[go: up one dir, main page]

JP2006313243A - Liquid crystal lens - Google Patents

Liquid crystal lens Download PDF

Info

Publication number
JP2006313243A
JP2006313243A JP2005135968A JP2005135968A JP2006313243A JP 2006313243 A JP2006313243 A JP 2006313243A JP 2005135968 A JP2005135968 A JP 2005135968A JP 2005135968 A JP2005135968 A JP 2005135968A JP 2006313243 A JP2006313243 A JP 2006313243A
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment
transparent substrate
alignment film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005135968A
Other languages
Japanese (ja)
Inventor
Masayuki Kamiyama
雅之 上山
Susumu Sato
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2005135968A priority Critical patent/JP2006313243A/en
Publication of JP2006313243A publication Critical patent/JP2006313243A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress shift in optical properties such as focal length or focal position due to polarization direction in a liquid crystal lens using two liquid crystal layers. <P>SOLUTION: A first transparent electrode 11a, a first alignment film 12a, a first liquid crystal layer 13, a second alignment film 12b, a second transparent substrate 14, and a second electrode 11b having a hole 111 are formed on one surface of a first transparent substrate 1 in order from the first transparent substrate 1. A third transparent electrode 21a, a third alignment film 22a, a second liquid crystal layer 23, a fourth alignment film 22b, a third transparent substrate 24, and a fourth electrode 21b having a hole 211 are formed on the other surface of the first transparent substrate 1, in order from the first transparent substrate 1. The alignment direction of the first alignment film 12a is the same as the alignment direction of the second alignment film 12b. The alignment direction of the third alignment film 22a is the same as the alignment direction of the fourth alignment film 22b. The alignment direction of the alignment films 22a, 22b is perpendicular to the alignment direction of the alignment films 12a, 12b. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は液晶レンズに関し、より詳細には2以上の液晶層を備えた液晶レンズに関するものである。   The present invention relates to a liquid crystal lens, and more particularly to a liquid crystal lens having two or more liquid crystal layers.

近年、光学材料として液晶材料を用いた液晶レンズが、機械的駆動を必要とすることなくレンズの光学特性を可変できることから、光通信等の分野において注目されている。液晶レンズの機構を図9によって概説すると、まずこの図の液晶レンズは、第1透明基板14aと第2透明基板14bとが離隔対向配置され、第1透明基板14aの表面に第1透明電極11aが、第2透明基板14bの表面に、円形の孔111を有する第2電極11bがそれぞれ形成されている。そして、第1透明電極11aの上に形成された第1配向膜12aと、第2透明基板14bの下面に形成された第2配向膜12bとの間に液晶層13が封入されている。   In recent years, a liquid crystal lens using a liquid crystal material as an optical material has attracted attention in the field of optical communication and the like because it can change the optical characteristics of the lens without requiring mechanical driving. The mechanism of the liquid crystal lens will be outlined with reference to FIG. 9. First, in the liquid crystal lens of this figure, the first transparent substrate 14a and the second transparent substrate 14b are arranged to be spaced apart from each other, and the first transparent electrode 11a is formed on the surface of the first transparent substrate 14a. However, the second electrode 11b having the circular hole 111 is formed on the surface of the second transparent substrate 14b. The liquid crystal layer 13 is sealed between the first alignment film 12a formed on the first transparent electrode 11a and the second alignment film 12b formed on the lower surface of the second transparent substrate 14b.

このような構造の液晶レンズにおいて、第1透明電極11aと第2電極11bとの間に電圧が印加されていないとき、液晶層13の屈折率は均一である(同図(a))。一方、両電極間に電圧が印加されると(同図(b))、円形の孔111に対向する位置において、孔111の中心軸を中心とする軸対称状の不均一電界が発生し、液晶分子が再配向される。これにより、孔111内において液晶層13の屈折率が一様でなくなり、二乗分布に近い屈折率分布が生じてレンズ作用が生じる。すなわち、孔111の中心部付近と外周部付近とでは液晶分子の角度(傾き)が異なり、これが屈折率の違いを生んで、孔111の中心部に向かって屈折率が高くなるように分布しレンズとして作用する。両電極間に印加する電圧を制御することによって、孔内における屈折率分布を制御でき、光軸方向に焦点距離を移動させることができるようになる。なお、レンズ作用が得られるのは、液晶分子の配向方向に偏光した入射光に対してである。   In the liquid crystal lens having such a structure, when no voltage is applied between the first transparent electrode 11a and the second electrode 11b, the refractive index of the liquid crystal layer 13 is uniform ((a) in the figure). On the other hand, when a voltage is applied between both electrodes (FIG. 5B), an axisymmetric non-uniform electric field centered on the central axis of the hole 111 is generated at a position facing the circular hole 111, The liquid crystal molecules are reoriented. As a result, the refractive index of the liquid crystal layer 13 is not uniform in the hole 111, and a refractive index distribution close to a square distribution is generated, resulting in a lens action. That is, the angle (inclination) of the liquid crystal molecules is different between the vicinity of the center of the hole 111 and the vicinity of the outer periphery, and this causes a difference in refractive index, so that the refractive index is distributed toward the center of the hole 111. Acts as a lens. By controlling the voltage applied between both electrodes, the refractive index distribution in the hole can be controlled, and the focal length can be moved in the optical axis direction. The lens action is obtained with respect to incident light polarized in the alignment direction of the liquid crystal molecules.

特許文献1では、図10に示すような、第2電極11’を共通にして図9の液晶レンズを対称に2つ積層させたものが提案されている。この液晶レンズL’では、2対の配向膜12a,12b、配向膜22a,22bの配向方向を直交させている。このような構成の液晶レンズL’によれば、特定方向の偏光だけでなく自然光に対しても偏光板を用いることなくレンズ作用が得られる。また、偏光板を使用しないため高い光透過率が得られる。   Patent Document 1 proposes a structure in which two liquid crystal lenses of FIG. 9 are stacked symmetrically with the second electrode 11 ′ in common as shown in FIG. 10. In the liquid crystal lens L ′, the alignment directions of the two pairs of alignment films 12 a and 12 b and alignment films 22 a and 22 b are orthogonal to each other. According to the liquid crystal lens L ′ having such a configuration, a lens effect can be obtained not only for polarized light in a specific direction but also for natural light without using a polarizing plate. Moreover, since a polarizing plate is not used, high light transmittance is obtained.

図11に、図10の液晶レンズL’をカメラに用いた場合の概説図を示す。液晶レンズL’をカメラユニットUの前に配設し、カメラユニットUの光学系の焦点を無限遠としておくと、液晶レンズL’に印加する電圧を調整することによって、所望の被写体にピントが合うように液晶レンズL’の焦点距離を変化させることができ、所望の被写体を鮮明に撮影することができるようになる。
特開2004−4616号公報(特許請求の範囲、(0056)〜(0060)段、図6)
FIG. 11 shows a schematic diagram when the liquid crystal lens L ′ of FIG. 10 is used in a camera. When the liquid crystal lens L ′ is disposed in front of the camera unit U and the focal point of the optical system of the camera unit U is set at infinity, the desired subject is focused by adjusting the voltage applied to the liquid crystal lens L ′. It is possible to change the focal length of the liquid crystal lens L ′ so that the desired subject can be clearly photographed.
JP 2004-4616 A (claims, (0056) to (0060) stages, FIG. 6)

しかしながら、図10の液晶レンズL’では、2つの液晶層13,23が2つの透明基板14a,24aによって大きく隔てられているため、カメラユニットUの画面周縁部の光束は、カメラユニットUに近い側の液晶層13では光軸に近い領域を通過するが、カメラユニットの前端から距離S’離れた液晶層23では、光軸から距離D’離れた部分を通過することになる。液晶層の光軸に近い領域と遠い領域とでは屈折率が異なるため、液晶レンズL’では偏光方向による2つの像がズレて2重像となるおそれがある。このような偏光方向による焦点距離やピント位置などの光学特性のズレは、光学デバイスとしては重大な問題となる。また、周辺部の光束を通して、カメラの画角を確保するためには、カメラから液晶層までの距離が離れていると、液晶レンズに必要な孔径が非常に大きくなってしまう。   However, in the liquid crystal lens L ′ of FIG. 10, the two liquid crystal layers 13 and 23 are largely separated by the two transparent substrates 14 a and 24 a, so that the light flux at the screen periphery of the camera unit U is close to the camera unit U. The liquid crystal layer 13 on the side passes through a region close to the optical axis, but the liquid crystal layer 23 that is separated from the front end of the camera unit by a distance S ′ passes through a portion that is separated from the optical axis by a distance D ′. Since the refractive index is different between a region close to the optical axis of the liquid crystal layer and a region far from the optical axis, the two images depending on the polarization direction may be shifted in the liquid crystal lens L ′ to form a double image. Such a shift in optical characteristics such as a focal length and a focus position due to the polarization direction becomes a serious problem as an optical device. Further, in order to ensure the angle of view of the camera through the light flux in the peripheral portion, if the distance from the camera to the liquid crystal layer is large, the hole diameter required for the liquid crystal lens becomes very large.

本発明はこのような従来の問題に鑑みてなされたものであり、その目的とするところは、2つの液晶層を用いた液晶レンズにおいて液晶層間の距離を短くし、偏光方向による焦点距離やピント位置などの光学特性のズレがないようにすることにある。   The present invention has been made in view of such a conventional problem. The object of the present invention is to shorten the distance between the liquid crystal layers in a liquid crystal lens using two liquid crystal layers, and to adjust the focal length and the focus depending on the polarization direction. The purpose is to prevent deviations in optical characteristics such as position.

前記目的を達成するため第1の発明に係る液晶レンズでは、第1透明基板の一方面に、第1透明基板側から順に、第1透明電極、第1配向膜、第1液晶層、第2配向膜、第2透明基板、孔を有する第2電極を形成するとともに、第1透明基板のもう一方面に、第1透明基板側から順に、第3透明電極、第3配向膜、第2液晶層、第4配向膜、第3透明基板、孔を有する第4電極を形成し、第1配向膜と第2配向膜の配向方向は同方向で、第3配向膜と第4配向膜の配向方向も同方向で、且つ第1配向膜と第2配向膜の配向方向に対して第3配向膜と第4配向膜の配向方向が直交する方向であることを特徴とする。   In order to achieve the above object, in the liquid crystal lens according to the first aspect of the present invention, the first transparent electrode, the first alignment film, the first liquid crystal layer, and the second transparent electrode are sequentially formed on one surface of the first transparent substrate from the first transparent substrate side. An alignment film, a second transparent substrate, and a second electrode having holes are formed, and a third transparent electrode, a third alignment film, and a second liquid crystal are sequentially formed on the other surface of the first transparent substrate from the first transparent substrate side. Forming a layer, a fourth alignment film, a third transparent substrate, and a fourth electrode having a hole; the alignment directions of the first alignment film and the second alignment film are the same direction; the alignment of the third alignment film and the fourth alignment film; The directions are also the same, and the alignment directions of the third alignment film and the fourth alignment film are perpendicular to the alignment directions of the first alignment film and the second alignment film.

また、第2の発明に係る液晶レンズでは、第5透明電極が形成された第4透明基板と、孔を有する第6電極が形成された第5透明基板との間に、対向する一対の配向膜で挟まれた液晶層が透明基板を介して偶数個積層され、対となる配向膜の配向方向は同方向で、且つ一対の配向膜の半数個と残りの半数個とはその配向方向が直交していることを特徴とする。   In the liquid crystal lens according to the second aspect of the present invention, a pair of opposing alignments are provided between the fourth transparent substrate on which the fifth transparent electrode is formed and the fifth transparent substrate on which the sixth electrode having holes is formed. An even number of liquid crystal layers sandwiched between films are stacked via a transparent substrate, and the alignment directions of a pair of alignment films are the same direction, and the alignment direction of half the pair of alignment films and the remaining half are It is characterized by being orthogonal.

ここで第4透明基板の一方面に形成された、前記の第5透明電極、偶数個の液晶層、透明基板、第5透明基板とを、第4透明基板を中心として対称に第4透明基板のもう一方面に形成してもよい。   Here, the fifth transparent electrode, the even number of liquid crystal layers, the transparent substrate, and the fifth transparent substrate formed on one surface of the fourth transparent substrate are symmetrically centered on the fourth transparent substrate. You may form in the other side of.

また、レンズとしての光学特性を一層向上させる観点からは、液晶層に電界を与える2つ電極間距離を、液晶層の層厚の10倍以上とするのが好ましい。   Further, from the viewpoint of further improving the optical characteristics of the lens, it is preferable that the distance between the two electrodes for applying an electric field to the liquid crystal layer is 10 times or more the layer thickness of the liquid crystal layer.

そしてまた、優れたレンズ効果を得る観点からは、前記各配向膜の配向方向を、光軸を中心に軸対称にするのが好ましい。   In addition, from the viewpoint of obtaining an excellent lens effect, it is preferable that the alignment direction of each alignment film is axisymmetric about the optical axis.

第1の発明に係る液晶レンズでは、第1透明基板を共通にしてその両側に液晶レンズを2つ積層させたので、従来のものに比べ透明基板を1枚減らすことができた。これにより2つの液晶層間の距離を短くでき、偏光方向による焦点距離やピント位置などの光学特性のズレが抑えられる。また、従来の液晶レンズよりも薄くできる。   In the liquid crystal lens according to the first invention, since the first transparent substrate is shared and two liquid crystal lenses are laminated on both sides thereof, the number of transparent substrates can be reduced by one as compared with the conventional one. As a result, the distance between the two liquid crystal layers can be shortened, and deviations in optical characteristics such as the focal length and the focus position due to the polarization direction can be suppressed. Further, it can be made thinner than a conventional liquid crystal lens.

また、第2の発明に係る液晶レンズでは、第4透明基板と第5透明基板との間に、偶数個の液晶層を積層したので、第1の発明と同様に、従来に比べ透明基板の枚数を減らすことができ、これにより2つの液晶層間の距離を短くでき、偏光方向による焦点距離やピント位置などの光学特性のズレが抑えられる。   In the liquid crystal lens according to the second invention, since an even number of liquid crystal layers are laminated between the fourth transparent substrate and the fifth transparent substrate, the transparent substrate is compared with the conventional one as in the first invention. The number of sheets can be reduced, whereby the distance between the two liquid crystal layers can be shortened, and deviations in optical characteristics such as the focal length and the focus position due to the polarization direction can be suppressed.

ここで第4透明基板の一方面に形成された、前記の第5透明電極、偶数個の液晶層、透明基板、第5透明基板とを、第4透明基板を中心として対称に第4透明基板のもう一方面に形成すると、可変焦点範囲を広くできるあるいは光学特性を向上させることができるようになる。   Here, the fifth transparent electrode, the even number of liquid crystal layers, the transparent substrate, and the fifth transparent substrate formed on one surface of the fourth transparent substrate are symmetrically centered on the fourth transparent substrate. If it is formed on the other surface, the variable focal range can be widened or the optical characteristics can be improved.

また液晶層に電界を与える2つ電極間距離を液晶層の層厚の10倍以上とすると、レンズとしての光学特性が向上する。   Further, when the distance between the two electrodes for applying an electric field to the liquid crystal layer is 10 times or more the thickness of the liquid crystal layer, the optical characteristics as a lens are improved.

そしてまた、前記各配向膜の配向方向を、光軸を中心とした軸対称にすると、液晶の配向がプレティルト角を含めて光軸に対して対称になる。これにより、液晶レンズに対する入射角が同じならば、入射光に対する液晶分子の傾きは同じになり、撮像系に用いた場合に、画面の周辺部の位置によってピントがずれる、いわゆる片ボケの発生が防止される。   Further, when the alignment direction of each alignment film is axisymmetric about the optical axis, the alignment of the liquid crystal is symmetric with respect to the optical axis including the pretilt angle. As a result, if the incident angle with respect to the liquid crystal lens is the same, the inclination of the liquid crystal molecules with respect to the incident light will be the same. Is prevented.

以下、本発明について図に基づいて説明するが、本発明はこれらの実施形態に限定されるものではない。   Hereinafter, the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments.

図1は、第1の発明に係る液晶レンズLの一例を示す概説図である。図1の液晶レンズは、第1透明基板1の一方面(図の右側面)に、ITO膜(インジウム・スズ酸化物)などからなる第1透明電極11aが形成され、その表面にポリイミドなどからなる第1配向膜12aが形成されている。そして、第2透明基板14の第1透明基板側の面には第2配向膜12bが形成され、その反対側面にはアルミニウムなどからなる第2電極11bが形成されている。第2電極11bの中央部には円形の孔111(図2を参照)が形成されている。第1透明基板1と第2透明基板14とは離隔対向して平行に配置され、不図示のシール部材によって基板間の周囲は封止され、基板間に形成された空間には液晶剤が封入されて液晶層13を構成している。また、第1配向膜12aと第2配向膜12bの配向方向は同方向とされている。   FIG. 1 is a schematic view showing an example of a liquid crystal lens L according to the first invention. In the liquid crystal lens of FIG. 1, a first transparent electrode 11a made of an ITO film (indium tin oxide) or the like is formed on one side (right side in the figure) of the first transparent substrate 1, and the surface thereof is made of polyimide or the like. A first alignment film 12a is formed. A second alignment film 12b is formed on the surface of the second transparent substrate 14 on the first transparent substrate side, and a second electrode 11b made of aluminum or the like is formed on the opposite side surface. A circular hole 111 (see FIG. 2) is formed at the center of the second electrode 11b. The first transparent substrate 1 and the second transparent substrate 14 are arranged in parallel and spaced apart from each other, the periphery between the substrates is sealed by a sealing member (not shown), and a liquid crystal agent is sealed in the space formed between the substrates. Thus, the liquid crystal layer 13 is configured. The alignment directions of the first alignment film 12a and the second alignment film 12b are the same.

一方、第1透明基板1のもう一方面(図の左側面)には、右側面と同様の積層構造が第1透明基板1を中心として対称に形成されている。すなわち、第1透明基板1から順に第3透明電極21a、第3配向膜22a、第2液晶層23、第4配向膜22b、第3透明基板24、第4電極21bが形成されている。そして、第4電極21bの中央部には円形の孔211(図2を参照)が形成されている。また、第3配向膜22aと第2配向膜22bの配向方向は同方向であって、且つ第1配向膜12aと第2配向膜12bの配向方向と直交するようにされている。   On the other hand, on the other side (left side in the figure) of the first transparent substrate 1, the same laminated structure as that on the right side is formed symmetrically with the first transparent substrate 1 as the center. That is, the third transparent electrode 21a, the third alignment film 22a, the second liquid crystal layer 23, the fourth alignment film 22b, the third transparent substrate 24, and the fourth electrode 21b are formed in order from the first transparent substrate 1. And the circular hole 211 (refer FIG. 2) is formed in the center part of the 4th electrode 21b. In addition, the alignment directions of the third alignment film 22a and the second alignment film 22b are the same, and are orthogonal to the alignment directions of the first alignment film 12a and the second alignment film 12b.

図2に、図1の液晶レンズの側面図を示す。同図(a)は、図1の液晶レンズの左側面図であって、第4電極21bの中央に円形の孔211が形成され、ラビング処理によって第4配向膜22bに形成された溝がこの孔211から見えている。この溝の方向が配向方向である。同図(b)は、図1の液晶レンズの右側面図であって、前記と同様に、第2電極11bの中央に円形の孔111が形成され、ラビング処理によって第2配向膜12bに形成された溝がこの孔111から見えている。これらの図から理解されるように、第2配向膜12b(第1配向膜12aも同じ)と第4配向膜22b(第3配向膜22aも同じ)の配向方向は直交している。   FIG. 2 shows a side view of the liquid crystal lens of FIG. 1A is a left side view of the liquid crystal lens of FIG. 1, in which a circular hole 211 is formed in the center of the fourth electrode 21b, and a groove formed in the fourth alignment film 22b by rubbing treatment is shown in FIG. It can be seen from the hole 211. The direction of the groove is the orientation direction. FIG. 4B is a right side view of the liquid crystal lens of FIG. 1, and similarly to the above, a circular hole 111 is formed in the center of the second electrode 11b and is formed in the second alignment film 12b by rubbing treatment. The groove is visible from this hole 111. As can be understood from these drawings, the alignment directions of the second alignment film 12b (the same for the first alignment film 12a) and the fourth alignment film 22b (the same for the third alignment film 22a) are orthogonal to each other.

ここで図3及び図4に、配向膜の他の実施形態を示す。図3及び図4に示す、対となる配向膜は、配向方向を光軸を中心として軸対称としたものである。図3(a)の配向膜では、配向方向を光軸を中心に半径方向とし、同図(b)の配向膜では、配向方向を光軸を中心に同心円状としている。また図4(a)と(b)の配向膜では、配向方向を半径方向からの傾きが+45°と−45°となるようにしている。配向方向が光軸に対して非対称の場合には、液晶レンズに対して斜めに入射した光は、その方向によってその光に対する液晶分子の傾きが異なり、撮像系に用いた場合には画像の周辺部の位置によってピントの合う位置が異なる現象(いわゆる片ボケ)が生じることがあるが、上記のように、配向膜の配向方向を光軸に対して対称とすると、液晶レンズに対する入射角が同じであれば、方向によらず光に対する液晶分子の傾きは同じとなり、本発明の液晶レンズを撮像系に用いた場合にもいわゆる片ボケは生じなくなる。   Here, FIG. 3 and FIG. 4 show another embodiment of the alignment film. The alignment films forming a pair shown in FIGS. 3 and 4 have the alignment directions that are axially symmetric about the optical axis. In the alignment film of FIG. 3A, the alignment direction is a radial direction centered on the optical axis, and in the alignment film of FIG. 3B, the alignment direction is a concentric circle centering on the optical axis. In the alignment films shown in FIGS. 4A and 4B, the inclination of the alignment direction from the radial direction is + 45 ° and −45 °. When the orientation direction is asymmetric with respect to the optical axis, the light incident obliquely to the liquid crystal lens differs in the tilt of the liquid crystal molecules relative to the light depending on the direction. The focus position may vary depending on the position of the part (so-called single blur). However, as described above, when the alignment direction of the alignment film is symmetric with respect to the optical axis, the incident angle to the liquid crystal lens is the same. If so, the inclination of the liquid crystal molecules with respect to light is the same regardless of the direction, and so-called one-sided blur does not occur even when the liquid crystal lens of the present invention is used in an imaging system.

このような構成の液晶レンズにおいて、図1に示す、第1透明電極11aと第2電極11bとの間及び第3透明電極21aと第4電極21bとの間に所定の交流電圧が印加されると、前述のように、液晶層13,23内に不均一電界が発生する。これによって液晶層13,23内に屈折率分布が生じ、液晶層13,23においてレンズ作用が奏される。   In the liquid crystal lens having such a configuration, a predetermined AC voltage is applied between the first transparent electrode 11a and the second electrode 11b and between the third transparent electrode 21a and the fourth electrode 21b shown in FIG. As described above, a non-uniform electric field is generated in the liquid crystal layers 13 and 23. As a result, a refractive index distribution is generated in the liquid crystal layers 13 and 23, and a lens action is exhibited in the liquid crystal layers 13 and 23.

液晶層13と液晶層23の液晶分子は配向膜によって直交するように配向されている。液晶層13によって、仮にP偏光が集光し、S偏光は透過したとすると、液晶層23ではP偏光は透過し、S偏光は集光する。その逆の場合はP偏光とS偏光の集光と透過が逆になる。したがって、液晶層13と液晶層23を通過した光はすべて集光することになり、この液晶レンズでは自然光に対しても偏光板を用いることなくレンズ作用が得られる。加えて偏光板を用いないので、従来に比べ高い光透過率が得られるようになる。   The liquid crystal molecules of the liquid crystal layer 13 and the liquid crystal layer 23 are aligned so as to be orthogonal by the alignment film. If the P-polarized light is condensed by the liquid crystal layer 13 and the S-polarized light is transmitted, the P-polarized light is transmitted and the S-polarized light is condensed by the liquid crystal layer 23. In the opposite case, condensing and transmission of P-polarized light and S-polarized light are reversed. Therefore, all the light that has passed through the liquid crystal layer 13 and the liquid crystal layer 23 is collected, and this liquid crystal lens can obtain a lens action against natural light without using a polarizing plate. In addition, since a polarizing plate is not used, a higher light transmittance can be obtained than in the prior art.

図1の液晶レンズでは、液晶層13と液晶層23との距離が従来に比べて近い。これにより、偏光方向によって2重に像が形成されることが抑えられる。また、図5に示すように、図1の液晶レンズLをカメラユニットUの前に配設した場合には、液晶層13と液晶層23との距離が近くなった分だけ、カメラユニットUの前面から液晶層23までの距離Sが従来よりも短くなる。これによりカメラユニットUの画面周縁部の光束は、光軸から距離Dの液晶層23の領域(図の斜線部分)を通過するようになり、液晶レンズの有効径、すなわち第4電極21bおよび第2電極11bに形成する孔211および孔111を小さくできる。電極間距離の最適値は、有効径と比例関係にあることが知られている。したがって、有効径を小さくすれば、最適な電極間距離を短くでき、液晶レンズLの厚みを薄くできる。液晶レンズLの厚みが薄くなれば、液晶レンズLとカメラユニットUとをさらに接近させることができ、これによって有効径をさらに小さくできる。このように液晶層間の距離を短くすることによって相乗的に、液晶レンズLとそれを用いた装置の小型化および性能の向上を図れるようになる。   In the liquid crystal lens of FIG. 1, the distance between the liquid crystal layer 13 and the liquid crystal layer 23 is shorter than the conventional one. Thereby, it is possible to suppress the double image formation depending on the polarization direction. As shown in FIG. 5, when the liquid crystal lens L of FIG. 1 is disposed in front of the camera unit U, the camera unit U has a distance corresponding to the distance between the liquid crystal layer 13 and the liquid crystal layer 23. The distance S from the front surface to the liquid crystal layer 23 is shorter than before. As a result, the light flux at the peripheral edge of the screen of the camera unit U passes through the region of the liquid crystal layer 23 at a distance D from the optical axis (the hatched portion in the figure), and the effective diameter of the liquid crystal lens, that is, the fourth electrode 21b and the fourth electrode. The holes 211 and 111 formed in the two electrodes 11b can be made small. It is known that the optimum value of the distance between the electrodes is proportional to the effective diameter. Therefore, if the effective diameter is reduced, the optimum inter-electrode distance can be shortened and the thickness of the liquid crystal lens L can be reduced. If the thickness of the liquid crystal lens L is reduced, the liquid crystal lens L and the camera unit U can be brought closer to each other, thereby further reducing the effective diameter. Thus, by shortening the distance between the liquid crystal layers, the liquid crystal lens L and the apparatus using the same can be miniaturized and the performance can be improved.

なお、図1の液晶レンズLでは、第1透明基板1の両面に第1透明電極11aと第3透明電極21aを形成しているが、電界に影響を与えない程に第1透明基板1の厚みを薄くした場合には、第1透明電極11a及び第3透明電極21aの一方の透明電極のみを形成するようにしても構わない。さらに、剛性を有する透明電極を使用する場合には、第1透明基板も使用しなくてもよい。   In the liquid crystal lens L of FIG. 1, the first transparent electrode 11a and the third transparent electrode 21a are formed on both surfaces of the first transparent substrate 1, but the first transparent substrate 1 is not so affected as to affect the electric field. When the thickness is reduced, only one of the first transparent electrode 11a and the third transparent electrode 21a may be formed. Further, when using a transparent electrode having rigidity, the first transparent substrate may not be used.

次に、第2の発明に係る液晶レンズについて説明する。この発明の液晶レンズの大きな特徴は、1組の電極間に偶数個の液晶層を積層させたことにある。この発明に係る液晶レンズの一例を図6に示す。図6の液晶レンズでは、第5透明電極31aが表面に形成された第4透明基板4と、第6電極31bが表面に形成された第5透明基板5との間に、一対の配向膜32a,32bで挟まれた液晶層33aと、一対の配向膜35a,35bで挟まれた液晶層33bとが、透光性基板34を介して積層されてなる。対となる配向膜の配向方向は同方向で、配向膜32a,32bと配向膜35a,35bの配向方向は直交する。なお、第5透明電極31aと第6電極31bとの間隔を狭くすることによって、液晶層33aと液晶層33bに作用する不均一電界のわずかの差は無視できる。   Next, a liquid crystal lens according to the second invention will be described. A major feature of the liquid crystal lens of the present invention is that an even number of liquid crystal layers are laminated between a pair of electrodes. An example of the liquid crystal lens according to the present invention is shown in FIG. In the liquid crystal lens of FIG. 6, a pair of alignment films 32a is provided between the fourth transparent substrate 4 with the fifth transparent electrode 31a formed on the surface and the fifth transparent substrate 5 with the sixth electrode 31b formed on the surface. , 32b and a liquid crystal layer 33b sandwiched between a pair of alignment films 35a, 35b are stacked with a light-transmitting substrate 34 interposed therebetween. The alignment directions of the paired alignment films are the same, and the alignment directions of the alignment films 32a and 32b and the alignment films 35a and 35b are orthogonal to each other. Note that, by narrowing the distance between the fifth transparent electrode 31a and the sixth electrode 31b, a slight difference in non-uniform electric fields acting on the liquid crystal layer 33a and the liquid crystal layer 33b can be ignored.

このような構成の液晶レンズでは、図1の液晶レンズに比べて、1組の電極をさらに無くすことができ、液晶レンズの厚みをさらに薄くすることができる。また電極数が減った分だけ配線が容易になる。   In the liquid crystal lens having such a configuration, one set of electrodes can be further eliminated and the thickness of the liquid crystal lens can be further reduced as compared with the liquid crystal lens of FIG. In addition, wiring is facilitated as much as the number of electrodes is reduced.

図7に、第2の発明に係る液晶レンズの他の実施形態を示す。図7の液晶レンズでは、第5透明電極31aと第6電極31bとの間に、4つの液晶層33a〜33dを配置している。前記と同様に、対となる配向膜の配向方向は同方向で、配向膜対の配向方向は交互に90°回転している。説明を簡単にするために、直交する配向方向の一方を”タテ方向”、他方を”ヨコ方向”とすると、配向膜32a,32bと配向膜36a,36bの配向方向がタテ方向で、配向膜35a,35bと配向膜37a,37bの配向方向がヨコ方向となっている。もちろん、連続する配向膜32a,32b,35a,35bの配向方向をタテ方向とし、連続する配向膜36a,36b,37a,37bの配向方向をヨコ方向としてもよいが、液晶レンズの光学特性を向上させる観点からは、配向膜対の配向方向はタテ方向とヨコ方向とが交互になるようにするのが望ましい。   FIG. 7 shows another embodiment of the liquid crystal lens according to the second invention. In the liquid crystal lens of FIG. 7, four liquid crystal layers 33a to 33d are disposed between the fifth transparent electrode 31a and the sixth electrode 31b. In the same manner as described above, the alignment directions of the paired alignment films are the same, and the alignment directions of the alignment film pairs are alternately rotated by 90 °. For ease of explanation, if one of the orthogonal alignment directions is a “vertical direction” and the other is a “horizontal direction”, the alignment directions of the alignment films 32 a and 32 b and the alignment films 36 a and 36 b are the vertical directions. The alignment direction of 35a, 35b and the alignment films 37a, 37b is a horizontal direction. Of course, the alignment direction of the continuous alignment films 32a, 32b, 35a, and 35b may be the vertical direction, and the alignment direction of the continuous alignment films 36a, 36b, 37a, and 37b may be the horizontal direction, but the optical characteristics of the liquid crystal lens are improved. In view of the above, it is desirable that the orientation direction of the alignment film pair is alternated between the vertical direction and the horizontal direction.

図7の液晶レンズにおいて、各液晶層33a〜33dの厚みが図6の液晶レンズの各液晶層と同じであれば、印加電圧によって変えることのできる焦点距離範囲が広くなる。他方、液晶層33a〜33dの厚みが図6の液晶レンズの各液晶層の半分で、液晶層全体の総厚みが同じであれば、可変焦点距離は同じであるが、偏光方向による焦点距離やピント位置などのズレを一層抑えることができる。また液晶層の厚みが薄くなるため液晶分子の配向応答性が速くなる。   In the liquid crystal lens of FIG. 7, if the thickness of each of the liquid crystal layers 33 a to 33 d is the same as that of each liquid crystal layer of the liquid crystal lens of FIG. 6, the focal length range that can be changed by the applied voltage is widened. On the other hand, if the thickness of the liquid crystal layers 33a to 33d is half of each liquid crystal layer of the liquid crystal lens of FIG. 6 and the total thickness of the entire liquid crystal layer is the same, the variable focal length is the same, but the focal length according to the polarization direction Deviations such as the focus position can be further suppressed. In addition, since the thickness of the liquid crystal layer is reduced, the alignment response of the liquid crystal molecules is accelerated.

図7の液晶レンズでは、4つの液晶層33a〜33dを積層しているが、偶数個であれば液晶層の個数に限定はない。液晶層の個数および層厚は、必要とする可変焦点距離や光学特性などから適宜決定すればよい。   In the liquid crystal lens of FIG. 7, four liquid crystal layers 33a to 33d are stacked. However, the number of liquid crystal layers is not limited as long as it is an even number. The number and thickness of the liquid crystal layers may be determined as appropriate from the required variable focal length, optical characteristics, and the like.

図8の液晶レンズは、図6の液晶レンズにおいて第4透明基板4の一方面に形成された構造を、第4透明基板4を中心として対称に、第4透明基板4のもう一方面に形成したものである。この液晶レンズにおいても、各液晶層33a,33a’,33b,33b’の厚みが図6の液晶レンズの各液晶層と同じであれば、印加電圧によって変えることのできる焦点距離範囲が広くなる。他方、液晶層33a,33a’,33b,33b’の厚みが図6の液晶レンズの各液晶層の半分で、液晶層全体の総厚みが同じであれば、可変焦点距離は同じであるが、偏光方向による焦点距離やピント位置などのズレを一層抑えることができ、また液晶層の厚みを薄くすることによって液晶分子の配向応答性が速くなる。   The liquid crystal lens of FIG. 8 is formed on the other surface of the fourth transparent substrate 4 with the structure formed on one surface of the fourth transparent substrate 4 in the liquid crystal lens of FIG. It is a thing. Also in this liquid crystal lens, if the thickness of each liquid crystal layer 33a, 33a ', 33b, 33b' is the same as that of each liquid crystal layer of FIG. 6, the focal length range that can be changed by the applied voltage is widened. On the other hand, if the thickness of the liquid crystal layers 33a, 33a ′, 33b, and 33b ′ is half of each liquid crystal layer of the liquid crystal lens of FIG. 6 and the total thickness of the entire liquid crystal layer is the same, the variable focal length is the same. Deviations such as the focal length and focus position due to the polarization direction can be further suppressed, and the alignment responsiveness of the liquid crystal molecules can be increased by reducing the thickness of the liquid crystal layer.

第1の発明に係る液晶レンズの一例を示す概説図である。It is a schematic diagram which shows an example of the liquid crystal lens which concerns on 1st invention. 図1の液晶レンズの左・右側面図である。FIG. 2 is a left / right side view of the liquid crystal lens of FIG. 1. 配向膜の他の実施形態を示す図である。It is a figure which shows other embodiment of alignment film. 配向膜のさらに他の実施形態を示す図である。It is a figure which shows other embodiment of alignment film. 図1の液晶レンズをカメラの光学系に用いた場合の概説図である。It is a schematic diagram at the time of using the liquid-crystal lens of FIG. 1 for the optical system of a camera. 第2の発明に係る液晶レンズの一例を示す概説図である。It is a schematic diagram which shows an example of the liquid crystal lens which concerns on 2nd invention. 第2の発明に係る液晶レンズの他の例を示す概説図である。It is a schematic diagram which shows the other example of the liquid crystal lens which concerns on 2nd invention. 第2の発明に係る液晶レンズのさらに他の例を示す概説図である。It is a schematic diagram which shows the other example of the liquid crystal lens which concerns on 2nd invention. 液晶レンズの機構を説明するための図である。It is a figure for demonstrating the mechanism of a liquid crystal lens. 従来の液晶レンズを示す概説図である。It is a schematic diagram which shows the conventional liquid crystal lens. 図10の液晶レンズをカメラの光学系に用いた場合の概説図である。It is a schematic diagram at the time of using the liquid-crystal lens of FIG. 10 for the optical system of a camera.

符号の説明Explanation of symbols

1 第1透明基板
4 第4透明基板
5 第5透明基板
11a 第1透明電極
11b 第2電極
12a 第1配向膜
12b 第2配向膜
13 第1液晶層
14 第2透明基板
21a 第3透明電極
21b 第4電極
22a 第3配向膜
22b 第4配向膜
23 第2液晶層
24 第3透明基板
31a 第5透明電極
31b 第6電極
32a,32b,35a,35b,36a,36b 配向膜
33a,33b,33c,33d 液晶層
111,211 孔
DESCRIPTION OF SYMBOLS 1 1st transparent substrate 4 4th transparent substrate 5 5th transparent substrate 11a 1st transparent electrode 11b 2nd electrode 12a 1st alignment film 12b 2nd alignment film 13 1st liquid crystal layer 14 2nd transparent substrate 21a 3rd transparent electrode 21b Fourth electrode 22a Third alignment film 22b Fourth alignment film 23 Second liquid crystal layer 24 Third transparent substrate 31a Fifth transparent electrode 31b Sixth electrode 32a, 32b, 35a, 35b, 36a, 36b Alignment films 33a, 33b, 33c , 33d Liquid crystal layer 111, 211 hole

Claims (5)

第1透明基板の一方面に、第1透明基板側から順に、第1透明電極、第1配向膜、第1液晶層、第2配向膜、第2透明基板、孔を有する第2電極が形成されるとともに、第1透明基板のもう一方面に、第1透明基板側から順に、第3透明電極、第3配向膜、第2液晶層、第4配向膜、第3透明基板、孔を有する第4電極が形成され、
第1配向膜と第2配向膜の配向方向は同方向で、第3配向膜と第4配向膜の配向方向も同方向で、且つ第1配向膜と第2配向膜の配向方向に対して第3配向膜と第4配向膜の配向方向が直交する方向であることを特徴とする液晶レンズ。
A first transparent electrode, a first alignment film, a first liquid crystal layer, a second alignment film, a second transparent substrate, and a second electrode having holes are formed on one surface of the first transparent substrate in order from the first transparent substrate side. In addition, a third transparent electrode, a third alignment film, a second liquid crystal layer, a fourth alignment film, a third transparent substrate, and a hole are formed on the other surface of the first transparent substrate in order from the first transparent substrate side. A fourth electrode is formed;
The alignment directions of the first alignment film and the second alignment film are the same direction, the alignment directions of the third alignment film and the fourth alignment film are also the same direction, and with respect to the alignment directions of the first alignment film and the second alignment film. A liquid crystal lens, wherein the alignment directions of the third alignment film and the fourth alignment film are orthogonal to each other.
第5透明電極が形成された第4透明基板と、孔を有する第6電極が形成された第5透明基板との間に、対向する一対の配向膜で挟まれた液晶層が透明基板を介して偶数個積層され、対となる配向膜の配向方向は同方向で、且つ一対の配向膜の半数個と残りの半数個とはその配向方向が直交していることを特徴とする液晶レンズ。   A liquid crystal layer sandwiched between a pair of opposing alignment films is interposed between the fourth transparent substrate on which the fifth transparent electrode is formed and the fifth transparent substrate on which the sixth electrode having a hole is formed via the transparent substrate. An even number of layers are stacked, the alignment directions of the pair of alignment films are the same, and the alignment direction of the half of the pair of alignment films and the remaining half are orthogonal to each other. 第4透明基板の一方面に形成された、前記の第5透明電極と、偶数個の液晶層、透明基板、第5透明基板とが、第4透明基板を中心として対称に第4透明基板のもう一方面に形成された請求項2記載の液晶レンズ。   The fifth transparent electrode, the even number of liquid crystal layers, the transparent substrate, and the fifth transparent substrate formed on one surface of the fourth transparent substrate are symmetrically formed around the fourth transparent substrate. The liquid crystal lens according to claim 2, wherein the liquid crystal lens is formed on the other surface. 液晶層に電界を与える2つ電極間距離を、液晶層の層厚の10倍以上とした請求項1〜3のいずれかに記載の液晶レンズ。   The liquid crystal lens according to any one of claims 1 to 3, wherein a distance between two electrodes for applying an electric field to the liquid crystal layer is 10 times or more a thickness of the liquid crystal layer. 前記各配向膜の配向方向が、光軸を中心とした軸対称である請求項1〜4のいずれかに記載の液晶レンズ。   The liquid crystal lens according to claim 1, wherein the alignment direction of each alignment film is axisymmetric about the optical axis.
JP2005135968A 2005-05-09 2005-05-09 Liquid crystal lens Pending JP2006313243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005135968A JP2006313243A (en) 2005-05-09 2005-05-09 Liquid crystal lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005135968A JP2006313243A (en) 2005-05-09 2005-05-09 Liquid crystal lens

Publications (1)

Publication Number Publication Date
JP2006313243A true JP2006313243A (en) 2006-11-16

Family

ID=37534764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005135968A Pending JP2006313243A (en) 2005-05-09 2005-05-09 Liquid crystal lens

Country Status (1)

Country Link
JP (1) JP2006313243A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100832897B1 (en) 2007-05-10 2008-05-28 삼성전기주식회사 Liquid Crystal Lens and Formation Method
WO2009146530A1 (en) * 2008-06-06 2009-12-10 Lensvector Inc. Tunable liquid crystal optical device
EP2161616A2 (en) 2008-09-09 2010-03-10 United Radiant Technology Corporation Double-layer liquid crystal lens and method for manufacturing the same
JP2010107686A (en) * 2008-10-30 2010-05-13 Akita Prefecture Method for manufacturing liquid crystal lens, and liquid crystal lens
WO2011105437A1 (en) * 2010-02-24 2011-09-01 株式会社びにっと Liquid crystal optical element having multilayer structure, and method for manufacturing the liquid crystal optical element
CN101685224B (en) * 2008-09-25 2012-01-04 光联科技股份有限公司 Double-layer structure liquid crystal lens and manufacturing method thereof
EP2329315A4 (en) * 2008-09-01 2012-01-18 Lensvector Inc Wafer-level fabrication of liquid crystal optoelectronic devices
TWI382224B (en) * 2007-07-05 2013-01-11 Lg Display Co Ltd Electrically-driven liquid crystal lens and display device using the same
TWI417576B (en) * 2010-05-19 2013-12-01 Chunghwa Picture Tubes Ltd Liquid crystal lens
CN104081260A (en) * 2012-01-30 2014-10-01 日本电气硝子株式会社 Liquid-crystal lens and liquid-crystal lens-cell
CN104375352A (en) * 2008-06-06 2015-02-25 兰斯维克托公司 Contact structure for a tunable liquid crystal optical device
CN104570520A (en) * 2014-12-31 2015-04-29 上海天马微电子有限公司 Liquid crystal lens
CN104714351A (en) * 2014-12-26 2015-06-17 上海天马微电子有限公司 Liquid crystal lens and manufacturing method thereof
US20150301427A1 (en) * 2012-11-11 2015-10-22 Lensvector Inc. Capacitively coupled electric field control device
CN105159007A (en) * 2015-09-21 2015-12-16 信利半导体有限公司 Manufacturing method for double-layer structural liquid crystal lens
JP2016090759A (en) * 2014-11-04 2016-05-23 日本電気硝子株式会社 Liquid crystal lens
CN110602370A (en) * 2019-10-08 2019-12-20 Oppo广东移动通信有限公司 Camera module and terminal equipment

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100832897B1 (en) 2007-05-10 2008-05-28 삼성전기주식회사 Liquid Crystal Lens and Formation Method
TWI382224B (en) * 2007-07-05 2013-01-11 Lg Display Co Ltd Electrically-driven liquid crystal lens and display device using the same
WO2009146530A1 (en) * 2008-06-06 2009-12-10 Lensvector Inc. Tunable liquid crystal optical device
US9448456B2 (en) 2008-06-06 2016-09-20 Lensvector, Inc. Tunable liquid crystal optical device
CN104375352A (en) * 2008-06-06 2015-02-25 兰斯维克托公司 Contact structure for a tunable liquid crystal optical device
CN103792740B (en) * 2008-06-06 2017-12-12 兰斯维克托公司 Tunable liquid crystal optical device
CN102057315A (en) * 2008-06-06 2011-05-11 兰斯维克托公司 Tunable liquid crystal optical device
EP2329315A4 (en) * 2008-09-01 2012-01-18 Lensvector Inc Wafer-level fabrication of liquid crystal optoelectronic devices
EP2161616A3 (en) * 2008-09-09 2012-01-11 United Radiant Technology Corporation Double-layer liquid crystal lens and method for manufacturing the same
US8035794B2 (en) 2008-09-09 2011-10-11 United Radiant Technology Corporation Double-layer liquid crystal lens
KR101122211B1 (en) * 2008-09-09 2012-03-19 유나이티드 라디안트 테크놀로지 코퍼레이션. Double-layer liquid crystal lens and method for manufacturing the same
JP2010066768A (en) * 2008-09-09 2010-03-25 United Radiant Technology Corp Double-layer liquid crystal lens and method for manufacturing same
EP2161616A2 (en) 2008-09-09 2010-03-10 United Radiant Technology Corporation Double-layer liquid crystal lens and method for manufacturing the same
CN101685224B (en) * 2008-09-25 2012-01-04 光联科技股份有限公司 Double-layer structure liquid crystal lens and manufacturing method thereof
JP2010107686A (en) * 2008-10-30 2010-05-13 Akita Prefecture Method for manufacturing liquid crystal lens, and liquid crystal lens
CN102804048B (en) * 2010-02-24 2015-07-29 智能电子科技有限公司 Sandwich construction liquid crystal optical device and manufacture method thereof
CN102804048A (en) * 2010-02-24 2012-11-28 碧理科技有限公司 Liquid crystal optical element having multilayer structure, and method for manufacturing the liquid crystal optical element
JP2011175105A (en) * 2010-02-24 2011-09-08 Binit:Kk Liquid crystal optical element having multilayer structure, and method for manufacturing the same
WO2011105437A1 (en) * 2010-02-24 2011-09-01 株式会社びにっと Liquid crystal optical element having multilayer structure, and method for manufacturing the liquid crystal optical element
TWI417576B (en) * 2010-05-19 2013-12-01 Chunghwa Picture Tubes Ltd Liquid crystal lens
CN104081260A (en) * 2012-01-30 2014-10-01 日本电气硝子株式会社 Liquid-crystal lens and liquid-crystal lens-cell
US9405167B2 (en) * 2012-01-30 2016-08-02 Nippon Electric Glass Co., Ltd. Liquid-crystal lens and liquid-crystal lens-cell
TWI550330B (en) * 2012-01-30 2016-09-21 Nippon Electric Glass Co Liquid crystal lens and liquid crystal lens unit
CN104081260B (en) * 2012-01-30 2016-11-09 日本电气硝子株式会社 Liquid crystal lens and liquid crystal lens structure cell
US20140368776A1 (en) * 2012-01-30 2014-12-18 Nippon Electric Glass Co., Ltd. Liquid-crystal lens and liquid-crystal lens-cell
US20150301427A1 (en) * 2012-11-11 2015-10-22 Lensvector Inc. Capacitively coupled electric field control device
US9612504B2 (en) * 2012-11-11 2017-04-04 Lensvector Inc. Capacitively coupled electric field control device
JP2016090759A (en) * 2014-11-04 2016-05-23 日本電気硝子株式会社 Liquid crystal lens
CN104714351A (en) * 2014-12-26 2015-06-17 上海天马微电子有限公司 Liquid crystal lens and manufacturing method thereof
CN104570520A (en) * 2014-12-31 2015-04-29 上海天马微电子有限公司 Liquid crystal lens
CN105159007A (en) * 2015-09-21 2015-12-16 信利半导体有限公司 Manufacturing method for double-layer structural liquid crystal lens
CN110602370A (en) * 2019-10-08 2019-12-20 Oppo广东移动通信有限公司 Camera module and terminal equipment

Similar Documents

Publication Publication Date Title
JP2006313243A (en) Liquid crystal lens
CN101046573B (en) Liquid crystal panel, liquid crystal display device and terminal equipment
US9488842B2 (en) Liquid crystal optical device and stereoscopic image display device
JP4591150B2 (en) Liquid crystal display
CN103984180B (en) Image display and its liquid crystal lens
JP2005338256A (en) Liquid crystal display
US10747083B2 (en) Liquid crystal lens, lens assembly, optical apparatus and display device
JP2010204447A (en) Liquid crystal optical element
TWI755721B (en) Electrically controllable viewing angle switch device and display apparatus
JP2010107686A (en) Method for manufacturing liquid crystal lens, and liquid crystal lens
WO2017215389A1 (en) Liquid crystal lens and display device
TWI529470B (en) Beam steering device
JP6196385B2 (en) Liquid crystal display
JP5980097B2 (en) Image display device and liquid crystal lens
JP5629717B2 (en) Liquid crystal lens device and image display device
JP2009139623A (en) Liquid crystal lens
JP5727131B2 (en) Liquid crystal display element
JP4077384B2 (en) Liquid crystal element drive device
JP5921251B2 (en) LCD lens
US20130222715A1 (en) Liquid crystal optical apparatus and stereoscopic image display device
JP2010054895A (en) Liquid crystal device
JP2009169069A (en) Liquid crystal lens
JP5876734B2 (en) LCD lens
JP6304936B2 (en) Liquid crystal display
JP2012098657A (en) Retardation plate