A
JP2006331804A JP2005152781A JP2005152781A JP2006331804A JP 2006331804 A JP2006331804 A JP 2006331804A JP 2005152781 A JP2005152781 A JP 2005152781A JP 2005152781 A JP2005152781 A JP 2005152781A JP 2006331804 A JP2006331804 A JP 2006331804A
Authority
JP
Japan
Prior art keywords
contact member
nickel
metal
coated graphite
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005152781A
Other languages
Japanese (ja)
Inventor
Kazufusa Yokoyama
和房 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2005152781A priority Critical patent/JP2006331804A/en
Publication of JP2006331804A publication Critical patent/JP2006331804A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Contacts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a conductive limit current value after ON/OFF operations of current have been repeated. <P>SOLUTION: A cover member 1 for a push-button switch has a key top 2, a pressing part 3, a contact member 4, a thin-walled part 5, and a support part 6. The contact member 4 employs nickel-coated graphite as a conductive material. A content of nickel in nickel-coated graphite is 15 to 85 wt.%. The average diameter of a graphite particle constituting nickel-coated graphite is 45 to 150 [μm]. Nickel-coated graphite is contained in an amount of 150 to 950 wt.% based on 100 wt.% of a silicon based rubber material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、携帯電話、車載用電子機器、パソコン、リモコン等のスイッチ部として利用される押釦スイッチ用接点部材に関するものであり、特に、比較的高い電流を必要とするパワーウィンドウやミラースイッチ等の車載用電子機器に用いられる押釦スイッチ用接点部材に関する。   The present invention relates to a contact member for a push button switch used as a switch part of a mobile phone, an in-vehicle electronic device, a personal computer, a remote control, etc., and particularly, such as a power window and a mirror switch that require a relatively high current The present invention relates to a contact member for a push button switch used in an in-vehicle electronic device.

下記特許文献1には、シリコーン系ゴム材料を主材とし、銀粉またはニッケル粉とシランカップリング剤とを含有させたシリコーン系ゴム接点部材が開示されている。このシリコーン系ゴム接点部材は、銀粉またはニッケル粉を含有することによって接触電気抵抗を低下させ、初期の導通限界電流値を500[mA]以上(判定基準:電圧降下値1[V]以下)にまで上昇させている。
特開平5―151853号公報
Patent Document 1 below discloses a silicone rubber contact member containing a silicone rubber material as a main material and containing silver powder or nickel powder and a silane coupling agent. This silicone rubber contact member contains silver powder or nickel powder to reduce the contact electrical resistance, and the initial conduction limit current value is 500 [mA] or more (judgment criterion: voltage drop value 1 [V] or less). It is raised to.
Japanese Patent Laid-Open No. 5-151853

ところで、電子機器の押釦スイッチにおいては、電子機器を正常に動作させるために、高電流による通電が必要とされる。しかしながら、一般に、押釦スイッチは、繰り返し打鍵されることによって、導通限界電流値が低下してしまう傾向にある。例えば、押釦スイッチの接点として上述したシリコーン系ゴム接点部材を用いた場合には、打鍵回数10万回の通電打鍵試験を行うと、導通限界電流値が20[mA]程度にまで低下してしまう。なお、通電打鍵試験とは、押釦スイッチを打鍵することによって電流のON/OFF動作を連続して繰り返す試験のことをいう。   By the way, a pushbutton switch of an electronic device requires energization with a high current in order to operate the electronic device normally. However, in general, pushbutton switches tend to decrease the conduction limit current value when repeatedly pressed. For example, when the silicone rubber contact member described above is used as the contact of the pushbutton switch, the conduction limit current value is reduced to about 20 [mA] when the energization keying test with 100,000 keystrokes is performed. . The energization keying test refers to a test in which ON / OFF operation of current is continuously repeated by pressing a push button switch.

そこで、本発明は、上述した課題を解決するために、電流のON/OFF動作が繰り返し行われた後の導通限界電流値を向上させる押釦スイッチ用接点部材を提供することを目的とする。   SUMMARY OF THE INVENTION In order to solve the above-described problems, an object of the present invention is to provide a contact member for a push button switch that improves a conduction limit current value after a current ON / OFF operation is repeatedly performed.

本発明の押釦スイッチ用接点部材は、シリコーン系ゴム材料に導電材を含有させた押釦スイッチ用接点部材であって、当該導電材は、0℃における比抵抗が10×10―6[Ωcm]以下である金属により被覆されたグラファイト粒子からなる金属被覆グラファイトであることを特徴とする。 The contact member for a push button switch of the present invention is a contact member for a push button switch in which a conductive material is contained in a silicone rubber material, and the conductive material has a specific resistance at 0 ° C. of 10 × 10 −6 [Ωcm] or less. It is characterized by being a metal-coated graphite comprising graphite particles coated with a metal.

この発明によれば、金属よりも抵抗値が高いグラファイトを金属で被覆した金属被覆グラファイトを、接点部材に含有させることができるため、低抵抗かつ高い通電打鍵性を有する接点部材を得ることができる。したがって、電流のON/OFF動作が繰り返し行われた後の導通限界電流値を向上させることができる。   According to the present invention, since the metal-coated graphite obtained by coating graphite having a resistance value higher than that of the metal with the metal can be contained in the contact member, it is possible to obtain a contact member having low resistance and high energization keying performance. . Therefore, the conduction limit current value after the current ON / OFF operation is repeatedly performed can be improved.

本発明の押釦スイッチ用接点部材において、上記金属が、金、銀、ニッケルのいずれかであることが好ましい。このようにすれば、接点としての低抵抗性をより向上させることができる。   In the push-button switch contact member of the present invention, the metal is preferably gold, silver, or nickel. If it does in this way, the low resistance as a contact can be improved more.

本発明の押釦スイッチ用接点部材において、上記金属被覆グラファイトにおける上記金属の含有量が、15〜85重量%であることが好ましい。   In the contact member for a pushbutton switch according to the present invention, the metal content in the metal-coated graphite is preferably 15 to 85% by weight.

本発明の押釦スイッチ用接点部材において、上記グラファイト粒子の平均粒径が、45〜150[μm]であることが好ましい。このようにすれば、適量のグラファイト粒子を含み、かつ、耐久性にも優れた押釦スイッチ用接点部材を得ることができる。   In the contact member for a pushbutton switch of the present invention, the average particle diameter of the graphite particles is preferably 45 to 150 [μm]. In this way, it is possible to obtain a contact member for a pushbutton switch that includes an appropriate amount of graphite particles and is excellent in durability.

本発明の押釦スイッチ用接点部材において、上記シリコーン系ゴム材料 100重量部に対して、上記金属被覆グラファイトを150〜950重量部含有させることが好ましい。このようにすれば、十分な導電性を有し、かつ、耐久性にも優れた押釦スイッチ用接点部材を得ることができる。   The contact member for a pushbutton switch of the present invention preferably contains 150 to 950 parts by weight of the metal-coated graphite with respect to 100 parts by weight of the silicone rubber material. In this way, a contact member for a push button switch having sufficient conductivity and excellent durability can be obtained.

本発明に係る押釦スイッチ用接点部材によれば、電流のON/OFF動作が繰り返し行われた後の導通限界電流値を向上させることができる。   According to the contact member for a pushbutton switch according to the present invention, it is possible to improve the conduction limit current value after the current ON / OFF operation is repeatedly performed.

実施形態の説明に先立ち、本発明の特徴である押釦スイッチ用接点部材に金属被覆グラファイトを含有させることに至った経緯について説明する。   Prior to the description of the embodiment, the background to the inclusion of metal-coated graphite in the contact member for a pushbutton switch, which is a feature of the present invention, will be described.

まず、一般に、押釦スイッチでは、打鍵が繰り返されることによって、接点部材の一部が基板上に滑落して堆積する。したがって、従来のように接点部材に金属単体を含有させた場合には、抵抗値が低い金属粒子が基板上に滑落して堆積することになる。このため、堆積した金属粒子によって電極間にブリッジが形成されると、すぐにショートしてしまうという問題がある。この問題を解決するために、金属粒子よりも抵抗値が高いグラファイト単体を接点部材に含有させることが考えられる。これは、抵抗値が高い分、金属粒子の場合に比して多くのグラファイト粒子が堆積しなければショートが発生しないためである。しかしながら、接点部材にグラファイト単体を含有させた場合には、接点部材として必要な低抵抗が得られない。そこで、本願発明者は、グラファイトを金属で被覆した金属被覆グラファイトを接点部材に含有させることによって、低抵抗かつ高い通電打鍵性を実現させることができるとの知見を得て、本発明を完成した。   First, in general, in the pushbutton switch, a part of the contact member slides and accumulates on the substrate by repeatedly pressing the key. Therefore, when a single metal is contained in the contact member as in the prior art, metal particles having a low resistance value slide down and accumulate on the substrate. For this reason, when a bridge is formed between the electrodes by the deposited metal particles, there is a problem that a short circuit occurs immediately. In order to solve this problem, it is conceivable that the contact member contains a single graphite having a resistance value higher than that of the metal particles. This is because a short circuit does not occur unless a large number of graphite particles are deposited as compared with the case of metal particles because the resistance value is high. However, when the contact member contains graphite alone, the low resistance necessary for the contact member cannot be obtained. Therefore, the present inventor has obtained the knowledge that low contact resistance and high energization keying can be realized by including in the contact member metal-coated graphite obtained by coating graphite with metal, and the present invention has been completed. .

以下、本発明に係る押釦スイッチ用接点部材の実施形態を図面に基づき説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a contact member for a pushbutton switch according to the present invention will be described with reference to the drawings.

まず、図1を参照して、本実施形態における押釦スイッチ用接点部材が適用された押釦スイッチ用カバー部材について説明する。図1は、押釦スイッチ用カバー部材1の断面図である。図1に示す押釦スイッチ用カバー部材1は、キートップ2と、押圧部3と、接点部材4と、薄肉部5と、支持部6とを有する。このように構成される押釦スイッチ用カバー部材1は、パワーウィンドウやミラースイッチ等の電子機器に取り付けられると、以下のように動作する。まず、キートップ2が押下されることにより、薄肉部5が屈曲し、押圧部3が押し下げられる。押圧部3が押し下げられると、押圧部3の先端に配置されている接点部材4が、基板上に対向して配置されている固定接点に接触する。これにより、押下されたキートップ2に対応する押釦スイッチが導通状態となる。   First, a pushbutton switch cover member to which the pushbutton switch contact member according to the present embodiment is applied will be described with reference to FIG. FIG. 1 is a cross-sectional view of a pushbutton switch cover member 1. A pushbutton switch cover member 1 shown in FIG. 1 includes a key top 2, a pressing portion 3, a contact member 4, a thin portion 5, and a support portion 6. The push button switch cover member 1 configured as described above operates as follows when attached to an electronic device such as a power window or a mirror switch. First, when the key top 2 is pressed, the thin portion 5 is bent and the pressing portion 3 is pressed down. When the pressing part 3 is pushed down, the contact member 4 arranged at the tip of the pressing part 3 comes into contact with the fixed contact arranged facing the substrate. As a result, the push button switch corresponding to the pressed key top 2 becomes conductive.

本実施形態における接点部材4は、導電材として、ニッケル被覆グラファイトを使用する。ニッケル被覆グラファイトは、ニッケルにより被覆されたグラファイト粒子からなる金属被覆グラファイトである。   The contact member 4 in this embodiment uses nickel-coated graphite as a conductive material. Nickel-coated graphite is metal-coated graphite composed of graphite particles coated with nickel.

ニッケル被覆グラファイトにおけるニッケルの含有量は、15〜85重量%である。ニッケル被覆グラファイトを構成するグラファイト粒子の平均粒径は、45〜150[μm]である。ここで、グラファイト粒子の平均粒径を15重量%未満にすると、グラファイトを被覆している金属の割合が少なくなりすぎて十分な低抵抗が得られなくなってしまう。一方、グラファイト粒子の平均粒径を85重量%超にすると、金属の割合が多くなりすぎてコスト的に高くなってしまう。   The nickel content in the nickel-coated graphite is 15 to 85% by weight. The average particle diameter of the graphite particles constituting the nickel-coated graphite is 45 to 150 [μm]. Here, if the average particle diameter of the graphite particles is less than 15% by weight, the ratio of the metal covering the graphite becomes too small to obtain a sufficiently low resistance. On the other hand, if the average particle diameter of the graphite particles exceeds 85% by weight, the proportion of the metal is excessively increased and the cost is increased.

ニッケル被覆グラファイトは、シリコーン系ゴム材料 100重量部に対して、150〜950重量部含有させる。ここで、ニッケル被覆グラファイトを、150重量部以下にすると十分な導電性を得ることができず、950重量部以上にするとゴムとしての強度を十分に発揮することができなくなる。これらの特性を考慮すると、ニッケル被覆グラファイトは、180〜400重量部含有させることが好ましく、より好ましくは、230〜300重量部含有させるのがよい。
[実施例]
以下において、本実施形態における接点部材4の実施例および比較例について説明する。
The nickel-coated graphite is contained in an amount of 150 to 950 parts by weight with respect to 100 parts by weight of the silicone rubber material. Here, if the nickel-coated graphite is 150 parts by weight or less, sufficient conductivity cannot be obtained, and if it is 950 parts by weight or more, the strength as a rubber cannot be sufficiently exhibited. Considering these characteristics, the nickel-coated graphite is preferably contained in an amount of 180 to 400 parts by weight, and more preferably 230 to 300 parts by weight.
[Example]
Below, the Example and comparative example of the contact member 4 in this embodiment are demonstrated.

(実施例1)まず、表1に示す各配合材料をロールにて混練した。次に、混練した材料を成形金型に注入し、160[℃]、5分間、210[kgf/cm]の条件で加熱圧縮成形した。これにより、厚さ0.5[mm]の導電ゴムシートが得られた。

Figure 2006331804

Example 1 First, each compounding material shown in Table 1 was kneaded with a roll. Next, the kneaded material was poured into a molding die and subjected to heat compression molding at 160 [° C.] for 5 minutes under the condition of 210 [kgf / cm 2 ]. As a result, a conductive rubber sheet having a thickness of 0.5 [mm] was obtained.
Figure 2006331804

次に、得られた導電ゴムシートを、直径3[mm]のポンチで打抜いた。これにより、直径3[mm]の接点部材が得られた。なお、接点部材は、直径が3[mm]である必要はなく、接点部材を用いる押釦スイッチの形状に適した大きさであればよい。   Next, the obtained conductive rubber sheet was punched with a punch having a diameter of 3 [mm]. As a result, a contact member having a diameter of 3 [mm] was obtained. The contact member does not need to have a diameter of 3 [mm], and may have a size suitable for the shape of the push button switch using the contact member.

実施例1の接点部材を用いて押釦スイッチを作製するには、まず、押釦スイッチ用成形金型の所定位置に接点部材を配置する。次に、所定配合された原料ゴムを成形金型内に注入し、所定条件で加熱圧縮成形する。これにより押釦スイッチが得られる。   In order to produce a push button switch using the contact member of Example 1, first, the contact member is disposed at a predetermined position of the push button switch molding die. Next, a predetermined blended raw material rubber is poured into a molding die and heat compression molded under predetermined conditions. Thereby, a push button switch is obtained.

(比較例1)次に、表2に示す各配合材料を用いて、上述した実施例1の接点部材と同様にして比較例1の接点部材を得た。

Figure 2006331804

(Comparative Example 1) Next, using each compounding material shown in Table 2, a contact member of Comparative Example 1 was obtained in the same manner as the contact member of Example 1 described above.
Figure 2006331804

次に、上述した実施例1の接点部材の初期電気特性を確認するために、実施例1の接点部材を用いた押釦スイッチの接触抵抗値および初期電圧降下値を測定した。この接触抵抗値および初期電圧降下値の測定結果を表3に示す。

Figure 2006331804

Next, in order to confirm the initial electrical characteristics of the contact member of Example 1 described above, the contact resistance value and the initial voltage drop value of the pushbutton switch using the contact member of Example 1 were measured. Table 3 shows the measurement results of the contact resistance value and the initial voltage drop value.
Figure 2006331804

表3に示す接触抵抗値および初期電圧降下値を測定する際の諸条件は、以下の通りである。まず、接触抵抗値を測定する測定器として、デジタルマルチメータ「DIGITAL MULTIMETER R6561」((株)アドバンテスト製)を使用し、初期電圧降下値を測定する測定器として、電圧/電流発生器「DC VOLTAGE CURRENT SOURCE/MONITOR TR6143」((株)アドバンテスト製)を使用した。この電圧/電流発生器の電圧リミットは、一般的な自動車のバッテリーに合わせて12[V]に設定した。また、押釦スイッチの基板として、電極間隔および電極幅が共に0.5[mm]であるクシ歯型金めっき基板を用い、押釦スイッチへの上方からの荷重を200[g]とした。さらに、測定時の判断基準を、通電が可能でかつ電圧降下値が1[V]以下であることとした。   Conditions for measuring the contact resistance values and initial voltage drop values shown in Table 3 are as follows. First, a digital multimeter “DIGITAL MULTIMETER R6561” (manufactured by Advantest Co., Ltd.) is used as a measuring instrument for measuring contact resistance values, and a voltage / current generator “DC VOLTAGE” is used as a measuring instrument for measuring initial voltage drop values. CURRENT SOURCE / MONITOR TR6143 "(manufactured by Advantest Corporation) was used. The voltage limit of the voltage / current generator was set to 12 [V] in accordance with a general automobile battery. In addition, as a substrate for the push button switch, a comb-shaped gold-plated substrate having an electrode interval and an electrode width of 0.5 [mm] was used, and the load from above on the push button switch was set to 200 [g]. Further, the determination criteria at the time of measurement were that energization was possible and the voltage drop value was 1 [V] or less.

このような諸条件のもとで測定された接触抵抗値は0.345[Ω]であり、1000[mA]の電流を流すのに必要な初期電圧降下値は0.352[V]であった。すなわち、1000[mA]の高電流を流す場合であっても電圧降下値が判断基準である1[V]を大幅に下回っていた。これにより、実施例1の接点部材は、高電流下においても十分に実用可能であることが実証された。   The contact resistance value measured under these conditions was 0.345 [Ω], and the initial voltage drop value required to pass a current of 1000 [mA] was 0.352 [V]. It was. That is, even when a high current of 1000 [mA] was passed, the voltage drop value was significantly lower than 1 [V], which is a criterion. Thereby, it was proved that the contact member of Example 1 is sufficiently practical even under a high current.

次に、実施例1の接点部材の耐久性を確認するために、実施例1の接点部材を用いた押釦スイッチと、比較例1の接点部材を用いた押釦スイッチとを使用して、それぞれ通電打鍵試験を実施した。この通電打鍵試験の試験結果を表4に示す。

Figure 2006331804

Next, in order to confirm the durability of the contact member of Example 1, the push button switch using the contact member of Example 1 and the push button switch using the contact member of Comparative Example 1 were energized, respectively. A keystroke test was conducted. Table 4 shows the results of this energization keying test.
Figure 2006331804

表4に示す通電打鍵試験を実施する際の諸条件は、以下の通りである。まず、押釦スイッチを打鍵する打鍵機として、突き上げ式の打鍵機を使用した。また、この打鍵機に取り付けられた押釦スイッチに対する上方からの荷重を200[g]とし、この押釦スイッチに対する下方からの突き上げ量を2[mm]として1秒間に1回ずつ合計10万回突き上げた。さらに、押釦スイッチの導通状態を測定するための測定器として、上述した電圧/電流発生器「DC VOLTAGE CURRENTSOURCE/MONITOR TR6143」を使用し、この電圧/電流発生器の電圧リミットを12[V]に設定した。また、電圧/電流発生器において電圧リミットである12[V]以上の電圧が発生した場合や、10万回の打鍵の途中で接点に異常(例えば、ショートによる燃焼等)が発生した場合に、導通不良であると判断した。なお、押釦スイッチの基板として、電極間隔および電極幅が共に0.5[mm]であるクシ歯型金めっき基板を用いた。   Various conditions for carrying out the energization keying test shown in Table 4 are as follows. First, a push-up type key press was used as a key press for pressing the pushbutton switch. Further, the load from above on the pushbutton switch attached to this key press was set to 200 [g], and the pushup amount from below to this pushbutton switch was set to 2 [mm]. . Furthermore, the voltage / current generator “DC VOLTAGE CURRENTSOURCE / MONITOR TR6143” described above is used as a measuring instrument for measuring the conduction state of the pushbutton switch, and the voltage limit of the voltage / current generator is set to 12 [V]. Set. In addition, when a voltage of 12 [V] or more, which is the voltage limit, is generated in the voltage / current generator, or when an abnormality (for example, combustion due to a short circuit) occurs in the middle of 100,000 keystrokes, Judged to be poor conduction. In addition, as a substrate for the push button switch, a comb-tooth type gold plating substrate having an electrode interval and an electrode width of 0.5 [mm] was used.

このような諸条件のもとで通電打鍵試験を実施した結果、実施例1の接点部材では、10万回打鍵された後も、200[mA]までは、導通不良と判断されることなく通電した。すなわち、実施例1の接点部材における10万回打鍵時の導通限界電流値は、200[mA]であることが判明した。これに対して、比較例1の接点部材では、10万回打鍵時の導通限界電流値が20[mA]であった。   As a result of conducting the energization keying test under such various conditions, the contact member of Example 1 was energized without being judged as a poor conduction until 200 [mA] after being keyed 100,000 times. did. That is, it was found that the conduction limit current value at the time of keying 100,000 times in the contact member of Example 1 was 200 [mA]. On the other hand, in the contact member of Comparative Example 1, the conduction limit current value at the time of keying 100,000 times was 20 [mA].

これらの結果を踏まえると、接点部材の導電材にニッケル被覆グラファイトを使用することによって、10万回打鍵された後の導通限界電流値を確実に向上させられることが実証された。   Based on these results, it was proved that the conduction limit current value after being keyed 100,000 times can be reliably improved by using nickel-coated graphite as the conductive material of the contact member.

なお、上述した実施形態においては、導電材としてニッケル被覆グラファイトを使用しているが、導電材はこれに限られない。例えば、金、銀、銅、アルミニウム等のように0[℃]における比抵抗が10×10―6[Ωcm]以下である金属により被覆されたグラファイト粒子からなる金属被覆グラファイトを、導電材として使用してもよい。ただし、接点に使用されることを考慮する場合には、ニッケル被覆グラファイト、金被覆グラファイトまたは銀被覆グラファイトを使用することが好ましい。さらにコスト面についても考慮する場合には、ニッケル被覆グラファイトを使用することが好ましい。 In the above-described embodiment, nickel-coated graphite is used as the conductive material, but the conductive material is not limited to this. For example, metal-coated graphite made of graphite particles coated with a metal having a specific resistance at 0 [° C.] of 10 × 10 −6 [Ωcm] or less, such as gold, silver, copper, and aluminum, is used as a conductive material. May be. However, when considering the use for the contact, it is preferable to use nickel-coated graphite, gold-coated graphite or silver-coated graphite. Further, when considering the cost, it is preferable to use nickel-coated graphite.

実施形態における押釦スイッチ用接点部材が適用された押釦スイッチの断面図である。It is sectional drawing of the pushbutton switch to which the contact member for pushbutton switches in embodiment was applied.

符号の説明Explanation of symbols

1・・・押釦スイッチ用カバー部材、2・・・キートップ、3・・・押圧部、4・・・接点部材、5・・・薄肉部、6・・・支持部。
DESCRIPTION OF SYMBOLS 1 ... Cover member for pushbutton switches, 2 ... Key top, 3 ... Press part, 4 ... Contact member, 5 ... Thin part, 6 ... Support part.

Claims (5)

シリコーン系ゴム材料に導電材を含有させた押釦スイッチ用接点部材であって、
前記導電材は、0℃における比抵抗が10×10―6Ωcm以下である金属により被覆されたグラファイト粒子からなる金属被覆グラファイトであることを特徴とする押釦スイッチ用接点部材。
A contact member for a pushbutton switch containing a conductive material in a silicone rubber material,
The contact member for a pushbutton switch, wherein the conductive material is metal-coated graphite made of graphite particles coated with a metal having a specific resistance at 0 ° C. of 10 × 10 −6 Ωcm or less.
前記金属が、金、銀、ニッケルのいずれかであることを特徴とする請求項1記載の押釦スイッチ用接点部材。   2. The contact member for a pushbutton switch according to claim 1, wherein the metal is any one of gold, silver, and nickel. 前記金属被覆グラファイトにおける前記金属の含有量が、15〜85重量%であることを特徴とする請求項1または2に記載の押釦スイッチ用接点部材。   The contact member for a pushbutton switch according to claim 1 or 2, wherein the metal content in the metal-coated graphite is 15 to 85% by weight. 前記グラファイト粒子の平均粒径が、45〜150μmであることを特徴とする請求項1〜3のいずれか1項に記載の押釦スイッチ用接点部材。   4. The contact member for a pushbutton switch according to claim 1, wherein an average particle diameter of the graphite particles is 45 to 150 μm. 前記シリコーン系ゴム材料 100重量部に対して、前記金属被覆グラファイトを150〜950重量部含有させることを特徴とする請求項1〜4のいずれか1項に記載の押釦スイッチ用接点部材。
The contact member for a pushbutton switch according to any one of claims 1 to 4, wherein the metal-coated graphite is contained in an amount of 150 to 950 parts by weight with respect to 100 parts by weight of the silicone rubber material.
JP2005152781A 2005-05-25 2005-05-25 Contact member for push-button switch Pending JP2006331804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005152781A JP2006331804A (en) 2005-05-25 2005-05-25 Contact member for push-button switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005152781A JP2006331804A (en) 2005-05-25 2005-05-25 Contact member for push-button switch

Publications (1)

Publication Number Publication Date
JP2006331804A true JP2006331804A (en) 2006-12-07

Family

ID=37553286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005152781A Pending JP2006331804A (en) 2005-05-25 2005-05-25 Contact member for push-button switch

Country Status (1)

Country Link
JP (1) JP2006331804A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199756A (en) * 1983-04-27 1984-11-12 Toshiba Silicone Co Ltd Conductive silicone rubber composition
JPS61184228U (en) * 1985-05-10 1986-11-17
JP2004342601A (en) * 2003-04-16 2004-12-02 Integral Technologies Inc Switch device operating mechanism such as low cost key operating mechanism manufactured by conductive resin based material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199756A (en) * 1983-04-27 1984-11-12 Toshiba Silicone Co Ltd Conductive silicone rubber composition
JPS61184228U (en) * 1985-05-10 1986-11-17
JP2004342601A (en) * 2003-04-16 2004-12-02 Integral Technologies Inc Switch device operating mechanism such as low cost key operating mechanism manufactured by conductive resin based material

Similar Documents

Publication Publication Date Title
US20190143405A1 (en) Methods of Fabricating Conductive Thick-Film Pastes of Base Metals with High Conductivity Achieved
CN102051496B (en) Electric contact material made of silver-tungsten carbide graphite and preparation method thereof
US2470034A (en) Electric contact formed of a ruthenium composition
EP1310967A3 (en) Input device which varies output value in accordance with pressing force
JP5601646B2 (en) Conductive member for pushbutton switch and manufacturing method thereof
TW200410453A (en) Contact terminal with doped coating
CN204464182U (en) A relay contact group with the function of preventing contact bonding
US11430618B2 (en) Push switch
JP2006331804A (en) Contact member for push-button switch
CN109155208B (en) Coating material for electrical contacts and method for producing said coating material
JPH1173848A (en) Microswitch
CN102148102A (en) Lead structure of membrane switch and manufacturing method of lead structure of membrane switch
JP2007329124A (en) Contact member for push-button switch
TW201232934A (en) Connecting terminal
JP2019091627A (en) Contact switch and manufacturing method thereof
US1779603A (en) Alloy for electrical contacts
US6984798B1 (en) Safety switch
JP4622705B2 (en) Movable contact for panel switch
TW201250751A (en) Button and electronic device using the same
CN216980410U (en) Conductive key structure of PCB board and its mechanical equipment
CN109579046A (en) A kind of piezoelectric ceramic ignitor
JP2006177759A (en) Advanced processing of carbon nanotubes
JP4191067B2 (en) Cover member for pushbutton switch
JPH05151853A (en) Silicone based rubber contact member
TW201133322A (en) Flexible slide-touch controlling device and related contact location determination method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629