JP2006316295A - Aluminum alloy extruded material for high temperature forming, and high temperature formed product thereof - Google Patents
Aluminum alloy extruded material for high temperature forming, and high temperature formed product thereof Download PDFInfo
- Publication number
- JP2006316295A JP2006316295A JP2005137865A JP2005137865A JP2006316295A JP 2006316295 A JP2006316295 A JP 2006316295A JP 2005137865 A JP2005137865 A JP 2005137865A JP 2005137865 A JP2005137865 A JP 2005137865A JP 2006316295 A JP2006316295 A JP 2006316295A
- Authority
- JP
- Japan
- Prior art keywords
- less
- high temperature
- aluminum alloy
- extruded material
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 46
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 38
- 238000010438 heat treatment Methods 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 239000012535 impurity Substances 0.000 claims abstract description 12
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 9
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 8
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 238000005482 strain hardening Methods 0.000 claims description 8
- 239000002023 wood Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 6
- 229910052749 magnesium Inorganic materials 0.000 abstract description 4
- 208000019901 Anxiety disease Diseases 0.000 abstract 1
- 230000036506 anxiety Effects 0.000 abstract 1
- 238000000465 moulding Methods 0.000 description 25
- 239000000956 alloy Substances 0.000 description 20
- 229910045601 alloy Inorganic materials 0.000 description 19
- 239000011777 magnesium Substances 0.000 description 11
- 239000013078 crystal Substances 0.000 description 10
- 238000001125 extrusion Methods 0.000 description 10
- 239000011651 chromium Substances 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- 239000011701 zinc Substances 0.000 description 9
- 239000010949 copper Substances 0.000 description 8
- 239000011572 manganese Substances 0.000 description 7
- 238000009864 tensile test Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- 229910018571 Al—Zn—Mg Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 229910000765 intermetallic Inorganic materials 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 229910018084 Al-Fe Inorganic materials 0.000 description 2
- 229910018192 Al—Fe Inorganic materials 0.000 description 2
- 229910018191 Al—Fe—Si Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000011796 hollow space material Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910019064 Mg-Si Inorganic materials 0.000 description 1
- 229910019406 Mg—Si Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910006639 Si—Mn Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910009369 Zn Mg Inorganic materials 0.000 description 1
- 229910007573 Zn-Mg Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Extrusion Of Metal (AREA)
Abstract
Description
本発明は、高温成形性が良く且つキャビテーションが少なく、強度に優れ、生産性が良いAl−Zn−Mg系アルミニウム合金押出材に関する。 The present invention relates to an Al—Zn—Mg-based aluminum alloy extruded material having good high temperature formability, low cavitation, excellent strength, and good productivity.
Al−Mg系合金においては、例えば460℃から550℃の高温領域で、数百%の高い伸びを生じるようにして高い成形性を得るような、超塑性合金が開発されているが、歪み速度が10−4〜10−3/sでの成形速度である。このような成形速度では、一般的な器物などの成形であっても30分〜100分もの時間がかかるため、工業規模での生産に当たっては生産性が悪かった。それに対し、歪み速度が10−2〜100/sで、従来の超塑性合金より高速成形できる高速超塑性成形の合金が提案検討され、開発されてきている(例えば、特許文献1参照)が、これは結晶粒が粗大化して強度を落とす恐れがあり、またキャビテーションの発生の観点からもさらに改善の余地があった。 For Al-Mg alloys, for example, superplastic alloys have been developed that achieve high formability by producing a high elongation of several hundred percent in a high temperature range of 460 ° C to 550 ° C. Is the molding speed at 10 −4 to 10 −3 / s. At such a molding speed, it takes 30 to 100 minutes even for molding of general equipment, so that the productivity was poor in production on an industrial scale. On the other hand, high-speed superplastic forming alloys that can be formed at a higher strain rate than conventional superplastic alloys at a strain rate of 10 −2 to 10 0 / s have been proposed and developed (see, for example, Patent Document 1). This has the risk of reducing the strength due to the coarsening of the crystal grains, and there is room for further improvement from the viewpoint of the occurrence of cavitation.
一方、Al−Zn−Mg系合金は強度が高いため二輪車のフレームやバンパービームなどに用いられるが、押出材を歪み速度10−2〜100/sの高速で熱間加工した例はほとんどなく、これまで冷間加工が主である。冷間加工の例としては、アルミニウム合金押出管を拡管加工やハイドロフォーム加工(液圧バルジ加工)等を行い複雑な形状に成形する例がある(例えば、特許文献2参照)。しかし冷間加工のため、複雑な形状に加工しようとすると伸びが不足し、十分満足し得るような成形ができず材料が割れるという問題があった。
本発明はこのような事情に着目してなされたものであって、その目的は、成形性に優れ、高温で成形を行っても成形工程でキャビテーションが起こりにくいため材料強度が低下する恐れが少なく、生産性良く高い成形性が得られるアルミニウム合金押出材およびその高温成形品を提供しようとするものである。 The present invention has been made paying attention to such circumstances, and its purpose is excellent in moldability, and even if molding is performed at a high temperature, cavitation is unlikely to occur in the molding process, so there is little risk of a decrease in material strength. An object of the present invention is to provide an aluminum alloy extruded material that can be produced with high productivity and high formability, and a high-temperature molded product thereof.
本発明者らは、上記課題に鑑み鋭意研究した結果、Al−Zn−Mg系アルミニウム合金の基本成分であるMgとZnの含有量を特定の範囲とするとともに、アルミニウム合金押出材の高温成形について研究を重ねた結果、合金組成と成形条件を調整することにより高温成形の際に生成する結晶粒の粗大化を抑制し、また、発生するキャビテーション量を低減できることを見出し、本発明に至った。
すなわち、本発明は、
(1)Mgを0.5%(質量%、以下同じ)以上2.0%以下、Znを4.0%以上7.0%以下、Cuを0.35%以下、Zrを0.20%以下、Crを0.25%以下、Mnを0.5%以下、Tiを0.1%以下含有し、残部がAl及び不可避的不純物よりなるアルミニウム合金組成であることを特徴とする高温成形用アルミニウム合金押出材、
(2)Mgを0.5%以上2.0%以下、Znを4.0%以上7.0%以下、Cuを0.35%以下、Zrを0.20%以下、Crを0.25%以下、Mnを0.5%以下、Tiを0.1%以下含有し、残部がAl及び不可避的不純物よりなる合金組成のアルミニウム合金押出材を冷間加工した後、歪み除去のための熱処理をしたことを特徴とする高温成形用アルミニウム合金押出材、
(3)Mgを0.5%以上2.0%以下、Znを4.0%以上7.0%以下、Cuを0.35%以下、Zrを0.20%以下、Crを0.25%以下、Mnを0.5%以下、Tiを0.1%以下含有し、残部がAl及び不可避的不純物よりなる合金組成のアルミニウム合金押出材を冷間加工した後、高温成形直前に歪み除去のための熱処理をしたことを特徴とする高温成形用アルミニウム合金押出材、および、
(4)請求項1に記載の高温成形用アルミニウム合金押出材を冷間加工した後、歪み除去のための熱処理を行い、次いで、400℃〜520℃、かつ歪み速度10−2/s〜100/sで成形加工したことを特徴とする成形品、
を提供するものである。
As a result of intensive studies in view of the above problems, the present inventors set the contents of Mg and Zn, which are basic components of an Al—Zn—Mg-based aluminum alloy, within a specific range, and high-temperature forming of an aluminum alloy extruded material. As a result of repeated research, the inventors have found that by adjusting the alloy composition and molding conditions, it is possible to suppress the coarsening of crystal grains generated during high-temperature molding and to reduce the amount of cavitation that occurs.
That is, the present invention
(1) Mg 0.5% (mass%, the same shall apply hereinafter) to 2.0%, Zn 4.0% to 7.0%, Cu 0.35% or less, Zr 0.20% For high temperature forming, characterized in that it is an aluminum alloy composition containing Cr and 0.25% or less, Mn and 0.5% or less, and Ti and 0.1% or less, the balance being Al and inevitable impurities. Aluminum alloy extrusions,
(2) Mg is 0.5% to 2.0%, Zn is 4.0% to 7.0%, Cu is 0.35% or less, Zr is 0.20% or less, and Cr is 0.25. %, Mn 0.5% or less, Ti 0.1% or less, aluminum alloy extruded material of the alloy composition consisting of Al and inevitable impurities in the balance, after cold working, heat treatment for strain removal High temperature forming aluminum alloy extruded material,
(3) Mg is 0.5% to 2.0%, Zn is 4.0% to 7.0%, Cu is 0.35% or less, Zr is 0.20% or less, and Cr is 0.25. %, Mn is 0.5% or less, Ti is 0.1% or less, and after the aluminum alloy extruded material with the alloy composition consisting of Al and inevitable impurities is cold worked, strain is removed immediately before high temperature forming. High temperature forming aluminum alloy extruded material, characterized by being heat treated for, and
(4) After cold-working the aluminum alloy extruded material for high-temperature forming according to claim 1, heat treatment for strain removal is performed, and then 400 to 520 ° C. and a strain rate of 10 −2 / s to 10 Molded product characterized by being molded at 0 / s,
Is to provide.
本発明のアルミニウム合金押出材は、高温成形時に結晶粒の粗大化が起こらず強度を確保でき、高温で成形を行ってもキャビテーションが発生しにくいため材料強度が低下せず、高温成形のため高い成形性を得ることができるとともに、高い生産性を得ることができる。 The extruded aluminum alloy material of the present invention can ensure strength without coarsening of crystal grains during high-temperature molding, and cavitation hardly occurs even when molding at high temperature, so the material strength does not decrease and is high for high-temperature molding. Formability can be obtained and high productivity can be obtained.
本発明の高温成形用アルミニウム合金押出材の好ましい実施の態様について、詳細に説明する。なお、本発明で言うアルミニウム合金押出材とは、アルミニウム合金の棒材、平角材あるいはパイプや形材などの中空材等をさすものである。
先ず、そのアルミニウム(Al)合金の合金組成の各成分元素について、その元素を選択した理由および含有量の規定理由を説明する。
本発明は、押出材および高温成形品に必要な材料の強度を確保するためにZn、Mgを添加する。また、高温成形の際に発生する結晶粒の粗大化を抑制するためにZr、Cr、Mn、Tiを添加する。また、耐応力腐食割れ性改善のためCuを添加する。
A preferred embodiment of the high temperature forming aluminum alloy extruded material of the present invention will be described in detail. The aluminum alloy extruded material referred to in the present invention refers to aluminum alloy rods, flat bars or hollow materials such as pipes and profiles.
First, for each component element of the alloy composition of the aluminum (Al) alloy, the reason for selecting the element and the reason for defining the content will be described.
In the present invention, Zn and Mg are added in order to ensure the strength of the material necessary for the extruded material and the high-temperature molded product. Further, Zr, Cr, Mn, and Ti are added in order to suppress the coarsening of crystal grains generated during high temperature forming. Further, Cu is added to improve stress corrosion cracking resistance.
上記合金元素以外のFe、Si、Niなど、その他の合金元素は基本的には不純物である。しかし、リサイクルの観点から、溶解材として、高純度Al地金だけでなく、A1−Zn−Mg系合金やその他のAl合金スクラップ材、低純度Al地金などを溶解原料として使用して、本発明のAl合金組成を有するものを製造する場合には、これら他の合金元素は必然的に含まれることになる。従って本発明では、目的とする発明の効果を阻害しない範囲で、これらFe等他の合金元素が含有されることを許容する。 Other alloy elements such as Fe, Si and Ni other than the above alloy elements are basically impurities. However, from the viewpoint of recycling, not only high-purity Al ingots but also A1-Zn-Mg alloys, other Al alloy scrap materials, low-purity Al ingots, etc. are used as melting materials. When manufacturing what has the Al alloy composition of invention, these other alloy elements are necessarily contained. Therefore, in the present invention, it is allowed that other alloy elements such as Fe are contained within a range not impairing the effect of the intended invention.
アルミニウム合金の合金組成の各元素の好ましい含有範囲と意義、あるいは許容量について説明する。
マグネシウム(Mg)及び亜鉛(Zn)は強度及び押出し性に影響を及ぼす。本発明の合金では、Mgの含有量は0.5%(質量%、以下同じ)〜2.0%、好ましくは0.5%〜1.5%であり、Znの含有量は4.0%〜7.0%、好ましくは4.4%〜6.0%である。Mgが規定値未満の場合又はZnが規定値未満の場合、押出し性は良好であるが高い強度が得られない。一方、Mgが規定値を越えて含有される場合又はZnが規定値を超えて含有される場合は押出し性が劣り、所要の形状の押出しができず、生産性も劣るものとなる。
従って、Mg含有量は0.5%以上、2.0%以下、Znの含有量は4.0%以上、7.0%以下とする。
The preferable content range and significance of each element of the alloy composition of the aluminum alloy, or the allowable amount will be described.
Magnesium (Mg) and zinc (Zn) affect strength and extrudability. In the alloy of the present invention, the Mg content is 0.5% (mass%, the same applies hereinafter) to 2.0%, preferably 0.5% to 1.5%, and the Zn content is 4.0. % To 7.0%, preferably 4.4% to 6.0%. When Mg is less than the specified value or Zn is less than the specified value, the extrudability is good but high strength cannot be obtained. On the other hand, when Mg is contained in excess of the prescribed value or Zn is contained in excess of the prescribed value, the extrudability is inferior, the required shape cannot be extruded, and the productivity is also inferior.
Therefore, the Mg content is 0.5% to 2.0%, and the Zn content is 4.0% to 7.0%.
銅(Cu)は本発明のアルミニウム合金の強度及び耐応力腐食割れ性を向上させるので、0.35%以下、好ましくは0.01%〜0.2%添加する。Cu含有量があまり多くなると耐食性が劣化する。従って、Cuは、0.35%以下とする。
ジルコニウム(Zr)は高温成形の際に生成する結晶粒の粗大化を抑制する元素であるので、0.2%以下、好ましくは0.03%〜0.17%加える。しかし、Zrが規定値を越えて添加されると、鋳造時に巨大な化合物が生成し、靭性を低下させることとなる。従って、Zr含有量は0.2%以下とする。
Copper (Cu) improves the strength and stress corrosion cracking resistance of the aluminum alloy of the present invention, so 0.35% or less, preferably 0.01% to 0.2% is added. If the Cu content is too high, the corrosion resistance deteriorates. Therefore, Cu is 0.35% or less.
Zirconium (Zr) is an element that suppresses the coarsening of crystal grains generated during high-temperature forming, and is therefore added in an amount of 0.2% or less, preferably 0.03% to 0.17%. However, if Zr is added in excess of the specified value, a huge compound is produced during casting, and the toughness is reduced. Therefore, the Zr content is 0.2% or less.
クロム(Cr)も高温成形の際に生成する結晶粒の粗大化を抑制する元素であるので、0.25%以下、好ましくは0.01%〜0.2%添加する。Crが規定値を越えて添加されると、鋳造時に巨大な化合物が生成し、靭性を低下させることとなる。従ってCr含有量は0.25%以下とする。
マンガン(Mn)は高温成形の際に生成する結晶粒の粗大化を抑制する元素であり、0.5%以下、好ましくは0.01%〜0.4%添加する。Mnが多すぎると、押出し性が劣化し、焼入れしにくくなる。従って含有量は0.5%以下とする。
Chromium (Cr) is also an element that suppresses the coarsening of crystal grains generated during high-temperature forming, and is therefore added at 0.25% or less, preferably 0.01% to 0.2%. If Cr is added in excess of the specified value, a huge compound is produced during casting and the toughness is reduced. Accordingly, the Cr content is 0.25% or less.
Manganese (Mn) is an element that suppresses the coarsening of crystal grains generated during high-temperature forming, and is added in an amount of 0.5% or less, preferably 0.01% to 0.4%. When there is too much Mn, extrudability will deteriorate and it will become difficult to quench. Therefore, the content is 0.5% or less.
チタン(Ti)は鋳造組織を微細化する効果があり、鋳塊割れの防止などの利点があるため、工業的なビレットの鋳造に際し一般的に添加される元素である。本発明においても0.1%以下、好ましくは0.001%〜0.03%添加する。Tiが多すぎると粗大金属間化合物が晶出して材料の靭性や疲労特性が大きく低下するし、また、少なすぎると微細化の効果が不十分である。添加量を0.001%以上0.1%以下に制限することが望ましい。
なお、ホウ素(B)をTiと同時に添加すると鋳造組織の微細化効果をより強めるので、望むならTiと共にBが添加されるが、その含有量は0.02%以下が好ましい。
Titanium (Ti) is an element that is generally added during the casting of industrial billets because it has the effect of refining the cast structure and has advantages such as prevention of ingot cracking. Also in the present invention, 0.1% or less, preferably 0.001% to 0.03% is added. If there is too much Ti, coarse intermetallic compounds will crystallize, and the toughness and fatigue characteristics of the material will be greatly reduced. If it is too little, the effect of miniaturization will be insufficient. It is desirable to limit the addition amount to 0.001% or more and 0.1% or less.
If boron (B) is added at the same time as Ti, the effect of refinement of the cast structure is further enhanced. Therefore, if desired, B is added together with Ti, but the content is preferably 0.02% or less.
前述の添加成分の他に、ケイ素(Si)及び鉄(Fe)などの元素は主にアルミニウム地金やスクラップなどの原料から入ってくる不純物元素である。これら元素は、Al−Fe系、Al−Fe−Si系、Al−Fe−Si−Mn系の金属間化合物や晶出物、Mg−Si系等の金属間化合物を形成し、高温成形の際のキャビテーション発生の起点を作る元素である。従ってSi含有量を0.25%以下、且つFe含有量を0.35%以下に制限した方が、金属間化合物の大きさ及びその分布密度が低減し、高温成形の際のキャビテーションの発生を抑えることができるため好ましい。
なお、Si、Fe以外のアルミニウム地金やスクラップなどの原料から混入する不純物として、その他の不純物元素は0.05%以下の含有は許容される。そして、本発明では、不可避的不純物の合計量は0.1%以下であるのが好ましい。
In addition to the above-mentioned additive components, elements such as silicon (Si) and iron (Fe) are impurity elements mainly entering from raw materials such as aluminum bullion and scrap. These elements form Al-Fe-based, Al-Fe-Si-based, Al-Fe-Si-Mn-based intermetallic compounds and crystallized substances, Mg-Si-based intermetallic compounds, and the like during high-temperature molding. It is an element that makes the origin of cavitation generation. Therefore, when the Si content is limited to 0.25% or less and the Fe content is limited to 0.35% or less, the size of the intermetallic compound and its distribution density are reduced, and cavitation occurs during high temperature forming. Since it can suppress, it is preferable.
In addition, 0.05% or less of other impurity elements are allowed as impurities mixed from raw materials such as aluminum ingots and scraps other than Si and Fe. In the present invention, the total amount of inevitable impurities is preferably 0.1% or less.
次に、本発明の高温成形用アルミニウム合金押出材の成形方法について説明する。
従来のように、Al−Zn−Mg系アルミニウム合金押出材を押出し後に冷間加工を行うと歪みが材料に残留するが、Al−Zn−Mg系合金ではZrやCrなどの遷移元素が多く含まれているため高温成形を行う際、回復が充分でないまま高温成形を行うとAl−Fe系、Al−Fe−Si系の金属間化合物がキャビテーションの起点となり、材料強度を低下させる場合がある。
そこで、本発明では高温成形前に加熱処理をすることによって材料の残留歪みを除去し、その後高温成形を行うことによって大幅にキャビテーションを減らすものである。また、高温での押出加工後に強制空冷し、歪みがほとんどない状態で、高温成形しても良いことがわかった。
Next, a method for forming the aluminum alloy extruded material for high temperature forming according to the present invention will be described.
As in the past, when cold working after extruding an Al-Zn-Mg-based aluminum alloy extrudate, strain remains in the material, but Al-Zn-Mg-based alloys contain many transition elements such as Zr and Cr. Therefore, when high-temperature forming is performed without sufficient recovery, Al-Fe-based and Al-Fe-Si-based intermetallic compounds may be the origin of cavitation, which may reduce the material strength.
Therefore, in the present invention, residual distortion of the material is removed by heat treatment before high temperature forming, and cavitation is greatly reduced by performing high temperature forming thereafter. Moreover, it turned out that it may carry out forced air cooling after the extrusion process at high temperature, and may perform high temperature shaping | molding in the state which has almost no distortion.
前述のような成分組成を有するアルミニウム合金の鋳塊は、常法に従って均質化処理(例えば、450℃〜520℃、3〜24時間)を施したのち、所定の形状、例えばパイプなどの中空材、棒材、板材などに押出加工され、本発明の高温成形用アルミニウム合金押出材とすることができる。押出加工には、従来用いられているアルミニウム合金の押出機を用いることができ、押出ビレットの温度は400℃〜520℃が好ましく、420℃〜500℃がさらに好ましい。また、押出速度は1m/min〜15m/minが好ましく、2m/min〜10m/minがさらに好ましい。この押出材は、寸法精度を向上させるため、押出加工の後に引抜加工やストレッチ加工などを行うことができる。なお、押出し後の1%程度の軽いストレッチでは、高温成形時のキャビテーションに影響しない。 The ingot of the aluminum alloy having the component composition as described above is subjected to homogenization treatment (for example, 450 ° C. to 520 ° C., 3 to 24 hours) according to a conventional method, and then a predetermined shape, for example, a hollow material such as a pipe It is extruded into a bar material, a plate material, etc., and can be used as an aluminum alloy extruded material for high temperature forming according to the present invention. A conventionally used aluminum alloy extruder can be used for the extrusion process, and the temperature of the extruded billet is preferably 400 ° C to 520 ° C, more preferably 420 ° C to 500 ° C. The extrusion speed is preferably 1 m / min to 15 m / min, more preferably 2 m / min to 10 m / min. In order to improve the dimensional accuracy, this extruded material can be subjected to drawing or stretching after the extrusion. A light stretch of about 1% after extrusion does not affect cavitation during high temperature molding.
高温での押出加工後に強制空冷し、歪みがほとんどない状態で、高温成形しても良いが、高温成形前の予備加工として冷間で曲げ加工やつぶし加工を行うこともできる。これらの冷間加工での残留歪みが残ったまま高温成形をすると、材料の伸びが充分出ず、所望の形状の成形ができないことがある。従って冷間加工後に歪みを除去するための鈍しなどの、熱処理を行うのが好ましい。
また、歪みを除去するための熱処理は、高温成形前の昇温時に高温に保持し、その後高温成形をしても良い。歪みを除去するための熱処理温度はできるだけ高い温度が良く、短時間ですむため生産性が良いが、高温で長時間保持すると粗大な結晶粒ができるためその兼ね合いが重要である。そのため一段目の昇温を歪み取りのための温度に、二段目の昇温を高温成形のための温度にというように二段にして昇温するのも好ましい。歪みを除去するための熱処理条件は、残留歪みの量や昇温、降温条件などによってその都度調整すればよいが、例えば、350℃〜500℃で、1分〜180分、昇温時間1分〜120分である。
Forcible air cooling after extrusion at high temperature and high temperature molding may be performed with almost no distortion, but cold bending and crushing can also be performed as preliminary processing before high temperature molding. If high temperature molding is performed with the residual strain remaining in the cold working, the material may not be sufficiently stretched, and a desired shape may not be molded. Therefore, it is preferable to perform heat treatment such as blunting to remove strain after cold working.
In addition, the heat treatment for removing the strain may be held at a high temperature when the temperature is raised before high-temperature molding, and then high-temperature molding may be performed. The heat treatment temperature for removing the strain is preferably as high as possible and requires a short time, so that the productivity is good. However, the balance is important because coarse crystal grains can be formed when held at a high temperature for a long time. Therefore, it is also preferable to raise the temperature in two stages, such that the first stage temperature rise is a temperature for distortion removal and the second stage temperature rise is a temperature for high temperature molding. The heat treatment conditions for removing the strain may be adjusted each time depending on the amount of residual strain, temperature increase, temperature decrease conditions, etc., for example, 350 ° C. to 500 ° C., 1 minute to 180 minutes, temperature increase time 1 minute ~ 120 minutes.
本発明の高温成形用アルミニウム合金押出材を成形する高温成形の温度は、温度が低過ぎると伸びが小さく、成形荷重が高くなり、成形温度が高過ぎると、粗大な結晶粒が生成しやすいから、400℃〜520℃とするのが好ましく、420℃〜480℃がさらに好ましい。
歪み速度は、速すぎると歪みの回復が遅れて伸びが低下し、遅すぎると成形に要する時間が長くなり、結晶粒が粗大化し、生産性が悪くなるが、本発明の高温成形用アルミニウム合金押出材の成形時の歪み速度は、10−2/s〜100/sが好ましく、10−2/s〜10−1/sで行うのがさらに好ましい。
The temperature of the high temperature forming for forming the aluminum alloy extruded material for high temperature forming according to the present invention is such that if the temperature is too low, the elongation is small, the forming load is high, and if the forming temperature is too high, coarse crystal grains are likely to be generated. 400 ° C. to 520 ° C., more preferably 420 ° C. to 480 ° C.
If the strain rate is too high, the strain recovery is delayed and the elongation decreases, and if it is too slow, the time required for forming becomes longer, the crystal grains become coarse, and the productivity deteriorates. strain rate at the time of molding of the extruded material is preferably from 10 -2 / s~10 0 / s, further preferably carried out at 10 -2 / s~10 -1 / s.
次に、本発明を比較例と共に実施例に基づいてさらに詳細に説明するが、本発明はこれに制限されるものではない。
(実施例1)
押出し材料として下記表1に示す金属成分と組成比(質量%)を持つアルミニウム合金A〜Fを、それぞれ直径220mmのビレットに溶解鋳造し、470℃にて18時間の均質化処理を行った。この各ビレットを450℃に加熱し、押出速度6mm/分で幅180mm、板厚5.5mmの平角形状に押出し、室温までファンで強制空冷後、押出材を全長の0.5%程度ストレッチした。
Next, although this invention is demonstrated in detail based on an Example with a comparative example, this invention is not restrict | limited to this.
Example 1
Aluminum alloys A to F having the metal components and composition ratios (mass%) shown in Table 1 below as extrusion materials were melt-cast into billets each having a diameter of 220 mm, and homogenized at 470 ° C. for 18 hours. Each billet was heated to 450 ° C., extruded into a flat rectangular shape having a width of 180 mm and a plate thickness of 5.5 mm at an extrusion speed of 6 mm / min. After forced air cooling with a fan to room temperature, the extruded material was stretched by about 0.5% of the total length. .
更に、この各平角から押出方向と垂直に引張試験片を切り出し、図1に示す形状に加工した。これはそれぞれ下記表2の番号1〜4に対応する。
一方、上記各押出し平角を室温で板厚4mmまで冷間圧延し、表2の歪み取り用加熱保持条件に記載の条件で熱処理を行った後、圧延方向と垂直に引張試験片を切り出し、図1に示す形状に加工した。これはそれぞれ表2の番号5〜10、15に対応する。
また、上記同様押出し平角を冷間圧延し、熱処理を行わず圧延方向と垂直に引張試験片を切り出し、図1に示す形状に加工した。これらは表2の番号11〜14、16に対応する。
なお、図1で、引張試験片の長さを示す数値の単位はmmである。
JIS Z 2241に準拠して、これら室温の試験片を高温の空気炉に保持し、試験片が430℃になった時点で歪み速度0.2/sで、10mm引張り、下記のキャビテーション量の測定を実施した。
Further, a tensile test piece was cut out from each flat angle in the direction perpendicular to the extrusion direction and processed into the shape shown in FIG. These correspond to numbers 1 to 4 in Table 2 below.
On the other hand, each extruded flat was cold-rolled at room temperature to a sheet thickness of 4 mm, heat-treated under the conditions described in Table 2 for heat-retaining conditions for strain relief, and then a tensile test piece was cut out perpendicular to the rolling direction. It was processed into the shape shown in 1. This corresponds to numbers 5 to 10 and 15 in Table 2, respectively.
Further, similarly to the above, the extruded flat was cold-rolled, a tensile test piece was cut out perpendicular to the rolling direction without performing heat treatment, and processed into the shape shown in FIG. These correspond to numbers 11 to 14 and 16 in Table 2.
In FIG. 1, the unit of the numerical value indicating the length of the tensile test piece is mm.
In accordance with JIS Z 2241, these test pieces at room temperature are held in a high-temperature air furnace, and when the test pieces reach 430 ° C., they are pulled by 10 mm at a strain rate of 0.2 / s, and the following cavitation amounts are measured. Carried out.
キャビテーション量の測定と評価
上記高温引張り試験片の平行部の中央から組織観察用試験片(5mm×4mm)を切り出し、研磨後光学顕微鏡で撮影した写真を画像解析し、穴状に凹となる部分をキャビテーションとし、その面積率を測定した。その結果を表2にキャビティ面積率(%)として示した。また、評価はキャビティ面積率1%未満を合格とし「○」で、1%以上を不合格とし「×」で示した。
Measurement and evaluation of the amount of cavitation Cut out a specimen for tissue observation (5 mm x 4 mm) from the center of the parallel part of the high-temperature tensile specimen, analyze the photograph taken with an optical microscope after polishing, and create a concave part in the shape of a hole The area ratio was measured using cavitation. The results are shown in Table 2 as cavity area ratio (%). In addition, the evaluation was shown as “◯” when the cavity area ratio was less than 1%, and “x” when 1% or more was rejected.
引張試験が平角材の高温成形加工に相当するから、番号1〜4は、平角をそのまま高温成形したものに相当し、高温成形の際に発生するキャビテーションの量が少なく、高温成形用に良好な平角材であることが分かった。
また、番号5〜10は、冷間圧延後熱処理したものであり、高温成形の際に発生するキャビテーションの量が少なく、良好な高温成形用の平角材であることが分かった。
一方、番号11〜14は、冷間圧延を施した後、歪み除去のための熱処理を行っていないものであり、キャビテーションの量が多いことが明らかとなった。
さらに、番号15、16は、合金組成が本発明の規定する範囲外のものであり、これらのキャビテーションの量はさらに多いことが明らかになった。
Since the tensile test corresponds to high-temperature molding of a rectangular material, numbers 1 to 4 correspond to those obtained by directly forming a rectangular high temperature, and the amount of cavitation generated during high-temperature molding is small, which is good for high-temperature molding. It turned out to be a flat square.
Nos. 5 to 10 were heat-treated after cold rolling, and the amount of cavitation generated at the time of high-temperature forming was small, and it was found that these were flat materials for good high-temperature forming.
On the other hand, Nos. 11 to 14 were not subjected to heat treatment for strain removal after cold rolling, and it was revealed that the amount of cavitation was large.
Further,
(実施例2)
上記実施例1と同様表1に示す金属成分組成を有するアルミニウム合金A〜Dを、それぞれ実施例1に記載したと同様鋳造、均質化処理を行い、平角形状に押出し後、冷間圧延した。この圧延平角から圧延方向と垂直に引張試験片を切り出し、図1に示す形状に加工した。
番号21〜26については、その後室温の試験片を高温の空気炉にて表3の加熱処理条件で保持した後温度を変化させ、試験片温度が460℃になった時点で歪み速度0.03/sで、10mm引張り、実施例1と同様にキャビテーション量の測定をし、評価を実施した。
番号27〜30は、室温の試験片を高温の空気炉にて加熱し、試験片温度が460℃になった時点で歪み速度0.03/sで、10mm引張り、キャビテーション量の測定をしたものである。
得られた結果を表3に示した。
(Example 2)
The aluminum alloys A to D having the metal component compositions shown in Table 1 as in Example 1 were cast and homogenized in the same manner as described in Example 1, extruded into a flat shape, and then cold-rolled. A tensile test piece was cut out from the rolling flat and perpendicular to the rolling direction, and processed into the shape shown in FIG.
For Nos. 21 to 26, after holding the test piece at room temperature in a high-temperature air furnace under the heat treatment conditions shown in Table 3, the temperature was changed, and when the test piece temperature reached 460 ° C., the strain rate was 0.03. / S was pulled by 10 mm, and the amount of cavitation was measured in the same manner as in Example 1 for evaluation.
Nos. 27 to 30 were obtained by heating a test piece at room temperature in a high temperature air furnace, pulling 10 mm at a strain rate of 0.03 / s when the test piece temperature reached 460 ° C., and measuring the amount of cavitation. It is.
The obtained results are shown in Table 3.
番号21〜26は、高温成形直前に歪み除去のための加熱処理を行ったものであり、高温成形の際に発生するキャビテーションの量が少なく、良好な平角材であることが分かった。
一方、番号27〜30は冷間圧延後歪み除去のための熱処理を行っていないものであり、キャビテーションの量が多いことが分かった。
Nos. 21 to 26 were heat-treated for distortion removal immediately before high-temperature molding, and the amount of cavitation generated at the time of high-temperature molding was small, and it was found to be a good flat material.
On the other hand, numbers 27 to 30 were not subjected to heat treatment for removing strain after cold rolling, and it was found that the amount of cavitation was large.
Claims (4)
The aluminum alloy extruded material for high temperature forming according to claim 1 is cold-worked, and then subjected to heat treatment for strain removal, and then 400 ° C to 520 ° C and a strain rate of 10 -2 / s to 10 0 / s. Molded product characterized by being molded with
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005137865A JP2006316295A (en) | 2005-05-10 | 2005-05-10 | Aluminum alloy extruded material for high temperature forming, and high temperature formed product thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005137865A JP2006316295A (en) | 2005-05-10 | 2005-05-10 | Aluminum alloy extruded material for high temperature forming, and high temperature formed product thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006316295A true JP2006316295A (en) | 2006-11-24 |
Family
ID=37537225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005137865A Pending JP2006316295A (en) | 2005-05-10 | 2005-05-10 | Aluminum alloy extruded material for high temperature forming, and high temperature formed product thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006316295A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011144396A (en) * | 2010-01-12 | 2011-07-28 | Kobe Steel Ltd | High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance |
JP2013100604A (en) * | 2012-12-27 | 2013-05-23 | Kobe Steel Ltd | High strength aluminum alloy extruded material for bumper reinforcement having excellent stress corrosion cracking resistance |
EP2716780A4 (en) * | 2011-06-02 | 2014-11-05 | Aisin Keikinzoku Co Ltd | Aluminum alloy and method of manufacturing extrusion using same |
KR101642850B1 (en) * | 2015-07-16 | 2016-07-27 | (주)알루코 | 7xxx aluminium alloy extruded material having enhanced strength, extrusion formability and brilliance |
KR101685926B1 (en) * | 2015-07-16 | 2016-12-14 | (주)알루코 | 7xxx aluminium alloy extruded material having enhanced strength and extrusion formability |
WO2017006816A1 (en) * | 2015-07-08 | 2017-01-12 | 日本軽金属株式会社 | Aluminum alloy extruded material having positive electrode oxide film and excellent external appearance quality and production method therefor |
JP6119937B1 (en) * | 2015-07-08 | 2017-04-26 | 日本軽金属株式会社 | Aluminum alloy extruded material having anodized film with excellent appearance quality and method for producing the same |
CN107299264A (en) * | 2017-05-26 | 2017-10-27 | 广东伟业铝厂集团有限公司 | Automobile chassis high-performance aluminium alloy section bar |
CN108265211A (en) * | 2018-02-09 | 2018-07-10 | 中国铁路设计集团有限公司 | The aluminium alloy of high-wearing feature and its spherical crown being prepared and the spherical crown preparation method |
WO2022181307A1 (en) * | 2021-02-25 | 2022-09-01 | アイシン軽金属株式会社 | Method for manufacturing aluminum alloy extruded material |
CN116377297A (en) * | 2023-04-13 | 2023-07-04 | 肇庆市大正铝业有限公司 | Hard aluminum alloy and preparation method thereof |
-
2005
- 2005-05-10 JP JP2005137865A patent/JP2006316295A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011144396A (en) * | 2010-01-12 | 2011-07-28 | Kobe Steel Ltd | High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance |
EP2716780A4 (en) * | 2011-06-02 | 2014-11-05 | Aisin Keikinzoku Co Ltd | Aluminum alloy and method of manufacturing extrusion using same |
US10087508B2 (en) | 2011-06-02 | 2018-10-02 | Aisin Keikinzoku Co., Ltd. | Aluminum alloy and method of manufacturing extrusion using same |
JP2013100604A (en) * | 2012-12-27 | 2013-05-23 | Kobe Steel Ltd | High strength aluminum alloy extruded material for bumper reinforcement having excellent stress corrosion cracking resistance |
CN107735503A (en) * | 2015-07-08 | 2018-02-23 | 日本轻金属株式会社 | The excellent aluminum alloy extrusion material of exterior quality with anodic oxide coating and its manufacture method |
WO2017006816A1 (en) * | 2015-07-08 | 2017-01-12 | 日本軽金属株式会社 | Aluminum alloy extruded material having positive electrode oxide film and excellent external appearance quality and production method therefor |
JP6119937B1 (en) * | 2015-07-08 | 2017-04-26 | 日本軽金属株式会社 | Aluminum alloy extruded material having anodized film with excellent appearance quality and method for producing the same |
KR101642850B1 (en) * | 2015-07-16 | 2016-07-27 | (주)알루코 | 7xxx aluminium alloy extruded material having enhanced strength, extrusion formability and brilliance |
KR101685926B1 (en) * | 2015-07-16 | 2016-12-14 | (주)알루코 | 7xxx aluminium alloy extruded material having enhanced strength and extrusion formability |
CN107299264A (en) * | 2017-05-26 | 2017-10-27 | 广东伟业铝厂集团有限公司 | Automobile chassis high-performance aluminium alloy section bar |
CN108265211A (en) * | 2018-02-09 | 2018-07-10 | 中国铁路设计集团有限公司 | The aluminium alloy of high-wearing feature and its spherical crown being prepared and the spherical crown preparation method |
WO2022181307A1 (en) * | 2021-02-25 | 2022-09-01 | アイシン軽金属株式会社 | Method for manufacturing aluminum alloy extruded material |
CN116377297A (en) * | 2023-04-13 | 2023-07-04 | 肇庆市大正铝业有限公司 | Hard aluminum alloy and preparation method thereof |
CN116377297B (en) * | 2023-04-13 | 2023-11-14 | 肇庆市大正铝业有限公司 | Hard aluminum alloy and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102549185B (en) | Aluminum alloy extrudate with excellent bending crushing strength and corrosion resistance | |
JP6955483B2 (en) | High-strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability and its manufacturing method | |
CN101558177B (en) | High-strength aluminum alloy product and manufacturing method thereof | |
US20210238723A1 (en) | High-strength magnesium alloy profile, preparation process therefor and use thereof | |
JP4734578B2 (en) | Magnesium alloy sheet processing method and magnesium alloy sheet | |
CN111549264B (en) | A kind of high-strength corrosion-resistant 5383 aluminum alloy and the preparation process of marine profiles | |
JP2009084690A (en) | Low density titanium alloy, golf club head, and process for producing low density titanium alloy part | |
JP2013104122A (en) | Aluminum alloy wire for bolt, the bolt and methods for manufacturing the same | |
JP2003301230A (en) | Aluminum alloy pipe superior in multistage formability | |
JP6329430B2 (en) | High yield strength Al-Zn aluminum alloy extruded material with excellent bendability | |
JP2008240026A (en) | Titanium alloy material excellent in strength and formability and manufacturing method thereof | |
JP6378937B2 (en) | Method for producing aluminum alloy member | |
JP2006316295A (en) | Aluminum alloy extruded material for high temperature forming, and high temperature formed product thereof | |
CN110952005A (en) | Rapid-extrusion high-performance wrought aluminum alloy and preparation method thereof | |
JP2004084058A (en) | Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging | |
WO2022181306A1 (en) | Method for manufacturing aluminum alloy extruded material having high strength and excellent scc resistance and quenchability | |
JP5111966B2 (en) | Method for manufacturing aluminum alloy panel | |
US9834833B2 (en) | Aluminum alloy material exhibiting excellent bendability and method for producing the same | |
JP5802114B2 (en) | Aluminum alloy wire for bolt, bolt and method for producing aluminum alloy wire for bolt | |
JP2008062255A (en) | SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET | |
JP4169941B2 (en) | Aluminum alloy extruded shape having excellent bending workability and manufacturing method thereof | |
WO2022181307A1 (en) | Method for manufacturing aluminum alloy extruded material | |
JP2006316303A (en) | Aluminum alloy extruded material for high temperature forming, and high temperature formed product | |
JP2024543100A (en) | A6xxx alloys for extrusion with improved properties and methods for making extruded products | |
JPH0696756B2 (en) | Of heat-treating Al-Cu based aluminum alloy ingot for processing and method of manufacturing extruded material using the same |