JP2006326691A - Broach made of coated cemented carbide - Google Patents
Broach made of coated cemented carbide Download PDFInfo
- Publication number
- JP2006326691A JP2006326691A JP2005148918A JP2005148918A JP2006326691A JP 2006326691 A JP2006326691 A JP 2006326691A JP 2005148918 A JP2005148918 A JP 2005148918A JP 2005148918 A JP2005148918 A JP 2005148918A JP 2006326691 A JP2006326691 A JP 2006326691A
- Authority
- JP
- Japan
- Prior art keywords
- cemented carbide
- broach
- coated cemented
- shell
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005415 magnetization Effects 0.000 claims abstract description 13
- 229910021385 hard carbon Inorganic materials 0.000 claims abstract description 9
- 239000011247 coating layer Substances 0.000 claims abstract description 3
- 239000002245 particle Substances 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 239000011651 chromium Chemical group 0.000 claims description 6
- 239000011195 cermet Substances 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical group [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical group FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052801 chlorine Inorganic materials 0.000 claims description 3
- 239000000460 chlorine Chemical group 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 239000011737 fluorine Chemical group 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000010703 silicon Chemical group 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Chemical group 0.000 claims description 2
- 239000007787 solid Substances 0.000 abstract description 4
- 229920006395 saturated elastomer Polymers 0.000 abstract 2
- 239000000314 lubricant Substances 0.000 abstract 1
- 238000005520 cutting process Methods 0.000 description 35
- 239000000463 material Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 230000001050 lubricating effect Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910001315 Tool steel Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910010037 TiAlN Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002173 cutting fluid Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Milling, Broaching, Filing, Reaming, And Others (AREA)
Abstract
Description
本願発明は、被加工物を所要の断面形状に切削加工するための被覆超硬合金製ブローチに関する。 The present invention relates to a coated cemented carbide broach for cutting a workpiece into a required cross-sectional shape.
ブローチは、多数の被加工物を所要の断面形状に仕上げるための切削工具であり、工具寿命、加工精度に対する要望が高く、切れ刃部に超硬合金を用いたものや硬質皮膜を被覆したものがある。特許文献1、2、3記載の被覆超硬ブローチは、高硬度材加工用として、母材に超硬合金を用い、硬質皮膜を被覆している。 Broach is a cutting tool for finishing a large number of workpieces to the required cross-sectional shape. There is a high demand for tool life and machining accuracy, and the cutting edge is made of cemented carbide or coated with a hard coating. There is. The coated cemented carbide broach described in Patent Documents 1, 2, and 3 uses a cemented carbide alloy as a base material and coats a hard coating for high-hardness material processing.
上記特許文献1〜3は、超硬合金が脆性材料であることから、ブローチとしては未だ不十分であり、チッピングや欠損を生じ易く、加工面を荒らし、寿命や加工精度に影響を及ぼしていた。
本願発明は、かかる従来の事情に鑑み、ブローチに適用する超硬合金を最適化することによって、ブローチの精度を長期間維持できる被覆超硬ブローチを提供することを課題とする。
In the above Patent Documents 1 to 3, since the cemented carbide is a brittle material, it is still insufficient as a broach, easily causing chipping and chipping, roughening the processing surface, and affecting the life and processing accuracy. .
This invention makes it a subject to provide the covering cemented carbide broach which can maintain the precision of a broach for a long period of time by optimizing the cemented carbide applied to a broach in view of this conventional situation.
上記目的を達成するため、本願発明は、シェル型の被覆超硬合金製ブローチにおいて、該シェルに用いる超硬合金は、WCの平均粒径が1.2μm以下、保磁力が20kA/m以上40kA/m未満、飽和磁化値をRとし、202×Co重量%/100の値をSとした時、飽和磁化比R/Sが、0.65≦R/S≦0.95、更に、該被覆層は、硬質炭素膜を含む固体潤滑皮膜であることを特徴とする被覆超硬合金製ブローチである。尚、シェル型は、組立型のブローチの、荒〜仕上げ刃部又は仕上げ刃部を中空円筒状の超硬合金等で製作し、鋼製又は高速度鋼製のブローチの本体に着脱自在に取り付けたのパイプ状の部分を称する。 In order to achieve the above object, the present invention provides a shell-type coated cemented carbide broach, wherein the cemented carbide used for the shell has a WC average particle size of 1.2 μm or less and a coercive force of 20 kA / m to 40 kA. When the saturation magnetization value is R and the value of 202 × Co weight% / 100 is S, the saturation magnetization ratio R / S is 0.65 ≦ R / S ≦ 0.95, and the coating The layer is a coated cemented carbide brooch, which is a solid lubricating film including a hard carbon film. The shell type is an assembly type broach with a rough or finished blade or finished blade made of a hollow cylindrical cemented carbide, etc., and detachably attached to the main body of a steel or high-speed steel broach. This refers to other pipe-like parts.
本願発明を適用することにより、超硬合金製ブローチの耐チッピング性、耐欠損性を高めることにより、超硬合金の特長を生かした高精度が長期間維持でき、且つ、硬質炭素皮膜を用いることによりアルミ合金等の溶着しやすい被削材に対して耐溶着性に優れた超硬合金製ブローチを提供することが出来た。特に、5〜15m/minの切削速度でも超硬合金製ブローチを用いることが出来た。 By applying the invention of the present application, it is possible to maintain high accuracy utilizing the features of cemented carbide for a long period of time by increasing the chipping resistance and fracture resistance of the cemented carbide broach, and use a hard carbon film As a result, it was possible to provide a cemented carbide broach having excellent welding resistance to work materials that are easily welded, such as aluminum alloys. In particular, a cemented carbide broach could be used even at a cutting speed of 5 to 15 m / min.
超硬合金製ブローチは、他の工具、例えば、旋削のように被削材が、フライスのように切削工具が、回転する切削工具に比較して、ブローチ工具は、直線運動を主とした切削工具であるため、切削速度を上げることが出来ず、通常5〜15m/min、上記背景技術に記載した例でも20〜80m/minであり、旋削・フライスのような速度とは大きく異なっており、本願発明の超硬合金製ブローチに用いる超硬合金は、低速時の耐衝撃性に優れ、且つ、衝撃時の耐チッピング性、耐欠損性を備えるため、以下の構成を備えています。
本願発明の少なくとも切れ刃部の材質である超硬合金のWCの平均粒径は、1.2μm以下であり、切れ刃の稜線品位を良好にするためであり、WCの平均粒径が1.2μmを超えると、研削加工による切れ刃成形時において、WCの脱落により、稜線品位が保てなくなり、加工面が荒くなり、チッピングを誘発するからである。好ましくは、WCの平均粒径は0.8μm以下である。
Cemented carbide brooches are compared to other tools, for example, cutting materials such as turning, cutting tools such as milling cutters, rotating cutting tools, etc. Because it is a tool, the cutting speed cannot be increased, usually 5 to 15 m / min, and even in the example described in the background art above, it is 20 to 80 m / min, which is greatly different from the speed of turning and milling. The cemented carbide used in the cemented carbide broach of the present invention has the following configuration in order to have excellent impact resistance at low speed and chipping resistance and fracture resistance at impact.
The average particle diameter of WC of the cemented carbide, which is the material of at least the cutting edge part of the present invention, is 1.2 μm or less, in order to improve the ridge line quality of the cutting edge, and the average particle diameter of WC is 1. If the thickness exceeds 2 μm, the edge line quality cannot be maintained due to WC falling off when the cutting edge is formed by grinding, and the processed surface becomes rough and chipping is induced. Preferably, the average particle size of WC is 0.8 μm or less.
超硬合金の保磁力は、Co相の厚さに相当し、Co量が少ないほど、WC粒径が小さいほど高くなるが、これらのバランスを考え、保磁力を20kA/m以上40kA/m未満とした。保磁力が12kA/m未満ではCo量が多く、WCの粒径も大きくなるため、耐摩耗性が低下する。保磁力が20kA/m以上だと、Co量が少なくなるためチッピングし易くなり、耐欠損性が低下する。結合相量としては、重量%で、5〜12%である。更に好ましくは、5〜10%である。 The coercive force of the cemented carbide corresponds to the thickness of the Co phase, and the smaller the amount of Co, the higher the WC grain size, the higher the coercive force, considering the balance between 20 kA / m and less than 40 kA / m. It was. When the coercive force is less than 12 kA / m, the amount of Co is large and the particle size of WC is also large, so that the wear resistance is lowered. When the coercive force is 20 kA / m or more, the amount of Co is reduced, so that chipping is facilitated, and the fracture resistance is lowered. The amount of the binder phase is 5 to 12% by weight. More preferably, it is 5 to 10%.
超硬合金の飽和磁化値をRとし、202×Co重量%/100の値をSとした時、飽和磁化比R/Sを0.65≦R/S≦0.95としたのは、R/Sが上記範囲にあるとき、耐摩耗性にすぐれ、チッピングしにくいブローチを得ることができる。202はCoの飽和磁化値である。R/Sが0.65未満では有害なη相が析出し、強度が大幅に低下するからであり、R/Sが0.95を超えると、結合相中のW固溶量が低下し、合金の強度が低下し、刃先強度が低下するからである。好ましくは、R/Sが0.70〜0.95で、より好ましくは、R/Sが0.80〜0.90である。 When the saturation magnetization value of the cemented carbide is R and the value of 202 × Co weight% / 100 is S, the saturation magnetization ratio R / S is 0.65 ≦ R / S ≦ 0.95. When / S is in the above range, it is possible to obtain a broach having excellent wear resistance and being difficult to chip. 202 is a saturation magnetization value of Co. If R / S is less than 0.65, a harmful η phase is precipitated and the strength is greatly reduced. If R / S is more than 0.95, the W solid solution amount in the binder phase is reduced. This is because the strength of the alloy decreases and the strength of the blade edge decreases. Preferably, R / S is 0.70 to 0.95, and more preferably, R / S is 0.80 to 0.90.
被覆を施すことにより、切れ刃の逃げ面において、炭素と被加工物が潤滑層を形成し易く、その潤滑層が極めて緻密であり、耐摩耗性がさらに改善される。硬質炭素膜を含む固体潤滑皮膜は、硬質炭素皮膜が水素、フッ素、塩素、硼素、窒素、シリコン、クロムから選択される少なくとも1種を含む場合、その潤滑作用により切削状態が良好となる。このときの水素、フッ素、塩素、硼素、酸素、窒素、シリコン、クロムの総含有量としては、原子%で0.3%以上、35%未満が最適である。0.3%未満ではその効果が発揮されない場合があり、また35%以上では皮膜硬度の低下が著しく、耐摩耗性に乏しい。
次に、耐摩耗性、基体との密着性を補完するために、Ti、Al、Cr、Nb、Si、W、Moの窒化物、硼化物、酸化物、硫化物、炭化物のいずれか1種以上の固溶体又は混合物からなる耐摩耗性層、密着強化層を設けても良い。
更に、被覆後に、被膜層表面を機械的処理により切れ刃のすくい面と逃げ面の最大高さ面粗さRzを1.0μm以下と平滑にすることにより、異常摩耗を抑制することができる。
By applying the coating, carbon and the workpiece easily form a lubricating layer on the flank face of the cutting edge, the lubricating layer is extremely dense, and wear resistance is further improved. When the solid carbon film includes at least one selected from hydrogen, fluorine, chlorine, boron, nitrogen, silicon, and chromium, the solid lubricating film including the hard carbon film has a good cutting state due to its lubricating action. The total content of hydrogen, fluorine, chlorine, boron, oxygen, nitrogen, silicon, and chromium at this time is optimally 0.3% or more and less than 35% in atomic%. If it is less than 0.3%, the effect may not be exhibited, and if it is 35% or more, the film hardness is remarkably lowered and the wear resistance is poor.
Next, any one of nitrides, borides, oxides, sulfides, and carbides of Ti, Al, Cr, Nb, Si, W, and Mo is used to complement the wear resistance and adhesion to the substrate. You may provide the abrasion-resistant layer and adhesion reinforcement layer which consist of the above solid solution or a mixture.
Further, after the coating, the surface of the coating layer is smoothed by mechanical treatment so that the maximum height surface roughness Rz of the rake face and the flank face is 1.0 μm or less, whereby abnormal wear can be suppressed.
次に、組立型のシェルには、荒〜仕上げ刃部まで一貫したパイプ状の超硬合金を用いるものと、仕上げ刃の1刃のみで形成し、複数の仕上げ刃を1刃毎に形成するリング状の超硬合金を用いるものとがある。
パイプ状の超硬合金を用いたシェルは、ブローチの本体に取り付ける際、荒刃〜仕上げ刃まで一体であり、高精度等を維持できる特徴がある。
リング状の超硬合金を用いたシェルは、仕上げ刃のみが独立したシェルであり、仕上げに適した超硬合金又はTiCN基サーメット等を用いることが可能となる。以下、本願発明を実施例に基づき、詳細に説明する。
Next, the assembly-type shell is formed with a pipe-shaped cemented carbide that is consistent from rough to finishing blades, and only one finishing blade, and a plurality of finishing blades are formed for each blade. Some use ring-shaped cemented carbide.
A shell made of a pipe-shaped cemented carbide has a feature that when it is attached to the main body of the broach, it is integrated from the rough blade to the finishing blade, and can maintain high accuracy and the like.
The shell using the ring-shaped cemented carbide is a shell whose finishing blade is independent, and it is possible to use cemented carbide suitable for finishing, TiCN-based cermet or the like. Hereinafter, the present invention will be described in detail based on examples.
(実施例1)
市販の平均粒径0.4μm〜1.5μmのWC粉末、1.2μmのCo粉末、1.2μmのCr3C2粉末、1.5μmのVC粉末、1.2μmのTaC粉末を用いて、表1に示す各組成に配合し、成形バインダーを含んだアルコール中アトライターで12時間混合し、スプレードライヤーで造粒乾燥した後、得られた造粒粉末を押出し成形して圧粉体とした。これらの圧粉体を10Paの真空雰囲気中において1400〜1450℃で焼結し、その後HIP処理し、本発明例1〜12、比較例13〜17の超硬合金にてパイプ状のシェルを製作し、合金鋼で製作したブローチ本体に組立てて、インボリュートスプラインブローチを製作した。
上記ブローチは、切れ刃のすくい角が6°、ブローチ軸方向に切れ刃を10刃並べて設け、1刃の切り込みは、ブローチの第1刃から数えて、第5刃目までが0.04mm、第6刃が0.02mm、第7刃が0.01mmで、第7刃〜第10刃を仕上げ刃とした。各ブローチを脱脂洗浄を十分に実施し、AIP装置の容器内の冶具に配置し、切れ刃部に、TiAlN被膜を0.7μm被覆し、次いで、硬質炭素膜を0.3μm、スパッタリング法により被覆した。
製作した各被覆超硬ブローチを用いて、被加工物を定数個加工時の最大逃げ面摩耗幅を調査した。被加工物には、1個当たりの切削長が26mmで、アルミ合金ダイカストであるADC12材を用い、切削条件は、切削速度5m/min、不水溶性切削液を用いた湿式切削で行った。表1にテスト結果を示す。
Example 1
Using a commercially available WC powder having an average particle size of 0.4 μm to 1.5 μm, 1.2 μm Co powder, 1.2 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.2 μm TaC powder, It mix | blends with each composition shown in Table 1, and it mixes for 12 hours with the attritor in the alcohol containing a shaping | molding binder, It granulates and dries with a spray dryer, Then, the obtained granulated powder is extrusion-molded and it was set as the green compact. . These green compacts are sintered at 1400 to 1450 ° C. in a vacuum atmosphere of 10 Pa, and then subjected to HIP treatment, and a pipe-like shell is manufactured using the cemented carbides of Examples 1 to 12 and Comparative Examples 13 to 17 of the present invention. Then, it was assembled into a broach body made of alloy steel to produce an involute spline broach.
The broach has a cutting edge rake angle of 6 °, 10 cutting edges arranged side by side in the broach axis direction, and the cutting of one blade is 0.04 mm from the first cutting edge of the broach to the fifth cutting edge. The sixth blade was 0.02 mm, the seventh blade was 0.01 mm, and the seventh to tenth blades were finished blades. Each broach is thoroughly degreased and cleaned and placed on a jig inside the container of the AIP device. The cutting edge is coated with a TiAlN coating of 0.7 μm, and then a hard carbon film is coated with a sputtering method of 0.3 μm. did.
Using each coated cemented carbide broach, we investigated the maximum flank wear width when machining a number of workpieces. The workpiece used was an ADC12 material that was an aluminum alloy die cast with a cutting length of 26 mm per piece, and the cutting conditions were a cutting speed of 5 m / min and wet cutting using a water-insoluble cutting fluid. Table 1 shows the test results.
表1より、本発明例1〜4は、加工数1000個まで加工できたが、本発明例4は、WC粒子が最も微粒な例で、高品位な面が得られ、本発明例2〜4は、通常摩耗であり、いずれも、最大逃げ面摩耗幅が0.15mm以下であった。本発明例5〜9は、保磁力が20kA/m以上40kA/m未満の範囲、飽和磁化比が0.65以上0.95以下の範囲であり、加工数1500個まで加工でき、摩耗状態も良好な通常摩耗であり、特に、WCの平均粒径が1.0μm以下の本発明例1〜7は摩耗幅も小さかった。
比較例12は、加工数500個の時点で、切れ刃にチッピングを生じており、飽和磁化比が低い為であり、比較例13は、飽和磁化比が高い為であり、摩耗が大きく、500個の加工で中止した。比較例14は、Co量が少なすぎ、使用初期に、第1刃が欠けを起こし、寿命となった。比較例15は、Co量が多く、摩耗が大きく、500個の加工で中止した。比較例16は、WC粒径を1.5μmを用いたため、切れ刃稜線の品位が影響し、いびつな摩耗状態であった。
これらの結果より、本発明範囲の特性を持つ超硬合金、保磁力が12kA/m以上20kA/m未満、飽和磁化比が0.65以上0.95以下の範囲の特性を持つ超硬合金を素材とした被覆超硬ブローチは、潤滑性、特に、切削初期は切削抵抗が軽減され、加工個数とともに切削抵抗が増えたが、耐摩耗性とともに非常に優れていることが明らかである。
From Table 1, Invention Examples 1 to 4 could be processed up to 1000, but Invention Example 4 is an example in which the WC particles are the finest, and a high-quality surface is obtained. No. 4 is normal wear, and the maximum flank wear width was 0.15 mm or less in any case. In Invention Examples 5 to 9, the coercive force is in the range of 20 kA / m to less than 40 kA / m, the saturation magnetization ratio is in the range of 0.65 to 0.95, can be processed up to 1500, and the wear state is also It was good normal wear, and in particular, Examples 1 to 7 of the present invention in which the average particle diameter of WC was 1.0 μm or less had a small wear width.
In Comparative Example 12, chipping occurs at the cutting edge when the number of machining is 500, and the saturation magnetization ratio is low. In Comparative Example 13, the saturation magnetization ratio is high, and wear is large. Canceled with processing of the piece. In Comparative Example 14, the amount of Co was too small, and in the initial stage of use, the first blade was chipped and the life was reached. In Comparative Example 15, the amount of Co was large and the wear was large. In Comparative Example 16, since the WC particle size was 1.5 μm, the quality of the cutting edge ridge line was affected, and the wear state was distorted.
From these results, a cemented carbide having characteristics within the range of the present invention, a cemented carbide having a coercive force of 12 kA / m to less than 20 kA / m, and a saturation magnetization ratio of 0.65 to 0.95. It is clear that the coated carbide broach made of the material has reduced lubricity, especially the cutting resistance at the beginning of cutting, and the cutting resistance increased with the number of workpieces, but it is very excellent with wear resistance.
(実施例2)
本発明例3のブローチと同様の仕様で、各種皮膜を切れ刃部に被覆したブローチを製作し、実施例1と同様の条件で、切削加工テストを行った。表2に、各々の被覆の構成とテスト結果を示す。
(Example 2)
A broach having the same specifications as the broach of Example 3 of the present invention and having various coatings coated on the cutting edge portion was manufactured, and a cutting test was performed under the same conditions as in Example 1. Table 2 shows the composition of each coating and the test results.
その結果、本発明例17、18は、耐摩耗性層にAlCr系皮膜を用い、本発明例19は、密着強化層の例でCr層を設け、本発明例20〜22は、耐摩耗性皮膜と硬質炭素皮膜に加え、硬質炭素膜の潤滑性を高める少量の添加元素の例で、何れも、切削初期は切削抵抗が軽減され、加工個数とともに切削抵抗が増えたが、内層の耐摩耗性に優れた皮膜により、良好な結果が得られた。 As a result, Examples 17 and 18 of the present invention use an AlCr-based film for the wear-resistant layer, Example 19 of the present invention provides a Cr layer as an example of an adhesion strengthening layer, and Examples 20 to 22 of the present invention are wear-resistant. In addition to the film and hard carbon film, these are examples of a small amount of additive elements that enhance the lubricity of the hard carbon film. In each case, the cutting resistance was reduced at the beginning of cutting, and the cutting resistance increased with the number of workpieces. Good results were obtained with the film having excellent properties.
(実施例3)
本発明例23として、実施例1と同仕様のインボリュートスプラインブローチを用いて、その第1刃〜第7刃迄をパイプ状の本発明例1の超硬合金で製作し、第8刃〜第10刃をTiCN基サーメットで製作した。
先ず、本体をHRC60程度に調質した溶製高速度工具鋼であるSKH51材製で製作し、次いで、パイプ状のシェルを本発明例1記載の超硬合金で製作し、リング状のシェルをTiCN基サーメットで製作し、以下、実施例1同様に、ブローチ軸方向に切れ刃を10刃並べて設け、1刃の切り込みは、ブローチの第1刃から数えて、第5刃目までが0.04mm、第6刃が0.02mm、第7刃が0.01mmまでを高速度工具鋼、第7刃〜第10刃を仕上げ刃とし超硬合金て製作し、実施例1記載の切削諸元で行った。
その結果、本発明例23は、チッピングもなく、最大逃げ面摩耗幅も0.07mmと一体型とほぼ同じであったが、被切削面は、サーメットにより高品位な面が得られた。
(Example 3)
As Inventive Example 23, using the involute spline broach having the same specifications as in Example 1, the first blade to the seventh blade were manufactured from the cemented carbide of Invention Example 1 in the shape of a pipe, and the eighth blade to the eighth blade. Ten blades were made of TiCN-based cermet.
First, the main body is made of a SKH51 material, which is a high-speed tool steel that has been tempered to about HRC60, and then a pipe-like shell is made of the cemented carbide described in Example 1 of the present invention. A TiCN-based cermet is used, and 10 cutting edges are provided side by side in the broach axial direction as in the first embodiment. 04mm, 0.06mm for the 6th blade, 0.01mm for the 7th blade, high-speed tool steel, 7th to 10th blades made of cemented carbide with finished blades, cutting specifications described in Example 1 I went there.
As a result, Example 23 of the present invention had no chipping and the maximum flank wear width was 0.07 mm, which was almost the same as that of the integrated type, but a high-quality surface was obtained by cermet.
Claims (5)
5. The coated cemented carbide broach according to claim 1, wherein a part of the hard carbon film is replaced with hydrogen, fluorine, chlorine, boron, oxygen, nitrogen, silicon, chromium. Cemented carbide brooch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005148918A JP2006326691A (en) | 2005-05-23 | 2005-05-23 | Broach made of coated cemented carbide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005148918A JP2006326691A (en) | 2005-05-23 | 2005-05-23 | Broach made of coated cemented carbide |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006326691A true JP2006326691A (en) | 2006-12-07 |
Family
ID=37548945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005148918A Withdrawn JP2006326691A (en) | 2005-05-23 | 2005-05-23 | Broach made of coated cemented carbide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006326691A (en) |
-
2005
- 2005-05-23 JP JP2005148918A patent/JP2006326691A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2425028B1 (en) | Cemented carbide tools | |
JP2009061579A (en) | Coated cemented carbide cutting tool insert | |
JP2003508632A (en) | Coated milling inserts | |
JP6172382B2 (en) | Cermet tool | |
JP2008055595A (en) | Cemented carbide insert for milling hard iron-based alloy and manufacturing method therefor | |
JP2011251368A (en) | Surface-coated cutting tool made of cemented carbide | |
JP2002166307A (en) | Cutting tool | |
JP2009007615A (en) | Cemented carbide and cutting tool using the same | |
JP2005350707A (en) | Cermet and coated cermet and methods for producing them | |
JP2009102709A (en) | LAMINATE STRUCTURE-TYPE CEMENTED CARBIDE, ITS MANUFACTURING METHOD, AND TOOL FORMED BY THE Cemented Carbide | |
JP2006326690A (en) | Broach made of coated cemented carbide | |
JP2006326691A (en) | Broach made of coated cemented carbide | |
JPH10298699A (en) | Cemented carbide | |
JP2006326688A (en) | Broach made of coated cemented carbide | |
JP2003300778A (en) | Tungsten carbide based sintered compact | |
JP4284153B2 (en) | Cutting method | |
JP2006239792A (en) | Hard film coated cemented carbide member | |
JP2006321035A (en) | Coated cemented carbide broach | |
JP4771198B2 (en) | Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials | |
KR20130002964A (en) | Target and hard coating film-coated cutting tool | |
JP2006321031A (en) | Broach made from covered cemented carbide | |
JP2009226512A (en) | Tungsten carbide based sintered body | |
JP2006321034A (en) | Coated cemented carbide broach | |
JP2020033597A (en) | TiN-based sintered body and cutting tool made of TiN-based sintered body | |
JP2006326689A (en) | Broach made of coated cemented carbide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080422 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20100608 |