[go: up one dir, main page]

JP2006324487A - Solar power generator and light condenser - Google Patents

Solar power generator and light condenser Download PDF

Info

Publication number
JP2006324487A
JP2006324487A JP2005146527A JP2005146527A JP2006324487A JP 2006324487 A JP2006324487 A JP 2006324487A JP 2005146527 A JP2005146527 A JP 2005146527A JP 2005146527 A JP2005146527 A JP 2005146527A JP 2006324487 A JP2006324487 A JP 2006324487A
Authority
JP
Japan
Prior art keywords
light
condensing
sunlight
shape
solar power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005146527A
Other languages
Japanese (ja)
Inventor
Masamitsu Hiraoka
真実 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2005146527A priority Critical patent/JP2006324487A/en
Publication of JP2006324487A publication Critical patent/JP2006324487A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar power generator capable of efficiently receiving sunlight even if the azimuth and the elevation of the sun change, and capable of reducing the cost of the whole equipment. <P>SOLUTION: The solar power generator 1 has a photoelectric conversion device for generating an electric power by receiving the sunlight on the light-receptive surface thereof. A plurality of nearly conical and internally hollow translucent condensing projections 11 are arranged in high density on the light-receptive surface or on the side of the light-receptive surface. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、光エネルギーを電気エネルギーに変換するような太陽光発電装置、およびこの太陽光発電装置に使用する集光体に関する。   The present invention relates to a solar power generation device that converts light energy into electrical energy, and a light collector used in the solar power generation device.

従来、半導体により構成される太陽電池セル等の光電変換素子を太陽電池パネル内に複数設け、上記光電変換素子により太陽光の光エネルギーを電気エネルギーに変換する太陽光発電装置が知られている。
このような太陽光発電装置が出力する電力量は、太陽光の受光面積に比例する。このため、太陽光の受光面積を拡大すれば、それだけ高出力の電力が得られる。
2. Description of the Related Art Conventionally, there is known a solar power generation device in which a plurality of photoelectric conversion elements such as solar cells formed of a semiconductor are provided in a solar battery panel, and the light energy of sunlight is converted into electric energy by the photoelectric conversion elements.
The amount of power output by such a solar power generation device is proportional to the light receiving area of sunlight. For this reason, if the light receiving area of sunlight is enlarged, high output power can be obtained.

しかし、光電変換素子の増量や大型化によって受光面積を拡大すると、拡大する面積に比例してコスト増となる。このため、太陽光発電装置には、大出力の太陽光発電装置を構成しようとした場合に、価格が大幅に上昇するという問題点があった。   However, if the light receiving area is enlarged by increasing the size or size of the photoelectric conversion element, the cost increases in proportion to the area to be enlarged. For this reason, the solar power generation device has a problem in that the price increases significantly when an attempt is made to configure a high-power solar power generation device.

一方、光電変換素子単体における受光面積を拡大するものとして、太陽電池セルを裏面同士で直列接続した太陽電池モジュールが提案されている(特許文献1参照)。   On the other hand, a solar cell module in which solar cells are connected in series with each other on the back surface has been proposed as a method for expanding the light receiving area of a single photoelectric conversion element (see Patent Document 1).

この太陽電池モジュールは、複数配設する太陽電池セルの表面に電極を設けないことで、太陽電池セルの上に設けられたガラス板から入射する太陽光を、太陽電池セルの表面の全面で受光できるものである。これにより、太陽光を効率的に受光することが図られている。   This solar cell module receives no sunlight from the glass plate provided on the solar cell over the entire surface of the solar cell by not providing an electrode on the surface of the solar cell to be arranged. It can be done. Thereby, it is aimed at efficiently receiving sunlight.

しかし、前記ガラス板は平面である関係上、太陽電池モジュールが占有する平面面積以上の太陽光を受光することは不可能であり、また、太陽の方位や高度の影響は避けられず、太陽電池セルへの太陽光の入射角度が低い時間帯においては、得られる電気出力も小さくなるという問題点が残っていた。   However, because the glass plate is flat, it is impossible to receive sunlight exceeding the plane area occupied by the solar cell module, and the influence of the sun's orientation and altitude is unavoidable. In the time zone in which the incident angle of sunlight on the cell is low, there remains a problem that the electric output obtained is also small.

特開2005−11869号公報JP 2005-11869 A

そこで、この発明は、受光面または受光面側に透光性の集光突起を複数設ける構成とすることにより、太陽の方位や高度が変化しても太陽光を効率よく受光し、装置全体のコスト低減を図ることができる太陽光発電装置を提供することを目的とする。   In view of this, the present invention has a configuration in which a plurality of light-transmissive condensing projections are provided on the light-receiving surface or the light-receiving surface side, so that sunlight can be efficiently received even if the azimuth or altitude of the sun changes, It aims at providing the solar power generation device which can aim at cost reduction.

この発明は、太陽光を受光面に受光して電力を生じる光電変換素子を有する太陽光発電装置であって、上記受光面または受光面側に、略円錐形状、略円錐台形状、略角錐形状、略角錐台形状または半球形状で内部中空に形成した透光性の集光突起を複数密集配置したことを特徴とする
またこの発明は、透光性部材により基部から先端に向けて順次横断面が小さくなる立体形状に構成した集光体とすることができる。
The present invention is a solar power generation apparatus having a photoelectric conversion element that generates sunlight by receiving sunlight on a light receiving surface, and has a substantially conical shape, a substantially truncated cone shape, and a substantially pyramid shape on the light receiving surface or the light receiving surface side. A plurality of translucent condensing projections formed in a substantially pyramid-shaped or hemispherical shape and hollow inside are densely arranged.
Moreover, this invention can be set as the condensing body comprised by the translucent member in the solid | 3D shape where a cross section becomes small sequentially toward a front-end | tip from a base part.

この発明よれば、太陽の方位や高度が変化しても太陽光を効率よく受光することができ、この結果、装置全体のコスト低減を図ることができる。   According to the present invention, sunlight can be received efficiently even if the azimuth and altitude of the sun change, and as a result, the cost of the entire apparatus can be reduced.

この発明の一実施形態を以下図面に基づいて詳述する。
図面は太陽光発電装置およびその集光体を示すが、まず、図1を参照して太陽光発電装置の構成について説明する。
図1は太陽光発電装置1の斜視図であって、この太陽光発電装置1は、上下方向に厚みを有する板状の本体部20と、この本体部20の上面に設けられた複数の集光体としての集光突起11とで構成されている。太陽光発電装置1は、建築物の屋上その他に水平に備えられるが、水平配置に代えて、一定の仰角(例えば30°)を有して南向きに配置されてもよい。
An embodiment of the present invention will be described in detail with reference to the drawings.
The drawing shows a solar power generation device and its concentrator. First, the configuration of the solar power generation device will be described with reference to FIG.
FIG. 1 is a perspective view of a solar power generation device 1, which includes a plate-shaped main body portion 20 having a thickness in the vertical direction and a plurality of collectors provided on the upper surface of the main body portion 20. It is comprised with the condensing protrusion 11 as a light body. Although the solar power generation device 1 is provided horizontally on the rooftop of the building or the like, it may be arranged southward with a certain elevation angle (for example, 30 °) instead of the horizontal arrangement.

上記複数の集光突起11は、その基部から先端に向けて順次横断面が小さくなる立体形状の一例としての円錐形状に形成され、それぞれ同一サイズに形成された各集光突起11は、同一平面上(すなわち本体部20の上面)に縦横に整列して格子状に密集配置されている。
上記集光突起11は、底面を開放した中空の円錐形状に形成され、集光突起11の側壁部は、一定の肉厚に形成されている。この集光突起11は、透光性ガラス、望ましくは透光性耐熱ガラス(いわゆるパイレックス(登録商標)ガラス等)により構成されているが、この集光突起11は、ガラスに代えてプラスチックやその他の透光性部材により構成してもよい。
上記集光突起11の底面は、本体部20の上面に密着され、これにより、各集光突起11の内側に中空部が設けられ、この中空部に空気等の気体が封入されている。
The plurality of light condensing protrusions 11 are formed in a conical shape as an example of a three-dimensional shape whose cross section is gradually reduced from the base toward the tip, and the light condensing protrusions 11 formed in the same size are in the same plane. They are densely arranged in a grid in the vertical and horizontal alignment on the top (that is, the upper surface of the main body 20).
The light condensing protrusion 11 is formed in a hollow conical shape with an open bottom surface, and the side wall portion of the light condensing protrusion 11 is formed with a constant thickness. The condensing projection 11 is made of translucent glass, preferably translucent heat-resistant glass (so-called Pyrex (registered trademark) glass or the like). The condensing projection 11 is made of plastic or other material instead of glass. You may comprise by this translucent member.
The bottom surface of the light condensing projection 11 is in close contact with the upper surface of the main body portion 20, whereby a hollow portion is provided inside each light condensing projection 11, and a gas such as air is sealed in the hollow portion.

上記本体部20は、従来の太陽電池パネルであり、例えば、透光性ガラスによるフロントカバー、透光性樹脂による充填材、シリコン等による基板、及び板状のバックカバーがこの順で重合配置され、上記充填材内に上記基板と略平行に光電変換素子が縦横に複数埋設され、上記光電変換素子がアルミニウム線により相互に接続されて構成されている。   The main body 20 is a conventional solar cell panel. For example, a front cover made of translucent glass, a filler made of translucent resin, a substrate made of silicon, and a plate-like back cover are arranged in this order. In the filler, a plurality of photoelectric conversion elements are embedded vertically and horizontally substantially parallel to the substrate, and the photoelectric conversion elements are connected to each other by aluminum wires.

以上の構成により、集光突起11は、その外表面で受けた太陽光を底面に集光して、集光した太陽光を本体部20内の光電変換素子に効率よく受光させることができる。   With the above configuration, the condensing projection 11 can condense the sunlight received on the outer surface thereof onto the bottom surface and efficiently receive the collected sunlight on the photoelectric conversion element in the main body 20.

次に、太陽光発電装置1の集光突起11が太陽光を集光する作用について説明する。
従来構造の場合には、太陽電池パネルの上面が平面であることからその平面面積の太陽光しか集光できないが、この実施態様にあっては、上記太陽電池パネルに相当する本体部20の上面に立体的な集光突起11が複数設けられているので、本体部20の平面面積に加えて集光突起11の高さ面積分の太陽光を集光することができる。なお、集光突起11が高く形成されることで、上記高さ面積をさらに拡大して、より一層集光効果を高めることができる。
Next, the effect | action which the condensing protrusion 11 of the solar power generation device 1 condenses sunlight is demonstrated.
In the case of the conventional structure, since the upper surface of the solar cell panel is a flat surface, only sunlight having the planar area can be collected. In this embodiment, the upper surface of the main body portion 20 corresponding to the solar cell panel. Since a plurality of three-dimensional light condensing protrusions 11 are provided, sunlight corresponding to the height area of the light condensing protrusions 11 can be condensed in addition to the planar area of the main body portion 20. In addition, by forming the condensing protrusion 11 high, the said height area can be expanded further and the condensing effect can be improved further.

また、円錐形状の集光突起11は、天頂方向から見て太陽の存在する位置が東から南を経て西へ変化しても、この位置変化に関わらず常に太陽と正面対向することができ、この結果、常に同一の幅で太陽光を受光することができる。   Further, the conical condensing projection 11 can always face the sun regardless of the change in position, even if the position of the sun as viewed from the zenith direction changes from east to south through west. As a result, sunlight can always be received with the same width.

さらに、集光突起11に入射した太陽光は、集光突起11の内面で反射して下方へ進み、集光突起11の下方に位置する光電変換素子に受光される。
この場合、集光突起11が円錐形状であることから、集光突起11の内面で反射された反射光の本体部20上面との成す角度は、入射時の角度に対して、直角に近似する角度となる。この結果、太陽がどのような高さ位置にあっても、光電変換素子の受光面と太陽光との成す角度に対して、光電変換素子の受光面と反射光との成す角度がより直角に近づくこととなる。この結果、光電変換素子の発電効率の向上を図ることができる。
Further, the sunlight incident on the light condensing protrusion 11 is reflected by the inner surface of the light condensing protrusion 11 and travels downward, and is received by the photoelectric conversion element located below the light condensing protrusion 11.
In this case, since the condensing protrusion 11 has a conical shape, the angle formed by the reflected light reflected from the inner surface of the condensing protrusion 11 and the upper surface of the main body 20 approximates a right angle with respect to the incident angle. It becomes an angle. As a result, regardless of the height of the sun, the angle formed between the light receiving surface of the photoelectric conversion element and the reflected light is more perpendicular to the angle formed between the light receiving surface of the photoelectric conversion element and sunlight. It will approach. As a result, the power generation efficiency of the photoelectric conversion element can be improved.

また、太陽光が集光突起11に一旦入射した後に、入射した側の面とは反対側の面を透過した透過光は、別の集光突起11に入射する。これにより、集光突起11を一旦透過した透過光も、別の集光突起11の内面で反射して下方へ進み、光電変換素子に受光される。この結果、太陽光が集光突起11を透過して集光されないことに起因する光電変換素子の受光量の減少を防止することができる。   Moreover, after sunlight once enters the light condensing projection 11, the transmitted light that has passed through the surface opposite to the incident surface enters another light condensing projection 11. Thereby, the transmitted light once transmitted through the light condensing protrusion 11 is reflected by the inner surface of another light condensing protrusion 11 and travels downward, and is received by the photoelectric conversion element. As a result, it is possible to prevent a decrease in the amount of light received by the photoelectric conversion element due to the sunlight passing through the light condensing protrusion 11 and not being condensed.

さらに、集光突起11により太陽光が立体的に反射された場合、集光突起11は、この反射光をも集光する。
すなわち、集光突起11は内部中空の円錐形状であるため、太陽光の一部が集光突起11の外表面で外側へ反射した場合、その反射光は当該集光突起11の周辺の他の集光突起11に入射して立体的に集光され、他の集光突起11に入射した光は当該他の集光突起11の内面で内側へ反射して下方へ進み、この反射光が光電変換素子に受光される。
Furthermore, when sunlight is three-dimensionally reflected by the light condensing protrusion 11, the light condensing protrusion 11 also condenses the reflected light.
That is, since the condensing projection 11 has an inner hollow conical shape, when a part of sunlight is reflected to the outside by the outer surface of the condensing projection 11, the reflected light is transmitted to other areas around the condensing projection 11. Light incident on the condensing protrusion 11 and three-dimensionally condensed, and the light incident on the other condensing protrusion 11 is reflected inward by the inner surface of the other condensing protrusion 11 and travels downward. Light is received by the conversion element.

このように上記実施態様の太陽光発電装置1は、太陽光を受光面に受光して電力を生じる光電変換素子を有する太陽光発電装置1であって、上記受光面または受光面側には透光性の集光突起11が複数設けられたものである。
この構成によれば、複数の集光突起11により太陽光の受光量拡大を図ることができるので、太陽の方位、高度が変化しても太陽光を効率よく受光することができ、この結果、装置全体のコスト低減を図ることができる。
また、上記集光突起11は、円錐形状に形成されたものであるから、集光突起11の外表面に入射する太陽光の入射角度をより直角に近づけることができ、この結果、受光効率の拡大を図ることができる。
さらに、上記集光突起11は、内部中空に形成されたものであるから、集光突起11の軽量化と突起形状に要する材料コストの低減との両立とを図ることができる。
加えて、上記集光突起11が受光面に密集配置されたものであるから、密集配置された多数の集光突起11により、太陽光の受光量をさらに拡大することができる。
As described above, the solar power generation device 1 of the above embodiment is a solar power generation device 1 having a photoelectric conversion element that receives sunlight on a light receiving surface and generates electric power, and the light receiving surface or the light receiving surface side is transparent. A plurality of light condensing projections 11 are provided.
According to this configuration, since the amount of received sunlight can be increased by the plurality of condensing projections 11, sunlight can be efficiently received even if the azimuth and altitude of the sun change. The cost of the entire apparatus can be reduced.
Further, since the condensing projection 11 is formed in a conical shape, the incident angle of sunlight incident on the outer surface of the condensing projection 11 can be made closer to a right angle. Can be expanded.
Furthermore, since the condensing protrusion 11 is formed in the hollow interior, it is possible to achieve both reduction in weight of the condensing protrusion 11 and reduction in material cost required for the protrusion shape.
In addition, since the light condensing projections 11 are densely arranged on the light receiving surface, the amount of sunlight received can be further increased by the many light concentrating projections 11 arranged densely.

また上記実施態様の集光体(集光突起11参照)は、透光性部材により基部から先端に向けて順次横断面が小さくなる立体形状に構成されたものであるから、当該集光体により太陽光の受光量拡大を図ると共に、その外表面に入射した太陽光が光電変換素子に入射する入射角度をより直角に近づけることができるので、太陽光発電装置1に適する集光体を確保することができる。   Moreover, since the light collector (see the light condensing protrusion 11) of the above embodiment is configured in a three-dimensional shape in which the transverse cross section sequentially decreases from the base toward the tip by the translucent member, While the amount of sunlight received can be increased, the incident angle at which the sunlight incident on the outer surface of the sunlight enters the photoelectric conversion element can be made closer to a right angle, so that a light collector suitable for the photovoltaic power generation apparatus 1 is secured. be able to.

また、中空部に封入された気体で、光電変換素子の発電に寄与しない波長の光エネルギーを吸収することもでき、光電変換素子の温度上昇、乃至、太陽光発電装置1の温度上昇を抑制して、斯る温度上昇に起因する発電効率の低下を防止することも可能となる。   In addition, the gas sealed in the hollow portion can absorb light energy having a wavelength that does not contribute to the power generation of the photoelectric conversion element, thereby suppressing the temperature increase of the photoelectric conversion element or the temperature increase of the photovoltaic power generation device 1. Thus, it is possible to prevent a decrease in power generation efficiency due to such a temperature rise.

なお、上述の集光突起11の形状は、その先端部分を丸めてもよく、また、略円錐台形状、三角乃至多角の角錐形状、角錐台形状、または半球形状と成してもよい。
このように、集光突起11を上述した各種の形状に形成しても、集光突起11は太陽光を充分に集光できる。また、集光突起11の頂点部を非先鋭形状に構成した場合には、頂点部分の破損を少なくすることができる。
In addition, the shape of the above-mentioned condensing protrusion 11 may round the front-end | tip part, and may comprise a substantially truncated cone shape, a triangular to polygonal pyramid shape, a truncated pyramid shape, or a hemispherical shape.
Thus, even if the condensing protrusion 11 is formed in the various shapes described above, the condensing protrusion 11 can sufficiently condense sunlight. Moreover, when the vertex part of the condensing protrusion 11 is comprised in a non-sharp shape, damage to a vertex part can be decreased.

さらに、上述した各種の形状の集光突起11の底面近傍を、隣接する集光突起11相互間で連結し、本体部20の上面に集光突起11相互間の隙間がないように構成してもよい。
このように構成すると、集光突起11は、本体部20の上方全体で隙間なく太陽光を集光でき、このため、集光効率をより一層高めることができる。
Further, the vicinity of the bottom surface of the light collecting projections 11 having various shapes described above is connected between the adjacent light collecting projections 11 so that there is no gap between the light collecting projections 11 on the upper surface of the main body portion 20. Also good.
If comprised in this way, the condensing protrusion 11 will be able to condense sunlight in the whole upper part of the main-body part 20 without a clearance gap, Therefore, condensing efficiency can be improved further.

また、六角推形状または六角推台形状の同一サイズの集光突起11を、受光面に対して隙間なくハニカム状に配置してもよい。このように構成すると、集光突起11が格子状に整列配置された構造に対して、集光突起11相互間を通り抜ける太陽光を減少させることができ、太陽光の照射を受ける面積を増加させることができる。さらに上述の集光突起11の配置構造は、千鳥状であってもよい。   Further, the concentrating projections 11 having the same size of a hexagonal thrust shape or a hexagonal thrust trapezoid shape may be arranged in a honeycomb shape with no gap with respect to the light receiving surface. If comprised in this way, with respect to the structure where the condensing protrusions 11 are arranged in a grid, the sunlight passing between the condensing protrusions 11 can be reduced, and the area irradiated with sunlight is increased. be able to. Furthermore, the arrangement structure of the above-mentioned condensing protrusions 11 may be a staggered pattern.

また、上記中空部には、気体に代えて液体を貯留してもよく、この場合は、太陽光の屈折率が高まり、集光突起11の内面で内側に反射する光の割合が増加する。これにより、太陽光が集光突起11の側面から入射し、そのまま反対側の側面を透過して外部に出ることを可及的抑制できる。   In addition, instead of gas, liquid may be stored in the hollow portion. In this case, the refractive index of sunlight increases, and the ratio of light reflected inward by the inner surface of the condensing projection 11 increases. Thereby, it can suppress as much as possible that sunlight injects from the side surface of the condensing protrusion 11, and permeate | transmits the opposite side surface as it is, and comes out outside.

さらに、上記中空部は、集光突起11と本体部20上面とで気密状に形成されたが、通気孔を設けて通気性を高めてもよく、この場合には、中空部の気体が通気孔から出入りし、冷却効果を高めることができ、光電変換素子の温度上昇をより一層抑制できる。   Further, although the hollow portion is formed in an airtight manner between the light condensing projection 11 and the upper surface of the main body portion 20, a ventilation hole may be provided to improve the air permeability. In this case, the gas in the hollow portion is allowed to pass. The cooling effect can be enhanced by entering and exiting from the pores, and the temperature rise of the photoelectric conversion element can be further suppressed.

また、集光突起11は、内部を中空とする構成に代えて断面中実状に形成してもよい。さらに、集光突起11は、細長い針状に形成してもよく、あるいは、材質が柔らかい繊維状の透光性部材により形成してもよい。このように構成した場合でも、集光突起11の外表面で受けた太陽光を底面に集めて、光電変換素子に受光させることができる。   Further, the condensing projection 11 may be formed in a solid cross section instead of a configuration in which the inside is hollow. Further, the light condensing projection 11 may be formed in an elongated needle shape, or may be formed of a fiber-like translucent member made of a soft material. Even in such a configuration, sunlight received on the outer surface of the light condensing projection 11 can be collected on the bottom surface and received by the photoelectric conversion element.

さらに、太陽光発電装置1には、異形状または異サイズの集光突起11を組合わせて設けてもよい。この場合でも、集光突起11が立体的であることにより集光率を高めることができる。   Furthermore, you may provide the solar power generation device 1 combining the condensing protrusion 11 of a different shape or different size. Even in this case, the condensing rate can be increased by the three-dimensional condensing projection 11.

また、太陽光発電装置1は、底部に略水平に設けた第2反射板と、その一端に鉛直に立設した本体部20と、上記第2反射板の他端と上記本体部20の上端とを接続するように傾斜して設けられた第1反射板とによって側面視略三角形に構成し、上記第1反射板の上面に集光突起11を複数密集配置してもよい。このとき、上記第1反射板は上方から受けた太陽光を透過するパイレックス(登録商標)ガラスにて構成するとよく、上記第2反射板は上方から受けた光を反射するコールドミラーにて構成するとよい。
このように構成した場合は、第1段階として集光突起11により集光した太陽光を、第2段階として第1反射板と第2反射板との間で複数回反射させて集光し、この集光した光を本体部20内の光電変換素子に受光させることができる。これにより、2段階に集光することができ、集光効率をさらに高めることができる。
Moreover, the solar power generation device 1 includes a second reflecting plate provided substantially horizontally at the bottom, a main body 20 vertically provided at one end thereof, the other end of the second reflecting plate, and an upper end of the main body 20. And a first reflector that is inclined so as to be connected to each other, and may be configured in a substantially triangular shape when viewed from the side, and a plurality of condensing projections 11 may be densely arranged on the upper surface of the first reflector. At this time, the first reflector may be composed of Pyrex (registered trademark) glass that transmits sunlight received from above, and the second reflector may be configured of a cold mirror that reflects light received from above. Good.
When configured in this manner, the sunlight collected by the light condensing projection 11 as the first stage is reflected and condensed a plurality of times between the first reflector and the second reflector as the second stage, This condensed light can be received by the photoelectric conversion element in the main body 20. Thereby, it can condense in two steps and can further improve a condensing efficiency.

この発明は、上述の実施形態の構成のみに限定されるものではなく、例えば、複数の集光突起11が一体ユニット化された集光ユニットを構成し、この集光ユニットで集光体が形成されてもよい。   The present invention is not limited to the configuration of the above-described embodiment. For example, a condensing unit in which a plurality of condensing projections 11 are integrated into a single unit is formed, and a condensing body is formed by the condensing unit. May be.

太陽光発電装置の実施例を示す斜視図。The perspective view which shows the Example of a solar power generation device.

符号の説明Explanation of symbols

1…太陽光発電装置
11…集光体
DESCRIPTION OF SYMBOLS 1 ... Solar power generation device 11 ... Condenser

Claims (2)

太陽光を受光面に受光して電力を生じる光電変換素子を有する太陽光発電装置であって、
上記受光面または受光面側に、略円錐形状、略円錐台形状、略角錐形状、略角錐台形状または半球形状で内部中空に形成した透光性の集光突起を複数密集配置した
太陽光発電装置。
A photovoltaic power generation device having a photoelectric conversion element that generates sunlight by receiving sunlight on a light receiving surface,
Photovoltaic power generation in which a plurality of light-transmitting light-condensing projections formed in a hollow shape in a substantially conical shape, a substantially truncated cone shape, a substantially truncated pyramid shape, a substantially truncated pyramid shape, or a hemispherical shape on the light receiving surface or the light receiving surface side apparatus.
透光性部材により基部から先端に向けて順次横断面が小さくなる立体形状に構成した集光体。
A condensing body configured in a three-dimensional shape with a gradually decreasing cross-section from the base to the tip by a translucent member.
JP2005146527A 2005-05-19 2005-05-19 Solar power generator and light condenser Pending JP2006324487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005146527A JP2006324487A (en) 2005-05-19 2005-05-19 Solar power generator and light condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005146527A JP2006324487A (en) 2005-05-19 2005-05-19 Solar power generator and light condenser

Publications (1)

Publication Number Publication Date
JP2006324487A true JP2006324487A (en) 2006-11-30

Family

ID=37543941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005146527A Pending JP2006324487A (en) 2005-05-19 2005-05-19 Solar power generator and light condenser

Country Status (1)

Country Link
JP (1) JP2006324487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944865A (en) * 2010-09-01 2011-01-12 李彦廷 Solar energy collecting board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2904612A (en) * 1956-07-30 1959-09-15 Hoffman Electronics Corp Radiant energy converter
JPS56126981A (en) * 1980-03-11 1981-10-05 Mitsubishi Electric Corp Solar power generating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2904612A (en) * 1956-07-30 1959-09-15 Hoffman Electronics Corp Radiant energy converter
JPS56126981A (en) * 1980-03-11 1981-10-05 Mitsubishi Electric Corp Solar power generating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944865A (en) * 2010-09-01 2011-01-12 李彦廷 Solar energy collecting board

Similar Documents

Publication Publication Date Title
US8916766B2 (en) Solar concentrator and photoelectric conversion structure
JP2005142373A (en) Condensing photovoltaic power generator
CN103022206B (en) Groove-type compound parabolic concentrating power generation component
KR100922887B1 (en) Photo Concentrated Solar Cell Module
CN107585284A (en) Airship equipped with small solar generators using local focusing and bifacial solar cells
US20070256732A1 (en) Photovoltaic module
KR101981447B1 (en) Solar photovoltaic power generator
CN202586818U (en) Photovoltaic power generation device in light-gathering cavity
CN102339875A (en) Multidirectional solar light collection system
TWI435459B (en) Multi-directional solar collector system
RU2370856C2 (en) Concentrator photoelectric module
RU2352023C1 (en) Solar photoelectric module
US20100175739A1 (en) Three-Dimensional Solar Energy Receiving Device
KR200419531Y1 (en) Condensing Lens and Concentrator for Photovoltaic Power Generation Using Superposition Concept
US20120170144A1 (en) Solar concentration device
KR20180063629A (en) An apparatus for generating solar power
KR20210041993A (en) Solar Energy Hybrid Generation System Using Thermoelectric Element
KR20110000773A (en) High efficiency solar cell module with vertically arranged solar cells
JP2006324487A (en) Solar power generator and light condenser
JP4313841B1 (en) Solar lens and solar-powered equipment
JP2010016109A (en) Concentrating photovoltaic power generation system
KR20180025589A (en) Solar cell panel and the window having thereof
KR20010100071A (en) module form reflector provided solar condenser power plant
JP2007073774A (en) Solar battery
US10403777B2 (en) Solar panel with optical light enhancement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102