[go: up one dir, main page]

JP2006313584A - Manufacturing method of magnetic recording medium - Google Patents

Manufacturing method of magnetic recording medium Download PDF

Info

Publication number
JP2006313584A
JP2006313584A JP2005135219A JP2005135219A JP2006313584A JP 2006313584 A JP2006313584 A JP 2006313584A JP 2005135219 A JP2005135219 A JP 2005135219A JP 2005135219 A JP2005135219 A JP 2005135219A JP 2006313584 A JP2006313584 A JP 2006313584A
Authority
JP
Japan
Prior art keywords
layer
recording medium
magnetic recording
manufacturing
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005135219A
Other languages
Japanese (ja)
Inventor
Takayuki Ichihara
貴幸 市原
Yoshinori Honda
好範 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
HGST Inc
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Hitachi Global Storage Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV, Hitachi Global Storage Technologies Inc filed Critical Hitachi Global Storage Technologies Netherlands BV
Priority to JP2005135219A priority Critical patent/JP2006313584A/en
Priority to SG200602602A priority patent/SG126890A1/en
Priority to US11/415,801 priority patent/US7645363B2/en
Priority to KR1020060039802A priority patent/KR20060115593A/en
Priority to DE602006003939T priority patent/DE602006003939D1/en
Priority to EP06252405A priority patent/EP1720156B1/en
Priority to CNB2006100794694A priority patent/CN100468525C/en
Publication of JP2006313584A publication Critical patent/JP2006313584A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0026Pulse recording
    • G11B2005/0029Pulse recording using magnetisation components of the recording layer disposed mainly perpendicularly to the record carrier surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a magnetic recording medium having excellent floating properties and reliability with high yield by suppressing a protrusion on a medium surface by deposition of a big silicon oxide generated when a granular recording layer containing Si and oxygen is film-deposited. <P>SOLUTION: The recording layer is film-deposited by a sputtering method using a target formed by mixing an alloy containing at least Co and a crystalline SiO<SB>2</SB>powder. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁気記録媒体の製造方法に係り、特に、垂直磁気記録技術に適用される磁気記録媒体の製造方法に関わる。   The present invention relates to a method for manufacturing a magnetic recording medium, and more particularly to a method for manufacturing a magnetic recording medium applied to perpendicular magnetic recording technology.

磁気記録装置の大容量化のため、面記録密度を高める技術として、垂直磁気記録方式が注目されている。垂直磁気記録方式は、記録媒体の磁化を媒体面に垂直に、かつ隣り合う記録ビット内の磁化が互いに反平行になるように記録ビットを形成する方式である。垂直磁気記録方式では、磁化遷移領域での反磁界が小さいため面内磁気記録方式に比べて急峻な磁化遷移領域が形成され、高密度で磁化が安定する。従って、面内磁気記録方式と比較して、同じ記録分解能を得るために膜厚を大きくして磁性粒子体積を大きくすることができ、記録された磁化の経時的な減衰、すなわち熱減磁を抑制できる。さらに単磁極ヘッドと、垂直記録層及び軟磁性下地層を備えた垂直磁気記録媒体との組み合わせにおいて、高い記録磁界が得られ、垂直記録層に磁気異方性の高い材料を選択することが可能となり、熱減磁をさらに抑制することができる。   In order to increase the capacity of a magnetic recording apparatus, a perpendicular magnetic recording method has attracted attention as a technique for increasing the surface recording density. The perpendicular magnetic recording method is a method in which the recording bits are formed so that the magnetization of the recording medium is perpendicular to the medium surface and the magnetizations in adjacent recording bits are antiparallel to each other. In the perpendicular magnetic recording method, since the demagnetizing field in the magnetization transition region is small, a steep magnetization transition region is formed as compared with the in-plane magnetic recording method, and the magnetization is stabilized at a high density. Therefore, compared with the in-plane magnetic recording system, the film thickness can be increased to increase the magnetic particle volume in order to obtain the same recording resolution, and the decay of recorded magnetization over time, that is, thermal demagnetization can be reduced. Can be suppressed. Furthermore, a combination of a single magnetic pole head and a perpendicular magnetic recording medium having a perpendicular recording layer and a soft magnetic underlayer provides a high recording magnetic field, and a material having high magnetic anisotropy can be selected for the perpendicular recording layer. Thus, thermal demagnetization can be further suppressed.

垂直磁気記録媒体の記録層材料として、現在CoCr基合金結晶質膜が主流となっている。hcp構造を有するCoCr結晶のc軸を媒体面に垂直になるように結晶配向を制御することにより、記録層の磁化容易軸を媒体面に垂直に保つことができる。ここでCoCr基合金結晶粒子のサイズを小さく、かつばらつきを低減し、各粒子間の磁気的相互作用を低減することによって媒体ノイズを低減し、記録密度を向上することが可能となる。このような記録層構造を制御する一方式として、強磁性粒子の周囲を酸化物などの非磁性物質で取り囲んだ、一般にグラニュラー膜と呼ばれる記録層が提案されている。グラニュラー記録層において、非磁性の粒界相が磁性粒子を分離し、磁性粒子間の相互作用を低減し、磁化遷移領域でのノイズが低減することができる。特開2003−178413号公報には、CoとPtを含む強磁性合金と体積密度が15%から40%の酸化物からなる記録層を有する垂直磁気記録媒体が開示されている。また、IEEE Transactions on Magnetics, Vol.40, No.4, July 2004, pp. 2498-2500, “Role of Oxygen Incorporation in Co-Cr-Pt-Si-O Perpendicular Magentic Recording Media”には、CoCrPt合金とSiO2を含有する複合型ターゲットを用い、アルゴン酸素混合ガス雰囲気中でDCマグネトロンスパッタによりグラニュラー構造を有する記録層を形成する方法が開示されている。酸素含有雰囲気中で反応性スパッタを行うことにより、保磁力が増加するとともに記録再生特性が向上することが報告されている。 Currently, a CoCr-based alloy crystalline film is mainly used as a recording layer material for perpendicular magnetic recording media. By controlling the crystal orientation so that the c-axis of the CoCr crystal having the hcp structure is perpendicular to the medium surface, the easy magnetization axis of the recording layer can be kept perpendicular to the medium surface. Here, by reducing the size of the CoCr-based alloy crystal grains and reducing the variation, and reducing the magnetic interaction between the grains, the medium noise can be reduced and the recording density can be improved. As one method for controlling such a recording layer structure, a recording layer generally called a granular film has been proposed in which ferromagnetic particles are surrounded by a nonmagnetic substance such as an oxide. In the granular recording layer, the nonmagnetic grain boundary phase separates the magnetic particles, reduces the interaction between the magnetic particles, and reduces noise in the magnetization transition region. Japanese Patent Application Laid-Open No. 2003-178413 discloses a perpendicular magnetic recording medium having a recording layer made of a ferromagnetic alloy containing Co and Pt and an oxide having a volume density of 15% to 40%. IEEE Transactions on Magnetics, Vol. 40, No. 4, July 2004, pp. 2498-2500, “Role of Oxygen Incorporation in Co-Cr-Pt-Si-O Perpendicular Magentic Recording Media” includes CoCrPt alloy and A method of forming a recording layer having a granular structure by DC magnetron sputtering in an argon-oxygen mixed gas atmosphere using a composite target containing SiO 2 is disclosed. It has been reported that reactive sputtering in an oxygen-containing atmosphere increases the coercive force and improves the recording / reproducing characteristics.

また、従来から用いられている面内磁気記録方式に用いる磁気記録媒体においても、グラニュラー構造を有する記録層を有した磁気記録媒体が、特開2003−178423号公報に開示されている。   In addition, a magnetic recording medium having a recording layer having a granular structure is also disclosed in Japanese Patent Application Laid-Open No. 2003-178423 as a magnetic recording medium used in a conventionally used in-plane magnetic recording system.

特開2003−178413号公報JP 2003-178413 A 特開2003−178423号公報JP 2003-178423 A IEEE Transactions on Magnetics, Vol.40, No.4, July 2004, pp. 2498-2500IEEE Transactions on Magnetics, Vol.40, No.4, July 2004, pp. 2498-2500

前記の磁気記録媒体の製造方法において、記録層を成膜するためのターゲットとしては、CoCrPt合金と粉末状の非晶質SiO2を混合して焼結法などにより形成したターゲットを用いるのが一般的である。この製造方法において、スパッタリング工程中、ターゲットから比較的大きなサイズの珪素酸化物が飛散し、媒体上に堆積され、突起欠陥が発生するという問題があった。磁気ヘッドの浮上量が20nmよりも低い場合、磁気ヘッドと突起との衝突により磁気ヘッド、及び磁気記録媒体が損傷し、装置が故障する恐れがある。また、突起が磁気記録媒体の表面研磨行程において除去された場合においても、除去された部位の記録層、保護層の欠落や、剥離した粒子による媒体表面の損傷により、浮上性、耐食性を著しく劣化させる問題がある。 In the method for manufacturing the magnetic recording medium, as a target for forming the recording layer, a target formed by mixing a CoCrPt alloy and powdered amorphous SiO 2 by a sintering method or the like is generally used. Is. In this manufacturing method, there is a problem in that a relatively large size silicon oxide is scattered from the target during the sputtering process, and is deposited on the medium, resulting in a protrusion defect. When the flying height of the magnetic head is lower than 20 nm, the magnetic head and the magnetic recording medium may be damaged due to the collision between the magnetic head and the protrusion, and the apparatus may be broken. In addition, even when protrusions are removed during the surface polishing process of the magnetic recording medium, the flying property and corrosion resistance are significantly deteriorated due to the lack of the recording layer and the protective layer at the removed part and damage to the surface of the medium due to the peeled particles. There is a problem to make.

本発明はこのような問題に鑑みてなされたものであり、その目的は、浮上性や耐食性に優れ、磁気記録装置の故障発生率を低減する磁気記録媒体の製造方法を提供することである。   The present invention has been made in view of such problems, and an object of the present invention is to provide a method of manufacturing a magnetic recording medium that is excellent in floating property and corrosion resistance and reduces the failure occurrence rate of a magnetic recording device.

上記目的を達成するために、本発明は、非磁性基板上に、磁性を有する結晶粒子とそれを取り巻くSi酸化物を主成分とする非磁性結晶粒界から構成される記録層をスパッタリング法で形成する際、少なくともCoを含む合金と、結晶質SiO2粉末を混合したターゲットを用いて、スパッタリング法によって記録層を成膜する。スパッタリング法としては、DCスパッタリングやDCパルス電源を用いたスパッタリング法(DCパルススパッタリング法)、RFスパッタリング法が利用できる。 In order to achieve the above object, the present invention provides a recording layer comprising a nonmagnetic crystal grain boundary composed mainly of a crystal grain having magnetism and a Si oxide surrounding it on a nonmagnetic substrate by a sputtering method. When forming, a recording layer is formed by a sputtering method using a target in which an alloy containing at least Co and crystalline SiO 2 powder are mixed. As the sputtering method, DC sputtering, a sputtering method using a DC pulse power source (DC pulse sputtering method), or an RF sputtering method can be used.

本発明によれば、結晶質SiO2粉末を混合したターゲットを用いて記録層をスパッタリング法によって形成することにより、ターゲットからの巨大な珪素酸化物粒子の飛来が抑制され、媒体表面の突起が減少する。このことにより、浮上性及び信頼性に優れ、歩留まりの高い磁気記録媒体の製造方法を提供することができる。 According to the present invention, a recording layer is formed by sputtering using a target mixed with crystalline SiO 2 powder, thereby preventing enormous silicon oxide particles from flying from the target and reducing projections on the surface of the medium. To do. As a result, it is possible to provide a method for manufacturing a magnetic recording medium that is excellent in flying property and reliability and has a high yield.

以下、図面を参照して、本発明の製造方法を垂直磁気記録媒体、及び長手磁気記録媒体に適用した実施例について説明する。   Embodiments in which the manufacturing method of the present invention is applied to a perpendicular magnetic recording medium and a longitudinal magnetic recording medium will be described below with reference to the drawings.

本実施例の垂直磁気記録媒体は、図2に示すインライン式のスパッタリング装置を用いて形成した。各チャンバは独立に排気されている。すべてのプロセスチャンバーは1×10-5Pa以下の真空度まで事前に排気し、基板を支持するキャリアを各プロセスチャンバーに移動させることにより順にプロセスを実施した。カーボン保護層は化学気相成長法(CVD)により形成し、それ以外の層はDCマグネトロンスパッタにより形成した。 The perpendicular magnetic recording medium of this example was formed using an in-line type sputtering apparatus shown in FIG. Each chamber is independently evacuated. All the process chambers were evacuated in advance to a vacuum of 1 × 10 −5 Pa or less, and the process was sequentially performed by moving the carrier supporting the substrate to each process chamber. The carbon protective layer was formed by chemical vapor deposition (CVD), and the other layers were formed by DC magnetron sputtering.

図3は、実施例1の製造方法により作製した垂直磁気記録媒体の断面構造の模式図である。この垂直磁気記録媒体は、基板11上にシード層12、軟磁性下地層13、粒径制御層14、グラニュラー記録層15、保護層16、及び液体潤滑層17を順次積層した構造を右有する。ただし、図3に示す構造はその一例を示したものであり、本発明の製造方法で作製する垂直磁気記録媒体は、図3に示される構造に限定されるものではない。   FIG. 3 is a schematic diagram of a cross-sectional structure of a perpendicular magnetic recording medium manufactured by the manufacturing method of Example 1. This perpendicular magnetic recording medium has a structure in which a seed layer 12, a soft magnetic underlayer 13, a particle size control layer 14, a granular recording layer 15, a protective layer 16, and a liquid lubricating layer 17 are sequentially laminated on a substrate 11. However, the structure shown in FIG. 3 shows an example, and the perpendicular magnetic recording medium manufactured by the manufacturing method of the present invention is not limited to the structure shown in FIG.

図4は、この媒体の作製手順の概略図であり、以下に作製条件を示す。基板11には直径63.5mmのガラス基板を用いた。基板搬入チャンバ201から基板11を搬入し、真空排気後、シード層形成チャンバ202に基板を搬送し、基板11の上に基板との密着性を高めるためにNiTa合金からなる膜厚30nmのシード層12を形成した。ここでシード層12の成膜には、Ni−37.5at.%Taターゲットを用いた。シード層12は基板とシード層の上の層の両方に対する密着力を確保できれば良く、Ni系合金、Co系合金、Al系合金等いずれも使用可能である。例えば、NiTaZr合金、NiAl合金、CoTi合金、AlTa合金などを用いることができる。   FIG. 4 is a schematic view of the production procedure of this medium, and the production conditions are shown below. As the substrate 11, a glass substrate having a diameter of 63.5 mm was used. The substrate 11 is carried from the substrate carry-in chamber 201, and after evacuation, the substrate is transferred to the seed layer forming chamber 202, and a 30 nm thick seed layer made of a NiTa alloy is formed on the substrate 11 in order to improve adhesion to the substrate. 12 was formed. Here, the film formation of the seed layer 12 is performed using Ni-37.5 at. A% Ta target was used. The seed layer 12 only needs to ensure adhesion to both the substrate and the layer above the seed layer, and any of Ni-based alloys, Co-based alloys, Al-based alloys, and the like can be used. For example, a NiTaZr alloy, NiAl alloy, CoTi alloy, AlTa alloy, or the like can be used.

次に、軟磁性層形成チャンバ203〜205において、CoTaZr合金を50nm、Ruを0.8nm、CoTaZr合金を50nmに順次形成し、軟磁性層13を3層からなる構成とした。ここでCoTaZr層の成膜には、Co−3at.%Ta−5at.%Zrターゲットを用いた。このような3層構造とすることで、上下のCoTaZr合金層がRu層を介して反強磁性的に結合し、軟磁性層に起因するノイズを低減することができる。   Next, in the soft magnetic layer forming chambers 203 to 205, the CoTaZr alloy was formed to 50 nm, Ru was 0.8 nm, and the CoTaZr alloy was sequentially formed to 50 nm, so that the soft magnetic layer 13 was composed of three layers. Here, for the formation of the CoTaZr layer, Co-3at. % Ta-5 at. A% Zr target was used. With such a three-layer structure, the upper and lower CoTaZr alloy layers are antiferromagnetically coupled via the Ru layer, and noise caused by the soft magnetic layer can be reduced.

軟磁性材料、膜厚は、記録を行う際に十分なオーバーライト特性が得られる範囲内で選択すればよく、材料としては、例えばCoTaZr合金の代わりに、CoNbZr合金、CoTaNb合金、FeCoB合金などを用いることができ、軟磁性層材料全体の膜厚は50nmから300nmであれば問題ない。軟磁性層の構成としては、一層のCoTaZr合金などの軟磁性材料からなる軟磁性層の下に軟磁性層の磁区を固定するための磁区制御層を設けた構造や、前記のような3層構造の下に磁区制御層を設けた構造を用いても良い。   The soft magnetic material and the film thickness may be selected within a range in which sufficient overwrite characteristics can be obtained at the time of recording. For example, instead of a CoTaZr alloy, a material such as a CoNbZr alloy, a CoTaNb alloy, or an FeCoB alloy may be used. There is no problem if the film thickness of the entire soft magnetic layer material is 50 nm to 300 nm. The structure of the soft magnetic layer includes a structure in which a magnetic domain control layer for fixing the magnetic domain of the soft magnetic layer is provided under a soft magnetic layer made of a soft magnetic material such as a CoTaZr alloy, or the three layers as described above. A structure in which a magnetic domain control layer is provided under the structure may be used.

次に、中間層形成チャンバ206,207において、膜厚1nmのTaと膜厚20nmのRuを順次形成した。中間層14は、記録層の結晶配向性や結晶粒径を制御し、記録層の結晶粒間の交換結合の低減に重要な役割を果たす。中間層14の膜厚、構成、材料は、上記効果が得られる範囲で設定すればよく、特に上記の膜厚、構成、材料に限定するものではない。上記中間層構成においてTa層の役割はRuの膜面垂直方向のc軸配向性を高めることである。これが満足される範囲で膜厚を設定すればよく、通常1nmから5nm程度の値が用いられる。Taの代わりに、面心立方格子(fcc)構造を有するPd,Pt,Cuやこれらを含有する合金、NiFeなどの強磁性FCC材料を用いても良く、NiTaなどのアモルファス構造を有する材料を用いてもよい。Ru層の役割は記録層の結晶粒径、結晶配向性の制御と結晶粒間の交換結合の低減である。これが満足される範囲で膜厚を設定すればよく、通常3nmから30nm程度の値が用いられる。また、Ruの代わりにRuを主成分とする合金やRuにSiO2などの酸化物を含有させたものを用いても良い。 Next, in the intermediate layer forming chambers 206 and 207, Ta having a thickness of 1 nm and Ru having a thickness of 20 nm were sequentially formed. The intermediate layer 14 controls the crystal orientation and crystal grain size of the recording layer, and plays an important role in reducing exchange coupling between crystal grains of the recording layer. The film thickness, configuration, and material of the intermediate layer 14 may be set within a range in which the above effects can be obtained, and are not particularly limited to the above film thickness, configuration, and material. In the intermediate layer configuration, the role of the Ta layer is to enhance the c-axis orientation in the direction perpendicular to the Ru film surface. The film thickness may be set within a range where this is satisfied, and a value of about 1 nm to 5 nm is usually used. Instead of Ta, a Pd, Pt, Cu having a face-centered cubic lattice (fcc) structure, an alloy containing these, a ferromagnetic FCC material such as NiFe, or a material having an amorphous structure such as NiTa may be used. May be. The role of the Ru layer is to control the crystal grain size and crystal orientation of the recording layer and to reduce exchange coupling between crystal grains. The film thickness may be set within a range where this is satisfied, and a value of about 3 nm to 30 nm is usually used. Further, instead of Ru, an alloy containing Ru as a main component or Ru containing an oxide such as SiO 2 may be used.

次に、記録層形成チャンバ208に搬送後、アルゴン酸素混合ガスを導入し、膜厚14nmの記録層15を形成後、0.5Pa以下まで排気を行い、チャンバ内に残留する酸素を低減した。記録層15の形成には、Co−13at.%Cr−20at.%Pt合金と粒子径1μmの結晶質SiO2を88:12mol%の比率で混合し、焼結法で形成した合金-酸化物複合型のターゲットを用いた。記録層15を形成する際の製膜レートを2.6nm/sとした。 Next, after transporting to the recording layer forming chamber 208, an argon-oxygen mixed gas was introduced to form a recording layer 15 having a film thickness of 14 nm, and then evacuating to 0.5 Pa or less to reduce oxygen remaining in the chamber. For formation of the recording layer 15, Co-13 at. % Cr-20 at. An alloy-oxide composite type target prepared by mixing a% Pt alloy and crystalline SiO 2 having a particle diameter of 1 μm at a ratio of 88:12 mol% and using a sintering method was used. The film formation rate when forming the recording layer 15 was 2.6 nm / s.

続いて、カーボン保護層形成チャンバ209に搬送後、保護層16として化学的気相成膜法(CVD法)により厚さ4nmのDLC(ダイアモンドライクカーボン)膜を形成した。続いて、基板搬出チャンバ210に基板を搬出後、大気開放してスパッタ装置から取り出し、その表面に有機系の潤滑剤を塗布して潤滑層17を形成した。   Subsequently, after transporting to the carbon protective layer forming chamber 209, a DLC (diamond-like carbon) film having a thickness of 4 nm was formed as the protective layer 16 by a chemical vapor deposition method (CVD method). Subsequently, the substrate was unloaded to the substrate unloading chamber 210, then opened to the atmosphere and taken out from the sputtering apparatus, and an organic lubricant was applied to the surface to form the lubricating layer 17.

中間層14のRu層の形成時には、スパッタガスとしてアルゴンガスを用いた。そのガス圧は2Paから6Pa程度であれば問題ないが、ここでは5Paとした。記録層15の形成時には、スパッタガスとしてアルゴンと酸素の混合ガスを用い、その総ガス圧は3Paから6Pa程度であれば問題ないが、ここでは4Paとした。アルゴン酸素混合ガス中の酸素濃度は、十分なSNRが得られる範囲で設定すればよく、ここでは2.5%とした。カーボン保護層の形成時にはエチレンに対して水素と窒素をそれぞれ20%、2%混合したガスを用い、トータルのガス圧は2Paとした。それ以外の層の形成の際には1Paとし、スパッタガスとしてアルゴンガスを用いた。   Argon gas was used as the sputtering gas when forming the Ru layer of the intermediate layer 14. If the gas pressure is about 2 Pa to 6 Pa, there is no problem, but here it was 5 Pa. When the recording layer 15 is formed, there is no problem if a mixed gas of argon and oxygen is used as the sputtering gas and the total gas pressure is about 3 Pa to 6 Pa, but here it is 4 Pa. What is necessary is just to set the oxygen concentration in argon oxygen mixed gas in the range in which sufficient SNR is obtained, and it was 2.5% here. When the carbon protective layer was formed, a gas in which 20% and 2% of hydrogen and nitrogen were mixed with ethylene was used, and the total gas pressure was 2 Pa. When forming the other layers, 1 Pa was used, and argon gas was used as the sputtering gas.

実施例1と従来の製造方法との比較のため、非晶質SiO2を含むターゲットを用いて記録層15をスパッタ成膜する工程を含む製造方法を比較例1とした。比較例1の製造方法において、Co−13at.%Cr−20at.%Pt合金と粒子径1μmの非晶質SiO2を88:12mol%の比率で混合し、焼結法で形成したターゲットを用いて記録層15を成膜した。記録層のターゲット以外の膜構成及び作製条件は実施例1と同様とした。 For comparison between Example 1 and the conventional manufacturing method, a manufacturing method including a step of forming the recording layer 15 by sputtering using a target containing amorphous SiO 2 was set as Comparative Example 1. In the production method of Comparative Example 1, Co-13 at. % Cr-20 at. % Pt alloy and amorphous SiO 2 having a particle diameter of 1 μm were mixed at a ratio of 88:12 mol%, and the recording layer 15 was formed using a target formed by a sintering method. The film configuration and manufacturing conditions other than the recording layer target were the same as those in Example 1.

ターゲットに添加したSiO2粉末の結晶構造の評価は、CuKα線を用いたX線回折装置を用いて行った。磁気記録媒体の表面突起数の評価は、光学的表面検査装置を用いて媒体面あたりの0.2μm以上の突起の個数を計測した。作製した磁気記録媒体の信号-媒体ノイズ比SNRdについて、記録ヘッド幅170nm、再生ヘッド幅125nmの複合型単磁極ヘッドを用いて、一般的な記録再生特性評価テスタを用いて評価した。SNRdは15.7kfr/mmの線記録密度における再生出力と媒体ノイズの比によって評価した。 The crystal structure of the SiO 2 powder added to the target was evaluated using an X-ray diffractometer using CuKα rays. For the evaluation of the number of surface protrusions of the magnetic recording medium, the number of protrusions of 0.2 μm or more per medium surface was measured using an optical surface inspection apparatus. The signal-medium noise ratio SNRd of the manufactured magnetic recording medium was evaluated using a general recording / reproducing characteristic evaluation tester using a composite single pole head having a recording head width of 170 nm and a reproducing head width of 125 nm. The SNRd was evaluated by the ratio of reproduction output and medium noise at a linear recording density of 15.7 kfr / mm.

図5に、実施例1で用いた記録層のターゲットに添加した結晶質SiO2粉末のX線回折ダイアグラムを示す。また、図6に、比較例1で用いた記録層のターゲットに添加した非晶質SiO2粉末のX線回折ダイアグラムを示す。図5に示すように、本発明の製造方法に用いた記録層のターゲットに添加したSiO2粉末において、ブラッグ角度2θ=26.6±0.1°に最大強度のピークを有している。 FIG. 5 shows an X-ray diffraction diagram of the crystalline SiO 2 powder added to the target of the recording layer used in Example 1. FIG. 6 shows an X-ray diffraction diagram of the amorphous SiO 2 powder added to the target of the recording layer used in Comparative Example 1. As shown in FIG. 5, the SiO 2 powder added to the target of the recording layer used in the production method of the present invention has a maximum intensity peak at a Bragg angle 2θ = 26.6 ± 0.1 °.

図7に、実施例1の製造方法で用いた記録層のターゲットのX線回折ダイアグラムを示す。また、図8に、比較例1の製造方法で用いた記録層のターゲットのX線回折ダイアグラムを示す。図7に示すように、本発明の製造方法に用いた記録層のターゲットにおいても、ブラッグ角度2θ=26.6±0.1°にピークを有している。   FIG. 7 shows an X-ray diffraction diagram of the target of the recording layer used in the manufacturing method of Example 1. FIG. 8 shows an X-ray diffraction diagram of the target of the recording layer used in the manufacturing method of Comparative Example 1. As shown in FIG. 7, the target of the recording layer used in the manufacturing method of the present invention also has a peak at the Bragg angle 2θ = 26.6 ± 0.1 °.

図1に、実施例1及び比較例1の製造方法によって垂直磁気記録媒体を3000枚作製したときの、媒体表面における0.2μm以上の突起個数の成膜枚数による推移を示す。成膜開始直後において、ターゲット表面の不純物などの影響により、いずれの製造方法においても突起個数が多いが、実施例1の製造方法において、約300枚の成膜によって面あたりの突起個数が200個以下となり、その後の成膜においても、常に突起個数が面あたり200個以下の良好な状態であった。一方、比較例1において、突起個数が200個以下となる枚数が約500枚と、実施例1に比較して多く、その後の成膜において、突起個数が200個以上となる媒体があった。   FIG. 1 shows the transition of the number of protrusions of 0.2 μm or more on the surface of the medium when 3000 perpendicular magnetic recording media were produced by the manufacturing method of Example 1 and Comparative Example 1, depending on the number of deposited films. Immediately after the start of film formation, the number of protrusions is large in any of the manufacturing methods due to the influence of impurities on the surface of the target. In the subsequent film formation, the number of protrusions was always in a good state of 200 or less per surface. On the other hand, in Comparative Example 1, the number of protrusions that were 200 or less was about 500, which was larger than that in Example 1, and there was a medium in which the number of protrusions was 200 or more in the subsequent film formation.

実施例1及び比較例1で用いた記録層のターゲットの、3000枚成膜後の表面顕微鏡写真を、それぞれ図9、図10に示す。比較例1で用いたターゲットにおいて、表面が粗くなっているのに対し、実施例1で用いたターゲットの表面凹凸の周期が小さく、比較的なめらかであった。これは比較例1で用いたターゲットにおいて、大きなSiO2粒子がスパッタリングによって発生したためと考えられる。 9 and 10 show surface micrographs of the target of the recording layer used in Example 1 and Comparative Example 1 after 3000 film formation, respectively. In the target used in Comparative Example 1, the surface was rough, whereas the surface unevenness period of the target used in Example 1 was small and comparatively smooth. This is presumably because large SiO 2 particles were generated by sputtering in the target used in Comparative Example 1.

上記の結果について以下に考察する。結晶質SiO2粉末において、Si原子とO原子が共有結合によってSiO4四面体構造を形成し、さらに四面体のすべてのO原子が別の四面体に共有されて連結するため、各原子間の結合力が非常に強い。一方、非晶質SiO2粉末において、SiO4四面体構造は有しているがおのおのの四面体は無秩序に結合しており、その結合力は結晶質SiO2に比べ弱い。従って、非晶質SiO2を含むターゲットを用いた場合、低い衝突エネルギーにおいて、弱い結合の部分から比較的大きなサイズの珪素酸化物粒子が粉末から離脱し、これが媒体表面に到達して突起欠陥の原因となると考えられる。一方、結晶質SiO2を含むターゲットを用いた場合、SiO2粉末から粒子が離脱するエネルギーは高く均一であり、大きなサイズの粒子が離脱する確率が減少し、突起欠陥が減少すると考えられる。 The above results are discussed below. In crystalline SiO 2 powder, Si atoms and O atoms form a SiO 4 tetrahedral structure by covalent bonds, and all O atoms of the tetrahedron are shared and connected to another tetrahedron. Bonding power is very strong. On the other hand, the amorphous SiO 2 powder has a SiO 4 tetrahedral structure, but each tetrahedron is bonded randomly, and its bonding strength is weaker than crystalline SiO 2 . Accordingly, when a target containing amorphous SiO 2 is used, relatively small size silicon oxide particles are detached from the powder from weakly bonded portions at low collision energy, and this reaches the surface of the medium and causes protrusion defects. It seems to be a cause. On the other hand, when a target containing crystalline SiO 2 is used, it is considered that the energy at which particles are separated from the SiO 2 powder is high and uniform, the probability that large-sized particles are separated decreases, and the number of protrusion defects decreases.

表1に実施例1及び比較例1の製造方法で作製した垂直磁気記録媒体の媒体信号/ノイズ比SNRd及び媒体欠陥に起因する出力変動で評価した歩留まり率を示す。SNRdは実施例1と比較例1で同等の値を示し、実施例1の製造方法で作製した磁気記録媒体の電磁変換特性については比較例1と遜色のないレベルであった。一方、実施例1の製造方法で作製した磁気記録媒体において突起欠陥が減少し、歩留まり率が改善した。   Table 1 shows the yield rate evaluated by the medium signal / noise ratio SNRd of the perpendicular magnetic recording medium manufactured by the manufacturing method of Example 1 and Comparative Example 1 and the output fluctuation caused by the medium defect. SNRd showed the same value in Example 1 and Comparative Example 1, and the electromagnetic conversion characteristics of the magnetic recording medium produced by the production method of Example 1 were at a level comparable to Comparative Example 1. On the other hand, protrusion defects were reduced in the magnetic recording medium produced by the production method of Example 1, and the yield rate was improved.

Figure 2006313584
Figure 2006313584

なお、ターゲットに添加するSiO2粉末において、結晶質SiO2粉末と非晶質SiO2粉末を混合した場合、非晶質SiO2粉末から大きな粒子が飛来して突起欠陥を生ずるため、十分な歩留まり改善効果が得られない。従って、本発明の磁気記録媒体の製造方法において、グラニュラー記録層を形成するターゲットに添加するSiO2粉末の全量を結晶質SiO2粉末にすることによって最大の効果が得られることは自明である。 In addition, in the SiO 2 powder to be added to the target, when crystalline SiO 2 powder and amorphous SiO 2 powder are mixed, large particles fly from the amorphous SiO 2 powder to cause protrusion defects, so that sufficient yield is achieved. The improvement effect cannot be obtained. Therefore, in the method for manufacturing a magnetic recording medium of the present invention, it is obvious that the maximum effect can be obtained by changing the total amount of SiO 2 powder added to the target for forming the granular recording layer to crystalline SiO 2 powder.

図11は、実施例2の製造方法により作製した長手磁気記録媒体の断面構造の模式図である。この長手磁気記録媒体は、基板101上に、第1シード層102、第2シード層103、下地層104、第1記録層105、Ru中間層106、第2記録層107、保護層108、液体潤滑層109を順次積層して形成したものである。ただし、図11に示す構造はその一例を示したものであり、本発明の製造方法で作製する長手磁気記録媒体は、図11に示される構造に限定されるものではない。   FIG. 11 is a schematic diagram of a cross-sectional structure of a longitudinal magnetic recording medium manufactured by the manufacturing method of Example 2. This longitudinal magnetic recording medium includes a first seed layer 102, a second seed layer 103, an underlayer 104, a first recording layer 105, a Ru intermediate layer 106, a second recording layer 107, a protective layer 108, a liquid on a substrate 101. The lubrication layer 109 is sequentially laminated. However, the structure shown in FIG. 11 shows an example, and the longitudinal magnetic recording medium manufactured by the manufacturing method of the present invention is not limited to the structure shown in FIG.

以下に、媒体の作製条件を示す。基板101には直径63.5mmのガラス基板を用いた。基板101の上にTi−Al合金からなる膜厚30nmの第1シード層102をスパッタ法により形成した。ここで第1シード層102の成膜には、Ti−52at.%Alターゲットを用いた。次に、Ru−Al合金からなる30nmの第2シード層103をスパッタ法により形成した。ここで第2シード層103の成膜には、Ru−50at.%Alターゲットを用いた。さらにこの上に、膜厚5nmのCr−Mo合金からなる下地層104をスパッタ法により形成した。ここで下地層104の成膜には、Cr−20at.%Moターゲットを用いた。   The conditions for producing the medium are shown below. As the substrate 101, a glass substrate having a diameter of 63.5 mm was used. A 30 nm-thick first seed layer 102 made of a Ti—Al alloy was formed on the substrate 101 by a sputtering method. Here, for forming the first seed layer 102, Ti-52at. A% Al target was used. Next, a 30-nm second seed layer 103 made of a Ru—Al alloy was formed by sputtering. Here, for the formation of the second seed layer 103, Ru-50at. A% Al target was used. Further thereon, an underlayer 104 made of a Cr—Mo alloy with a thickness of 5 nm was formed by sputtering. Here, Cr-20 at. A% Mo target was used.

下地層104の上に、5nmの第1の記録層105、0.6nmのRu中間層106、15nmの第2の記録層107を順次形成した。記録層をこのような3層構造とし、Ru中間層106を介して第1の記録層105、第2の記録層107が反強磁性的に結合することによって、熱揺らぎ耐性に優れ、媒体ノイズを小さくすることができることが一般に知られている。   A 5 nm first recording layer 105, a 0.6 nm Ru intermediate layer 106, and a 15 nm second recording layer 107 were sequentially formed on the base layer 104. The recording layer has such a three-layer structure, and the first recording layer 105 and the second recording layer 107 are antiferromagnetically coupled via the Ru intermediate layer 106, thereby being excellent in thermal fluctuation resistance and medium noise. It is generally known that can be reduced.

ここで、第1の記録層105及び第2の記録層107は、第1の実施例の製造方法と同様、CoCrPt合金と結晶質SiO2粉末を混合したターゲットを用いて、アルゴンと酸素の混合雰囲気中でDCスパッタ法により形成した。第1の記録層105の形成には、Co−12at.%Cr−12at.%Pt合金と粒子径1μmの結晶質SiO2を94:6mol%の比率で混合したターゲットを用いた。また、第2の記録層107の形成には、Co−11at.%Cr−13at.%Pt合金と粒子径1μmの結晶質SiO2を93:7mol%の比率で混合したターゲットを用いた。 Here, the first recording layer 105 and the second recording layer 107 are mixed with argon and oxygen using a target in which a CoCrPt alloy and crystalline SiO 2 powder are mixed, as in the manufacturing method of the first embodiment. It was formed by DC sputtering in an atmosphere. For the formation of the first recording layer 105, Co-12 at. % Cr-12 at. A target in which a% Pt alloy and crystalline SiO 2 having a particle diameter of 1 μm were mixed at a ratio of 94: 6 mol% was used. For the formation of the second recording layer 107, Co-11at. % Cr-13 at. A target in which a% Pt alloy and crystalline SiO 2 having a particle diameter of 1 μm were mixed at a ratio of 93: 7 mol% was used.

続いて、第1の実施例の製造方法と同様に、4nmのDLC保護膜108をCVD法により形成し、成膜装置から搬出後、潤滑層109を形成した。   Subsequently, similarly to the manufacturing method of the first example, a DLC protective film 108 having a thickness of 4 nm was formed by a CVD method, and after carrying out from the film forming apparatus, a lubricating layer 109 was formed.

本発明の製造方法の効果を評価するため、上記ターゲットに添加するSiO2を結晶質SiO2に代えて非晶質SiO2として、第1の記録層105及び第2の記録層107を形成する工程を含む製造方法を比較例2とした。 To evaluate the effect of the manufacturing method of the present invention, the SiO 2 to be added to the target as an amorphous SiO 2 in place of the crystalline SiO 2, to form the first recording layer 105 and the second recording layer 107 The manufacturing method including the process was referred to as Comparative Example 2.

表2に媒体欠陥に起因する出力変動で評価した歩留まり率を示す。長手記録媒体において、一般に垂直記録媒体に比較して膜厚が小さく、スクラッチ耐性が良好なため、歩留まり率は良好であるが、結晶質SiO2を添加したターゲットを用いた実施例2の製造方法は、比較例2の製造方法に比べ歩留まりが改善することが明らかとなった。 Table 2 shows the yield rate evaluated by the output fluctuation caused by the medium defect. In the longitudinal recording medium, since the film thickness is generally smaller than that of the perpendicular recording medium and the scratch resistance is good, the yield rate is good, but the manufacturing method of Example 2 using a target to which crystalline SiO 2 is added is used. It became clear that the yield was improved as compared with the production method of Comparative Example 2.

Figure 2006313584
Figure 2006313584

以上より、本発明の磁気記録媒体の製造方法により、浮上性や耐食性に優れ、磁気記録装置の故障発生率を低減する磁気記録媒体を提供することが可能となった。特に、長手記録媒体に比べ膜厚の大きい垂直磁気記録媒体において、生産性が著しく改善することができた。   As described above, the magnetic recording medium manufacturing method of the present invention makes it possible to provide a magnetic recording medium that has excellent flying characteristics and corrosion resistance and reduces the failure rate of the magnetic recording apparatus. In particular, the productivity could be remarkably improved in a perpendicular magnetic recording medium having a larger film thickness than the longitudinal recording medium.

実施例1と比較例1の製造方法による、垂直磁気記録媒体の表面突起欠陥数の成膜枚数による推移を示したグラフである6 is a graph showing the transition of the number of surface protrusion defects of a perpendicular magnetic recording medium according to the number of deposited films by the manufacturing methods of Example 1 and Comparative Example 1. 実施例1の製造方法における垂直磁気記録媒体の成膜装置を模式的に示した図である2 is a diagram schematically showing a perpendicular magnetic recording medium film forming apparatus in the manufacturing method of Example 1. FIG. 実施例1の製造方法で作製した垂直磁気記録媒体の断面構成を模式的に示した図である。3 is a diagram schematically showing a cross-sectional configuration of a perpendicular magnetic recording medium manufactured by the manufacturing method of Example 1. FIG. 実施例1の製造方法における垂直磁気記録媒体の成膜工程を示した図である。6 is a diagram showing a film forming process of a perpendicular magnetic recording medium in the manufacturing method of Example 1. FIG. 実施例1の製造方法で使用した記録層のターゲットに添加した結晶質SiO2粉末のX線回折ダイアグラムを示したグラフである。3 is a graph showing an X-ray diffraction diagram of crystalline SiO 2 powder added to the target of the recording layer used in the manufacturing method of Example 1. FIG. 比較例1の製造方法で使用した記録層のターゲットに添加した非晶質SiO2粉末のX線回折ダイアグラムを示したグラフである。3 is a graph showing an X-ray diffraction diagram of amorphous SiO 2 powder added to a target of a recording layer used in the manufacturing method of Comparative Example 1. FIG. 実施例1の製造方法で使用した記録層のターゲットのX線回折ダイアグラムを示したグラフである。2 is a graph showing an X-ray diffraction diagram of a recording layer target used in the manufacturing method of Example 1. FIG. 比較例1の製造方法で使用した記録層のターゲットのX線回折ダイアグラムを示したグラフである。6 is a graph showing an X-ray diffraction diagram of a recording layer target used in the manufacturing method of Comparative Example 1. FIG. 実施例1の製造方法で使用した記録層のターゲットの、3000枚成膜後の表面顕微鏡写真であるIt is the surface microscope photograph after 3000 film-forming of the target of the recording layer used with the manufacturing method of Example 1. 比較例1の製造方法で使用した記録層のターゲットの、3000枚成膜後の表面顕微鏡写真であるIt is the surface micrograph after 3000 film-forming of the target of the recording layer used with the manufacturing method of the comparative example 1. 実施例2の製造方法で作製した長手磁気記録媒体の断面構成を模式的に示した図である。6 is a diagram schematically showing a cross-sectional configuration of a longitudinal magnetic recording medium manufactured by the manufacturing method of Example 2. FIG.

符号の説明Explanation of symbols

1…垂直磁気記録媒体、11…非磁性基板、12…シード層、13…軟磁性下地層、14…粒径制御層、15…グラニュラー記録層、16…保護層、17…液体潤滑層、101…非磁性基板、102…第1シード層、103…第2シード層、104…下地層、105…第1記録層、106…Ru中間層、107…第2記録層、108…保護層、109…液体潤滑層、201…基板導入チャンバ、202…シード層形成チャンバ、203〜205…軟磁性層形成チャンバ、206,207…中間層形成チャンバ、208…記録層形成チャンバ、209…保護層形成チャンバ、210…基板搬出チャンバ DESCRIPTION OF SYMBOLS 1 ... Perpendicular magnetic recording medium, 11 ... Nonmagnetic substrate, 12 ... Seed layer, 13 ... Soft-magnetic underlayer, 14 ... Grain size control layer, 15 ... Granular recording layer, 16 ... Protective layer, 17 ... Liquid lubricating layer, 101 ... Nonmagnetic substrate, 102 ... First seed layer, 103 ... Second seed layer, 104 ... Underlayer, 105 ... First recording layer, 106 ... Ru intermediate layer, 107 ... Second recording layer, 108 ... Protective layer, 109 DESCRIPTION OF SYMBOLS ... Liquid lubrication layer, 201 ... Substrate introduction chamber, 202 ... Seed layer formation chamber, 203-205 ... Soft magnetic layer formation chamber, 206, 207 ... Intermediate layer formation chamber, 208 ... Recording layer formation chamber, 209 ... Protection layer formation chamber 210 ... Substrate unloading chamber

Claims (4)

非磁性基板上に、非磁性の下地層を形成する工程と、前記非磁性の下地層の上に少なくともCoと珪素と酸素とを含む記録層をスパッタリング法で形成する工程とを有する磁気記録媒体の製造方法において、
前記記録層を形成する工程で用いるスパッタリングターゲットは、少なくともCo又はCoを含む合金と二酸化珪素粉末とを含み、前記二酸化珪素粉末は結晶質であることを特徴とする、磁気記録媒体の製造方法。
A magnetic recording medium comprising: a step of forming a nonmagnetic underlayer on a nonmagnetic substrate; and a step of forming a recording layer containing at least Co, silicon, and oxygen on the nonmagnetic underlayer by a sputtering method. In the manufacturing method of
A method for producing a magnetic recording medium, wherein a sputtering target used in the step of forming the recording layer includes at least Co or an alloy containing Co and silicon dioxide powder, and the silicon dioxide powder is crystalline.
前記スパッタリングターゲットに含まれる二酸化珪素粉末は、CuKα線による粉末X線回折スペクトルにおいて、ブラッグ角度(2θ)26.6±0.1°に最大の回折ピークを有することを特徴とする、請求項1に記載の磁気記録媒体の製造方法。   The silicon dioxide powder contained in the sputtering target has a maximum diffraction peak at a Bragg angle (2θ) of 26.6 ± 0.1 ° in a powder X-ray diffraction spectrum by CuKα rays. A method for producing the magnetic recording medium according to 1. 前記スパッタリングターゲットは、CuKα線によるX線回折スペクトルにおいて、ブラッグ角度(2θ)26.6±0.1°に回折ピークを有することを特徴とする、請求項1に記載の磁気記録媒体の製造方法。   2. The method of manufacturing a magnetic recording medium according to claim 1, wherein the sputtering target has a diffraction peak at a Bragg angle (2θ) of 26.6 ± 0.1 ° in an X-ray diffraction spectrum by CuKα rays. . 前記非磁性基板上に、軟磁性下地層を形成する工程と、中間層を形成する工程とを有することを特徴とする、請求項1に記載の磁気記録媒体の製造方法。   The method of manufacturing a magnetic recording medium according to claim 1, comprising a step of forming a soft magnetic underlayer on the nonmagnetic substrate and a step of forming an intermediate layer.
JP2005135219A 2005-05-06 2005-05-06 Manufacturing method of magnetic recording medium Pending JP2006313584A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005135219A JP2006313584A (en) 2005-05-06 2005-05-06 Manufacturing method of magnetic recording medium
SG200602602A SG126890A1 (en) 2005-05-06 2006-04-19 Manufacturing of magnetic recording medium
US11/415,801 US7645363B2 (en) 2005-05-06 2006-05-01 Manufacturing of magnetic recording medium
KR1020060039802A KR20060115593A (en) 2005-05-06 2006-05-03 Method of manufacturing magnetic recording medium
DE602006003939T DE602006003939D1 (en) 2005-05-06 2006-05-05 Production of a magnetic recording medium
EP06252405A EP1720156B1 (en) 2005-05-06 2006-05-05 Manufacturing of magnetic recording medium
CNB2006100794694A CN100468525C (en) 2005-05-06 2006-05-08 Manufacture of Magnetic Recording Media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005135219A JP2006313584A (en) 2005-05-06 2005-05-06 Manufacturing method of magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2006313584A true JP2006313584A (en) 2006-11-16

Family

ID=36636381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005135219A Pending JP2006313584A (en) 2005-05-06 2005-05-06 Manufacturing method of magnetic recording medium

Country Status (7)

Country Link
US (1) US7645363B2 (en)
EP (1) EP1720156B1 (en)
JP (1) JP2006313584A (en)
KR (1) KR20060115593A (en)
CN (1) CN100468525C (en)
DE (1) DE602006003939D1 (en)
SG (1) SG126890A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014504A1 (en) * 2010-07-29 2012-02-02 Jx日鉱日石金属株式会社 Sputtering target for magnetic recording film and process for producing same
JP5009447B1 (en) 2010-12-21 2012-08-22 Jx日鉱日石金属株式会社 Sputtering target for magnetic recording film and manufacturing method thereof
JP2013127111A (en) * 2011-11-17 2013-06-27 Mitsubishi Materials Corp Sputtering target, and method for producing the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080128931A1 (en) * 2006-11-30 2008-06-05 National Chiao Tung University Method for preparing nanocomposite ZnO-SiO2 fluorescent film by sputtering
US20080131735A1 (en) * 2006-12-05 2008-06-05 Heraeus Incorporated Ni-X, Ni-Y, and Ni-X-Y alloys with or without oxides as sputter targets for perpendicular magnetic recording
US8222087B2 (en) * 2006-12-19 2012-07-17 HGST Netherlands, B.V. Seed layer for a heat spreader in a magnetic recording head
JP5204460B2 (en) * 2007-10-24 2013-06-05 三井金属鉱業株式会社 Sputtering target for magnetic recording film and manufacturing method thereof
US20110003177A1 (en) * 2009-07-06 2011-01-06 Solar Applied Materials Technology Corp. Method for producing sputtering target containing boron, thin film and magnetic recording media
JP2011065722A (en) * 2009-09-18 2011-03-31 Sony Corp Method of manufacturing optical recording medium, and optical recording medium
MY149640A (en) * 2009-12-11 2013-09-13 Jx Nippon Mining & Metals Corp Sputtering target comprising oxide phase dispersed in co or co alloy phase, magnetic thin film made of co or co alloy phase and oxide phase, and magnetic recording medium using the said thin film
JP5807944B2 (en) * 2010-06-22 2015-11-10 ダブリュディ・メディア・シンガポール・プライベートリミテッド Method for manufacturing perpendicular magnetic recording medium
US20120250178A1 (en) * 2011-03-31 2012-10-04 Hitachi Global Storage Technologies Netherlands B.V. Magnetic media with thermal insulation layer for thermally assisted magnetic data recording
WO2014064995A1 (en) * 2012-10-25 2014-05-01 Jx日鉱日石金属株式会社 Fe-Pt-BASED SPUTTERING TARGET HAVING NON-MAGNETIC SUBSTANCE DISPERSED THEREIN
US11158339B2 (en) * 2019-08-20 2021-10-26 International Business Machines Corporation Magnetic recording layer formulation for tape media

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212929A (en) 1986-03-13 1987-09-18 Nippon Gakki Seizo Kk Magnetic disk
JP2001295037A (en) 2000-04-17 2001-10-26 Hitachi Ltd Sputter target
JP2001351217A (en) 2000-06-08 2001-12-21 Fujitsu Ltd Magnetic recording media
US6777112B1 (en) * 2000-10-10 2004-08-17 Seagate Technology Llc Stabilized recording media including coupled discontinuous and continuous magnetic layers
US6815082B2 (en) * 2001-11-30 2004-11-09 Seagate Technology Llc Anti-ferromagnetically coupled perpendicular magnetic recording media
JP4582978B2 (en) 2001-12-07 2010-11-17 富士電機デバイステクノロジー株式会社 Method for manufacturing perpendicular magnetic recording medium
JP2003178423A (en) 2001-12-12 2003-06-27 Fuji Electric Co Ltd Magnetic recording medium for longitudinal recording and method of manufacturing the same
JP2003281707A (en) 2002-03-26 2003-10-03 Victor Co Of Japan Ltd Magnetic recording medium
US7083870B2 (en) * 2002-07-12 2006-08-01 Showa Denko K. K. Magnetic recording medium, method of manufacturing the same, and magnetic recording and reproduction apparatus
US7279240B2 (en) * 2003-01-30 2007-10-09 Seagate Technology Llc Laminated perpendicular magnetic recording media with uncorrelated grains
JP4183541B2 (en) 2003-03-28 2008-11-19 株式会社日立グローバルストレージテクノロジーズ Perpendicular magnetic recording medium and manufacturing method thereof
JP2004339586A (en) * 2003-05-19 2004-12-02 Mitsubishi Materials Corp Sputtering target for forming magnetic recording film, and its production method
JP2004348777A (en) * 2003-05-20 2004-12-09 Hitachi Ltd Perpendicular magnetic recording medium and magnetic recording device
US7169488B2 (en) * 2003-06-03 2007-01-30 Seagate Technology Llc Granular perpendicular media with surface treatment for improved magnetic properties and corrosion resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014504A1 (en) * 2010-07-29 2012-02-02 Jx日鉱日石金属株式会社 Sputtering target for magnetic recording film and process for producing same
JP5032706B2 (en) * 2010-07-29 2012-09-26 Jx日鉱日石金属株式会社 Sputtering target for magnetic recording film and manufacturing method thereof
JP5009447B1 (en) 2010-12-21 2012-08-22 Jx日鉱日石金属株式会社 Sputtering target for magnetic recording film and manufacturing method thereof
JP2013127111A (en) * 2011-11-17 2013-06-27 Mitsubishi Materials Corp Sputtering target, and method for producing the same

Also Published As

Publication number Publication date
EP1720156B1 (en) 2008-12-03
EP1720156A1 (en) 2006-11-08
CN1858846A (en) 2006-11-08
KR20060115593A (en) 2006-11-09
US20060249371A1 (en) 2006-11-09
US7645363B2 (en) 2010-01-12
SG126890A1 (en) 2006-11-29
DE602006003939D1 (en) 2009-01-15
CN100468525C (en) 2009-03-11

Similar Documents

Publication Publication Date Title
CN100468525C (en) Manufacture of Magnetic Recording Media
WO2010064724A1 (en) Magnetic disk and method for manufacturing same
WO2009123161A1 (en) Vertical magnetic recording medium
CN104685566B (en) Magnetic recording media
JP5575172B2 (en) Magnetic recording medium, magnetic recording / reproducing apparatus, and method of manufacturing magnetic recording medium
JP6205871B2 (en) Magnetic recording medium
JP4745421B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP5775720B2 (en) Magnetic recording medium manufacturing method and magnetic recording / reproducing apparatus
US20140186658A1 (en) Interlayer comprising chromium-containing alloy
JP2011014191A (en) Perpendicular magnetic recording medium and magnetic storage device
JP2006127637A (en) Method for manufacturing perpendicular magnetic recording medium
JP2012102399A (en) Sputtering target and recording material of hard disk formed from the sputtering target
JP2008108395A (en) Perpendicular magnetic recording medium and its manufacturing method
JP5232730B2 (en) Magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording / reproducing apparatus
JP4123008B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US20030219627A1 (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
Shi et al. CoCrPt–SiO $ _2 $ Perpendicular Recording Media With a Crystalline Soft Underlayer
US20120114976A1 (en) Sputtering targets and recording materials of the magnetic recording medium formed from the same
JP2006260633A (en) Magnetic recording medium and magnetic storage device
US6835476B2 (en) Antiferromagnetically coupled magnetic recording media with CoCrFe alloy first ferromagnetic film
JP2006120270A (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2007102833A (en) Perpendicular magnetic recording medium
JP2003338029A (en) Magnetic recording medium, method for manufacturing the same and magnetic recording and reproducing device
JP4852180B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2006294106A (en) Magnetic recording medium