[go: up one dir, main page]

JP2006324407A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2006324407A
JP2006324407A JP2005145452A JP2005145452A JP2006324407A JP 2006324407 A JP2006324407 A JP 2006324407A JP 2005145452 A JP2005145452 A JP 2005145452A JP 2005145452 A JP2005145452 A JP 2005145452A JP 2006324407 A JP2006324407 A JP 2006324407A
Authority
JP
Japan
Prior art keywords
light
emitting device
light emitting
phosphor
yellow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005145452A
Other languages
Japanese (ja)
Other versions
JP2006324407A5 (en
Inventor
Takayoshi Yajima
孝義 矢嶋
Takashi Nonokawa
貴志 野々川
Makoto Ishida
真 石田
Akio Namiki
明生 並木
Takemasa Yasukawa
武正 安川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2005145452A priority Critical patent/JP2006324407A/en
Publication of JP2006324407A publication Critical patent/JP2006324407A/en
Publication of JP2006324407A5 publication Critical patent/JP2006324407A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device which is excellent in emission efficiency and color reproducibility as a backlight source. <P>SOLUTION: A yellow fluorescent body 7A which generates yellow light by the excitation of blue light emitted from an LED device 2, and a green fluorescent body 7B which generates an yellow color to a yellow-green spectrum by the excitation of blue light, are dispersedly mixed into a sealing resin 7 for the formation a light emitting body, so that the light emitting body is capable of expanding its color gamut in comparison with a white color obtained resting on a complementary relation between a blue color and an yellow color and improved in emission efficiency and color reproducibility. When the light emitting device 1 is used as a backlight source, an NTSC ratio can be improved, and when images of a television or a movie are reproduced, the images excellent and bright in image quality can be obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の光を混合して白色光を放射する発光装置に関し、特に、バックライト光源として発光効率、色再現性に優れる発光装置に関する。   The present invention relates to a light-emitting device that emits white light by mixing a plurality of lights, and more particularly, to a light-emitting device that excels in luminous efficiency and color reproducibility as a backlight light source.

従来、光源として発光ダイオード(Light Emitting Diode:LED)素子を用いた発光装置が提案されている。このような発光装置において、LED素子から放射される光を波長変換することにより、LED素子単体では本来実現することのできない発光色の光を放射する発光装置がある(例えば、特許文献1参照。)。     Conventionally, a light emitting device using a light emitting diode (LED) element as a light source has been proposed. In such a light-emitting device, there is a light-emitting device that emits light of an emission color that cannot be originally realized by a single LED element by converting the wavelength of light emitted from the LED element (see, for example, Patent Document 1). ).

特許文献1に記載される発光装置は、発光波長のピークが約440nmから約470nmのGaN系のLED素子を用い、蛍光バインダ層に賦活剤としてCe(セリウム)を適量添加したYAG(Yttrium Aluminum Garnet:化学式YAl1512、励起波長のピーク約450nm、発光波長のピーク約540nmの黄緑色光)の単結晶を用いれば、LED素子の発光波長とYAG蛍光体の励起波長とがほぼ一致するため、効率よく波長変換が行われるとしている。 The light emitting device described in Patent Document 1 uses a GaN-based LED element having an emission wavelength peak of about 440 nm to about 470 nm, and YAG (Yttrium Aluminum Garnet) in which an appropriate amount of Ce (cerium) is added as an activator to a fluorescent binder layer. : When the single crystal of the chemical formula Y 3 Al 15 O 12 , excitation wavelength peak of about 450 nm, emission wavelength peak of about 540 nm (yellowish green light) is used, the emission wavelength of the LED element and the excitation wavelength of the YAG phosphor are almost the same Therefore, the wavelength conversion is performed efficiently.

また、近年、照明等の用途に光源としてLEDを用いたものが提案されている。その中でも特に白色光については、高い発光効率と、優れた演色性が要求されている。このような要求に応えるものとして、光源に青色光を放射するLED素子を用い、LED素子から放射される青色光と、青色光で緑色蛍光体を励起することにより得られる緑色光と、赤色蛍光体を励起することにより得られる赤色光とを混合することにより白色光を生じる発光装置が提案されている(例えば、特許文献2参照。)。   In recent years, LEDs using LEDs as light sources have been proposed for uses such as lighting. Among them, particularly for white light, high luminous efficiency and excellent color rendering properties are required. In response to such demands, an LED element that emits blue light is used as a light source, blue light emitted from the LED element, green light obtained by exciting a green phosphor with blue light, and red fluorescence A light-emitting device that generates white light by mixing with red light obtained by exciting a body has been proposed (see, for example, Patent Document 2).

また、青色光で励起される蛍光体についても、発光ピーク波長が緑色から黄色領域にかけて設けられるものを用いた発光装置が提案されている(例えば、特許文献3参照。)。
特許2947344号公報([0010]、図1) 特開2003−133595号公報([0009]〜[0011]) 特開2004−189997号公報([0018])
In addition, a light-emitting device using a phosphor that is excited by blue light and whose emission peak wavelength is provided from a green region to a yellow region has been proposed (see, for example, Patent Document 3).
Japanese Patent No. 2947344 ([0010], FIG. 1) JP 2003-133595 A ([0009] to [0011]) JP 2004-189997 A ([0018])

しかし、従来の発光装置では、発光効率の点からYAG蛍光体を青色光で励起し、その結果得られる黄色光と青色光の混合によって白色光を生成する構成が有利とされるが、青色から黄色にかけての緑色成分が不足しているため、液晶等のバックライト光源に用いようとする際に色再現性が十分でなく、その結果、NTSC(National TV Standards Committee)比の向上が見込めないという問題がある。   However, in the conventional light emitting device, it is advantageous that the YAG phosphor is excited with blue light from the point of luminous efficiency, and white light is generated by mixing the resulting yellow light and blue light. Because the green component over yellow is insufficient, color reproducibility is not sufficient when trying to use it in backlight sources such as liquid crystals, and as a result, it cannot be expected to improve the NTSC (National TV Standards Committee) ratio. There's a problem.

従って、本発明の目的は、バックライト光源として発光効率、色再現性に優れる発光装置を提供することにある。   Accordingly, an object of the present invention is to provide a light emitting device that is excellent in luminous efficiency and color reproducibility as a backlight light source.

本発明は、上記目的を達成するため、発光素子の発光に基づいて生じる第1の光を波長変換して、前記第1の光と異なる波長領域の第2の光を外部放射させる発光装置において、発光に基づいて480nm〜530nmの発光波長領域を有する第1の光を放射するLED素子と、前記第1の光の放射に基づいて励起されて前記第1の光と異なる550〜570nmの発光波長領域を有する第2の光を放射する黄色蛍光体と、前記第1の光の放射に基づいて励起されて前記第1の光と異なる470〜530nmの発光波長領域を有する第3の光を放射する緑色蛍光体とを含む波長変換部とを有する発光装置を提供する。   In order to achieve the above object, the present invention provides a light emitting device that converts the wavelength of first light generated based on light emission of a light emitting element and externally emits second light having a wavelength region different from that of the first light. An LED element that emits a first light having an emission wavelength region of 480 nm to 530 nm based on the light emission, and a light emission of 550 to 570 nm that is excited based on the emission of the first light and is different from the first light A yellow phosphor emitting a second light having a wavelength region, and a third light having an emission wavelength region of 470 to 530 nm that is excited based on the emission of the first light and is different from the first light. Provided is a light emitting device having a wavelength conversion unit including a green phosphor to be emitted.

本発明によると、バックライト光源としての発光効率、色再現性を高めることができる。   According to the present invention, luminous efficiency and color reproducibility as a backlight light source can be improved.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る表面実装型の発光装置を示す縦断面図である。
(First embodiment)
FIG. 1 is a longitudinal sectional view showing a surface-mounted light emitting device according to a first embodiment of the present invention.

この発光装置1は、GaN系半導体からなるフリップチップ型のLED素子2と、表面に銅箔からなる配線層3A,3Bを有する基板4と、基板4の上面に一体的に形成されるケース5と、基板4の配線層3A,3BとLED素子2とを電気的に接続するAuバンプ6と、LED素子2から放射される光によって励起される黄色蛍光体7Aおよび緑色蛍光体7Bを含有し、ケース5に設けられた開口部5Bを封止する封止樹脂7とを有する。   The light emitting device 1 includes a flip chip type LED element 2 made of a GaN-based semiconductor, a substrate 4 having wiring layers 3A and 3B made of copper foil on the surface, and a case 5 formed integrally on the upper surface of the substrate 4. And an Au bump 6 that electrically connects the wiring layers 3A and 3B of the substrate 4 and the LED element 2, and a yellow phosphor 7A and a green phosphor 7B that are excited by light emitted from the LED element 2. And a sealing resin 7 for sealing the opening 5B provided in the case 5.

LED素子2は、MOCVD(Metal Organic Chemical Vapor Deposition)装置を用いてサファイア基板20上にGaN系半導体層21を結晶成長させることによって形成される。GaN系半導体層21は、サファイア基板20側からSiドープのn−GaN層、発光層、Mgドープのp−GaN層を順次積層させることによって形成されており、p−GaN層の表面にはロジウム(Rh)からなるp側電極22を有する。また、p−GaN層からn−GaN層にかけてエッチングを施すことにより露出させたn−GaN層にn側電極23を有する。なお、本実施の形態では、発光波長領域450〜460nmで、標準サイズ(0.3mm×0.3mm)の青色LED素子2を用いているが、ラージサイズ(1mm×1mm)の青色LED素子2を用いることも可能である。   The LED element 2 is formed by growing a GaN-based semiconductor layer 21 on a sapphire substrate 20 using a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus. The GaN-based semiconductor layer 21 is formed by sequentially laminating an Si-doped n-GaN layer, a light emitting layer, and an Mg-doped p-GaN layer from the sapphire substrate 20 side, and rhodium is formed on the surface of the p-GaN layer. A p-side electrode 22 made of (Rh) is included. The n-side electrode 23 is provided on the n-GaN layer exposed by etching from the p-GaN layer to the n-GaN layer. In the present embodiment, the blue LED element 2 having a light emission wavelength region of 450 to 460 nm and a standard size (0.3 mm × 0.3 mm) is used, but a blue LED element 2 having a large size (1 mm × 1 mm) is used. It is also possible to use.

基板4は、Alによって形成されており、その表面にLED素子2の電極配置に応じた電極パターンを有する配線層3A,3Bが設けられている。なお、配線層3A,3Bは、LED素子2の実装面として開口部5B内に露出する部分にNiめっき等の光反射加工を施しても良い。 The substrate 4 is made of Al 2 O 3 , and wiring layers 3A and 3B having electrode patterns corresponding to the electrode arrangement of the LED elements 2 are provided on the surface thereof. The wiring layers 3 </ b> A and 3 </ b> B may be subjected to light reflection processing such as Ni plating on a portion exposed in the opening 5 </ b> B as a mounting surface of the LED element 2.

ケース5は、ナイロン等の樹脂材料からなり、開口部5Bは光取出し方向に径が大になる傾斜面50を有するように形成されている。なお、傾斜面50は、光反射性を高めるためにアルミニウム等の金属材料からなる光反射層を有していても良い。また、ケース5をナイロンで形成する代わりにAlで形成することも可能である。 The case 5 is made of a resin material such as nylon, and the opening 5B is formed to have an inclined surface 50 whose diameter increases in the light extraction direction. The inclined surface 50 may have a light reflecting layer made of a metal material such as aluminum in order to improve light reflectivity. Further, the case 5 can be formed of Al 2 O 3 instead of nylon.

封止樹脂7は、光透過性を有するシリコーンに黄色蛍光体7Aおよび緑色蛍光体7Bを分散状に含有して構成されている。黄色蛍光体7Aは、YAl1512の組成を有するYAG蛍光体をCeで賦活し、LED素子2から放射される青色光によって発光波長領域550〜570nmの黄色光を放射する。なお、黄色蛍光体7Aは、ガーネット構造蛍光体であるYAG蛍光体の他に、珪酸塩構造の蛍光体で黄色発光するものであっても良い。 The sealing resin 7 is configured by containing a yellow fluorescent material 7A and a green fluorescent material 7B in a dispersed manner in a light-transmitting silicone. The yellow phosphor 7 </ b> A activates a YAG phosphor having a composition of Y 3 Al 15 O 12 with Ce, and emits yellow light having an emission wavelength region of 550 to 570 nm by blue light emitted from the LED element 2. The yellow phosphor 7A may be a silicate phosphor that emits yellow light in addition to the YAG phosphor that is a garnet phosphor.

緑色蛍光体7Bは、M’M’’M’’’の一般式で表される蛍光体であって、M’はMg、Ca、Zn、Sr、CdおよびBaの少なくとも1種である2価の金属元素、M’’はAl、Sc、Ga、Y、In、La、GdおよびLuの少なくとも1種である3価の金属元素、M’’’はSi、Ti、Ge、Zr、Sn、およびHfの少なくとも1種である4価の金属元素をそれぞれ示し、その化合物を母体とするガーネット構造蛍光体である。化合物母体内に含有される発光中心イオンは2価のMn、3価のCe、2〜3価のEu、3価のTb、または3価のCeであって、LED素子2から放射される青色光によって発光波長領域480nm〜530nmの緑色光を放射する。 The green phosphor 7B is a phosphor represented by a general formula of M ′ a M ″ b M ′ ″ c O d , where M ′ is at least one of Mg, Ca, Zn, Sr, Cd, and Ba. A divalent metal element that is a seed, M ″ is a trivalent metal element that is at least one of Al, Sc, Ga, Y, In, La, Gd, and Lu, and M ′ ″ is Si, Ti, Ge , Zr, Sn, and Hf are each a tetravalent metal element that is a garnet structure phosphor having the compound as a base. The emission center ion contained in the compound matrix is divalent Mn, trivalent Ce, 2-3 trivalent Eu, trivalent Tb, or trivalent Ce, and is emitted from the LED element 2. Green light having an emission wavelength region of 480 nm to 530 nm is emitted by light.

また、緑色蛍光体7Bは、上記したものの他に、M’M’’の一般式で表される蛍光体であって、M’はMg、Ca、Srの少なくとも1種である2価の元素、M’’はAl、Ga、Yの少なくとも1種である3価の元素で、その化合物を母体とするガーネット構造蛍光体である。化合物母体内に含有される発光中心イオンは2価のMn、3価のCe、2〜3価のEu、3価のTb、または3価のCeであっても良い。このような緑色蛍光体7Bとしてはチオメタレート、チオガレートがある。 The green phosphor 7B is a phosphor represented by a general formula of M ′ a M ″ b S 4 in addition to the above, and M ′ is at least one of Mg, Ca, and Sr. A divalent element, M ″, is a trivalent element that is at least one of Al, Ga, and Y, and is a garnet structure phosphor based on a compound thereof. The luminescent center ion contained in the compound matrix may be divalent Mn, trivalent Ce, 2-3 trivalent Eu, trivalent Tb, or trivalent Ce. Such green phosphor 7B includes thiometallate and thiogallate.

図2は、第1の実施の形態の発光装置の発光特性図を示し、(a)は光源スペクトル、(b)は色再現範囲を示す図である。本実施の形態の発光装置1によれば、(a)に示されるように480nm〜530nmの黄色から黄緑色にかけての波長領域における発光強度が改善されている。また、本実施の形態の発光装置1の色再現性は、CRTの色再現性Cよりも優れている。   2A and 2B show emission characteristics of the light emitting device according to the first embodiment. FIG. 2A shows a light source spectrum, and FIG. 2B shows a color reproduction range. According to the light emitting device 1 of the present embodiment, as shown in (a), the light emission intensity in the wavelength region from yellow to yellow green of 480 nm to 530 nm is improved. Further, the color reproducibility of the light emitting device 1 of the present embodiment is superior to the color reproducibility C of the CRT.

(第1の実施の形態の効果)
上記した第1の実施の形態によると、以下の効果が得られる。
LED素子2から放射される青色光の励起に基づいて黄色光を生じる黄色蛍光体7Aと、青色光の励起に基づいて黄色から黄緑色のスペクトルの光を生じる緑色蛍光体7Bを封止樹脂7に分散状に含有させたので、青色と黄色の補色の関係に基づいて得られる白色と比べて色域を拡大することができ、発光効率および色再現性が向上する。この発光装置1を用いたバックライト光源によれば、NTSC比を改善することができ、テレビジョンやムービー画像の再生に際し、明るく良質な画質が得られる。
(Effects of the first embodiment)
According to the first embodiment described above, the following effects are obtained.
Sealing resin 7 includes yellow phosphor 7A that generates yellow light based on excitation of blue light emitted from LED element 2 and green phosphor 7B that generates light of a yellow to yellow-green spectrum based on excitation of blue light. Therefore, the color gamut can be expanded as compared with the white color obtained based on the relationship between the complementary colors of blue and yellow, and the light emission efficiency and color reproducibility are improved. According to the backlight light source using the light emitting device 1, the NTSC ratio can be improved, and a bright and high-quality image can be obtained when reproducing a television or movie image.

なお、第1の実施の形態では、封止樹脂7中に黄色蛍光体7Aと緑色蛍光体7Bとを分散状に混合させた構成を説明したが、例えば、封止樹脂7の表面に黄色蛍光体7Aを積層し、さらにその表面に緑色蛍光体7Bを積層させた構成としても良い。   In the first embodiment, the configuration in which the yellow phosphor 7A and the green phosphor 7B are dispersedly mixed in the sealing resin 7 has been described. However, for example, yellow fluorescence is applied to the surface of the sealing resin 7. It is good also as a structure which laminated | stacked the body 7A, and also laminated | stacked the green fluorescent substance 7B on the surface.

また、第1の実施の形態では、表面実装型の発光装置1に上記した黄色蛍光体7Aと緑色蛍光体7Bとを適用した構成を説明したが、発光装置の構成は表面実装型以外の他の構成であっても良く、例えば、砲弾型発光装置の封止樹脂に分散状に含有させることも可能である。   In the first embodiment, the configuration in which the yellow phosphor 7A and the green phosphor 7B described above are applied to the surface-mounted light-emitting device 1 has been described. However, the configuration of the light-emitting device is other than the surface-mounted type. For example, it can be contained in a sealing resin of a shell-type light emitting device in a dispersed state.

(第2の実施の形態)
図3は、本発明の第2の実施の形態に係る表面実装型の発光装置を示す縦断面図である。
(Second Embodiment)
FIG. 3 is a longitudinal sectional view showing a surface-mounted light emitting device according to the second embodiment of the present invention.

この発光装置1は、第1の実施の形態で説明したフリップチップ型のLED素子2の表面を覆うように黄色蛍光体層7Cと緑色蛍光体層7Dとを設けた構成において第1の実施の形態と相違している。なお、以下の説明では、第1の実施の形態と同一の構成および機能を有する部分に同一の引用数字を付して説明している。   This light-emitting device 1 has a configuration in which a yellow phosphor layer 7C and a green phosphor layer 7D are provided so as to cover the surface of the flip chip type LED element 2 described in the first embodiment. It is different from the form. In the following description, the same reference numerals are given to the portions having the same configuration and function as those of the first embodiment.

黄色蛍光体層7Cは、透光性を有するシリコーン等の樹脂材料に第1の実施の形態で説明した黄色蛍光体を分散状に混合されたものをLED素子2の実装後に素子表面に塗布して設けられている。   The yellow phosphor layer 7C is obtained by coating the surface of the LED element 2 after the LED element 2 is mounted by dispersing the yellow phosphor described in the first embodiment in a resin material such as translucent silicone. Is provided.

緑色蛍光体層7Dは、黄色蛍光体層7Cと同様に、透光性を有するシリコーン等の樹脂材料に第1の実施の形態で説明した緑色蛍光体を分散状に混合されたものを黄色蛍光体層7Cの上に塗布して設けられている。   Similarly to the yellow phosphor layer 7C, the green phosphor layer 7D is obtained by dispersing the green phosphor described in the first embodiment in a dispersed state in a resin material such as translucent silicone. It is applied and provided on the body layer 7C.

(第2の実施の形態の効果)
上記した第2の実施の形態によると、LED素子2の表面に黄色蛍光体層7Cと緑色蛍光体層7Dとを設けるので、第1の実施の形態の好ましい効果に加えて、蛍光体の沈降が生じない構成とすることができ、LED素子の光と蛍光体の光の分離を抑制することができる。また、LED素子2の表面に層状に蛍光体層を設ける構成により、蛍光体の使用量を低減でき、省コスト性に優れる。
(Effect of the second embodiment)
According to the second embodiment described above, since the yellow phosphor layer 7C and the green phosphor layer 7D are provided on the surface of the LED element 2, in addition to the preferable effect of the first embodiment, the sedimentation of the phosphor. Therefore, the separation of the LED element light and the phosphor light can be suppressed. Moreover, the structure which provides a fluorescent substance layer in the surface of the LED element 2 can reduce the usage-amount of fluorescent substance, and is excellent in cost saving.

(第3の実施の形態)
図4は、本発明の第3の実施の形態に係る表面実装型の発光装置を示す縦断面図である。
(Third embodiment)
FIG. 4 is a longitudinal sectional view showing a surface-mounted light-emitting device according to the third embodiment of the present invention.

この発光装置1は、第2の実施の形態で説明した無機材料である黄色蛍光体層7C上の緑色蛍光体層7Dに代えて、緑色有機材料層7Eを設けた構成において第2の実施の形態と相違している。   This light-emitting device 1 has a configuration in which a green organic material layer 7E is provided instead of the green phosphor layer 7D on the yellow phosphor layer 7C, which is an inorganic material described in the second embodiment, in the second embodiment. It is different from the form.

緑色有機材料層7Eは、緑色変換Ir金属錯体であるトリス(2−フェニルピリジン)イリジウム(以下、「Ir(ppy)」という。)をシリコーンに混合することによって形成されている。 The green organic material layer 7E is formed by mixing tris (2-phenylpyridine) iridium (hereinafter referred to as “Ir (ppy) 3 ”), which is a green-converting Ir metal complex, with silicone.

(第3の実施の形態の効果)
上記した第3の実施の形態によると、第2の実施の形態の好ましい効果に加えて無機材料である黄色蛍光体層7C上に緑色有機材料層7Eが設けられることで、LED素子2から放射される青色光によって緑色有機材料層7Eの寿命を縮めることなく長期にわたって色変化の少ない安定した白色光が得られる。また、封止樹脂7であるシリコーンに緑色有機材料を分散させて封止しても良い。
(Effect of the third embodiment)
According to the above-described third embodiment, in addition to the preferable effects of the second embodiment, the green organic material layer 7E is provided on the yellow phosphor layer 7C, which is an inorganic material, so that the LED element 2 emits light. Stable white light with little color change can be obtained over a long period of time without shortening the lifetime of the green organic material layer 7E by the blue light. Alternatively, the sealing resin 7 may be sealed by dispersing a green organic material in silicone.

(第4の実施の形態)
図5は、本発明の第4の実施の形態に係る表面実装型の発光装置を示す縦断面図である。
(Fourth embodiment)
FIG. 5 is a longitudinal sectional view showing a surface-mounted light emitting device according to the fourth embodiment of the present invention.

この発光装置1は、第1の実施の形態で説明したLED素子2のサファイア基板20側を配線層3Bに実装しており、サファイア基板20の直下には黄色蛍光体層7Cが設けられ、その直下に緑色蛍光体層7Dとが積層された構成において第1の実施の形態と相違している。LED素子2のp側電極22は、Auからなるワイヤ8を介して配線層3Aに接続されており、n側電極23は、Auからなるワイヤ8を介して配線層3Bに接続されている。なお、第4の実施の形態では、配線層3A,3B、およびケース5の傾斜面50に図示しないめっき等の反射加工が施されていることが好ましい。   In this light emitting device 1, the sapphire substrate 20 side of the LED element 2 described in the first embodiment is mounted on the wiring layer 3B, and a yellow phosphor layer 7C is provided immediately below the sapphire substrate 20, The configuration in which the green phosphor layer 7D is laminated immediately below is different from the first embodiment. The p-side electrode 22 of the LED element 2 is connected to the wiring layer 3A via a wire 8 made of Au, and the n-side electrode 23 is connected to the wiring layer 3B via a wire 8 made of Au. In the fourth embodiment, it is preferable that the wiring layers 3A and 3B and the inclined surface 50 of the case 5 are subjected to reflection processing such as plating (not shown).

黄色蛍光体層7Cおよび緑色蛍光体層7Dは、LED素子2の製造過程でサファイア基板20の表面に層状に設けられる。緑色蛍光体層7Dは、黄色蛍光体層7Cの形成後にその表面に層状に設けられる。このようにして黄色蛍光体層7Cおよび緑色蛍光体層7Dを設けられたウエハーを予め定められた素子サイズにカットする。   The yellow phosphor layer 7 </ b> C and the green phosphor layer 7 </ b> D are provided in layers on the surface of the sapphire substrate 20 in the manufacturing process of the LED element 2. The green phosphor layer 7D is provided in a layered manner on the surface after the yellow phosphor layer 7C is formed. In this way, the wafer provided with the yellow phosphor layer 7C and the green phosphor layer 7D is cut into a predetermined element size.

配線層3A,3Bを図示しない電源部に接続して電圧を印加すると、GaN系半導体層21に設けられる発光層でキャリアとホールの再結合に基づく発光が生じて青色光が放射される。この青色光のうち、基板4方向に放射される光はサファイア基板20を透過して黄色蛍光体層7Cに入射する。黄色蛍光体層7Cでは黄色蛍光体が青色光によって励起されて黄色光を生じる。また、黄色蛍光体層7Cを透過した青色光は緑色蛍光体層7Dに入射する。緑色蛍光体層7Dでは緑色蛍光体が青色光によって励起されて緑色光を生じる。このことにより、サファイア基板20と配線層3Bとの間で青色光、黄色光、および緑色光の混合に基づく白色光が生じ、ケース5の傾斜面50で反射されて外部放射される。   When the wiring layers 3A and 3B are connected to a power supply unit (not shown) and a voltage is applied, light emission based on the recombination of carriers and holes occurs in the light emitting layer provided in the GaN-based semiconductor layer 21, and blue light is emitted. Of this blue light, the light emitted in the direction of the substrate 4 passes through the sapphire substrate 20 and enters the yellow phosphor layer 7C. In the yellow phosphor layer 7C, the yellow phosphor is excited by blue light to generate yellow light. The blue light transmitted through the yellow phosphor layer 7C is incident on the green phosphor layer 7D. In the green phosphor layer 7D, the green phosphor is excited by blue light to generate green light. As a result, white light based on a mixture of blue light, yellow light, and green light is generated between the sapphire substrate 20 and the wiring layer 3 </ b> B, and is reflected by the inclined surface 50 of the case 5 and radiated outside.

また、発光層から電極形成面方向に放射される青色光は、p側電極22によって反射されてサファイア基板20を透過し、黄色蛍光体層7Cに入射する。   Further, the blue light emitted from the light emitting layer toward the electrode formation surface is reflected by the p-side electrode 22, passes through the sapphire substrate 20, and enters the yellow phosphor layer 7 </ b> C.

(第4の実施の形態の効果)
上記した第4の実施の形態によると、ウエハーの段階で黄色蛍光体層7Cと緑色蛍光体層7Dとを積層し、これを分割してLED素子2としているので、白色の色変化が少ないLED素子2の量産性に優れる。また、LED素子2をフェイスアップ型で実装し、その基板4側に黄色蛍光体層7Cと緑色蛍光体層7Dとを積層したので、フリップチップボンダーによる高度な位置決めを必要とせずにLED素子2を実装でき、白色の色変化の少ない白色型発光装置が得られる。
(Effect of the fourth embodiment)
According to the above-described fourth embodiment, the yellow phosphor layer 7C and the green phosphor layer 7D are laminated at the wafer stage and divided into LED elements 2, so that the white color change is small. The mass productivity of the element 2 is excellent. In addition, since the LED element 2 is mounted face-up and the yellow phosphor layer 7C and the green phosphor layer 7D are laminated on the substrate 4 side, the LED element 2 is not required to be highly positioned by a flip chip bonder. Thus, a white light emitting device with little white color change can be obtained.

なお、第4の実施の形態においても、緑色蛍光体層7Dに代えて、第3の実施の形態で説明したIr(ppy)からなる緑色有機材料層7Eを用いても良い。また、封止樹脂7であるシリコーンに緑色有機材料を分散させて封止しても良い。 In the fourth embodiment, the green organic material layer 7E made of Ir (ppy) 3 described in the third embodiment may be used instead of the green phosphor layer 7D. Alternatively, the sealing resin 7 may be sealed by dispersing a green organic material in silicone.

(第5の実施の形態)
図6は、本発明の第5の実施の形態に係る反射型の発光装置を示し、(a)は光出射側から見た平面図、(b)は(a)のA−A部における断面図である。この発光装置1は、光出射側に設けられて筒状をなすケース5と、ケース5の下方に設けられて半球状をなす反射鏡部10と、ケース5に設けられる放熱板5Aの端面に接着によって取り付けられた回路基板9と、回路基板9上に実装されるLED素子2と、反射鏡部10の内面に設けられてLED素子2から放射された青色光を反射する反射鏡面10Aと、反射鏡面10Aの表面に形成される緑色蛍光体層7Dと、緑色蛍光体層7D上に積層される黄色蛍光体層7Cとを有し、LED素子2はシリコーンのコーティング材2Aによってコーティングされている。また、黄色蛍光体層7Cと緑色蛍光体層7Dは層の厚さが一定となるように形成されている。
(Fifth embodiment)
6A and 6B show a reflective light-emitting device according to a fifth embodiment of the present invention, where FIG. 6A is a plan view seen from the light emitting side, and FIG. FIG. The light emitting device 1 includes a cylindrical case 5 provided on the light emitting side, a hemispherical reflecting mirror unit 10 provided below the case 5, and an end face of a heat sink 5 A provided on the case 5. A circuit board 9 attached by bonding; an LED element 2 mounted on the circuit board 9; a reflecting mirror surface 10A that is provided on the inner surface of the reflecting mirror part 10 and reflects blue light emitted from the LED element 2; It has a green phosphor layer 7D formed on the surface of the reflecting mirror surface 10A and a yellow phosphor layer 7C laminated on the green phosphor layer 7D, and the LED element 2 is coated with a silicone coating material 2A. . Further, the yellow phosphor layer 7C and the green phosphor layer 7D are formed so as to have a constant thickness.

ケース5は、放熱性に優れるアルミニウムによって形成されており、図8(a)に示すように中空状の内部を長さ方向に2分するように放熱板5Aが設けられている。放熱板5Aは、素子搭載部となる端面が反射鏡部10の内部に突出して構成されており、LED素子2の光出射面と反射鏡面10Aとの距離に基づいてケース5の開口部5Bから平行光を放射させる。   The case 5 is made of aluminum having excellent heat dissipation, and as shown in FIG. 8A, a heat radiating plate 5A is provided so as to divide the hollow interior into two in the length direction. The heat radiating plate 5A is configured such that an end surface serving as an element mounting portion protrudes into the reflecting mirror unit 10, and is formed from the opening 5B of the case 5 based on the distance between the light emitting surface of the LED element 2 and the reflecting mirror surface 10A. Emits parallel light.

回路基板9は、ポリイミド等の絶縁性基板からなり、断面内に銅箔層9Aおよび9Bを有する。銅箔層9Aおよび9Bは、素子搭載部においてLED素子2との電気接続が可能となるように一部が露出した構成を有する。   The circuit board 9 is made of an insulating substrate such as polyimide, and has copper foil layers 9A and 9B in the cross section. Copper foil layers 9 </ b> A and 9 </ b> B have a configuration in which part is exposed so that electrical connection with LED element 2 is possible in the element mounting portion.

LED素子2から放射される光は、黄色蛍光体層7Cおよび緑色蛍光体層7Dを透過して反射鏡面10Aで反射される。このとき、黄色蛍光体層7Cでは黄色蛍光体が青色光によって励起されて黄色光を生じる。また、緑色蛍光体層7Dでは緑色蛍光体が青色光によって励起されて緑色光を生じる。このことにより反射鏡面10Aで反射される光は青色、黄色、および緑色の混合に基づく白色光となり、平行光として開口部5Bから外部放射される。   The light emitted from the LED element 2 passes through the yellow phosphor layer 7C and the green phosphor layer 7D and is reflected by the reflecting mirror surface 10A. At this time, in the yellow phosphor layer 7C, the yellow phosphor is excited by blue light to generate yellow light. In the green phosphor layer 7D, the green phosphor is excited by blue light to generate green light. As a result, the light reflected by the reflecting mirror surface 10A becomes white light based on a mixture of blue, yellow, and green, and is radiated from the opening 5B as parallel light.

(第5の実施の形態の効果)
上記した第5の実施の形態によると、LED素子2から放射された青色光が反射鏡面10Aに入射し、黄色蛍光体層7Cおよび緑色蛍光体層7Dを励起することにより生じる黄色光および緑色光と混合されて白色を生じるので、封止樹脂等の透過に伴う光吸収を生じることなく放射性に優れる発光装置1が得られる。
(Effect of 5th Embodiment)
According to the fifth embodiment described above, the blue light emitted from the LED element 2 enters the reflecting mirror surface 10A, and the yellow light and the green light generated by exciting the yellow phosphor layer 7C and the green phosphor layer 7D. The light-emitting device 1 is excellent in radioactivity without causing light absorption due to the transmission of the sealing resin or the like.

なお、第5の実施の形態においても、緑色蛍光体層7Dに代えて、第3の実施の形態で説明したIr(ppy)からなる緑色有機材料層7Eを用いても良い。なお、黄色蛍光体層7Cおよび緑色蛍光体層7Dについては反射鏡面10Aに設けず、開口部5Bの光出射端であるケース5上面にガラス等の光透過性部材を設け、この光透過性部材に積層状に設けて反射光を透過させる構成としても良い。第5の実施の形態の構成では、開口部5Bにおける反射光の強度が均一になることから、光の良好な混合性に基づく白色光が得られる。 In the fifth embodiment, the green organic material layer 7E made of Ir (ppy) 3 described in the third embodiment may be used instead of the green phosphor layer 7D. The yellow phosphor layer 7C and the green phosphor layer 7D are not provided on the reflecting mirror surface 10A, and a light transmissive member such as glass is provided on the upper surface of the case 5 which is the light emitting end of the opening 5B. It is good also as a structure which provides in a laminated form and permeate | transmits reflected light. In the configuration of the fifth embodiment, since the intensity of the reflected light at the opening 5B is uniform, white light based on a good mixing property of light can be obtained.

本発明の第1の実施の形態に係る表面実装型の発光装置を示す縦断面図である。1 is a longitudinal sectional view showing a surface-mounted light emitting device according to a first embodiment of the present invention. 第1の実施の形態の発光装置の発光特性図を示し、(a)は光源スペクトル、(b)は色再現範囲を示す図である。The light emission characteristic view of the light-emitting device of 1st Embodiment is shown, (a) is a light source spectrum, (b) is a figure which shows a color reproduction range. 本発明の第2の実施の形態に係る表面実装型の発光装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the surface mounted light-emitting device based on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る表面実装型の発光装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the surface mount type light-emitting device based on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る表面実装型の発光装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the surface mount type light-emitting device based on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る反射型の発光装置を示し、(a)は光出射側から見た平面図、(b)は(a)のA−A部における断面図である。The reflective light-emitting device which concerns on the 5th Embodiment of this invention is shown, (a) is the top view seen from the light-projection side, (b) is sectional drawing in the AA part of (a).

符号の説明Explanation of symbols

1…発光装置、2…LED素子、2A…コーティング材、3A,3B…配線層、4…基板、5…ケース、5A…放熱板、5B…開口部、6…バンプ、7…封止樹脂、7A…黄色蛍光体、7B…緑色蛍光体、7C…黄色蛍光体層、7D…緑色蛍光体層、7E…緑色有機材料層、8…ワイヤ、9…回路基板、9A,9B…銅箔層、10…反射鏡部、10A…反射鏡面、20…サファイア基板、21…GaN系半導体層、22…p側電極、23…n側電極、50…傾斜面 DESCRIPTION OF SYMBOLS 1 ... Light-emitting device, 2 ... LED element, 2A ... Coating material, 3A, 3B ... Wiring layer, 4 ... Board | substrate, 5 ... Case, 5A ... Heat sink, 5B ... Opening part, 6 ... Bump, 7 ... Sealing resin, 7A ... Yellow phosphor, 7B ... Green phosphor, 7C ... Yellow phosphor layer, 7D ... Green phosphor layer, 7E ... Green organic material layer, 8 ... Wire, 9 ... Circuit board, 9A, 9B ... Copper foil layer, DESCRIPTION OF SYMBOLS 10 ... Reflector part, 10A ... Reflector mirror surface, 20 ... Sapphire substrate, 21 ... GaN-based semiconductor layer, 22 ... P-side electrode, 23 ... N-side electrode, 50 ... Inclined surface

Claims (9)

発光素子の発光に基づいて生じる第1の光を波長変換して、前記第1の光と異なる波長領域の第2の光を外部放射させる発光装置において、
発光に基づいて480nm〜530nmの発光波長領域を有する第1の光を放射するLED素子と、
前記第1の光の放射に基づいて励起されて前記第1の光と異なる550〜570nmの発光波長領域を有する第2の光を放射する黄色蛍光体と、前記第1の光の放射に基づいて励起されて前記第1の光と異なる470〜530nmの発光波長領域を有する第3の光を放射する緑色蛍光体とを含む波長変換部とを有することを特徴とする発光装置。
In the light emitting device for converting the wavelength of the first light generated based on the light emission of the light emitting element and emitting the second light in a wavelength region different from the first light to the outside,
An LED element that emits first light having an emission wavelength region of 480 nm to 530 nm based on emission;
A yellow phosphor that emits second light having an emission wavelength region of 550 to 570 nm different from that of the first light by being excited based on the radiation of the first light; and based on the radiation of the first light. And a wavelength conversion unit including a green phosphor that emits third light having a light emission wavelength region of 470 to 530 nm different from that of the first light.
前記黄色蛍光体は、ガーネット構造蛍光体のYAG蛍光体である請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the yellow phosphor is a YAG phosphor of a garnet structure phosphor. 前記緑色蛍光体は、M’M’’M’’’の一般式で表され、M’はMg、Ca、Zn、Sr、CdおよびBaの少なくとも1種である2価の金属元素から選択され、M’’はAl、Sc、Ga、Y、In、La、GdおよびLuの少なくとも1種である3価の金属元素から選択され、M’’’はSi、Ti、Ge、Zr、Sn、およびHfの少なくとも1種である4価の金属元素から選択される化合物を母体とするガーネット構造蛍光体である請求項1に記載の発光装置。 The green phosphor is represented by a general formula of M ′ a M ″ b M ′ ″ c O d , where M ′ is at least one of Mg, Ca, Zn, Sr, Cd and Ba. M ″ is selected from trivalent metal elements that are at least one of Al, Sc, Ga, Y, In, La, Gd, and Lu, and M ′ ″ is Si, Ti, Ge 2. The light emitting device according to claim 1, wherein the light emitting device is a garnet structure phosphor based on a compound selected from a tetravalent metal element which is at least one of Zr, Sn, and Hf. 前記緑色蛍光体は、M’M’’の一般式で表され、M’はMg、Ca、Srの少なくとも1種である2価の元素から選択され、M’’はAl、Ga、Yの少なくとも1種である3価の元素から選択される化合物を母体とするガーネット構造蛍光体である請求項1に記載の発光装置。 The green phosphor is represented by a general formula of M ′ a M ″ b S 4 , where M ′ is selected from divalent elements that are at least one of Mg, Ca, and Sr, and M ″ is Al, The light-emitting device according to claim 1, wherein the light-emitting device is a garnet structure phosphor having a compound selected from trivalent elements as at least one of Ga and Y as a base. 前記LED素子は、前記緑色蛍光体と前記黄色蛍光体とを含む前記波長変換部としての封止材料によって封止されている請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the LED element is sealed with a sealing material as the wavelength conversion unit including the green phosphor and the yellow phosphor. 前記波長変換部は、前記LED素子の表面を覆って設けられる黄色蛍光体層と、前記黄色蛍光体層に積層される緑色蛍光体層とを有する請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the wavelength conversion unit includes a yellow phosphor layer provided to cover a surface of the LED element, and a green phosphor layer laminated on the yellow phosphor layer. 前記波長変換部は、フリップチップ型LED素子の基板側に前記黄色蛍光体を含む第1の蛍光体層と、第1の蛍光体層に積層される前記緑色蛍光体を含む第2の蛍光体層とを積層して設けられ、前記第2の蛍光体層が実装面に実装されている請求項1に記載の発光装置。   The wavelength converter includes a first phosphor layer containing the yellow phosphor on the substrate side of the flip-chip type LED element, and a second phosphor containing the green phosphor laminated on the first phosphor layer. The light emitting device according to claim 1, wherein the second phosphor layer is mounted on a mounting surface. 前記波長変換部は、前記発光素子から放射される光を反射する反射鏡面に設けられて前記反射鏡面に入射した光を波長変換する請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the wavelength conversion unit is provided on a reflecting mirror surface that reflects light emitted from the light emitting element, and wavelength-converts light incident on the reflecting mirror surface. 前記波長変換部は、前記発光素子から放射される光を反射する反射鏡面で放射された反射光が均一強度となる部分に積層された状態で設けられている請求項1に記載の発光装置。
2. The light emitting device according to claim 1, wherein the wavelength conversion unit is provided in a state where the reflected light emitted from a reflecting mirror surface that reflects the light emitted from the light emitting element is laminated on a portion having uniform intensity.
JP2005145452A 2005-05-18 2005-05-18 Light emitting device Withdrawn JP2006324407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005145452A JP2006324407A (en) 2005-05-18 2005-05-18 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005145452A JP2006324407A (en) 2005-05-18 2005-05-18 Light emitting device

Publications (2)

Publication Number Publication Date
JP2006324407A true JP2006324407A (en) 2006-11-30
JP2006324407A5 JP2006324407A5 (en) 2007-12-06

Family

ID=37543871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005145452A Withdrawn JP2006324407A (en) 2005-05-18 2005-05-18 Light emitting device

Country Status (1)

Country Link
JP (1) JP2006324407A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079094A (en) * 2007-09-25 2009-04-16 Toshiba Corp Phosphor and LED lamp using the same
JP2009198544A (en) * 2008-02-19 2009-09-03 Toyoda Gosei Co Ltd Optical device and its manufacture method
JP2012528473A (en) * 2009-05-26 2012-11-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Manufacturing method of light emitting diode
US8487330B2 (en) 2007-12-07 2013-07-16 Kabushiki Kaisha Toshiba Phosphor and LED light-emitting device using the same
CN104835901A (en) * 2015-04-09 2015-08-12 苏州晶品新材料股份有限公司 Ultrathin flexible double-sided light-emitting LED light source based on secondary optical design
US9772441B2 (en) 2013-02-27 2017-09-26 Saturn Licensing Llc Illumination device and display unit
KR101798232B1 (en) * 2010-07-07 2017-11-15 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device, light emitting device package and lighting system
KR20180016529A (en) 2015-06-12 2018-02-14 가부시끼가이샤 도시바 A phosphor, a manufacturing method thereof, and an LED lamp

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079094A (en) * 2007-09-25 2009-04-16 Toshiba Corp Phosphor and LED lamp using the same
US9660149B2 (en) 2007-12-07 2017-05-23 Kabushiki Kaisha Toshiba Phosphor and LED light emitting device using the same
US9169436B2 (en) 2007-12-07 2015-10-27 Kabushiki Kaisha Toshiba Phosphor and LED light emitting device using the same
US8487330B2 (en) 2007-12-07 2013-07-16 Kabushiki Kaisha Toshiba Phosphor and LED light-emitting device using the same
JP2009198544A (en) * 2008-02-19 2009-09-03 Toyoda Gosei Co Ltd Optical device and its manufacture method
US9806237B2 (en) 2009-05-26 2017-10-31 Osram Opto Semiconductors Gmbh Method for producing a light-emitting diode
JP2012528473A (en) * 2009-05-26 2012-11-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Manufacturing method of light emitting diode
KR101798232B1 (en) * 2010-07-07 2017-11-15 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device, light emitting device package and lighting system
US9772441B2 (en) 2013-02-27 2017-09-26 Saturn Licensing Llc Illumination device and display unit
US10073215B2 (en) 2013-02-27 2018-09-11 Saturn Licensing Llc Illumination device and display unit
USRE49939E1 (en) 2013-02-27 2024-04-23 Saturn Licensing Llc Illumination device and display unit
CN104835901A (en) * 2015-04-09 2015-08-12 苏州晶品新材料股份有限公司 Ultrathin flexible double-sided light-emitting LED light source based on secondary optical design
CN104835901B (en) * 2015-04-09 2018-04-10 苏州晶品新材料股份有限公司 Ultrathin flexible double-side LED light source based on secondary optical design
KR20180016529A (en) 2015-06-12 2018-02-14 가부시끼가이샤 도시바 A phosphor, a manufacturing method thereof, and an LED lamp
US11005010B2 (en) 2015-06-12 2021-05-11 Kabushiki Kaisha Toshiba Phosphor and method of manufacturing same, and LED lamp

Similar Documents

Publication Publication Date Title
US7759683B2 (en) White light emitting diode
US8237350B2 (en) Light-emitting device
US7965036B2 (en) Light-emitting diode device generating light of multi-wavelengths
TWI389337B (en) Light-emitting device, display device and illumination device using same, and method of manufacturing the same
JP6102273B2 (en) Light emitting device and manufacturing method thereof
US7696522B2 (en) Light emitting device
US7488990B2 (en) Using multiple types of phosphor in combination with a light emitting device
US7586127B2 (en) Light emitting diode
US20070138484A1 (en) Light-emitting device and method of manufacturing the same
TWI554590B (en) Red nitride phosphors
JP2004363537A (en) Semiconductor equipment, manufacturing method therefor and optical device using the same
JP2005228996A (en) Light-emitting device
JP2007059378A (en) Light source device
JP2005109434A (en) Semiconductor device and its manufacturing method
JP2005109289A (en) Light-emitting device
JP2010034183A (en) Light-emitting device
CN113039653A (en) Light emitting diode package
JP2006253336A (en) Light source device
JP5194675B2 (en) Light emitting device
JP2009111273A (en) Light emitting device
JP2006332269A (en) Light emitting device
JP2008218998A (en) Light emitting device
JP2006324407A (en) Light emitting device
US7999274B2 (en) White light emitting device
JP4534513B2 (en) Light emitting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100127