[go: up one dir, main page]

JP2006310726A - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP2006310726A
JP2006310726A JP2005252184A JP2005252184A JP2006310726A JP 2006310726 A JP2006310726 A JP 2006310726A JP 2005252184 A JP2005252184 A JP 2005252184A JP 2005252184 A JP2005252184 A JP 2005252184A JP 2006310726 A JP2006310726 A JP 2006310726A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor substrate
semiconductor device
pad
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005252184A
Other languages
Japanese (ja)
Other versions
JP5048230B2 (en
Inventor
Hirotoshi Kubo
博稔 久保
Yukari Shirohata
由香利 白旗
Naruhito Matsumoto
成仁 松本
Masamichi Yamamuro
正倫 山室
Kojiro Kameyama
工次郎 亀山
Mitsuo Umemoto
光雄 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Sanyo Semiconductors Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Kanto Sanyo Semiconductors Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Sanyo Semiconductors Co Ltd, Sanyo Electric Co Ltd filed Critical Kanto Sanyo Semiconductors Co Ltd
Priority to JP2005252184A priority Critical patent/JP5048230B2/en
Priority to TW95104321A priority patent/TWI316276B/en
Priority to US11/392,802 priority patent/US7397128B2/en
Publication of JP2006310726A publication Critical patent/JP2006310726A/en
Priority to US12/134,861 priority patent/US8076755B2/en
Application granted granted Critical
Publication of JP5048230B2 publication Critical patent/JP5048230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D10/00Bipolar junction transistors [BJT]
    • H10D10/40Vertical BJTs
    • H10D10/421Vertical BJTs having both emitter-base and base-collector junctions ending at the same surface of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body (electrodes)
    • H01L23/4824Pads with extended contours, e.g. grid structure, branch structure, finger structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/4951Chip-on-leads or leads-on-chip techniques, i.e. inner lead fingers being used as die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for individual devices of subclass H10D
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D10/00Bipolar junction transistors [BJT]
    • H10D10/01Manufacture or treatment
    • H10D10/051Manufacture or treatment of vertical BJTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/177Base regions of bipolar transistors, e.g. BJTs or IGBTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/23Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
    • H10D64/231Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05684Tungsten [W] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04955th Group
    • H01L2924/04953TaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12033Gunn diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12036PN diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Bipolar Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve characteristics of a semiconductor device in a high frequency region. <P>SOLUTION: A semiconductor device 20A is formed with an emitter pad electrode 23E, a collector pad electrode 23C, and a base pad electrode 23B connected with an active region 21, on the surface of a semiconductor substrate 25. Further, a back electrode 26 is formed on the backside of the semiconductor substrate 25. Further, the emitter pad electrode 23E connected with a ground potential is connected with the back electrode 26 through a through-electrode 24A that passes through the semiconductor substrate 25 in a thickness direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は半導体装置およびその製造方法に関し、特に、半導体基板を貫通する貫通電極を有する半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having a through electrode penetrating a semiconductor substrate and a manufacturing method thereof.

図13の斜視図を参照して、従来の半導体装置105が内蔵された回路装置100を説明する(例えば、下記特許文献1を参照)。   A circuit device 100 incorporating a conventional semiconductor device 105 will be described with reference to the perspective view of FIG. 13 (see, for example, Patent Document 1 below).

回路装置100は、中央部に配置されたランド112の表面に半導体装置105が実装された構造に成っている。ランド112の両端からは、リード101Bおよびリード101Dが外部に導出されている。更に、ランド112の両側にはリード101Aおよび101Cが位置している。また、回路装置100全体は封止樹脂104により被覆されている。   The circuit device 100 has a structure in which a semiconductor device 105 is mounted on the surface of a land 112 arranged at the center. Leads 101B and 101D are led out from both ends of the land 112 to the outside. Furthermore, the leads 101A and 101C are located on both sides of the land 112. The entire circuit device 100 is covered with a sealing resin 104.

半導体装置105は、ここではバイポーラトランジスタであり、その表面にはエミッタ電極、コレクタ電極およびベース電極が形成されている。半導体装置105の表面に形成されたコレクタ電極およびベース電極は、金属細線103を介して、リード101Cおよびリード101Aに接続されている。また、半導体装置105のエミッタ電極は、金属細線103を介して、ランド112に接続されている。ここでは、半導体装置105の表面に形成された2つのエミッタ電極が、金属細線103を介してランド112に接続される。また、電圧利得と電流利得を得るために、エミッタ電極は接地電位と接続される。
特開2004−102345号公報
Here, the semiconductor device 105 is a bipolar transistor, and an emitter electrode, a collector electrode, and a base electrode are formed on the surface thereof. The collector electrode and the base electrode formed on the surface of the semiconductor device 105 are connected to the lead 101C and the lead 101A via the metal thin wire 103. Further, the emitter electrode of the semiconductor device 105 is connected to the land 112 through the fine metal wire 103. Here, the two emitter electrodes formed on the surface of the semiconductor device 105 are connected to the land 112 through the fine metal wire 103. In addition, the emitter electrode is connected to the ground potential in order to obtain voltage gain and current gain.
JP 2004-102345 A

しかしながら、上記した半導体装置105が内蔵された回路装置100では、半導体装置105に比べてランド112が大きくなり、このことが回路装置100の小型化を阻害してしまう問題があった。具体的には、半導体装置105のエミッタ電極とランド112とを接続するために、ランド112の周辺部には金属細線103をワイヤボンディングするための領域を確保しなければ成らない。従って、半導体装置105の平面的な大きさが0.3mm×0.3mmの場合、ランド112の平面的な大きさは1.5mm×1.5mm程度以上が必要とされる。即ち、載置される半導体装置105の25倍程度の面積のランド112が必要とされ、このことが回路装置100全体の小型化を阻害していた。   However, in the circuit device 100 in which the semiconductor device 105 described above is built, the land 112 becomes larger than that of the semiconductor device 105, which has a problem of hindering the miniaturization of the circuit device 100. Specifically, in order to connect the emitter electrode of the semiconductor device 105 and the land 112, an area for wire bonding the metal thin wire 103 must be secured in the periphery of the land 112. Therefore, when the planar size of the semiconductor device 105 is 0.3 mm × 0.3 mm, the planar size of the land 112 is required to be about 1.5 mm × 1.5 mm or more. That is, the land 112 having an area about 25 times the size of the semiconductor device 105 to be mounted is required, and this hinders the miniaturization of the circuit device 100 as a whole.

更に、金属細線103に寄生のインダクタンス成分が発生してしまい、半導体装置105の高周波特性が劣化してしまう問題があった。金属細線103により発生する寄生インダクタンスの大きさは、金属細線103の長さに比例して、更に金属細線103の太さに反比例する。従って、例えば径が25μmで長さが1mmの細長い金属細線103を採用すると、大きな寄生インダクタンスが発生して、半導体装置105の高周波特性が劣化する。特に、1GHz以上の高周波で動作する半導体装置105の場合、寄生インダクタンスにより高周波特性が大きく劣化してしまう。   Furthermore, a parasitic inductance component is generated in the thin metal wire 103, and there is a problem that the high frequency characteristics of the semiconductor device 105 are deteriorated. The magnitude of the parasitic inductance generated by the fine metal wire 103 is proportional to the length of the fine metal wire 103 and further inversely proportional to the thickness of the fine metal wire 103. Therefore, for example, when the thin metal wire 103 having a diameter of 25 μm and a length of 1 mm is employed, a large parasitic inductance is generated, and the high frequency characteristics of the semiconductor device 105 are deteriorated. In particular, in the case of the semiconductor device 105 operating at a high frequency of 1 GHz or more, the high frequency characteristics are greatly deteriorated due to the parasitic inductance.

本発明は、上記問題点を鑑みてなされ、本発明の主な目的は、装置全体の小型化に寄与し、且つ、寄生インダクタンスを低減させた半導体装置およびその製造方法を提供することにある。   The present invention has been made in view of the above problems, and a main object of the present invention is to provide a semiconductor device that contributes to downsizing of the entire device and has reduced parasitic inductance, and a method for manufacturing the same.

本発明の半導体装置は、導体基板の表面に形成されて活性領域と電気的に接続された複数のパッド電極と、前記半導体基板の裏面に設けられた裏面電極と、前記半導体基板を厚み方向に貫通して、前記パッド電極と前記裏面電極とを接続する貫通電極とを具備し、接地電位と接続される少なくとも1つの前記パッド電極が、前記貫通電極を介して前記裏面電極と接続されることを特徴とする。   A semiconductor device of the present invention includes a plurality of pad electrodes formed on the surface of a conductive substrate and electrically connected to an active region, a back electrode provided on the back surface of the semiconductor substrate, and the semiconductor substrate in the thickness direction. A through electrode that penetrates and connects the pad electrode and the back electrode is connected, and at least one of the pad electrodes connected to a ground potential is connected to the back electrode through the through electrode. It is characterized by.

更に本発明の半導体装置は、複数個の前記パッド電極が前記貫通電極を介して前記裏面電極に接続されることを特徴とする。   Furthermore, the semiconductor device of the present invention is characterized in that a plurality of the pad electrodes are connected to the back electrode through the through electrodes.

更に本発明の半導体装置は、前記活性領域にはバイポーラトランジスタが形成され、前記バイポーラトランジスタのエミッタ領域と接続された前記パッド電極が、前記貫通電極を介して前記裏面電極と接続されることを特徴とする。   Further, in the semiconductor device of the present invention, a bipolar transistor is formed in the active region, and the pad electrode connected to the emitter region of the bipolar transistor is connected to the back electrode through the through electrode. And

更に本発明の半導体装置は、前記活性領域にはMOSFETが形成され、前記MOSFETのソース領域と接続された前記パッド電極が、前記貫通電極を介して前記裏面電極と接続されることを特徴とする。   Furthermore, in the semiconductor device of the present invention, a MOSFET is formed in the active region, and the pad electrode connected to the source region of the MOSFET is connected to the back electrode through the through electrode. .

更に本発明の半導体装置は、前記半導体基板の前記裏面電極は、ランド状の導電部材に固着され、接地電位と接続される前記パッド電極は、前記貫通電極および前記裏面電極を介して前記導電部材に接続されることを特徴とする。   Furthermore, in the semiconductor device of the present invention, the back electrode of the semiconductor substrate is fixed to a land-like conductive member, and the pad electrode connected to a ground potential is connected to the conductive member via the through electrode and the back electrode. It is connected to.

更に本発明の半導体装置は、接地電位と接続されない他のパッド電極は、金属細線を介して他の導電部材に電気的に接続されることを特徴とする。   Furthermore, the semiconductor device of the present invention is characterized in that the other pad electrode that is not connected to the ground potential is electrically connected to another conductive member through a thin metal wire.

更に本発明の半導体装置は、前記裏面電極が前記半導体基板の裏面に直に接触し、前記貫通電極と前記半導体基板とを同電位にすることを特徴とする。   Furthermore, the semiconductor device of the present invention is characterized in that the back electrode is in direct contact with the back surface of the semiconductor substrate, and the through electrode and the semiconductor substrate have the same potential.

更に本発明の半導体装置は、複数の裏面電極が前記半導体基板の裏面に形成され、各々の前記裏面電極は、前記貫通電極を介して前記パッドと電気的に接続されることを特徴とする。   Furthermore, the semiconductor device of the present invention is characterized in that a plurality of back surface electrodes are formed on the back surface of the semiconductor substrate, and each of the back surface electrodes is electrically connected to the pad through the through electrode.

更に本発明の半導体装置は、前記裏面電極は、前記半導体基板の裏面を被覆する絶縁膜を介して、前記半導体基板と絶縁されることを特徴とする。   Furthermore, the semiconductor device of the present invention is characterized in that the back electrode is insulated from the semiconductor substrate via an insulating film covering the back surface of the semiconductor substrate.

更に本発明の半導体装置は、前記活性領域と接続された前記パッド電極の全てが、前記貫通電極を介して前記裏面電極に接続されることを特徴とする。   Furthermore, the semiconductor device of the present invention is characterized in that all of the pad electrodes connected to the active region are connected to the back electrode through the through electrode.

更に本発明の半導体装置は、前記活性領域は、分離領域により囲まれる領域の内部に形成され、前記貫通電極は、前記分離領域の外側の前記半導体基板を貫通する貫通孔の内部に形成され、前記貫通電極は前記貫通孔の内壁に接触することを特徴とする。   Furthermore, in the semiconductor device of the present invention, the active region is formed inside a region surrounded by the isolation region, and the through electrode is formed inside a through hole penetrating the semiconductor substrate outside the isolation region, The through electrode is in contact with an inner wall of the through hole.

更に本発明の半導体装置は、能動素子が形成された半導体層を有する半導体基板と、前記能動素子の一拡散領域と電気的に接続された第1の電極と、前記第1の電極と一体で半導体基板の周囲に延在されて設けられたパッド電極と、前記パッド電極の下層に設けられ、半導体層表面から半導体基板の裏面にまで延在する貫通電極と、前記貫通電極と電気的に接続され、半導体基板の裏面に設けられた裏面電極とを有することを特徴とする。   Furthermore, the semiconductor device of the present invention includes a semiconductor substrate having a semiconductor layer on which an active element is formed, a first electrode electrically connected to one diffusion region of the active element, and the first electrode. A pad electrode extending around the semiconductor substrate, a through electrode provided in a lower layer of the pad electrode and extending from the semiconductor layer surface to the back surface of the semiconductor substrate, and electrically connected to the through electrode And a back surface electrode provided on the back surface of the semiconductor substrate.

更に本発明の半導体装置は、前記能動素子は、BIP型またはMOS型のトランジスタであり、接地される拡散領域と電気的に接続される前記第1の電極は、少なくとも2つの貫通電極と電気的に接続されることを特徴とする。   Furthermore, in the semiconductor device of the present invention, the active element is a BIP-type or MOS-type transistor, and the first electrode electrically connected to the grounded diffusion region is electrically connected to at least two through electrodes. It is connected to.

本発明の半導体装置の製造方法は、半導体基板の表面に活性領域を形成する工程と、前記活性領域と電気的に接続されたパッドを前記半導体基板の表面に形成する工程と、前記パッドの下方に位置する前記半導体基板を貫通する貫通孔を形成する工程と、前記貫通孔の内部に形成された貫通電極を介して前記パッドと電気的に接続された裏面電極を前記半導体基板の裏面に形成する工程とを具備し、前記貫通孔を、前記活性領域を包囲するように形成された分離領域の外部に形成し、前記貫通電極を前記貫通孔の内壁に直に当接するように形成することを特徴とする。   The method of manufacturing a semiconductor device according to the present invention includes a step of forming an active region on a surface of a semiconductor substrate, a step of forming a pad electrically connected to the active region on the surface of the semiconductor substrate, and a lower portion of the pad Forming a through-hole penetrating the semiconductor substrate located at a position, and forming a back electrode electrically connected to the pad on the back surface of the semiconductor substrate through a through-electrode formed inside the through-hole Forming the through hole outside the isolation region formed so as to surround the active region, and forming the through electrode in direct contact with the inner wall of the through hole. It is characterized by.

更に、本発明の半導体装置の製造方法は、前記分離領域は、トレンチ構造、LOCOS酸化膜、またはPN接合分離の構造を有することを特徴とする。   Furthermore, the method for manufacturing a semiconductor device according to the present invention is characterized in that the isolation region has a trench structure, a LOCOS oxide film, or a PN junction isolation structure.

本発明の半導体装置によれば、半導体基板を貫通する貫通電極を介して、半導体基板の表面に形成されたパッド電極と、半導体基板の裏面に形成された裏面電極とを接続することができる。従って、金属細線を用いることなく、貫通電極および裏面電極を介して、パッド電極を外部と接続することが可能となる。このことから、半導体装置が実装されるランドを、半導体装置と同程度に小型化することが可能となり、半導体装置が内蔵される装置全体も小型化される。   According to the semiconductor device of the present invention, the pad electrode formed on the surface of the semiconductor substrate and the back electrode formed on the back surface of the semiconductor substrate can be connected via the through electrode penetrating the semiconductor substrate. Accordingly, it is possible to connect the pad electrode to the outside through the through electrode and the back electrode without using a fine metal wire. Thus, the land on which the semiconductor device is mounted can be reduced in size to the same extent as the semiconductor device, and the entire device in which the semiconductor device is incorporated is also reduced in size.

更に本発明の半導体装置によれば、金属細線よりも経路が短く且つ太い貫通電極を用いて、パッド電極と外部を接続することが可能となる。このことから、例えば1GHz以上の高周波で動作する半導体装置の場合でも、寄生インダクタンスを低減させることができるので、高周波特性を向上させることができる。   Furthermore, according to the semiconductor device of the present invention, it is possible to connect the pad electrode and the outside by using a through electrode having a path shorter and thicker than the fine metal wire. For this reason, for example, even in the case of a semiconductor device that operates at a high frequency of 1 GHz or more, the parasitic inductance can be reduced, so that the high-frequency characteristics can be improved.

更に、本発明の半導体装置の製造方法によれば、分離領域により活性領域を素子分離することにより、半導体基板を貫通する貫通孔の内部に直に貫通電極を形成することができる。即ち、熱酸化法等の手法を用いて貫通孔の内部を絶縁処理する必要がない。従って、高温に半導体基板を加熱する熱酸化法等の加熱工程を省くことができるので、歩溜まりを向上させることができる。   Furthermore, according to the method of manufacturing a semiconductor device of the present invention, the through electrode can be formed directly inside the through hole penetrating the semiconductor substrate by separating the active region from the isolation region. That is, it is not necessary to insulate the inside of the through hole using a technique such as a thermal oxidation method. Accordingly, a heating step such as a thermal oxidation method for heating the semiconductor substrate to a high temperature can be omitted, so that the yield can be improved.

<第1の実施の形態>
本形態では、図1から図5を参照して、半導体基板を貫通する貫通電極を具備する半導体装置の構造を説明する。
<First Embodiment>
In this embodiment, a structure of a semiconductor device including a through electrode penetrating a semiconductor substrate will be described with reference to FIGS.

図1を参照して、本発明の半導体装置20Aが内蔵された回路装置10Aの構成を説明する。図1(A)は回路装置10Aの斜視図であり、図1(B)は半導体装置20Aの断面図である。   With reference to FIG. 1, a configuration of a circuit device 10A in which a semiconductor device 20A of the present invention is incorporated will be described. 1A is a perspective view of the circuit device 10A, and FIG. 1B is a cross-sectional view of the semiconductor device 20A.

図1(A)を参照して、ここでは、リードフレーム型の回路装置10Aに半導体装置20Aが内蔵されている。具体的には、中央部に配置されたランド12の上面に、半導体装置20Aが固着されている。更に、ランド12の端部からは、2つのリード11Dおよびリード11Bが外側に延在している。また、ランド12に接近してリード11Aおよびリード11Cが設けられている。ランド12およびリード11A等は、導電部材の一例である。導電部材としては、図2(A)や図2(B)に示すような導電パターンでも良い。   Referring to FIG. 1A, here, a semiconductor device 20A is built in a lead frame type circuit device 10A. Specifically, the semiconductor device 20 </ b> A is fixed to the upper surface of the land 12 disposed at the center. Further, from the end of the land 12, two leads 11D and 11B extend outward. Further, a lead 11 </ b> A and a lead 11 </ b> C are provided close to the land 12. The land 12 and the lead 11A are examples of conductive members. As the conductive member, a conductive pattern as shown in FIG. 2 (A) or FIG. 2 (B) may be used.

ランド12の上部には、半田等の導電性接着材を介して半導体装置20Aが固着されている。半導体装置20Aの上部には4つのパッド電極23が形成され、ここでは2つのパッド電極23が貫通電極24Aを介してランド12と電気的に接続されている。また、他の2つのパッド電極23は、各々が金属細線13を介して、リード11A、11Cに接続されている。   The semiconductor device 20A is fixed to the top of the land 12 via a conductive adhesive such as solder. Four pad electrodes 23 are formed on the upper portion of the semiconductor device 20A. Here, the two pad electrodes 23 are electrically connected to the land 12 through the through electrodes 24A. The other two pad electrodes 23 are connected to the leads 11A and 11C through the fine metal wires 13, respectively.

半導体装置20Aに設けられる貫通電極24Aは、半導体基板25を貫通する貫通孔に形成された膜状の金属で構成しても良い。更には、半田、W、CuまたはAl等の金属を貫通孔に充填することにより貫通電極24Aを形成することもできる。   The through electrode 24 </ b> A provided in the semiconductor device 20 </ b> A may be made of a film-like metal formed in a through hole that penetrates the semiconductor substrate 25. Furthermore, the through electrode 24A can be formed by filling the through hole with a metal such as solder, W, Cu, or Al.

リード11Aおよびリード11Cは、金属細線13を介して、半導体装置20Aのパッド電極23と接続される。ここでは、コレクタ電極およびベース電極と接続されたパッド電極23が、金属細線13を介して、リード11Aおよびリード11Cと接続される。   The lead 11A and the lead 11C are connected to the pad electrode 23 of the semiconductor device 20A through the fine metal wire 13. Here, the pad electrode 23 connected to the collector electrode and the base electrode is connected to the lead 11A and the lead 11C via the thin metal wire 13.

封止樹脂14は、リード11A、11B、11Cおよび11Dの一部分が外部に露出された状態で全体を封止している。   The sealing resin 14 seals the whole with the leads 11A, 11B, 11C, and 11D partially exposed to the outside.

図1(B)を参照して、次に、ランド12に固着される半導体装置20Aを説明する。この半導体装置20Aは、半導体基板25の表面に活性領域21が形成されている。ここで活性領域21は、一般にトランジスタまたはダイオード等の能動素子が形成される領域である。活性領域21にバイポーラトランジスタが形成された場合は、コレクタ領域、ベース領域、エミッタ領域が形成される。また、活性領域21にMOSFETが形成された場合は、ゲート領域、ソース領域、ドレイン領域が形成される。更に、活性領域21には、ICやLSIが形成されても良い。そして、この活性領域21に形成された拡散領域と電気的に接続されたパッド電極23が、前記活性領域21の周囲へ延在された再配線22を介して、半導体基板25の表面に形成されている。また、半導体基板25の裏面には、少なくとも一部に裏面電極26が形成される。ここでは、裏面がエミッタ電極として活用されるため、全面に裏面電極26が形成されている。更に、パッド電極23の裏面に到達するように、半導体基板25を厚み方向に貫通する貫通電極24Aが形成されている。   Next, the semiconductor device 20A fixed to the land 12 will be described with reference to FIG. In this semiconductor device 20 </ b> A, an active region 21 is formed on the surface of a semiconductor substrate 25. Here, the active region 21 is a region where an active element such as a transistor or a diode is generally formed. When a bipolar transistor is formed in the active region 21, a collector region, a base region, and an emitter region are formed. Further, when a MOSFET is formed in the active region 21, a gate region, a source region, and a drain region are formed. Further, an IC or LSI may be formed in the active region 21. A pad electrode 23 electrically connected to the diffusion region formed in the active region 21 is formed on the surface of the semiconductor substrate 25 via the rewiring 22 extending to the periphery of the active region 21. ing. Further, a back electrode 26 is formed on at least a part of the back surface of the semiconductor substrate 25. Here, since the back surface is used as the emitter electrode, the back surface electrode 26 is formed on the entire surface. Further, a penetrating electrode 24 </ b> A that penetrates the semiconductor substrate 25 in the thickness direction is formed so as to reach the back surface of the pad electrode 23.

ここで、半導体基板25の裏面が絶縁処理されても良い。更に、貫通電極24Aと半導体基板25とは、例えば熱酸化やCVDによるSi酸化膜により絶縁されても良い。   Here, the back surface of the semiconductor substrate 25 may be insulated. Further, the through electrode 24A and the semiconductor substrate 25 may be insulated by, for example, a Si oxide film by thermal oxidation or CVD.

また、半導体装置20Aの裏面電極26は、固着材15を介してランド12の表面に固着されている。固着材15としては、半田や導電性ペースト等を採用することができる。ここでは、ランド12が固定電位(GNDまたはVcc)であるため、パッド電極23は、固定電位に接続されている。このことにより、所望の電極を安定した電位に固定することができるので、活性領域21に形成されたトランジスタの動作を安定化させることができる。   Further, the back electrode 26 of the semiconductor device 20 </ b> A is fixed to the surface of the land 12 through the fixing material 15. As the fixing material 15, solder, conductive paste, or the like can be used. Here, since the land 12 is at a fixed potential (GND or Vcc), the pad electrode 23 is connected to the fixed potential. Thus, a desired electrode can be fixed at a stable potential, and the operation of the transistor formed in the active region 21 can be stabilized.

例えば従来、エミッタ、コレクタ、ベース電極は、金属細線を介してリードと接続されている。しかし、金属細線のインピーダンスが無視できない大きさとなっている。本発明では、金属細線の代わりに貫通電極24Aを採用し、経路の短い部分、つまり半導体基板25を貫通して形成しているので、そのパスも短く、インピーダンスを低下させることができる。しかも大電流を流す場合でも、貫通電極24Aの径を大きく取れば良く、エミッタ電極に接続される経路のインピーダンスを小さくすることができる。よって、金属細線でエミッタ電極を接続するパッケージよりも大幅に特性を改善することが可能である。   For example, conventionally, an emitter, a collector, and a base electrode are connected to a lead through a fine metal wire. However, the impedance of the thin metal wire is not negligible. In the present invention, the through electrode 24A is employed instead of the fine metal wire, and the short path portion, that is, the semiconductor substrate 25 is formed so that the path is short and the impedance can be lowered. Moreover, even when a large current is passed, it is sufficient to increase the diameter of the through electrode 24A, and the impedance of the path connected to the emitter electrode can be reduced. Therefore, the characteristics can be significantly improved as compared with a package in which the emitter electrode is connected by a thin metal wire.

図2を参照して、次に、他の形態の回路装置10Bおよび10Cの構成を説明する。図2(A)は回路基板19を具備する回路装置10Bの断面図であり、図2(B)は封止樹脂14に埋め込まれた導電パターン18A、18Bを具備する回路装置10Cの断面図である。   Next, configurations of circuit devices 10B and 10C of other forms will be described with reference to FIG. 2A is a cross-sectional view of the circuit device 10B including the circuit board 19, and FIG. 2B is a cross-sectional view of the circuit device 10C including the conductive patterns 18A and 18B embedded in the sealing resin 14. is there.

図2(A)を参照して、回路装置10Bでは、回路基板19の表面に形成された導電パターン18A、18Bが半導体装置20Aに電気的に接続されている。回路基板19としては、フレキシブルシートやプリント基板等の樹脂から成る基板やセラミック基板を全般的に採用することができる。回路基板19の表面に形成された導電パターン18Aは、金属細線13を介して半導体装置20Aと接続されている。導電パターン18Bは、半田等の固着材15を介して半導体装置20Aの裏面電極26に接続されている。また、導電パターン18A、18Bは、回路基板19の裏面に形成された導電パターンと、回路基板19に形成されたスルーホールを介して接続されている。また、半導体装置20Aおよび金属細線13が被覆されるように、回路基板19の表面に封止樹脂14が形成される。   Referring to FIG. 2A, in circuit device 10B, conductive patterns 18A and 18B formed on the surface of circuit board 19 are electrically connected to semiconductor device 20A. As the circuit board 19, a board made of a resin such as a flexible sheet or a printed board or a ceramic board can be generally adopted. The conductive pattern 18 </ b> A formed on the surface of the circuit board 19 is connected to the semiconductor device 20 </ b> A through the thin metal wire 13. The conductive pattern 18B is connected to the back electrode 26 of the semiconductor device 20A through a fixing material 15 such as solder. The conductive patterns 18 </ b> A and 18 </ b> B are connected to a conductive pattern formed on the back surface of the circuit board 19 through a through hole formed in the circuit board 19. Further, a sealing resin 14 is formed on the surface of the circuit board 19 so as to cover the semiconductor device 20A and the fine metal wires 13.

貫通電極24Aを採用することにより、金属細線を用いて導電パターン18Bと半導体装置20Aとを接続する必要がないので、導電パターン18Bの大きさを半導体装置20Aと同等程度に小さくすることができる。従って、回路基板19全体のサイズを小さくする事ができる。   By employing the through electrode 24A, it is not necessary to connect the conductive pattern 18B and the semiconductor device 20A using a fine metal wire, and therefore the size of the conductive pattern 18B can be reduced to the same level as the semiconductor device 20A. Therefore, the overall size of the circuit board 19 can be reduced.

図2(B)を参照して、回路装置10Cでは、封止樹脂14に埋め込まれた導電パターン18A、18Bが、半導体装置20Aに電気的に接続されている。導電パターン18A、18Bは、裏面が露出された状態で封止樹脂14に埋め込まれている。また、封止樹脂14から露出する導電パターン18A、18Bの裏面は、ロウ材が形成される部分を除いて被覆樹脂45により被覆されている。更に、導電パターン18Aと導電パターン18Bとは、分離溝44により分離されている。この構造は、例えばフレキシブルシートにリードフレーム等のパターンが貼りあわされ、実装、モールドしたらフレキシブルシートを剥がすことにより実現できる。またCu箔を用意し、導電パターンを突状に残すようにハーフエッチングし、実装、モールドしたら、ハーフエッチングした溝に充填されている封止樹脂が露出するように、前記Cu箔の裏面をエッチバックすることで実現可能である。   Referring to FIG. 2B, in circuit device 10C, conductive patterns 18A and 18B embedded in sealing resin 14 are electrically connected to semiconductor device 20A. The conductive patterns 18A and 18B are embedded in the sealing resin 14 with the back surface exposed. Further, the back surfaces of the conductive patterns 18A and 18B exposed from the sealing resin 14 are covered with a coating resin 45 except for a portion where a brazing material is formed. Further, the conductive pattern 18A and the conductive pattern 18B are separated by a separation groove 44. This structure can be realized by, for example, pasting a pattern such as a lead frame on a flexible sheet, peeling off the flexible sheet after mounting and molding. Also, prepare Cu foil, half-etch to leave the conductive pattern in a protruding shape, and after mounting and molding, etch the back surface of the Cu foil so that the sealing resin filled in the half-etched groove is exposed It can be realized by backing up.

図3および図4を参照して、次に、半導体装置20Aを説明する。図3(A)は半導体装置20Aの斜視図であり、図3(B)は半導体装置20Aを上方から見た平面図である。図4(A)は半導体装置20Aの断面図であり、図4(B)は活性領域21の模式的なパターンを示す平面図である。図4(C)では、他の形態の半導体装置20Bの構成を示している。   Next, the semiconductor device 20A will be described with reference to FIGS. 3A is a perspective view of the semiconductor device 20A, and FIG. 3B is a plan view of the semiconductor device 20A viewed from above. 4A is a cross-sectional view of the semiconductor device 20A, and FIG. 4B is a plan view showing a schematic pattern of the active region 21. FIG. FIG. 4C illustrates a configuration of another form of the semiconductor device 20B.

図3(A)および図3(B)を参照して、半導体基板25表面の中央部には活性領域21が形成される。そして、半導体基板25表面の周辺部には、コレクタパッド電極23C、ベースパッド電極23Bおよびエミッタパッド電極23Eが形成されている。各々のパッド電極と活性領域21とは、再配線22により接続されている。   Referring to FIGS. 3A and 3B, an active region 21 is formed at the center of the surface of the semiconductor substrate 25. A collector pad electrode 23C, a base pad electrode 23B, and an emitter pad electrode 23E are formed on the periphery of the surface of the semiconductor substrate 25. Each pad electrode and the active region 21 are connected by a rewiring 22.

ここでは、半導体装置20Aがエミッタ接地回路で用いられるため、エミッタパッド電極23Eが、貫通電極24Aを介して裏面電極26と接続される。従って、半導体装置20Aがベース接地回路で用いられる場合は、ベースパッド電極23Bが貫通電極24Aを介して裏面電極26に接続される。また、半導体装置20Aがコレクタ接地回路で用いられる場合は、コレクタパッド電極23Cが、貫通電極24Aを介して裏面電極26に接続される。本形態では、貫通電極24Aを採用してインピーダンスを小さくしている。更に、2つの貫通電極24Aを採用しているため、貫通電極のインピーダンスは、並列接続に成り、半減する。つまり一電極を、n個(3以上)の貫通電極24Aを介して並列接続すれば、インピーダンスは、1/nになる。   Here, since the semiconductor device 20A is used in the grounded emitter circuit, the emitter pad electrode 23E is connected to the back electrode 26 through the through electrode 24A. Therefore, when the semiconductor device 20A is used in the base ground circuit, the base pad electrode 23B is connected to the back electrode 26 through the through electrode 24A. When the semiconductor device 20A is used in a collector ground circuit, the collector pad electrode 23C is connected to the back electrode 26 through the through electrode 24A. In this embodiment, the through electrode 24A is employed to reduce the impedance. Furthermore, since the two through electrodes 24A are employed, the impedance of the through electrodes is connected in parallel and halved. That is, if one electrode is connected in parallel via n (three or more) through electrodes 24A, the impedance becomes 1 / n.

更に、活性領域21には、バイポーラトランジスタ以外の例えばMOSFET(Metal-Oxide Semiconductor Field Effect Transistor )を形成することも可能である。この場合は、接地電位と接続されるパッド電極(ドレイン電極、ソース電極またはゲート電極の何れか)が、貫通電極24Aを介して裏面電極26と接続される。特に、利得が大きいソース接地回路で回路装置20を用いる場合は、ソース電極と接続されたパッドが貫通電極24Aを介して裏面電極26と接続される。ここでも貫通電極24Aを複数採用することでインピーダンスを並列接続でき、小さくする事ができる。   Further, in the active region 21, for example, a MOSFET (Metal-Oxide Semiconductor Field Effect Transistor) other than the bipolar transistor can be formed. In this case, a pad electrode (either a drain electrode, a source electrode or a gate electrode) connected to the ground potential is connected to the back electrode 26 via the through electrode 24A. In particular, when the circuit device 20 is used in a source grounded circuit having a large gain, the pad connected to the source electrode is connected to the back electrode 26 through the through electrode 24A. Again, by using a plurality of through electrodes 24A, the impedance can be connected in parallel and can be reduced.

図4(A)を参照して、活性領域21の詳細を説明する。P型半導体基板42の上部には、N型埋め込み層43が設けられ、その上にはN型エピタキシャル層31が形成されている。更に、N型エピタキシャル層31の表面には、P型の外部ベース領域34A、P型の活性ベース領域34B、N型のコレクタコンタクト領域37が形成されている。更に活性ベース領域34Bの上部には、N型のエミッタ領域35が形成されている。また、N型コレクタコンタクト領域37は、N型エピタキシャル層31の表面からN型埋め込み層43に到達するまで形成されている。 Details of the active region 21 will be described with reference to FIG. An N + type buried layer 43 is provided above the P type semiconductor substrate 42, and an N type epitaxial layer 31 is formed thereon. Further, a P + type external base region 34 A, a P type active base region 34 B, and an N + type collector contact region 37 are formed on the surface of the N type epitaxial layer 31. Further, an N-type emitter region 35 is formed above the active base region 34B. The N + -type collector contact region 37 is formed from the surface of the N -type epitaxial layer 31 until it reaches the N + -type buried layer 43.

トレンチ33は、N型エピタキシャル層31の表面からP型半導体基板42に到達するまで延在しており、その内部には酸化膜32が埋設されている。活性領域21を囲むようにトレンチ33から成る分離領域が形成され、活性領域21が素子分離されている。ここでは、トレンチ構造により活性領域21が分離されているが、LOCOS(Local Oxidation of Silicon)酸化膜や、PN接合分離により活性領域21が分離されても良い。またトレンチ33の表面に酸化膜を形成し、中にポリシリコンが埋め込まれたもので素子分離しても良い。 The trench 33 extends from the surface of the N -type epitaxial layer 31 until it reaches the P-type semiconductor substrate 42, and an oxide film 32 is embedded therein. An isolation region including a trench 33 is formed so as to surround the active region 21, and the active region 21 is isolated. Here, the active region 21 is isolated by the trench structure, but the active region 21 may be isolated by a LOCOS (Local Oxidation of Silicon) oxide film or PN junction isolation. Further, an oxide film may be formed on the surface of the trench 33, and the element may be isolated with polysilicon buried therein.

エミッタパッド電極23Eは、トレンチ33より外側の位置に形成されており、貫通電極24Aを介して、裏面電極26と接続されている。   The emitter pad electrode 23E is formed at a position outside the trench 33, and is connected to the back electrode 26 through the through electrode 24A.

貫通電極24Aは、P型半導体基板42、N型エピタキシャル層31および酸化膜32を貫通するように形成された貫通孔に埋め込まれた導電材料から成る。貫通電極24Aにより、エミッタパッド電極23Eと裏面電極26とが接続されている。貫通電極24Aは、裏面電極26と一体となるメッキ膜により形成することができる。このメッキ膜は、貫通孔の側壁およびP型半導体基板42の裏面に形成される。また、貫通電極24Aの側面には、シリコン酸化膜等から成る側壁絶縁膜41が形成されている。 The through electrode 24A is made of a conductive material embedded in a through hole formed so as to penetrate the P type semiconductor substrate 42, the N type epitaxial layer 31 and the oxide film 32. The emitter pad electrode 23E and the back electrode 26 are connected by the through electrode 24A. The through electrode 24 </ b> A can be formed of a plating film that is integrated with the back electrode 26. This plating film is formed on the side wall of the through hole and the back surface of the P-type semiconductor substrate 42. A sidewall insulating film 41 made of a silicon oxide film or the like is formed on the side surface of the through electrode 24A.

P型半導体基板42は、トレンチ33、埋め込み層43で活性領域21と分離しているので、P型半導体基板42と貫通電極24Aとの間は、側壁絶縁膜41が形成されなくても良い。例えば、エピタキシャル層31を貫通するP型の分離領域等が形成され、P型半導体基板42がGNDに固定され、エミッタ電極がGND以外の電位に固定される場合は、絶縁膜が必要である。つまりP型半導体基板42とエミッタ電極の電位が異なる場合は、側壁絶縁膜41が必要である。 Since the P-type semiconductor substrate 42 is separated from the active region 21 by the trench 33 and the buried layer 43, the sidewall insulating film 41 does not have to be formed between the P-type semiconductor substrate 42 and the through electrode 24A. For example, when a P + type isolation region or the like penetrating the epitaxial layer 31 is formed, the P type semiconductor substrate 42 is fixed to GND, and the emitter electrode is fixed to a potential other than GND, an insulating film is required. . That is, when the potentials of the P-type semiconductor substrate 42 and the emitter electrode are different, the sidewall insulating film 41 is necessary.

更には、半田、W、CuまたはAl等の合金または金属を貫通孔に充填することにより、貫通電極24Aを形成しても良い。特にW、Cuから成る貫通電極24Aを形成する場合は、貫通孔の表面をTi/TiNの積層膜、Ta/TaNの積層膜から成るバリア膜により保護することが好ましい。   Furthermore, the through electrode 24A may be formed by filling the through hole with solder, an alloy such as W, Cu or Al, or a metal. In particular, when the through electrode 24A made of W or Cu is formed, the surface of the through hole is preferably protected by a barrier film made of a Ti / TiN laminated film or a Ta / TaN laminated film.

裏面電極26は、P型半導体基板42の裏面に形成され、貫通電極24Aと接続されている。裏面電極26とP型半導体基板42とは、半導体基板42が活性領域21と電気的に分離されない場合は、絶縁膜を介して絶縁される。また、半導体基板42と活性領域21とが、トレンチ33およびP型半導体基板42とN型埋め込み層43とで電気的に分離される場合は、P型半導体基板42の裏面に直に裏面電極26を接触させても良い。 The back electrode 26 is formed on the back surface of the P-type semiconductor substrate 42 and connected to the through electrode 24A. The back electrode 26 and the P-type semiconductor substrate 42 are insulated via an insulating film when the semiconductor substrate 42 is not electrically separated from the active region 21. When the semiconductor substrate 42 and the active region 21 are electrically separated by the trench 33 and the P-type semiconductor substrate 42 and the N + -type buried layer 43, the back electrode is directly on the back surface of the P-type semiconductor substrate 42. 26 may be contacted.

裏面電極26とP型半導体基板42とを直に接触させることにより、P型半導体基板42と貫通電極24Aとの間に発生する寄生容量を低減させることができる。具体的には、P型半導体基板42と貫通電極24Aとの間に、絶縁体である側壁絶縁膜41が位置すると、電位差に起因した寄生容量が発生する。貫通電極24Aと電気的に接続された裏面電極26がP型半導体基板42に直に接触することにより、貫通電極24AとP型半導体基板42とを同電位にすることができ、上記した寄生容量を低減させることができる。   By bringing the back electrode 26 and the P-type semiconductor substrate 42 into direct contact, the parasitic capacitance generated between the P-type semiconductor substrate 42 and the through electrode 24A can be reduced. Specifically, when the sidewall insulating film 41, which is an insulator, is located between the P-type semiconductor substrate 42 and the through electrode 24A, a parasitic capacitance is generated due to a potential difference. When the back electrode 26 electrically connected to the through electrode 24A is in direct contact with the P-type semiconductor substrate 42, the through electrode 24A and the P-type semiconductor substrate 42 can have the same potential, and the parasitic capacitance described above can be obtained. Can be reduced.

図4(B)を参照して、活性領域21の構成を更に説明する。なお、図4(A)は、図4(B)のA−A’線に於ける断面である。トレンチ33に囲まれる領域内に活性領域21が形成されている。活性領域21の内部に於いて、エミッタ領域35が縦長に2つ形成され、このエミッタ領域35を囲むように活性ベース領域34Bが形成される。よってエミッタ電極27Eは、2本の櫛歯で形成され、このエミッタ電極27Eから一体で再配線22を介してチップの左上と右下のエミッタパッド電極23Eに接続されている。一方、ベース電極27Bは、外部ベース領域34Aとコンタクトして、エミッタ電極27Eと交互配置される様に2つの櫛歯で形成され、再配線22を介してチップ左下のベースパッド電極23Bと接続される。更には、コレクタ電極27Cは、埋め込み層43に到達するコレクタコンタクト領域37とコンタクトし、活性領域21の左側に形成されている。そして、コレクタ電極27Cは、再配線22を介してチップの右上に形成されたコレクタパッド電極23Cに接続されている。   With reference to FIG. 4B, the structure of the active region 21 will be further described. 4A is a cross-sectional view taken along line A-A ′ of FIG. An active region 21 is formed in a region surrounded by the trench 33. Within the active region 21, two emitter regions 35 are formed vertically long, and an active base region 34 </ b> B is formed so as to surround the emitter region 35. Therefore, the emitter electrode 27E is formed by two comb teeth, and is integrally connected to the upper left and lower right emitter pad electrodes 23E of the chip via the rewiring 22 from the emitter electrode 27E. On the other hand, the base electrode 27B is formed by two comb teeth so as to be in contact with the external base region 34A and alternately arranged with the emitter electrode 27E, and is connected to the base pad electrode 23B on the lower left of the chip via the rewiring 22. The Furthermore, the collector electrode 27 </ b> C is in contact with the collector contact region 37 reaching the buried layer 43 and is formed on the left side of the active region 21. The collector electrode 27C is connected to the collector pad electrode 23C formed on the upper right side of the chip via the rewiring 22.

本実施の形態では、エミッタパッド電極23E等のパッド電極を、分離領域であるトレンチ33よりも外側に設けている。その理由は以下の通りである。   In the present embodiment, pad electrodes such as the emitter pad electrode 23E are provided outside the trench 33 that is the isolation region. The reason is as follows.

第1に、エミッタ、ベース、コレクタ領域に貫通電極24Aを形成しようとしても、これらの領域の幅は1μmまたはそれ以下である。従って、貫通電極24Aを形成する際の位置合わせ等の問題が発生する。第2に、活性領域21の上またはその近傍にパッド電極を配置すると、素子に寄生容量等が発生する。よって分離領域の外側に十分に大きなパッド電極を形成し、その裏面に貫通電極24Aを形成することにより、製法的にも特性的にも良好なものが得られる。   First, even if the through electrode 24A is formed in the emitter, base, and collector regions, the width of these regions is 1 μm or less. Therefore, problems such as alignment when the through electrode 24A is formed occur. Second, when a pad electrode is disposed on or in the vicinity of the active region 21, parasitic capacitance or the like is generated in the element. Therefore, by forming a sufficiently large pad electrode on the outer side of the separation region and forming the through electrode 24A on the back surface thereof, a good manufacturing method and characteristics can be obtained.

図4(C)を参照して、他の形態の半導体装置20Bの構造を説明する。半導体装置20Bの基本的な構成は、上述した半導体装置20Aと同様であり、相違点は側壁絶縁膜41(図4(A)参照)を省略した点にある。   With reference to FIG. 4C, the structure of another form of semiconductor device 20B will be described. The basic configuration of the semiconductor device 20B is the same as that of the semiconductor device 20A described above, and the difference is that the sidewall insulating film 41 (see FIG. 4A) is omitted.

具体的には、貫通孔24Bの内壁は、上述したような側壁絶縁膜41により被覆されていない。従って、銅等の導電材料から成る貫通電極24Aは、半導体から成る貫通孔24Bの側壁に直に当接している。このことから、半導体装置20Bの構成を簡略化できる。また、側壁絶縁膜41を製造する工程を省くことができるので、半導体装置20Bの製造コストを低減させることができる。   Specifically, the inner wall of the through hole 24B is not covered with the side wall insulating film 41 as described above. Accordingly, the through electrode 24A made of a conductive material such as copper is in direct contact with the side wall of the through hole 24B made of a semiconductor. Thus, the configuration of the semiconductor device 20B can be simplified. In addition, since the step of manufacturing the sidewall insulating film 41 can be omitted, the manufacturing cost of the semiconductor device 20B can be reduced.

バイポーラトランジスタが形成された活性領域21は、トレンチ33により包囲されて他の領域と電気的に分離されている。また、貫通電極24Aは、トレンチ33により包囲される領域よりも外部に位置している。従って、活性領域21と貫通電極24Aとは、トレンチ33により電気的に分離されている。このことから、貫通電極24Aが半導体基板42に直に当接しても、活性領域21と貫通電極24Aとはショートしない。   The active region 21 in which the bipolar transistor is formed is surrounded by the trench 33 and is electrically isolated from other regions. Further, the through electrode 24 </ b> A is located outside the region surrounded by the trench 33. Therefore, the active region 21 and the through electrode 24A are electrically separated by the trench 33. For this reason, even if the through electrode 24A directly contacts the semiconductor substrate 42, the active region 21 and the through electrode 24A do not short-circuit.

図5を参照して、次に、本形態の効果を確認するために行ったシミュレーション結果を説明する。図5(A)は、バイポーラトランジスタである半導体装置20Aが内蔵された回路装置の等価回路である。図5(B)は半導体装置の周波数特性を示すグラフである。   Next, referring to FIG. 5, a simulation result performed to confirm the effect of the present embodiment will be described. FIG. 5A is an equivalent circuit of a circuit device including a semiconductor device 20A that is a bipolar transistor. FIG. 5B is a graph showing frequency characteristics of the semiconductor device.

図5(A)を参照して、エミッタ接地回路で用いられるバイポーラトランジスタの各電極と接続された経路には、寄生インダクタンスが発生している。ここでは、ベース電極と接続された経路の寄生インダクタンスをLbと表現し、コレクタ電極と接続された経路の寄生インダクタンスをLcと表現し、エミッタ電極と接続された経路の寄生インダクタンスをLeと表現する。また、トランジスタの各電極間には、所定の寄生容量が発生するものとする。   Referring to FIG. 5A, parasitic inductance is generated in a path connected to each electrode of the bipolar transistor used in the grounded emitter circuit. Here, the parasitic inductance of the path connected to the base electrode is expressed as Lb, the parasitic inductance of the path connected to the collector electrode is expressed as Lc, and the parasitic inductance of the path connected to the emitter electrode is expressed as Le. . In addition, a predetermined parasitic capacitance is generated between the electrodes of the transistor.

本形態では、エミッタパッド電極に接続していた金属細線に替えて、半導体基板を貫通する貫通電極24Aを用いることにより、上記Leを低減させている。ここで、金属細線を用いた従来例のLeを1.0nHに想定し、貫通電極24Aを用いる本形態のLeを、従来の半分の0.5nHと想定した。更に、他の寄生インダクタンスおよび寄生容量の値は、従来例と本形態では同様として、周波数の変化に対する順方向伝達利得の変化を測定した。   In this embodiment, the Le is reduced by using the through electrode 24A penetrating the semiconductor substrate instead of the fine metal wire connected to the emitter pad electrode. Here, Le in the conventional example using a thin metal wire is assumed to be 1.0 nH, and Le in the present embodiment using the through electrode 24A is assumed to be 0.5 nH, which is half of the conventional value. Further, the values of other parasitic inductances and parasitic capacitances are the same as those in the conventional example and the present embodiment, and the change in forward transfer gain with respect to the change in frequency is measured.

図5(B)を参照して、上記の条件にて行ったシミュレーション結果を説明する。このグラフの横軸は周波数を示し、縦軸は順方向伝達利得を示している。従来の条件にて行った結果は点線で示され、本願の条件にて行った結果は実線で示されている。   With reference to FIG. 5 (B), the simulation result performed on said conditions is demonstrated. The horizontal axis of this graph represents frequency, and the vertical axis represents forward transfer gain. The results obtained under the conventional conditions are indicated by dotted lines, and the results obtained under the conditions of the present application are indicated by solid lines.

このグラフから、貫通電極を用いた本形態の半導体装置は、特に高周波領域に於いて、金属細線を用いた従来例と比較して順方向伝達利得が大きく成ることが理解できる。具体的には、周波数が100MHzの比較的低周波の領域では、本形態の半導体装置による伝達利得は、従来のものとほぼ同様(約30dB)である。そして、周波数が上昇すると、本形態および従来共に伝達利得が低下する。これは、周波数の増大に応じて上記した寄生容量および寄生インダクタンスが大きくなるのが原因である。しかしながら、貫通電極を用いた本形態の半導体装置は、従来例と比較すると、周波数の増加に伴う伝達利得の低下が小さい。例えば、1GHz(1000MHz)の周波数帯では、本形態の伝達利得は2〜2.5dB程度従来例よりも優れている。従って、本形態の半導体装置は、特に高周波領域に於いて特性を高めることができる。   From this graph, it can be understood that the forward transfer gain of the semiconductor device of this embodiment using the through electrode is larger than that of the conventional example using the fine metal wire, particularly in the high frequency region. Specifically, in a relatively low frequency region with a frequency of 100 MHz, the transfer gain of the semiconductor device of this embodiment is almost the same as that of the conventional device (about 30 dB). When the frequency increases, the transmission gain decreases in both this embodiment and the conventional technique. This is because the parasitic capacitance and parasitic inductance described above increase as the frequency increases. However, in the semiconductor device of this embodiment using the through electrode, the decrease in transmission gain accompanying an increase in frequency is small as compared with the conventional example. For example, in the frequency band of 1 GHz (1000 MHz), the transfer gain of this embodiment is superior to the conventional example by about 2 to 2.5 dB. Therefore, the characteristics of the semiconductor device of this embodiment can be improved particularly in a high frequency region.

以下に本実施の形態による利点を説明する。   Hereinafter, advantages of the present embodiment will be described.

図3を参照して、本形態では、接地電位と接続されるエミッタパッド電極23Eを、貫通電極24Aを介して裏面電極26と接続することで、エミッタ電極と接続された経路の寄生インダクタンスを低減させることができる。   Referring to FIG. 3, in this embodiment, the emitter pad electrode 23E connected to the ground potential is connected to the back electrode 26 through the through electrode 24A, thereby reducing the parasitic inductance of the path connected to the emitter electrode. Can be made.

具体的には、エミッタパッド電極23Eは、貫通電極24Aを介して、裏面電極26の下方に位置するランド(不図示)に接続される。従って、エミッタ電極23Eと不図示のランドとは、半導体基板25を貫通する最短の経路にて接続される。更に、貫通電極24Aは、金属細線と比較して径が非常に太い。具体的には、金属細線の径が20μmであり長さが1mmであるのに対して、貫通電極24Aの径は70μmであり長さが150μmである。上述したように、寄生インダクタンスの大きさは、経路の長さに比例して、経路の太さに反比例する。このことから、金属細線を用いて接続していた従来例と比較すると、本形態では、経路が短く且つ太い貫通電極24Aを用いることで、エミッタ電極と接続された経路の寄生インダクタンスが大幅に低減される。従って、特に半導体装置20Aが、1GHz以上の高周波にてスイッチングを行った場合は、貫通電極24Aを用いることによる特性改善の効果が大きくなる。   Specifically, the emitter pad electrode 23E is connected to a land (not shown) located below the back electrode 26 through the through electrode 24A. Therefore, the emitter electrode 23E and the land (not shown) are connected by the shortest path that penetrates the semiconductor substrate 25. Further, the through electrode 24A has a very large diameter as compared with the thin metal wire. Specifically, the diameter of the fine metal wire is 20 μm and the length is 1 mm, whereas the diameter of the through electrode 24A is 70 μm and the length is 150 μm. As described above, the magnitude of the parasitic inductance is proportional to the length of the path and inversely proportional to the thickness of the path. Therefore, in comparison with the conventional example that is connected using a thin metal wire, in this embodiment, the use of the through electrode 24A having a short path and a large thickness greatly reduces the parasitic inductance of the path connected to the emitter electrode. Is done. Therefore, particularly when the semiconductor device 20A performs switching at a high frequency of 1 GHz or more, the effect of improving the characteristics by using the through electrode 24A is increased.

エミッタパッド電極23E以外のパッド電極(コレクタパッド電極23Cまたはベースパッド電極23B)を、貫通電極24Aを用いて裏面電極26と接続することも可能である。しかしながら、コレクタパッド電極23Cを貫通電極24Aを介して裏面電極26と接続すると、コレクタ電極と接続された配線の長さが長くなり、コレクタ・ベース間の寄生容量が大きくなり、高周波特性が劣化してしまう。同様のことは、貫通電極24Aを介してベースパッド電極23Bを裏面電極26に接続した場合に付いても言える。従って、上述したように、エミッタパッド電極23Eを貫通電極24Aを用いて接続し、他のベースパッド電極23Bおよびコレクタパッド電極23Cは、金属細線を用いて外部と接続するのが好適である。   It is also possible to connect a pad electrode (collector pad electrode 23C or base pad electrode 23B) other than the emitter pad electrode 23E to the back electrode 26 using the through electrode 24A. However, when the collector pad electrode 23C is connected to the back electrode 26 through the through electrode 24A, the length of the wiring connected to the collector electrode is increased, the parasitic capacitance between the collector and the base is increased, and the high frequency characteristics are deteriorated. End up. The same applies to the case where the base pad electrode 23B is connected to the back electrode 26 via the through electrode 24A. Therefore, as described above, the emitter pad electrode 23E is preferably connected using the through electrode 24A, and the other base pad electrode 23B and the collector pad electrode 23C are preferably connected to the outside using a thin metal wire.

更に、図1を参照して、本形態によれば、半導体装置20Aに対してランド12を小さくできるので、回路装置10A全体を小型化することができる。具体的には、半導体装置20Aの表面に形成されたパッド電極23とランド12とは、半導体基板25を貫通する貫通電極24Aを介して接続される。即ち、金属細線に依らずに、パッド電極23とランド12とは接続される。従って、ランド12の表面に金属細線をワイヤボンディングするための領域を設ける必要がない。このことから、ランド12の大きさを、半導体装置20Aと略同一にすることが可能である。実際には、半導体装置20Aを固着する際の位置ズレが考慮されて、ランド12は半導体装置20Aよりも若干大きく形成される。例えば、半導体装置20Aの1つの辺の長さL1は0.3mmであり、ランド12の1つの辺の長さL2は0.4mm程度である。従って、従来例と比較すると、ランド12の辺の長さを1/3程度にすることができる。   Furthermore, referring to FIG. 1, according to the present embodiment, since the land 12 can be made smaller than the semiconductor device 20A, the entire circuit device 10A can be reduced in size. Specifically, the pad electrode 23 and the land 12 formed on the surface of the semiconductor device 20 </ b> A are connected via a through electrode 24 </ b> A that penetrates the semiconductor substrate 25. That is, the pad electrode 23 and the land 12 are connected without depending on the fine metal wire. Therefore, it is not necessary to provide a region for wire bonding of the fine metal wire on the surface of the land 12. Thus, the size of the land 12 can be made substantially the same as that of the semiconductor device 20A. Actually, the land 12 is formed slightly larger than the semiconductor device 20A in consideration of the positional deviation when the semiconductor device 20A is fixed. For example, the length L1 of one side of the semiconductor device 20A is 0.3 mm, and the length L2 of one side of the land 12 is about 0.4 mm. Therefore, compared with the conventional example, the length of the side of the land 12 can be reduced to about 1/3.

<第2の実施の形態>
次に、図6から図8を参照して、図4(A)に構造を示した半導体装置20Aの製造方法を説明する。先ず、図6を参照して、バイポーラトランジスタから成る活性領域21を形成する方法を説明する。
<Second Embodiment>
Next, a method for manufacturing the semiconductor device 20A whose structure is shown in FIG. 4A will be described with reference to FIGS. First, a method for forming the active region 21 made of a bipolar transistor will be described with reference to FIG.

図6(A)を参照して、先ず、厚みが600μm程度のP型半導体基板42の表面に、イオン注入法によりN型埋め込み層43を設ける。更に、P型半導体基板42の上面にN型エピタキシャル層31を形成する。N型エピタキシャル層31の厚みは約1.5μmである。その後に、全面を酸化させることにより、N型エピタキシャル層31の上面に、約0.05μmの厚みの酸化膜32形成する。 6A, first, an N + type buried layer 43 is provided on the surface of a P-type semiconductor substrate 42 having a thickness of about 600 μm by an ion implantation method. Further, an N type epitaxial layer 31 is formed on the upper surface of the P type semiconductor substrate 42. The thickness of the N type epitaxial layer 31 is about 1.5 μm. Thereafter, the entire surface is oxidized to form an oxide film 32 having a thickness of about 0.05 μm on the upper surface of the N -type epitaxial layer 31.

図6(B)を参照して、次に、形成予定の活性領域を包囲するように、トレンチ33を形成して、そのトレンチ33の内部に酸化膜を充填させる。ここでは、リソグラフィにより選択的に、トレンチ33が形成される箇所の酸化膜32、およびN型エピタキシャル層31を除去する。酸化膜32の除去は、CF系のガスを用いて行われる。N型エピタキシャル層31の除去は、ハロゲン系のガスを用いたドライエッチングにより行われる。トレンチ33は、P型半導体基板42まで到達する必要がある。トレンチ33の具体的な深さは、例えば3.5μm程度である。トレンチ33が形成された後は、酸化処理を行うことにより、トレンチ33の内部を酸化膜32により埋め込む。ここで、トレンチ33に替えてLOCOS酸化膜またはPN接合による分離を行っても良い。 Referring to FIG. 6B, next, a trench 33 is formed so as to surround the active region to be formed, and the inside of the trench 33 is filled with an oxide film. Here, the oxide film 32 and the N type epitaxial layer 31 where the trench 33 is formed are selectively removed by lithography. The removal of the oxide film 32 is performed using a CF 4 gas. The removal of the N type epitaxial layer 31 is performed by dry etching using a halogen-based gas. The trench 33 needs to reach the P-type semiconductor substrate 42. The specific depth of the trench 33 is, for example, about 3.5 μm. After the trench 33 is formed, the inside of the trench 33 is filled with the oxide film 32 by performing an oxidation process. Here, instead of the trench 33, isolation by a LOCOS oxide film or a PN junction may be performed.

図6(C)を参照して、次に、コレクタコンタクト領域37、外部ベース領域34Aおよび活性ベース領域34Bをイオン注入により形成する。コレクタコンタクト領域37は、N型埋め込み層43に到達するまで形成され、リン(P)がイオン種として採用される。更に、イオン注入により、P型の外部ベース領域34AおよびP型の活性ベース領域34Bを形成する。外部ベース領域34Aおよび活性ベース領域34Bを形成するために注入されるイオン種としてはボロン(B)が採用される。 Referring to FIG. 6C, next, collector contact region 37, external base region 34A, and active base region 34B are formed by ion implantation. The collector contact region 37 is formed until reaching the N + type buried layer 43, and phosphorus (P) is adopted as an ion species. Furthermore, a P + -type external base region 34A and a P-type active base region 34B are formed by ion implantation. Boron (B) is employed as the ion species implanted to form the external base region 34A and the active base region 34B.

図6(D)を参照して、次に、酸化膜32を部分的に除去することで、径が0.5μm程度の開口部を設け、エミッタ電極27E、ベース電極27Bおよびコレクタ電極27Cを形成する。ここで、エミッタ領域35は、エミッタ電極27Eを構成するポリシリコン中のヒ素イオンが拡散することにより形成される。これらの電極は、Ti、PtおよびAuを真空蒸着により順次堆積し、所望の形状が得られるようにエッチングを行うことで形成される。エミッタ電極27Eは、トレンチ33の外部に、エミッタパッド電極23Eとして形成されている。また、コレクタ電極27Cも、トレンチ33の外側にコレクタパッド電極23Cとして形成されている。更に、図示しないが、ベース電極27Bも、トレンチ33の外側にベースパッド電極として形成されている。各電極が形成された後は、配線部分を保護するために、絶縁膜により各電極を被覆する。   Referring to FIG. 6D, next, oxide film 32 is partially removed to provide an opening having a diameter of about 0.5 μm, and emitter electrode 27E, base electrode 27B, and collector electrode 27C are formed. To do. Here, the emitter region 35 is formed by diffusing arsenic ions in the polysilicon constituting the emitter electrode 27E. These electrodes are formed by sequentially depositing Ti, Pt, and Au by vacuum vapor deposition and performing etching so as to obtain a desired shape. The emitter electrode 27E is formed outside the trench 33 as an emitter pad electrode 23E. The collector electrode 27 </ b> C is also formed as a collector pad electrode 23 </ b> C outside the trench 33. Further, although not shown, the base electrode 27 </ b> B is also formed as a base pad electrode outside the trench 33. After each electrode is formed, each electrode is covered with an insulating film in order to protect the wiring portion.

更に、上記工程が終了した後に、P型半導体基板42の厚みが100μm程度になるようにエッチングされる。   Further, after the above process is completed, the P-type semiconductor substrate 42 is etched so that the thickness becomes about 100 μm.

また、上述の説明ではP型半導体基板42の表面に活性領域が形成されたが、ノンドープの半導体基板の表面に活性領域を形成することも可能である。この場合は、ノンドープの半導体基板の表面がシリコン酸化膜で被覆され、このシリコン酸化膜に堆積された半導体層に活性領域が形成される。   In the above description, the active region is formed on the surface of the P-type semiconductor substrate 42. However, the active region can be formed on the surface of the non-doped semiconductor substrate. In this case, the surface of the non-doped semiconductor substrate is covered with a silicon oxide film, and an active region is formed in the semiconductor layer deposited on the silicon oxide film.

次に、図7および図8を参照して、貫通電極24Aを用いてエミッタパッド電極23Eと裏面電極26を接続するまでの工程を説明する。   Next, with reference to FIGS. 7 and 8, a process until the emitter pad electrode 23E and the back electrode 26 are connected using the through electrode 24A will be described.

図7(A)を参照して、先ず、P型半導体基板42の裏面を、エッチングレジスト40により被覆する。レジスト40は、エミッタパッド電極23Eの下方に対応する領域が、部分的に開口されている。   With reference to FIG. 7A, first, the back surface of the P-type semiconductor substrate 42 is covered with an etching resist 40. In the resist 40, a region corresponding to the lower part of the emitter pad electrode 23E is partially opened.

図7(B)を参照して、次に、レジスト40をマスクとして、P型半導体基板42等をドライエッチングすることにより、太さが70μm程度で長さが150μm程度の貫通孔24Bを形成する。ドライエッチングで用いるエッチングガスとしては、少なくともSF、OまたはCを含むガスが用いられる。本工程により、エミッタパッド電極23Eの裏面は、貫通孔24Bに露出する。貫通孔24Bの具体的な形状は、円筒状でも良いし、角柱状でも良い。更に、貫通孔24Bの形成は、ウエットエッチングやレーザーを用いても行うことができる。 Referring to FIG. 7B, next, through-hole 24B having a thickness of about 70 μm and a length of about 150 μm is formed by dry etching the P-type semiconductor substrate 42 and the like using the resist 40 as a mask. . As an etching gas used in dry etching, a gas containing at least SF 7 , O 2, or C 4 F 8 is used. By this step, the back surface of the emitter pad electrode 23E is exposed to the through hole 24B. The specific shape of the through hole 24B may be cylindrical or prismatic. Furthermore, the formation of the through holes 24B can also be performed using wet etching or laser.

ここで、バックグラインド、プラズマエッチングまたはウェットを組み合わせて、半導体基板42を薄くしてから、貫通孔24Bを形成すると、エッチング時間を短縮できる。例えば、半導体基板42を裏面からバッククラインドで削り、クラインドで形成された凹凸をプラズマまたはウェットで取り除けばよい。またウェットエッチングまたはプラズマエッチングのみにより、半導体基板42を裏面から除去しても良い。   Here, if the through hole 24B is formed after the semiconductor substrate 42 is thinned by combining back grinding, plasma etching, or wet, the etching time can be shortened. For example, the semiconductor substrate 42 may be shaved from the back surface by back grinding, and irregularities formed by the grinding may be removed by plasma or wet. Further, the semiconductor substrate 42 may be removed from the back surface only by wet etching or plasma etching.

図8(A)を参照して、次に、貫通孔24Bの側壁に側壁絶縁膜41を形成する。側壁絶縁膜41の材料としては、シリコン酸化膜、シリコン窒化膜または樹脂膜を採用することができる。貫通孔24Bの側壁を側壁絶縁膜41により被覆することで、貫通孔24Bに充填される導電材料と、P型半導体基板42とを絶縁させることができる。   Referring to FIG. 8A, next, a sidewall insulating film 41 is formed on the sidewall of the through hole 24B. As a material of the sidewall insulating film 41, a silicon oxide film, a silicon nitride film, or a resin film can be employed. By covering the side wall of the through hole 24B with the side wall insulating film 41, the conductive material filled in the through hole 24B and the P-type semiconductor substrate 42 can be insulated.

側壁絶縁膜41の製造方法は、先ず、貫通孔24Bの内壁を含むP型半導体基板42の裏面全域を、SiO膜やSiN膜から成る絶縁膜により被覆する。これらの絶縁膜は、例えばプラズマCVDにより形成される。更に、異方性エッチングによりこの絶縁膜を除去することで、貫通孔24Bの側壁に側壁絶縁膜41が残存して、他の部分の絶縁膜が除去される。即ち、エミッタパッド電極23Eの裏面およびP型半導体基板42の裏面を被覆する絶縁膜が除去される。また、形成予定の裏面電極とP型半導体基板42とを絶縁させる場合は、P型半導体基板42の裏面に酸化膜を残存させても良い。 In the method of manufacturing the sidewall insulating film 41, first, the entire back surface of the P-type semiconductor substrate 42 including the inner wall of the through hole 24B is covered with an insulating film made of a SiO 2 film or a SiN film. These insulating films are formed by plasma CVD, for example. Further, by removing this insulating film by anisotropic etching, the side wall insulating film 41 remains on the side wall of the through hole 24B, and the other part of the insulating film is removed. That is, the insulating film covering the back surface of the emitter pad electrode 23E and the back surface of the P-type semiconductor substrate 42 is removed. Further, when the back electrode to be formed and the P-type semiconductor substrate 42 are insulated, an oxide film may be left on the back surface of the P-type semiconductor substrate 42.

図8(B)を参照して、次に、貫通孔24Bの内壁およびP型半導体基板42の裏面が被覆されるように金属膜を形成する。貫通孔24Bの内部に形成された金属膜が貫通電極24Aとなり、P型半導体基板42の裏面に形成された金属膜が裏面電極26となる。貫通電極24Aおよび裏面電極26の形成は、メッキ処理やスパッタにより行うことができる。メッキ処理により裏面電極26を形成する場合は、先ず、厚みが数百nm程度のCuから成るシード層(図示せず)を貫通孔24Bの内壁およびP型半導体基板42の裏面の全域に形成する。ここでは無電解メッキが好ましい。次に、このシード層を電極として用いる電解メッキを行うことにより、貫通孔24Bの内壁およびP型半導体基板42の裏面に、厚みが数μm程度のCuから成る金属膜を形成する。このことにより、貫通電極24Aを介してエミッタパッド電極23Eと電気的に接続された裏面電極26が形成される。   Referring to FIG. 8B, next, a metal film is formed so as to cover the inner wall of through-hole 24B and the back surface of P-type semiconductor substrate. The metal film formed inside the through hole 24B becomes the through electrode 24A, and the metal film formed on the back surface of the P-type semiconductor substrate 42 becomes the back electrode 26. The through electrode 24A and the back electrode 26 can be formed by plating or sputtering. In the case of forming the back electrode 26 by plating, first, a seed layer (not shown) made of Cu having a thickness of about several hundred nm is formed on the entire inner wall of the through hole 24B and the back surface of the P-type semiconductor substrate 42. . Here, electroless plating is preferable. Next, by performing electroplating using the seed layer as an electrode, a metal film made of Cu having a thickness of about several μm is formed on the inner wall of the through hole 24B and the back surface of the P-type semiconductor substrate 42. As a result, the back electrode 26 electrically connected to the emitter pad electrode 23E through the through electrode 24A is formed.

ここでは、貫通孔24Bの内部が、メッキ処理により形成されるCuにより完全に埋め込まれているが、この埋め込みは不完全でも良い。即ち、貫通電極24Aの内部に空洞が設けられても良い。また、メッキ処理以外の方法であるスパッタ法等により裏面電極26を形成することも可能である。   Here, the inside of the through hole 24B is completely buried with Cu formed by plating, but this filling may be incomplete. That is, a cavity may be provided inside the through electrode 24A. Further, the back electrode 26 can be formed by sputtering or the like other than plating.

更にまた、メッキ膜以外の金属材料により貫通電極24Aが形成されても良い。即ち、貫通孔24Bに、半田、W、CuまたはAl等の金属を埋め込むことで、貫通電極24Aを形成することもできる。   Furthermore, the through electrode 24A may be formed of a metal material other than the plating film. That is, the through electrode 24A can be formed by embedding a metal such as solder, W, Cu, or Al in the through hole 24B.

上記の工程が終了した後は、P型半導体基板42およびその上部の各層を、ダイシングにより分割することで、図3に示すような半導体装置20Aが完成する。更に、ダイボンディング、ワイヤボンディング、樹脂封止の工程を経て、図1に示すような回路装置10Aが完成する。   After the above steps are completed, the semiconductor device 20A as shown in FIG. 3 is completed by dividing the P-type semiconductor substrate 42 and the layers above it by dicing. Further, through the steps of die bonding, wire bonding, and resin sealing, a circuit device 10A as shown in FIG. 1 is completed.

上述の説明では、貫通電極24Aはエミッタパッド電極23Eの下方のみに形成されたが、コレクタパッド電極23Cも裏面電極26と接続される場合は、コレクタパッド電極23Cの下方にも貫通電極24Aが設けられる。この場合は、更に、裏面電極26が所定のパターンにパターニングされる。   In the above description, the through electrode 24A is formed only below the emitter pad electrode 23E. However, when the collector pad electrode 23C is also connected to the back electrode 26, the through electrode 24A is provided below the collector pad electrode 23C. It is done. In this case, the back electrode 26 is further patterned into a predetermined pattern.

更にまた、上述の説明では、裏面電極26は半導体基板41の裏面に直に当接しているが、半導体基板42の裏面を絶縁膜により被覆し、この絶縁膜の表面に裏面電極26を形成しても良い。   Furthermore, in the above description, the back electrode 26 is in direct contact with the back surface of the semiconductor substrate 41. However, the back surface of the semiconductor substrate 42 is covered with an insulating film, and the back electrode 26 is formed on the surface of the insulating film. May be.

<第3の実施の形態>
本実施の形態では、図9を参照して、図4(C)に構造を示した半導体装置20Bの製造方法を説明する。本形態の製造方法は、基本的に上述した第2の実施の形態と同様であり、相違点は貫通孔24Bの内壁に側壁絶縁膜を形成しない点にある。
<Third Embodiment>
In the present embodiment, a method for manufacturing the semiconductor device 20B whose structure is shown in FIG. 4C will be described with reference to FIG. The manufacturing method of this embodiment is basically the same as that of the second embodiment described above, and the difference is that a sidewall insulating film is not formed on the inner wall of the through hole 24B.

具体的には、図9(A)を参照して、先ず、例えばバイポーラトランジスタから成る活性領域21を形成する。更に、活性領域21を包囲するようにトレンチ33を形成することで、活性領域21を素子分離している。トレンチ33の他にも、PN接合分離やLOCOS酸化膜を用いて、活性領域21の分離を行っても良い。更に、活性領域21を構成する各領域と接続された電極を酸化膜32の表面に形成する。ここでは、エミッタパッド電極23Eとコレクタパッド電極23Cが、酸化膜32の上面に於いて、トレンチ33で囲まれる領域よりも外側に形成されている。   Specifically, referring to FIG. 9A, first, an active region 21 made of, for example, a bipolar transistor is formed. Furthermore, the trench 33 is formed so as to surround the active region 21, thereby isolating the active region 21. In addition to the trench 33, the active region 21 may be separated using a PN junction isolation or a LOCOS oxide film. Further, an electrode connected to each region constituting the active region 21 is formed on the surface of the oxide film 32. Here, the emitter pad electrode 23 </ b> E and the collector pad electrode 23 </ b> C are formed outside the region surrounded by the trench 33 on the upper surface of the oxide film 32.

図9(B)を参照して、次に、P型半導体基板42等を貫通する貫通孔24Bを形成する。P型半導体基板42の裏面は、貫通孔24Bが形成予定の領域を除いて、耐エッチングマスクであるレジスト40により被覆されている。この状態で、P型半導体基板42を裏面からドライエッチングすることにより、P型半導体基板42、エピタキシャル層31および酸化膜32を貫通する貫通孔24Bが形成される。本工程により、エミッタパッド電極23Eの裏面は貫通孔24Bに露出している。   Referring to FIG. 9B, next, a through hole 24B penetrating the P-type semiconductor substrate 42 and the like is formed. The back surface of the P-type semiconductor substrate 42 is covered with a resist 40, which is an etching resistant mask, except for a region where the through hole 24B is to be formed. In this state, the P-type semiconductor substrate 42 is dry-etched from the back surface, thereby forming a through hole 24B that penetrates the P-type semiconductor substrate 42, the epitaxial layer 31, and the oxide film 32. By this step, the back surface of the emitter pad electrode 23E is exposed in the through hole 24B.

図9(C)を参照して、次に、貫通孔24Bの内部に貫通電極24Aを形成し、P型半導体基板42の裏面に裏面電極26を形成する。本形態では、貫通孔24Bの内壁を絶縁膜により被覆しないので、貫通電極24Aを構成する銅等の導電材料は貫通孔24Bの内壁に直に当接する。換言すると、貫通電極24AとP型半導体基板42およびエピタキシャル層31とは導通している。しかしながら、上述したように活性領域21は、トレンチ33により素子分離されており、貫通電極24Aはトレンチ33よりも外側に位置している。従って、貫通電極24Aの側面を絶縁膜で被覆しなくても、貫通電極24Aと活性領域21とはショートしない。   With reference to FIG. 9C, next, the through electrode 24 </ b> A is formed inside the through hole 24 </ b> B, and the back electrode 26 is formed on the back surface of the P-type semiconductor substrate 42. In this embodiment, since the inner wall of the through hole 24B is not covered with an insulating film, the conductive material such as copper constituting the through electrode 24A directly contacts the inner wall of the through hole 24B. In other words, the through electrode 24A is electrically connected to the P-type semiconductor substrate 42 and the epitaxial layer 31. However, as described above, the active region 21 is element-isolated by the trench 33, and the through electrode 24 </ b> A is located outside the trench 33. Therefore, even if the side surface of the through electrode 24A is not covered with an insulating film, the through electrode 24A and the active region 21 are not short-circuited.

上述した工程により、図4(C)に構造を示す半導体装置20Bが製造される。   Through the above-described steps, the semiconductor device 20B whose structure is shown in FIG.

本形態によると、貫通孔24Bの内壁にシリコン酸化膜等から成る絶縁膜を形成しないので、この絶縁膜を形成する工程を省略することが可能となり、歩溜まりを向上させることができる。   According to this embodiment, since an insulating film made of a silicon oxide film or the like is not formed on the inner wall of the through hole 24B, the step of forming this insulating film can be omitted, and the yield can be improved.

具体的には、貫通孔24Bの内壁にシリコン酸化膜を形成する場合、熱酸化法またはCVD法により酸化膜が形成される。しかしながら、酸化膜を形成するこれらの方法では、例えば1000℃程度にP型半導体基板42が加熱される。従って、極めて高温にP型半導体基板42が晒されることから、基板の表面に形成された電極に熱応力が作用し、エミッタパッド電極23E等が酸化膜32から剥離してしまう問題が発生していた。   Specifically, when a silicon oxide film is formed on the inner wall of the through hole 24B, the oxide film is formed by a thermal oxidation method or a CVD method. However, in these methods for forming an oxide film, the P-type semiconductor substrate 42 is heated to about 1000 ° C., for example. Therefore, since the P-type semiconductor substrate 42 is exposed to an extremely high temperature, a thermal stress acts on the electrode formed on the surface of the substrate, causing a problem that the emitter pad electrode 23E and the like are separated from the oxide film 32. It was.

本形態では、貫通孔24Bの内壁に絶縁膜を形成しないので、上述した熱酸化法等の加熱を伴う工程の数を低減させることができる。従って、熱応力に起因したエミッタパッド電極23E等の劣化を防止できるので、製造工程の歩溜まりが向上される。更に、工程数が削減されることから、製造コストを低減することもできる。   In this embodiment, since an insulating film is not formed on the inner wall of the through hole 24B, the number of processes involving heating such as the thermal oxidation method described above can be reduced. Accordingly, deterioration of the emitter pad electrode 23E and the like due to thermal stress can be prevented, and the yield of the manufacturing process is improved. Furthermore, since the number of processes is reduced, the manufacturing cost can be reduced.

<第4の実施の形態>
本実施の形態では、図10から図12を参照して、他の形態の半導体装置20Cおよびそれを有する回路装置の構成を説明する。ここで説明する半導体装置20Cでは、半導体基板25の表面に形成された複数のパッド電極が、貫通電極24Aを介して、半導体基板42の裏面に形成された裏面電極と接続されている。また、半導体基板25の裏面に、複数個の裏面電極が形成される。
<Fourth embodiment>
In the present embodiment, with reference to FIG. 10 to FIG. 12, the configuration of another form of semiconductor device 20C and a circuit device having the same will be described. In the semiconductor device 20C described here, a plurality of pad electrodes formed on the surface of the semiconductor substrate 25 are connected to a back surface electrode formed on the back surface of the semiconductor substrate 42 through the through electrode 24A. In addition, a plurality of back surface electrodes are formed on the back surface of the semiconductor substrate 25.

図10を参照して、半導体装置20Cの構成を説明する。図10(A)は半導体装置20Cの斜視図であり、図10(B)は半導体装置20Cを裏面から見た平面図である。   The configuration of the semiconductor device 20C will be described with reference to FIG. FIG. 10A is a perspective view of the semiconductor device 20C, and FIG. 10B is a plan view of the semiconductor device 20C viewed from the back surface.

図10(A)を参照して、半導体装置20Cの基本的構成は図3に示す半導体装置20Aと同様であり、相違点は半導体基板25の表面に形成される各パッド電極が、貫通電極24Aを介して裏面の電極と接続される点にある。   Referring to FIG. 10A, the basic configuration of the semiconductor device 20C is the same as that of the semiconductor device 20A shown in FIG. 3, except that each pad electrode formed on the surface of the semiconductor substrate 25 is a through electrode 24A. It is in the point connected with the electrode on the back side via.

半導体基板25の表面に形成されたコレクタパッド電極23C、ベースパッド電極23B、エミッタパッド電極23Eは、各々が貫通電極24Aを介して、半導体基板25の裏面に形成された裏面電極と接続されている。このような構成により、金属細線を省いて、半導体基板25を実装することができる。   The collector pad electrode 23C, the base pad electrode 23B, and the emitter pad electrode 23E formed on the surface of the semiconductor substrate 25 are each connected to the back electrode formed on the back surface of the semiconductor substrate 25 through the through electrode 24A. . With such a configuration, the semiconductor substrate 25 can be mounted without the fine metal wires.

図10(B)を参照して、半導体基板25の裏面には、コレクタ裏面電極26C、ベース裏面電極26Bおよびエミッタ裏面電極26Eが形成されている。コレクタ裏面電極26Cは、貫通電極24Aを介して、半導体基板25の表面に形成されたコレクタパッド電極23Cに接続されている。ベース裏面電極26Bは、貫通電極24Aを介して、半導体基板25の表面に形成されたベースパッド電極23Bに接続されている。エミッタ裏面電極26Eは、貫通電極24Aを介して、半導体基板25の表面に形成された2つのエミッタパッド電極23Eに接続されている。   Referring to FIG. 10B, a collector back electrode 26C, a base back electrode 26B, and an emitter back electrode 26E are formed on the back surface of the semiconductor substrate 25. The collector back electrode 26C is connected to the collector pad electrode 23C formed on the surface of the semiconductor substrate 25 via the through electrode 24A. The base back electrode 26B is connected to the base pad electrode 23B formed on the surface of the semiconductor substrate 25 through the through electrode 24A. The emitter back electrode 26E is connected to two emitter pad electrodes 23E formed on the surface of the semiconductor substrate 25 through the through electrode 24A.

コレクタ裏面電極26Cとベース裏面電極26Bとは、互いに対向する角部付近に配置されている。このように、コレクタ裏面電極26Cとベース裏面電極26Bとを離間させることで、両者の絶縁を確保することができる。   The collector back electrode 26C and the base back electrode 26B are arranged in the vicinity of the corners facing each other. Thus, the insulation between the collector back electrode 26C and the base back electrode 26B can be ensured by separating them.

エミッタ裏面電極26Eは、半導体基板25の裏面の一方の角部から、対向する角部まで連続して延在している。そして、エミッタ裏面電極26Eは、他の裏面電極と比較すると、その面積が大きく形成される。エミッタ裏面電極26Eを大きく形成することにより、寄生インダクタンスを低減させることができる。   The emitter back electrode 26E continuously extends from one corner of the back surface of the semiconductor substrate 25 to the opposite corner. The emitter back electrode 26E is formed to have a larger area than the other back electrode. By forming the emitter back electrode 26E large, parasitic inductance can be reduced.

各裏面電極と半導体基板25とが絶縁される場合は、半導体基板25の裏面に、酸化膜、窒化膜、または絶縁性樹脂から成る絶縁層を配置し、この絶縁層の上面に各裏面電極を配置する。また、各裏面電極に半田を付着させる場合、半導体基板25の裏面をソルダーレジストにより被覆し、裏面電極を部分的に露出させれば良い。   When each back electrode and the semiconductor substrate 25 are insulated, an insulating layer made of an oxide film, a nitride film, or an insulating resin is disposed on the back surface of the semiconductor substrate 25, and each back electrode is placed on the top surface of the insulating layer. Deploy. When solder is attached to each back electrode, the back surface of the semiconductor substrate 25 may be covered with a solder resist and the back electrode may be partially exposed.

図11を参照して、半導体装置20Cの構造を更に説明する。図11(A)は半導体装置20Cの斜視図であり、図11(B)は図11(A)のB−B’線に於ける断面図であり、図11(C)は図11(A)のC−C’線に於ける断面図である。   The structure of the semiconductor device 20C will be further described with reference to FIG. 11A is a perspective view of the semiconductor device 20C, FIG. 11B is a cross-sectional view taken along line BB ′ of FIG. 11A, and FIG. 11C is FIG. It is sectional drawing in CC 'line | wire of ().

図11(B)を参照して、ベース裏面電極26Bおよびコレクタ裏面電極26Cは、絶縁膜38により、P型半導体基板42と絶縁されている。ここで、絶縁膜38は、シリコン酸化膜、シリコン窒化膜、樹脂膜等の絶縁性を有する膜から成る。また、ベース裏面電極26Bおよびコレクタ裏面電極26Cと接続された貫通電極24Aは、側壁絶縁膜41によりP型半導体基板42と絶縁されている。このような構造により、コレクタ裏面電極26Cおよびベース裏面電極26Bが、半導体装置20Cの他の部分と絶縁され、電極間のショートが防止されている。   Referring to FIG. 11B, base back electrode 26B and collector back electrode 26C are insulated from P-type semiconductor substrate 42 by insulating film 38. Here, the insulating film 38 is made of an insulating film such as a silicon oxide film, a silicon nitride film, or a resin film. The through electrode 24A connected to the base back electrode 26B and the collector back electrode 26C is insulated from the P-type semiconductor substrate 42 by the sidewall insulating film 41. With such a structure, the collector back electrode 26C and the base back electrode 26B are insulated from other parts of the semiconductor device 20C, and a short circuit between the electrodes is prevented.

一方、エミッタ裏面電極26Eが形成される領域のP型半導体基板42の裏面には絶縁膜38が形成されない。即ち、エミッタ裏面電極26EはP型半導体基板42の裏面に直に接触され、両者は導通している。従って、エミッタ裏面電極26Eが接地電位に接続されると、P型半導体基板42も接地電位に接続される。ここで、エミッタ裏面電極26Eも、絶縁膜38によりP型半導体基板42の裏面と絶縁されても良い。即ち、半導体基板42の裏面に形成される全ての裏面電極が、絶縁膜38により半導体基板42と絶縁されても良い。   On the other hand, the insulating film 38 is not formed on the back surface of the P-type semiconductor substrate 42 in the region where the emitter back electrode 26E is formed. That is, the emitter back electrode 26E is in direct contact with the back surface of the P-type semiconductor substrate 42, and both are conductive. Therefore, when the emitter back electrode 26E is connected to the ground potential, the P-type semiconductor substrate 42 is also connected to the ground potential. Here, the emitter back electrode 26 </ b> E may also be insulated from the back surface of the P-type semiconductor substrate 42 by the insulating film 38. That is, all the back electrodes formed on the back surface of the semiconductor substrate 42 may be insulated from the semiconductor substrate 42 by the insulating film 38.

活性領域21はトレンチ33により分離されているが、各電極(エミッタ電極、コレクタ電極およびベース電極)同士を絶縁する必要がある。従って、エミッタ電極、コレクタ電極およびベース電極が設けられる場合、少なくとも2つの電極は、上述したように絶縁膜38および側壁絶縁膜41を用いて絶縁処理を行う必要がある。   Although the active region 21 is separated by the trench 33, it is necessary to insulate the electrodes (emitter electrode, collector electrode, and base electrode) from each other. Therefore, when an emitter electrode, a collector electrode, and a base electrode are provided, at least two electrodes need to be insulated using the insulating film 38 and the sidewall insulating film 41 as described above.

図11(C)を参照すると、エミッタ裏面電極26Eは、2つの貫通電極24Aを介して、酸化膜32の上面に形成されたエミッタパッド電極23Eに接続されている。図では、貫通孔24Aの内壁は側壁絶縁膜41により被覆されているが、この側壁絶縁膜41を省くこともできる。   Referring to FIG. 11C, the emitter back electrode 26E is connected to an emitter pad electrode 23E formed on the upper surface of the oxide film 32 via two through electrodes 24A. In the figure, the inner wall of the through hole 24A is covered with the sidewall insulating film 41, but the sidewall insulating film 41 can be omitted.

ここで、半導体装置20Cがコレクタ接地にて使用される場合は、ベース裏面電極26Bおよびエミッタ裏面電極26Eが、絶縁膜38等により半導体基板25の裏面と絶縁される。また、この場合は、コレクタ裏面電極26Cが半導体基板25の裏面に直に形成されても良い。   Here, when the semiconductor device 20C is used with the collector grounded, the base back electrode 26B and the emitter back electrode 26E are insulated from the back surface of the semiconductor substrate 25 by the insulating film 38 or the like. In this case, the collector back electrode 26 </ b> C may be formed directly on the back surface of the semiconductor substrate 25.

更にまた、半導体装置20Cがベース接地にて使用される場合は、コレクタ裏面電極26Cおよびエミッタ裏面電極26Eが、絶縁膜38により半導体基板25の裏面と絶縁される。また、この場合は、ベース裏面電極26Bが半導体基板25の裏面に直に形成されても良い。   Furthermore, when the semiconductor device 20 </ b> C is used with the base grounded, the collector back electrode 26 </ b> C and the emitter back electrode 26 </ b> E are insulated from the back surface of the semiconductor substrate 25 by the insulating film 38. In this case, the base back electrode 26 </ b> B may be formed directly on the back surface of the semiconductor substrate 25.

図12を参照して、次に、上記した半導体装置20Cが内蔵された回路装置10D、10Eの構成を説明する。   Next, the configuration of the circuit devices 10D and 10E in which the semiconductor device 20C described above is built will be described with reference to FIG.

図12(A)を参照して、回路基板19を具備する回路装置10Dの構成を説明する。回路装置10Dでは、回路基板19の表面に導電パターン18A、18Bが形成されている。そして、半導体装置20Cの裏面に位置するエミッタ裏面電極26Eは、導電パターン18Aに半田等を介して接続される。更に、半導体装置20Cの裏面に位置するベース裏面電極26Bは、導電パターン18Bに接続される。また、図示しないがコレクタ裏面電極も、回路基板19の表面に形成された導電パターンに接続される。回路装置10Dの他の構成は、図2(A)に示した回路装置10Bと同様である。回路装置10Dでは、金属細線を省いた構成と成っている。   With reference to FIG. 12A, a configuration of a circuit device 10D including the circuit board 19 will be described. In the circuit device 10 </ b> D, conductive patterns 18 </ b> A and 18 </ b> B are formed on the surface of the circuit board 19. The emitter back electrode 26E located on the back surface of the semiconductor device 20C is connected to the conductive pattern 18A via solder or the like. Further, the base back electrode 26B located on the back surface of the semiconductor device 20C is connected to the conductive pattern 18B. Although not shown, the collector back electrode is also connected to a conductive pattern formed on the surface of the circuit board 19. Other configurations of the circuit device 10D are the same as those of the circuit device 10B illustrated in FIG. The circuit device 10D has a configuration in which the fine metal wires are omitted.

図12(B)を参照して、回路装置10Eでは、封止樹脂14に埋め込まれる導電パターン18A、18Bが、半導体装置20Cの裏面に形成された電極に半田を介して接続されている。具体的には、ベース裏面電極26Bは導電パターン18Aと接続され、エミッタ裏面電極26Eは導電パターン18Bと接続される。回路装置10Eの他の構成は、図2(B)に示した回路装置10Cと同様である。   Referring to FIG. 12B, in circuit device 10E, conductive patterns 18A and 18B embedded in sealing resin 14 are connected to electrodes formed on the back surface of semiconductor device 20C via solder. Specifically, the base back electrode 26B is connected to the conductive pattern 18A, and the emitter back electrode 26E is connected to the conductive pattern 18B. Other configurations of the circuit device 10E are the same as those of the circuit device 10C illustrated in FIG.

本発明の半導体装置を示す図であり、(A)は斜視図であり、(B)は断面図である。1A and 1B are diagrams illustrating a semiconductor device of the present invention, in which FIG. 1A is a perspective view, and FIG. 本発明の半導体装置を示す図であり、(A)は断面図であり、(B)は断面図である。1A is a cross-sectional view of a semiconductor device according to the present invention, and FIG. 本発明の半導体装置を示す図であり、(A)は斜視図であり、(B)は平面図である。1A and 1B are diagrams illustrating a semiconductor device of the present invention, in which FIG. 1A is a perspective view, and FIG. 本発明の半導体装置を示す図であり、(A)は断面図であり、(B)は平面図であり、(C)は断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the semiconductor device of this invention, (A) is sectional drawing, (B) is a top view, (C) is sectional drawing. (A)は本発明の半導体装置の等価回路図であり、(B)はシミュレーション結果を示すグラフである。(A) is an equivalent circuit diagram of the semiconductor device of the present invention, and (B) is a graph showing a simulation result. 本発明の半導体装置の製造方法を示す図であり、(A)−(D)は断面図である。It is a figure which shows the manufacturing method of the semiconductor device of this invention, and (A)-(D) is sectional drawing. 本発明の半導体装置の製造方法を示す図であり、(A)および(B)は断面図である。It is a figure which shows the manufacturing method of the semiconductor device of this invention, (A) and (B) are sectional drawings. 本発明の半導体装置の製造方法を示す図であり、(A)および(B)は断面図である。It is a figure which shows the manufacturing method of the semiconductor device of this invention, (A) and (B) are sectional drawings. 本発明の半導体装置の製造方法を示す図であり、(A)−(C)は断面図である。It is a figure which shows the manufacturing method of the semiconductor device of this invention, and (A)-(C) is sectional drawing. 本発明の半導体装置を示す図であり、(A)は斜視図であり、(B)は平面図である。1A and 1B are diagrams illustrating a semiconductor device of the present invention, in which FIG. 1A is a perspective view, and FIG. 本発明の半導体装置を示す図であり、(A)は斜視図であり、(B)は断面図であり、(C)は断面図である。1A is a perspective view, FIG. 1B is a cross-sectional view, and FIG. 1C is a cross-sectional view. 本発明の半導体装置を示す図であり、(A)および(B)は断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the semiconductor device of this invention, (A) And (B) is sectional drawing. 従来の回路装置を示す斜視図である。It is a perspective view which shows the conventional circuit device.

符号の説明Explanation of symbols

10A〜10E 回路装置
11A〜11D リード
12 ランド
14 封止樹脂
15 固着材
16 基板
20A、20B、20C 半導体装置
21 活性領域
22 再配線
23 パッド電極
23E エミッタパッド電極
23C コレクタパッド電極
23B ベースパッド電極
24A 貫通電極
24B 貫通孔
25 半導体基板
26 裏面電極
27E エミッタ電極
27C コレクタ電極
27B ベース電極
28 シリコン半導体基板
29 受け込み酸化膜層
30 N++型エピタキシャル層
31 N型エピタキシャル層
32 酸化膜
33 トレンチ
34 ベース領域
35 エミッタ領域
37 コレクタ領域
38 絶縁膜
10A to 10E Circuit device 11A to 11D Lead 12 Land 14 Sealing resin 15 Fixing material 16 Substrate 20A, 20B, 20C Semiconductor device 21 Active region 22 Rewiring 23 Pad electrode 23E Emitter pad electrode 23C Collector pad electrode 23B Base pad electrode 24A Through Electrode 24B Through-hole 25 Semiconductor substrate 26 Back electrode 27E Emitter electrode 27C Collector electrode 27B Base electrode 28 Silicon semiconductor substrate 29 Receiving oxide film layer 30 N ++ type epitaxial layer 31 N - type epitaxial layer 32 Oxide film 33 Trench 34 Base region 35 Emitter region 37 Collector region 38 Insulating film

Claims (15)

半導体基板の表面に形成されて活性領域と電気的に接続された複数のパッド電極と、
前記半導体基板の裏面に設けられた裏面電極と、
前記半導体基板を厚み方向に貫通して、前記パッド電極と前記裏面電極とを接続する貫通電極とを具備し、
接地電位と接続される少なくとも1つの前記パッド電極が、前記貫通電極を介して前記裏面電極と接続されることを特徴とする半導体装置。
A plurality of pad electrodes formed on the surface of the semiconductor substrate and electrically connected to the active region;
A back electrode provided on the back surface of the semiconductor substrate;
Penetrating the semiconductor substrate in the thickness direction, comprising a through electrode connecting the pad electrode and the back electrode,
A semiconductor device, wherein at least one pad electrode connected to a ground potential is connected to the back electrode through the through electrode.
複数個の前記パッド電極が前記貫通電極を介して前記裏面電極に接続されることを特徴とする請求項1記載の半導体装置。   The semiconductor device according to claim 1, wherein the plurality of pad electrodes are connected to the back electrode through the through electrode. 前記活性領域にはバイポーラトランジスタが形成され、
前記バイポーラトランジスタのエミッタ領域と接続された前記パッド電極が、前記貫通電極を介して前記裏面電極と接続されることを特徴とする請求項1記載の半導体装置。
A bipolar transistor is formed in the active region,
2. The semiconductor device according to claim 1, wherein the pad electrode connected to the emitter region of the bipolar transistor is connected to the back electrode through the through electrode.
前記活性領域にはMOSFETが形成され、
前記MOSFETのソース領域と接続された前記パッド電極が、前記貫通電極を介して前記裏面電極と接続されることを特徴とする請求項1記載の半導体装置。
A MOSFET is formed in the active region,
2. The semiconductor device according to claim 1, wherein the pad electrode connected to the source region of the MOSFET is connected to the back electrode through the through electrode.
前記半導体基板の前記裏面電極は、ランド状の導電部材に固着され、
接地電位と接続される前記パッド電極は、前記貫通電極および前記裏面電極を介して前記導電部材に接続されることを特徴とする請求項1記載の半導体装置。
The back electrode of the semiconductor substrate is fixed to a land-like conductive member,
2. The semiconductor device according to claim 1, wherein the pad electrode connected to a ground potential is connected to the conductive member via the through electrode and the back electrode.
接地電位と接続されない他のパッド電極は、
金属細線を介して他の導電部材に電気的に接続されることを特徴とする請求項5記載の半導体装置。
Other pad electrodes not connected to ground potential
6. The semiconductor device according to claim 5, wherein the semiconductor device is electrically connected to another conductive member through a thin metal wire.
前記裏面電極が前記半導体基板の裏面に直に接触し、
前記貫通電極と前記半導体基板とを同電位にすることを特徴とする請求項1記載の半導体装置。
The back electrode is in direct contact with the back surface of the semiconductor substrate;
The semiconductor device according to claim 1, wherein the through electrode and the semiconductor substrate have the same potential.
複数の裏面電極が前記半導体基板の裏面に形成され、
各々の前記裏面電極は、前記貫通電極を介して前記パッドと電気的に接続されることを特徴とする請求項1記載の半導体装置。
A plurality of back electrodes are formed on the back surface of the semiconductor substrate,
The semiconductor device according to claim 1, wherein each of the back electrodes is electrically connected to the pad through the through electrode.
前記裏面電極は、前記半導体基板の裏面を被覆する絶縁膜を介して、前記半導体基板と絶縁されることを特徴とする請求項8記載の半導体装置。   The semiconductor device according to claim 8, wherein the back electrode is insulated from the semiconductor substrate through an insulating film covering the back surface of the semiconductor substrate. 前記活性領域と接続された前記パッド電極の全てが、前記貫通電極を介して前記裏面電極に接続されることを特徴とする請求項1記載の半導体装置。   The semiconductor device according to claim 1, wherein all of the pad electrodes connected to the active region are connected to the back electrode through the through electrode. 前記活性領域は、分離領域により囲まれる領域の内部に形成され、
前記貫通電極は、前記分離領域の外側の前記半導体基板を貫通する貫通孔の内部に形成され、
前記貫通電極は前記貫通孔の内壁に接触することを特徴とする請求項1記載の半導体装置。
The active region is formed inside a region surrounded by the isolation region,
The through electrode is formed in a through hole penetrating the semiconductor substrate outside the separation region,
The semiconductor device according to claim 1, wherein the through electrode is in contact with an inner wall of the through hole.
能動素子が形成された半導体層を有する半導体基板と、
前記能動素子の一拡散領域と電気的に接続された第1の電極と、
前記第1の電極と一体で半導体基板の周囲に延在されて設けられたパッド電極と、
前記パッド電極の下層に設けられ、半導体層表面から半導体基板の裏面にまで延在する貫通電極と、
前記貫通電極と電気的に接続され、半導体基板の裏面に設けられた裏面電極とを有することを特徴とする半導体装置。
A semiconductor substrate having a semiconductor layer on which active elements are formed;
A first electrode electrically connected to one diffusion region of the active element;
A pad electrode provided integrally with the first electrode and extending around the semiconductor substrate;
A through electrode provided under the pad electrode and extending from the semiconductor layer surface to the back surface of the semiconductor substrate;
A semiconductor device comprising a back electrode electrically connected to the through electrode and provided on the back surface of the semiconductor substrate.
前記能動素子は、BIP型またはMOS型のトランジスタであり、接地される拡散領域と電気的に接続される前記第1の電極は、少なくとも2つの貫通電極と電気的に接続されることを特徴とする請求項12に記載の半導体装置。   The active element is a BIP-type or MOS-type transistor, and the first electrode electrically connected to a grounded diffusion region is electrically connected to at least two through electrodes. The semiconductor device according to claim 12. 半導体基板の表面に活性領域を形成する工程と、
前記活性領域と電気的に接続されたパッドを前記半導体基板の表面に形成する工程と、
前記パッドの下方に位置する前記半導体基板を貫通する貫通孔を形成する工程と、
前記貫通孔の内部に形成された貫通電極を介して前記パッドと電気的に接続された裏面電極を前記半導体基板の裏面に形成する工程とを具備し、
前記貫通孔を、前記活性領域を包囲するように形成された分離領域の外部に形成し、
前記貫通電極を前記貫通孔の内壁に直に当接するように形成することを特徴とする半導体装置の製造方法。
Forming an active region on the surface of the semiconductor substrate;
Forming a pad electrically connected to the active region on the surface of the semiconductor substrate;
Forming a through-hole penetrating the semiconductor substrate located below the pad;
Forming a back surface electrode electrically connected to the pad through a through electrode formed inside the through hole on the back surface of the semiconductor substrate;
Forming the through hole outside a separation region formed so as to surround the active region;
A method of manufacturing a semiconductor device, wherein the through electrode is formed so as to be in direct contact with an inner wall of the through hole.
前記分離領域は、トレンチ構造、LOCOS酸化膜、またはPN接合分離の構造を有することを特徴とする請求項14記載の半導体装置の製造方法。   15. The method of manufacturing a semiconductor device according to claim 14, wherein the isolation region has a trench structure, a LOCOS oxide film, or a PN junction isolation structure.
JP2005252184A 2005-03-30 2005-08-31 Semiconductor device and manufacturing method thereof Active JP5048230B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005252184A JP5048230B2 (en) 2005-03-30 2005-08-31 Semiconductor device and manufacturing method thereof
TW95104321A TWI316276B (en) 2005-03-30 2006-02-09 Semiconductor device and method for producing the same
US11/392,802 US7397128B2 (en) 2005-03-30 2006-03-28 Semiconductor device and method of manufacturing the same
US12/134,861 US8076755B2 (en) 2005-03-30 2008-06-06 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005097602 2005-03-30
JP2005097602 2005-03-30
JP2005252184A JP5048230B2 (en) 2005-03-30 2005-08-31 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006310726A true JP2006310726A (en) 2006-11-09
JP5048230B2 JP5048230B2 (en) 2012-10-17

Family

ID=37069329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005252184A Active JP5048230B2 (en) 2005-03-30 2005-08-31 Semiconductor device and manufacturing method thereof

Country Status (3)

Country Link
US (2) US7397128B2 (en)
JP (1) JP5048230B2 (en)
TW (1) TWI316276B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070966A (en) * 2007-09-12 2009-04-02 Toshiba Corp Semiconductor device and its manufacturing method
JP2009076848A (en) * 2007-08-27 2009-04-09 Denso Corp Semiconductor device and manufacturing method thereof
WO2009141952A1 (en) * 2008-05-19 2009-11-26 パナソニック株式会社 Semiconductor device and method for manufacturing the same
JP2013183024A (en) * 2012-03-01 2013-09-12 Toyota Industries Corp Semiconductor device and semiconductor apparatus
JP2023520029A (en) * 2020-04-03 2023-05-15 ウルフスピード インコーポレイテッド III-Nitride based high frequency amplifier with backside source, gate and/or drain terminals
US12074123B2 (en) 2020-04-03 2024-08-27 Macom Technology Solutions Holdings, Inc. Multi level radio frequency (RF) integrated circuit components including passive devices
US12113490B2 (en) 2020-04-03 2024-10-08 Macom Technology Solutions Holdings, Inc. Group III nitride-based radio frequency transistor amplifiers having source, gate and/or drain conductive vias

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8278738B2 (en) * 2005-02-17 2012-10-02 Sharp Kabushiki Kaisha Method of producing semiconductor device and semiconductor device
JP5048230B2 (en) * 2005-03-30 2012-10-17 オンセミコンダクター・トレーディング・リミテッド Semiconductor device and manufacturing method thereof
JP2007067216A (en) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof, circuit board and manufacturing method thereof
DE102005047001B3 (en) * 2005-09-30 2007-01-04 Infineon Technologies Ag High frequency switching component for use in high frequency circuit, has two transistors, where serial connection of transistors is charge-coupled with one another, so that base region and collector emitter current are switched on and off
JP4945167B2 (en) * 2006-05-12 2012-06-06 スタンレー電気株式会社 Manufacturing method of semiconductor light emitting device and mounting method of semiconductor light emitting device manufactured by the manufacturing method
EP2031653B1 (en) * 2007-08-27 2014-03-05 Denso Corporation Manufacturing method for a semiconductor device having multiple element formation regions
WO2009069020A1 (en) * 2007-11-27 2009-06-04 Nxp B.V. Contact structure for an electronic circuit substrate and electronic circuit comprising said contact structure
DE102007057581A1 (en) * 2007-11-28 2009-06-04 Fachhochschule Aachen High frequency lamp and method of operation
US20090294985A1 (en) * 2008-05-29 2009-12-03 Gomez Jocel P Thin chip scale semiconductor package
US8017471B2 (en) 2008-08-06 2011-09-13 International Business Machines Corporation Structure and method of latchup robustness with placement of through wafer via within CMOS circuitry
US7948064B2 (en) 2008-09-30 2011-05-24 Infineon Technologies Ag System on a chip with on-chip RF shield
US8889548B2 (en) 2008-09-30 2014-11-18 Infineon Technologies Ag On-chip RF shields with backside redistribution lines
US8169059B2 (en) * 2008-09-30 2012-05-01 Infineon Technologies Ag On-chip RF shields with through substrate conductors
US8063469B2 (en) * 2008-09-30 2011-11-22 Infineon Technologies Ag On-chip radio frequency shield with interconnect metallization
US7936052B2 (en) 2008-09-30 2011-05-03 Infineon Technologies Ag On-chip RF shields with backside redistribution lines
US8178953B2 (en) * 2008-09-30 2012-05-15 Infineon Technologies Ag On-chip RF shields with front side redistribution lines
US8137995B2 (en) * 2008-12-11 2012-03-20 Stats Chippac, Ltd. Double-sided semiconductor device and method of forming top-side and bottom-side interconnect structures
WO2011024367A1 (en) 2009-08-27 2011-03-03 パナソニック株式会社 Nitride semiconductor device
JP4924685B2 (en) * 2009-09-23 2012-04-25 株式会社デンソー Semiconductor device and manufacturing method thereof
US8466060B2 (en) * 2010-04-30 2013-06-18 Alpha & Omega Semiconductor, Inc. Stackable power MOSFET, power MOSFET stack, and process of manufacture
TWI483378B (en) * 2013-01-04 2015-05-01 Tsai Yu Huang Three dimensional stacked structure for chips
JP6120704B2 (en) 2013-07-03 2017-04-26 三菱電機株式会社 Semiconductor device
CN105899003B (en) * 2015-11-06 2019-11-26 武汉光谷创元电子有限公司 Single layer board, multilayer circuit board and their manufacturing method
US11521917B2 (en) * 2019-05-23 2022-12-06 Rohm Co., Ltd. Semiconductor device
EP3761357A1 (en) * 2019-07-04 2021-01-06 Infineon Technologies Austria AG Semiconductor device
EP4002459A1 (en) 2020-11-23 2022-05-25 Infineon Technologies AG Method for manufacturing an electrostatic discharge protection circuit and electrostatic discharge protection circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139729A (en) * 1990-10-01 1992-05-13 Hitachi Ltd semiconductor equipment
JPH05152529A (en) * 1991-11-29 1993-06-18 Oki Electric Ind Co Ltd Semiconductor device
JPH08274116A (en) * 1995-03-31 1996-10-18 Nec Corp Field effect transistor
JPH11238870A (en) * 1998-02-20 1999-08-31 Nec Corp Semiconductor device and manufacture thereof
JP2002359257A (en) * 2001-05-31 2002-12-13 Fujitsu Quantum Devices Ltd Semiconductor device and manufacturing method thereof
JP2004088062A (en) * 2002-05-20 2004-03-18 Sumitomo Electric Ind Ltd Dry etching method, dry etching apparatus, and method of manufacturing semiconductor device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183370A (en) * 1993-12-24 1995-07-21 Nec Corp Manufacture of semiconductor device
JP3287408B2 (en) * 1999-06-16 2002-06-04 日本電気株式会社 Semiconductor device and method of forming semiconductor substrate through conductor
JP3602453B2 (en) * 2000-08-31 2004-12-15 Necエレクトロニクス株式会社 Semiconductor device
JP3649111B2 (en) * 2000-10-24 2005-05-18 株式会社村田製作所 High frequency circuit board, high frequency module using the same, and electronic device using the same
KR100485855B1 (en) * 2001-02-01 2005-04-28 미쓰비시덴키 가부시키가이샤 Semiconductor device and method of manufacturing the same
US6846275B2 (en) 2001-03-21 2005-01-25 Chuan-Show Chen Muscle strengthening method and apparatus
JP4626919B2 (en) * 2001-03-27 2011-02-09 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2004102345A (en) 2002-09-04 2004-04-02 Sharp Corp Stabilized power supply stabilizing apparatus and electronic device equipped with the same
JP4626935B2 (en) * 2002-10-01 2011-02-09 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
US6790775B2 (en) * 2002-10-31 2004-09-14 Hewlett-Packard Development Company, L.P. Method of forming a through-substrate interconnect
JP2004319853A (en) * 2003-04-17 2004-11-11 Oki Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
US8084866B2 (en) * 2003-12-10 2011-12-27 Micron Technology, Inc. Microelectronic devices and methods for filling vias in microelectronic devices
JP2005174700A (en) * 2003-12-10 2005-06-30 Toyota Industries Corp Electroluminescent device
JP4365750B2 (en) * 2004-08-20 2009-11-18 ローム株式会社 Semiconductor chip manufacturing method and semiconductor device manufacturing method
JP5048230B2 (en) 2005-03-30 2012-10-17 オンセミコンダクター・トレーディング・リミテッド Semiconductor device and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139729A (en) * 1990-10-01 1992-05-13 Hitachi Ltd semiconductor equipment
JPH05152529A (en) * 1991-11-29 1993-06-18 Oki Electric Ind Co Ltd Semiconductor device
JPH08274116A (en) * 1995-03-31 1996-10-18 Nec Corp Field effect transistor
JPH11238870A (en) * 1998-02-20 1999-08-31 Nec Corp Semiconductor device and manufacture thereof
JP2002359257A (en) * 2001-05-31 2002-12-13 Fujitsu Quantum Devices Ltd Semiconductor device and manufacturing method thereof
JP2004088062A (en) * 2002-05-20 2004-03-18 Sumitomo Electric Ind Ltd Dry etching method, dry etching apparatus, and method of manufacturing semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076848A (en) * 2007-08-27 2009-04-09 Denso Corp Semiconductor device and manufacturing method thereof
JP2009070966A (en) * 2007-09-12 2009-04-02 Toshiba Corp Semiconductor device and its manufacturing method
US7888778B2 (en) 2007-09-12 2011-02-15 Kabushiki Kaisha Toshiba Semiconductor device and producing method of the same
WO2009141952A1 (en) * 2008-05-19 2009-11-26 パナソニック株式会社 Semiconductor device and method for manufacturing the same
JP2013183024A (en) * 2012-03-01 2013-09-12 Toyota Industries Corp Semiconductor device and semiconductor apparatus
JP2023520029A (en) * 2020-04-03 2023-05-15 ウルフスピード インコーポレイテッド III-Nitride based high frequency amplifier with backside source, gate and/or drain terminals
US12074123B2 (en) 2020-04-03 2024-08-27 Macom Technology Solutions Holdings, Inc. Multi level radio frequency (RF) integrated circuit components including passive devices
US12113490B2 (en) 2020-04-03 2024-10-08 Macom Technology Solutions Holdings, Inc. Group III nitride-based radio frequency transistor amplifiers having source, gate and/or drain conductive vias
JP7691434B2 (en) 2020-04-03 2025-06-11 マコム テクノロジー ソリューションズ ホールディングス, インコーポレイテッド III-nitride based high frequency amplifier having rear source, gate and/or drain terminals - Patents.com

Also Published As

Publication number Publication date
US7397128B2 (en) 2008-07-08
US8076755B2 (en) 2011-12-13
JP5048230B2 (en) 2012-10-17
US20060220178A1 (en) 2006-10-05
TWI316276B (en) 2009-10-21
US20080237808A1 (en) 2008-10-02
TW200634960A (en) 2006-10-01

Similar Documents

Publication Publication Date Title
JP5048230B2 (en) Semiconductor device and manufacturing method thereof
US8466054B2 (en) Thermal conduction paths for semiconductor structures
US5753529A (en) Surface mount and flip chip technology for total integrated circuit isolation
US9177893B2 (en) Semiconductor component with a front side and a back side metallization layer and manufacturing method thereof
KR100882703B1 (en) Semiconductor device and manufacturing method thereof, circuit board and manufacturing method thereof
US6844241B2 (en) Fabrication of semiconductor structures having multiple conductive layers in an opening
US7498636B2 (en) Semiconductor device and method of manufacturing the same
JP4308904B2 (en) Surface mounting and flip chip technology
US20060223199A1 (en) Semiconductor device and manufacturing method thereof
JPH11233727A (en) Inductor device on silicon substrate and method of manufacturing the same
US7528012B1 (en) Method for forming heat sinks on silicon on insulator wafers
US20050006742A1 (en) High frequency semiconductor module, high frequency semiconductor device and manufacturing method for the same
JP4432470B2 (en) Semiconductor device
US10593615B2 (en) Chip package with sidewall metallization
KR101247425B1 (en) Semiconductor device and method for manufacturing the semiconductor device
JP4696152B2 (en) Semiconductor device manufacturing method and semiconductor device
JP4851163B2 (en) Manufacturing method of semiconductor device
CN100505300C (en) Semiconductor device and manufacturing method thereof
TWI857265B (en) A semiconductor device and process for making same
JP2007053124A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5048230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250