JP2006307242A - Hard film - Google Patents
Hard film Download PDFInfo
- Publication number
- JP2006307242A JP2006307242A JP2005127575A JP2005127575A JP2006307242A JP 2006307242 A JP2006307242 A JP 2006307242A JP 2005127575 A JP2005127575 A JP 2005127575A JP 2005127575 A JP2005127575 A JP 2005127575A JP 2006307242 A JP2006307242 A JP 2006307242A
- Authority
- JP
- Japan
- Prior art keywords
- hard film
- hard
- hard coating
- cutting
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000013078 crystal Substances 0.000 claims abstract description 50
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 238000005240 physical vapour deposition Methods 0.000 claims abstract description 5
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 4
- 238000000576 coating method Methods 0.000 claims description 96
- 239000011248 coating agent Substances 0.000 claims description 93
- 238000003754 machining Methods 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 65
- 238000005520 cutting process Methods 0.000 abstract description 61
- 239000000203 mixture Substances 0.000 abstract description 18
- 239000000758 substrate Substances 0.000 abstract description 17
- 238000003466 welding Methods 0.000 abstract description 14
- 230000003647 oxidation Effects 0.000 abstract description 10
- 238000007254 oxidation reaction Methods 0.000 abstract description 10
- 239000002184 metal Substances 0.000 abstract description 7
- 238000005461 lubrication Methods 0.000 abstract description 6
- 150000002739 metals Chemical class 0.000 abstract description 2
- 238000001035 drying Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 72
- 230000008020 evaporation Effects 0.000 description 15
- 238000001704 evaporation Methods 0.000 description 15
- 229910018557 Si O Inorganic materials 0.000 description 14
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 14
- 238000012545 processing Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 239000012495 reaction gas Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000002003 electron diffraction Methods 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 230000001050 lubricating effect Effects 0.000 description 4
- 229910019974 CrSi Inorganic materials 0.000 description 3
- 238000001069 Raman spectroscopy Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000013077 target material Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000997 High-speed steel Inorganic materials 0.000 description 2
- -1 NbSi 2 Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910010038 TiAl Inorganic materials 0.000 description 2
- 229910008484 TiSi Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
本願発明は、超硬合金、サーメット、高速度鋼、ダイス鋼等に被覆する耐摩耗性、密着性及び耐高温酸化特性などの硬質皮膜の機械的特性に、極めて優れた靭性を付与した硬質皮膜に関する。 The present invention is a hard coating that imparts extremely excellent toughness to the mechanical properties of hard coatings such as wear resistance, adhesion and high temperature oxidation resistance coated on cemented carbide, cermet, high speed steel, die steel, etc. About.
金属加工の高能率化を目的とした切削速度の高速化、並びに切削条件における1刃当たりの送り量が0.3mmを越えるような高送り切削加工に対し、従来の硬質皮膜を被覆した工具では、密着性、硬質皮膜の機械的特性である耐酸化性、耐摩耗性に満足のいく性能が得られていない。この様な背景から、硬質皮膜の耐酸化性、耐摩耗性をより向上させる事を目的とした技術の開示が行われている。以下特許文献は、Si含有硬質皮膜及び皮膜の高硬度化に関する技術を開示している。
特許文献1〜4、特許文献6は、Siを含む硬質皮膜に関しその化合物・結晶形態等が記載され、特許文献5は、化合物層と組成変調層とが周期的に積層され、かつ層間で結晶格子が1周期以上連続している耐摩耗性積層硬質皮膜が記載され、特許文献6は、例えば、二硫化モリブデンとTiNからなる潤滑性の高い硬質皮膜が、特許文献7、8は、超格子(人工格子)積層により、硬質皮膜を高硬度化させることが記載されている。
With a tool coated with a conventional hard coating, the cutting speed is increased for the purpose of improving the efficiency of metal processing, and the high feed cutting process in which the feed amount per blade exceeds 0.3 mm under cutting conditions. However, satisfactory performance has not been obtained in terms of adhesion and mechanical properties of the hard film, such as oxidation resistance and wear resistance. From such a background, a technique for the purpose of further improving the oxidation resistance and wear resistance of a hard coating has been disclosed. The following patent documents disclose Si-containing hard coatings and techniques related to increasing the hardness of the coating.
Patent Documents 1 to 4 and Patent Document 6 describe a compound film, a crystal form, and the like relating to a hard film containing Si, and Patent Document 5 describes that a compound layer and a composition modulation layer are periodically stacked and crystallized between layers. A wear-resistant laminated hard film in which the lattice is continuous for one period or more is described. Patent Document 6 describes, for example, a hard film having high lubricity composed of molybdenum disulfide and TiN, and Patent Documents 7 and 8 describe superlattices. (Artificial lattice) It is described that the hardness of a hard coating is increased by lamination.
しかし、上記特許文献1〜4は、物理蒸着法におけるアーク放電型イオンプレーティング方式のみを利用した試みであり、刃先などに溶着が発生しやすい鋼種の加工においては、摩耗発生の大小の議論よりも、まず、溶着特性の改善を行わなければ、安定加工は見込めない。特許文献5、6は、硬質皮膜の密着性及び硬度が十分ではなく、切削工具の耐摩耗性が十分に向上していない。特許文献7、8は、耐酸化性及び耐摩耗性を保持したまま、乾式切削条件にも耐えうる十分な潤滑性を有するという要求を満たしていない。
従って、上記文献に記載された硬質皮膜はいずれも、耐摩耗性及び耐酸化性を保持した状態で、乾式化、高速化、高送り化に対応可能な靭性の要求を満たしていない。本発明の目的は、高硬度、耐高温酸化性の優れる硬質皮膜においても密着性を犠牲にすること無く、特に靭性を改善することである。併せて高温状態での耐溶着性、潤滑特性も改善し、例えば切削加工などにおける乾式化、高速化、高送り化に対応可能な硬質皮膜を提供することである。
However, the above Patent Documents 1 to 4 are attempts using only the arc discharge ion plating method in the physical vapor deposition method, and in the processing of steel types that are likely to be welded to the cutting edge or the like, from the large and small discussion of wear generation However, stable processing cannot be expected without first improving the welding characteristics. In Patent Documents 5 and 6, the adhesion and hardness of the hard coating are not sufficient, and the wear resistance of the cutting tool is not sufficiently improved. Patent Documents 7 and 8 do not satisfy the requirement of having sufficient lubricity to withstand dry cutting conditions while maintaining oxidation resistance and wear resistance.
Therefore, none of the hard coatings described in the above documents satisfy the requirements for toughness that can cope with dryness, high speed, and high feed while maintaining wear resistance and oxidation resistance. An object of the present invention is to improve particularly toughness without sacrificing adhesion even in a hard film having high hardness and excellent high-temperature oxidation resistance. At the same time, it is intended to provide a hard coating that can improve welding resistance and lubrication characteristics at high temperatures, and can cope with, for example, dry processing, high speed, and high feed in cutting and the like.
本願発明の硬質皮膜は、物理蒸着法により基体表面に形成された硬質皮膜であって、該硬質皮膜は4a、5a、6a族、Al、Bから選択される1種以上の金属元素とSiを含み、C、N、Oから選択される1種以上の非金属元素からなり、該硬質皮膜は柱状組織を有し、該柱状組織中の結晶粒はSi含有量に差がある複数の層からなる多層構造を有し、該層間の境界領域では少なくとも結晶格子縞が連続している領域が存在し、各層の厚みT(nm)が0.1≦T≦100、であることを特徴とする。本構成を採用することによって、本願発明の硬質皮膜はSiを含有することから耐酸化性、耐摩耗性及び潤滑性に優れ、基体との密着性、靭性及び耐溶着性にも優れた硬質皮膜を提供することできる。 The hard film of the present invention is a hard film formed on a substrate surface by physical vapor deposition, and the hard film contains one or more metal elements selected from 4a, 5a, 6a group, Al, and B and Si. The hard coating has a columnar structure, and the crystal grains in the columnar structure are composed of a plurality of layers having different Si contents. In the boundary region between the layers, there is at least a region where crystal lattice stripes are continuous, and the thickness T (nm) of each layer is 0.1 ≦ T ≦ 100. By adopting this configuration, since the hard coating of the present invention contains Si, it is excellent in oxidation resistance, wear resistance and lubricity, and also has excellent adhesion to the substrate, toughness and welding resistance. Can be provided.
本願発明の硬質皮膜はSiが結晶質相として存在し、該結晶質相はα型Si3N4とβ型Si3N4とを有することが好ましい。該硬質皮膜はSiとOとの結合(以下、Si−O結合と記す。)を有することが好ましい。該硬質皮膜の表面は機械加工により平滑化されていることが好ましい。 In the hard coating of the present invention, Si is present as a crystalline phase, and the crystalline phase preferably has α-type Si 3 N 4 and β-type Si 3 N 4 . The hard coating preferably has a bond between Si and O (hereinafter referred to as Si—O bond). The surface of the hard coating is preferably smoothed by machining.
本願発明は、高硬度、耐高温酸化性の優れる硬質皮膜においても密着性を犠牲にすること無く、特に靭性を改善することである。併せて高温状態での耐溶着性、潤滑特性も改善した硬質皮膜を提供することができた。本発明の硬質皮膜を、例えば切削工具等に適用した場合、乾式高能率切削加工をはじめ、金型加工時の強断続切削環境下においても安定性と、長い工具寿命が得られ、切削加工における生産性の向上に極めて有効である。 The present invention is to improve toughness without sacrificing adhesion even in a hard film having high hardness and high-temperature oxidation resistance. At the same time, it was possible to provide a hard coating with improved welding resistance and lubrication characteristics at high temperatures. When the hard coating of the present invention is applied to, for example, a cutting tool or the like, stability and a long tool life can be obtained even in a severe interrupted cutting environment at the time of mold processing, including dry high-efficiency cutting. It is extremely effective in improving productivity.
(1)皮膜の組成
本願発明の硬質皮膜の組成は、周期律表の4a、5a、6a族、Al、Bから選択される1種以上の金属元素とSiを含み、C、N、Oから選択される1種以上の非金属元素を有する。本願発明の硬質皮膜がSiを含有することにより、高温環境において皮膜表層付近に緻密なSiの酸化物が形成される。このことは例えば切削工具に適用した場合、切削時の発熱により形成したSi酸化物が、被削材に含まれるFe元素の硬質皮膜への拡散を抑制する。その結果、工具の切れ刃での溶着が抑制される。Si含有量は、金属元素のみの原子%で、0.1〜30%であるのが好ましい。Si含有量が30%を超えると、硬質皮膜の硬度と耐熱性は向上するが、破断面組織が柱状組織から微細粒状組織に変化する。微細粒状組織になると、硬質皮膜の結晶粒界が多くなり、切削時の発熱により大気中の酸素や被削材のFe元素が拡散しやすくなる。その結果、例えば被覆切削工具の硬質皮膜として適用した場合、切れ刃に溶着が発生し、潤滑性が損なわれる。従って、硬質皮膜の破断面の組織形態も重要であり、特に高送り加工では柱状組織とするのが重要である。またSi含有量が30%を超えると、硬質皮膜内の残留応力が増大し、基体と硬質皮膜の界面から剥離が発生しやすくなる。剥離部に溶着が生じるので、剥離の発生を防止するのは重要である。一方、Si含有量が下限の0.1%はSiを容易に検出し得る限界である。
本願発明の硬質皮膜がBを含有することにより硬質皮膜の硬度及び潤滑性を高める効果がある。例えばBを含有する硬質皮膜を切削工具へ被覆すると工具寿命が長くなる。硬度の向上はc−BN相により、また潤滑性の向上はh−BN相による。BとNの比率を最適化することにより、硬度と潤滑性を同時に高めることができる。c−BN相とh−BN相の比率は成膜時に印加するバイアス電圧により制御可能である。
本願発明の硬質皮膜における金属組成中でAlを含有すると、表層にAl2O3が形成され、硬質皮膜の静的な耐熱性は向上するが、実際の切削加工では被削材中のFeなどが硬質皮膜に拡散する。従って、Al含有量は、金属元素のみの原子%で、50%以下であるのが好ましい。より好ましいAl含有量は、70%から20%である。20%未満の場合、硬質皮膜の耐摩耗性及び耐酸化性が劣ることがある。
非金属成分のC、N、O成分において、O含有量は潤滑性の改善のために非金属元素のみの原子%で、0.3%以上、5%以下であるのがより好ましい。O含有量が5%を超えると、硬質皮膜の潤滑性は向上するものの硬度が低下し、また破断面の結晶組織が微細化し、漉き取り摩耗が発生しやすくなる。硬質皮膜の組成において、金属元素の合計量をm、非金属元素の合計量nとしたとき、原子比(n/m)は1.0超であるのが好ましく、1.02以上であるのがより好ましい。またn/mの上限は1.7であるのが好ましい。
(1) Composition of coating The composition of the hard coating of the present invention comprises one or more metal elements selected from the groups 4a, 5a, 6a, Al, and B of the periodic table and Si, and from C, N, and O. Having one or more non-metallic elements selected. When the hard coating of the present invention contains Si, a dense Si oxide is formed in the vicinity of the coating surface layer in a high temperature environment. For example, when this is applied to a cutting tool, the Si oxide formed by the heat generated during cutting suppresses diffusion of the Fe element contained in the work material into the hard coating. As a result, welding at the cutting edge of the tool is suppressed. The Si content is preferably from 0.1 to 30% in atomic percent of only the metal element. When the Si content exceeds 30%, the hardness and heat resistance of the hard coating are improved, but the fracture surface structure changes from a columnar structure to a fine granular structure. When the microstructure is fine, the crystal grain boundaries of the hard coating increase, and oxygen in the atmosphere and Fe element of the work material are likely to diffuse due to heat generated during cutting. As a result, for example, when applied as a hard coating of a coated cutting tool, welding occurs on the cutting edge, and the lubricity is impaired. Therefore, the structure of the fracture surface of the hard coating is also important, and it is important to have a columnar structure especially in high feed processing. On the other hand, if the Si content exceeds 30%, the residual stress in the hard coating increases, and peeling easily occurs from the interface between the substrate and the hard coating. Since welding occurs at the peeling portion, it is important to prevent the occurrence of peeling. On the other hand, 0.1% of the lower limit of the Si content is a limit at which Si can be easily detected.
When the hard film of the present invention contains B, there is an effect of increasing the hardness and lubricity of the hard film. For example, when a hard film containing B is coated on a cutting tool, the tool life is extended. The improvement in hardness is due to the c-BN phase, and the improvement in lubricity is due to the h-BN phase. By optimizing the ratio of B and N, hardness and lubricity can be improved at the same time. The ratio between the c-BN phase and the h-BN phase can be controlled by a bias voltage applied during film formation.
When Al is contained in the metal composition of the hard coating of the present invention, Al 2 O 3 is formed on the surface layer, and the static heat resistance of the hard coating is improved, but in actual cutting, Fe in the work material, etc. Diffuses into the hard coating. Therefore, the Al content is preferably 50% or less in terms of atomic% of only the metal element. A more preferable Al content is 70% to 20%. If it is less than 20%, the wear resistance and oxidation resistance of the hard coating may be inferior.
In the C, N, and O components of the non-metallic component, the O content is more preferably 0.3% or more and 5% or less in terms of atomic% of only the non-metallic element in order to improve lubricity. When the O content exceeds 5%, the lubricity of the hard coating is improved, but the hardness is lowered, and the crystal structure of the fracture surface is refined, and scraping wear tends to occur. In the composition of the hard coating, when the total amount of metal elements is m and the total amount of nonmetallic elements is n, the atomic ratio (n / m) is preferably more than 1.0, and is 1.02 or more. Is more preferable. The upper limit of n / m is preferably 1.7.
(2)皮膜の構造、特性
硬質皮膜の断面を透過電子顕微鏡(以下、TEMと記す。)で観察すると、本願発明の硬質皮膜の断面組織は明暗を示す複数の層を有することが分かる。これらの層は、Si含有量が相対的に多い層(A層とする)と、Si含有量が相対的に少ない層(B層とする)とからなり、A層及びB層は交互に界面なく積層している。TEMに付設されたエネルギー分散型X線分光(以下、EDXと記す。)分析による組成分析の結果、A層におけるSi含有量の平均値、B層におけるSi含有量の平均値との差は10%以下、より好ましくは0.2〜5%の範囲内である。該含量の差が0.2〜5%の範囲内にあると、硬質皮膜は高い靭性を有する。A層及びB層にSi含有量の差を設けることにより、優れた潤滑性を維持しながら靭性を向上させ、残留圧縮応力を抑制した硬質皮膜が得られる。
本願発明の硬質皮膜は柱状組織を有し、柱状結晶粒は明確な界面なしにSi含有量に差がある複数の層を有し、層間の境界領域では少なくとも結晶格子縞が連続している領域が存在する。柱状組織は膜厚方向に縦長に成長した結晶組織である。硬質皮膜は多結晶であるが、各結晶粒は単結晶に類似した形態である。しかも柱状結晶粒は成長方向にSi含有量に差がある複数の層を有する多層構造を有し、層間の境界領域で結晶格子縞が連続している。ここで、結晶格子縞の連続性は全ての層間境界領域にある必要はなく、TEMで観察した時に実質的に結晶格子縞が連続している層間境界領域があれば良い。柱状結晶粒がSi含有量に差がある複数の層からなる多層構造を有することにより、硬質皮膜は全体として靭性を有する。
硬質皮膜の各層の厚さTは0.1〜100nmである。Tが100nmを超えると、層間の境界領域に歪が発生し、結晶粒中の格子縞が不連続となり、硬質皮膜の機械的強度が低下する。例えば硬質皮膜を切削工具に形成した場合、切削初期において切削衝撃により硬質皮膜に層状破壊が発生する。層間の境界領域における歪の発生の回避は、硬質皮膜と基体との密着性の改善に有効である。一方、Tの下限は、X線回折装置や透過型電子顕微鏡により層構造を確認できる最小厚さである0.1nmとした。また0.1nm未満の積層周期で多層硬質皮膜を形成すると、皮膜特性にばらつきが生じる。
本願発明の硬質皮膜は、上記の柱状結晶粒をなす領域とは区別された部分から選択した皮膜断面部分において、Siの存在形態がSi3N4となっている部分を有することが好ましい。Si3N4の存在はラマン分光分析によって確認される。Si3N4には、α型結晶構造とβ型結晶構造のSi3N4が存在する。そこでα型Si3N4ピークは、波数が830から850cm−1の範囲に、またβ型Si3N4ピークは、波数が1020から1070cm−1の範囲において得られる。ここで、α型Si3N4は比較的軟質な結晶質相であり、β型Si3N4は比較的硬質な結晶質相であり、両者を存在させることで、Si含有硬質皮膜の高硬度化と靭性とが両立して向上させることができる。この現象は、以下の様な理由による。即ち、硬質皮膜に硬質な結晶質相と軟質な結晶質相とが混在して堆積するために歪が発生し、硬質皮膜の内部応力増加によって高硬度化が計られる。一方、硬質皮膜には歪はあるものの軟質な結晶質相も存在するため、比較的硬い結晶質相の間でクッション効果を示す。その結果、靭性に富むのである。
本願発明の硬質皮膜はSi−O結合を有するのが好ましい。特に表面におけるSi−O結合の存在により、硬質皮膜は優れた潤滑性を発揮する。例えば被覆切削工具に適用した場合、切削初期における激しい溶着を抑制することができる。Si−O結合は、X線光電子分光法(以下、XPSと記す。)により100〜105eVの範囲にピークが存在することで確認できる。XPSは、AlKαのX線源及び直径100μmの分析領域で、電子中和銃を使用して行った。
(2) Structure and characteristics of film When the cross section of the hard film is observed with a transmission electron microscope (hereinafter referred to as TEM), it is found that the cross-sectional structure of the hard film of the present invention has a plurality of layers showing light and dark. These layers are composed of a layer having a relatively high Si content (referred to as layer A) and a layer having a relatively low Si content (referred to as layer B), and the A layer and the B layer are alternately interfaced. Laminate without. As a result of composition analysis by energy dispersive X-ray spectroscopy (hereinafter referred to as EDX) attached to the TEM, the difference between the average value of Si content in the A layer and the average value of Si content in the B layer is 10 % Or less, more preferably in the range of 0.2 to 5%. When the difference in content is in the range of 0.2 to 5%, the hard coating has high toughness. By providing a difference in Si content between the A layer and the B layer, it is possible to obtain a hard coating that improves toughness and suppresses residual compressive stress while maintaining excellent lubricity.
The hard coating of the present invention has a columnar structure, the columnar crystal grains have a plurality of layers having a difference in Si content without a clear interface, and at least a region where crystal lattice fringes are continuous in the boundary region between the layers. Exists. The columnar structure is a crystal structure that grows vertically in the film thickness direction. The hard coating is polycrystalline, but each crystal grain has a form similar to a single crystal. In addition, the columnar crystal grains have a multilayer structure having a plurality of layers having different Si contents in the growth direction, and crystal lattice fringes are continuous in the boundary region between the layers. Here, the continuity of the crystal lattice stripes does not have to be in all the interlayer boundary regions, and it is sufficient if there is an interlayer boundary region in which the crystal lattice stripes are substantially continuous when observed with a TEM. Since the columnar crystal grains have a multilayer structure composed of a plurality of layers having different Si contents, the hard coating as a whole has toughness.
The thickness T of each layer of the hard coating is 0.1 to 100 nm. When T exceeds 100 nm, distortion occurs in the boundary region between the layers, the lattice stripes in the crystal grains become discontinuous, and the mechanical strength of the hard coating is lowered. For example, when a hard film is formed on a cutting tool, laminar fracture occurs in the hard film due to a cutting impact in the initial stage of cutting. Avoiding the occurrence of strain in the boundary region between layers is effective in improving the adhesion between the hard film and the substrate. On the other hand, the lower limit of T was set to 0.1 nm, which is the minimum thickness at which the layer structure can be confirmed with an X-ray diffractometer or a transmission electron microscope. Moreover, when a multilayer hard film is formed with a lamination period of less than 0.1 nm, the film characteristics vary.
The hard coating of the present invention preferably has a portion in which the presence of Si is Si 3 N 4 in the coating cross-sectional portion selected from the portion distinguished from the region forming the columnar crystal grains. The presence of Si 3 N 4 is confirmed by Raman spectroscopy. The Si 3 N 4, Si 3 N 4 of α-type crystal structure and a β-type crystal structure is present. Therefore, the α-type Si 3 N 4 peak is obtained in the wave number range of 830 to 850 cm −1 , and the β-type Si 3 N 4 peak is obtained in the wave number range of 1020 to 1070 cm −1 . Here, α-type Si 3 N 4 is a relatively soft crystalline phase, and β-type Si 3 N 4 is a relatively hard crystalline phase. Hardness and toughness can both be improved. This phenomenon is due to the following reasons. That is, since a hard crystalline phase and a soft crystalline phase are deposited together in the hard coating, distortion occurs, and an increase in the internal stress of the hard coating increases the hardness. On the other hand, although a hard film has a strain but a soft crystalline phase, there is a cushioning effect between relatively hard crystalline phases. As a result, it is rich in toughness.
The hard coating of the present invention preferably has a Si—O bond. In particular, the hard film exhibits excellent lubricity due to the presence of Si—O bonds on the surface. For example, when applied to a coated cutting tool, intense welding at the initial stage of cutting can be suppressed. The Si—O bond can be confirmed by the presence of a peak in the range of 100 to 105 eV by X-ray photoelectron spectroscopy (hereinafter referred to as XPS). XPS was performed using an electron neutralization gun with an AlKα X-ray source and an analysis area of 100 μm in diameter.
(3)皮膜の製造方法
本願発明の多層硬質皮膜を製造するにはプラズマ密度の異なる物理蒸着法を用いる。具体的には、界面の無い結晶粒を連続的に成長させるために、プラズマ化した反応ガス中でプラズマ密度の高いアーク放電式イオンプレーティング(以下、AIPと記す。)法とプラズマ密度の低いマグネトロンスパッタリング(以下、MSと記す。)法を同時に行う。これにより、硬質皮膜内の結晶粒自体が大きな機械的強度を有する。これに対して、AIP法とMS法を逐次的又は間欠的に行うと、硬質皮膜の層間にはっきりした界面が生じ、そこで硬質皮膜の強度が低くなる。
AIP法は発生するプラズマ密度が非常に高いため、プラズマ中に発生したイオンが基体に入射する際のエネルギーが大きく、良質な硬質皮膜が形成されるものの、残留圧縮応力の抑制が困難である。また多層構造からなる硬質皮膜の各層間に特定元素の含有量差を付与するのが困難である。従って、AIP法とMS法とを組み合わせることにより、高硬度の硬質皮膜に優れた潤滑性、密着性及び耐摩耗性を付与するのが好ましい。
具体的には、AIPターゲット及びMSターゲットと、AIP法及びMS法の両方に適する反応ガスとを有する真空装置を用いるのが好ましい。真空処理室内に、少なくともAIP法とMS法が可能な蒸発源が一対以上設置され、同時に放電することができる仕様になっている。但し、AIP法の蒸発源とMS法の蒸発源が必ずしも対になる必要はなく、同一な真空処理室内に両方式の蒸発源が1つ以上設置されており、同時放電が可能であればよい。各ターゲットの組成自体は限定的でない。しかし、MS法のターゲット材は、Siを含有する系を用いることが望ましい。これより、Siを含有する反応がスを使用するプラズマ支援型化学蒸着法の環境上、安全性の問題もなく硬質皮膜にSiを含有させることができる。
成膜に使用する反応ガスは、窒素やアルゴンに限定されるものではなく、AIP法の蒸発源とMS法の蒸発源などを同時に放電させ、プラズマを形成させることができれば、いずれのガス種に制約されることは無い。但し、本願発明の硬質皮膜の潤滑特性を優れたものにするために、成膜時に用いる反応ガス中に酸素を含有させることが好ましい。これにより硬質皮膜はSi−O結合を有する。このSi−O結合が硬質皮膜の潤滑特性に寄与するからである。
AIPターゲットは単一の合金ターゲットでも、組成の異なる複数の金属又は合金のターゲットでも良い。反応ガスがプラズマ化した状態で、基体を両ターゲットに交互に接近させながらAIP法及びMS法を同時に行うと、価数の異なるイオンが同時に基体に到達する。基体がプラズマ密度の高いAIP法の蒸発源に接近すると、硬質層が形成され、次いでプラズマ密度の低いMS法の蒸発源に接近すると軟質層が形成される。これにより皮膜全体に歪が発生し内部応力によって皮膜は高硬度化する。このとき、硬質層と軟質層との間では明瞭な界面はない。また界面領域での組成は傾斜を有して漸次変化する。このように、組成が漸次変化する領域を介して軟質層が硬質層にサンドイッチされるので、クッション効果により硬質皮膜全体は高硬度を保ちながら、靭性及び耐衝撃性を有する。そして、該硬質皮膜は柱状組織を有し、軟質層と硬質層を有する柱状結晶粒を有する。
AIP法とMS法とを同時に放電させることで、多層構造を有する硬質皮膜における結晶粒の組織は、分断されることなく連続的に結晶粒を成長させ、同一結晶粒に多層構造を存在させることが可能である。その結果、硬質皮膜の靭性など、機械的強度を向上させること可能である。この理由は、異なる組成の皮膜を積層させたときでも明確な積層界面を持たないため、積層界面からの剥離や破壊が発生し難くなるからである。更に、AIP法とMS法とを同時に放電させることで、AIP法ではプラズマ発生が困難であった高融点材料や高潤滑材料を硬質皮膜膜に添加することが可能である。AIP法及びMS法を同時に行うとき、高密度プラズマが発生するAIP蒸着源と低密度プラズマが発生するMS蒸着源とからなる各蒸着源と、被覆基体との配置は、被覆基体が各プラズマ内を交互に通過して皮膜が積層される様に配置することが好ましい。
プラズマ密度の異なるAIP法とMS法とを同時に放電させることで、Siを含有する硬質皮膜にSi3N4を存在させることができる。例えばMS法によってSiを添加する場合を考える。Si3N4には結晶形態の異なるα型結晶とβ型結晶が存在するが、この両者の存在割合をMS法における成膜条件によって制御することが可能である。α型結晶は比較的軟質であり、β型結晶は比較的硬質であるが、両者が適正な割合で皮膜に存在することで、Si含有の硬質皮膜の高硬度化と靭性に加え、更に潤滑特性も向上させることが可能である。AIP法とMS法を同時に使用した場合、MS蒸発源の放電出力を6.5kW以下に設定することによって、Si3N4はα型結晶とβ型結晶質の形態になる。更に3.5kW以下に設定するとプラズマ密度がより小さくなるため、α型Si3N4がβ型Si3N4よりも多く含まれるようになり、本願発明では好ましい形態となる。この理由は、プラズマ密度の低いMS法の蒸発源によって軟質層が形成される際に、該軟質層にはα型Si3N4が多く含まれるようになり、軟質層と硬質層との有意な差がクッション効果に有効となるからである。上記では、MS法によってSiを添加する場合について述べたが、被覆基体がAIP法のプラズマ内を通過して皮膜が積層される際にも、Si元素は回り込みによって皮膜に堆積される。その結果、皮膜断面で見た場合、Si元素は含有量差が生じるものの、積層方向全体に存在する。
プラズマ密度の異なるAIP法とMS法とを同時に放電させる時に、必要な反応ガス圧力の設定は最適化を行うことが望ましい。AIP法は、比較的高い反応ガス圧力が用いられており、1Pa程度から8Pa程度の範囲が安定して被覆できる。一方、MS法はプラズマ密度が低いため、成膜速度を高めるために0.5Paにも満たない反応ガス圧力で実施される。そこで、AIP法とMS法とが同時にプラズマを形成させることが可能であり、かつ形成された硬質皮膜の物性である高硬度、靭性を向上が可能な反応ガス圧力の条件を検討した。その結果、反応ガス圧力P1(Pa)を0.5≦P1≦8.0とした場合、特性を満足する硬質皮膜が得られた。0.5Pa未満では、AIP法における放電が困難であった。またAIP法ではマクロパーティクルの発生を抑制することが重要である。その抑制対策としてターゲット周辺に磁場領域を作用させるが、それでも0.5Pa未満の条件下ではマクロパーティクルが多く発生する。このマクロパーティクルは硬質膜内部の欠陥を多くするため好ましくない。一方、8.0Paを超えるとMS法における放電が困難となり、均一なプラズマを発生させることが難しい。その結果、硬質皮膜の靭性が劣るため好ましくない。
成膜条件についてAIP法の電流値は100から150Aの範囲に設定することが好ましい。MS法の放電出力は6.5kW以下に設定することが好ましい。これはSi3N4を結晶質の形態とするために好ましい。更に、柱状組織を有する多層硬質皮膜の各層の厚さTを100nm以下に制御するとともに、柱状結晶粒の格子縞を連続させるために好適である。これにより、強固な密着性を確保し、高硬度で高靭性を有する硬質皮膜を形成させることが可能である。
(3) Manufacturing method of film | membrane The physical vapor deposition method from which plasma density differs is used in order to manufacture the multilayer hard film of this invention. Specifically, in order to continuously grow crystal grains having no interface, an arc discharge ion plating (hereinafter referred to as AIP) method having a high plasma density in a plasma reaction gas and a low plasma density are used. Magnetron sputtering (hereinafter referred to as MS) is performed simultaneously. Thereby, the crystal grains themselves in the hard coating have a large mechanical strength. On the other hand, when the AIP method and the MS method are performed sequentially or intermittently, a clear interface is formed between the layers of the hard coating, and the strength of the hard coating is reduced there.
Since the plasma density generated by the AIP method is very high, energy generated when ions generated in the plasma are incident on the substrate is large, and although a good hard film is formed, it is difficult to suppress the residual compressive stress. In addition, it is difficult to give a difference in the content of the specific element between the layers of the hard film having a multilayer structure. Therefore, it is preferable to combine the AIP method and the MS method to impart excellent lubricity, adhesion and wear resistance to the hard film having high hardness.
Specifically, it is preferable to use a vacuum apparatus having an AIP target and an MS target and a reactive gas suitable for both the AIP method and the MS method. In the vacuum processing chamber, at least a pair of evaporation sources capable of at least the AIP method and the MS method are installed, and are designed so that they can be discharged simultaneously. However, the evaporation source of the AIP method and the evaporation source of the MS method are not necessarily paired, and one or more evaporation sources of both types are installed in the same vacuum processing chamber as long as simultaneous discharge is possible. . The composition of each target is not limited. However, it is desirable to use a system containing Si as a target material for the MS method. Accordingly, Si can be contained in the hard coating without any safety problem in the environment of the plasma-assisted chemical vapor deposition method in which the reaction containing Si uses sulfur.
The reaction gas used for film formation is not limited to nitrogen or argon, and any gas species can be used as long as the AIP evaporation source and the MS evaporation source can be discharged simultaneously to form plasma. There are no restrictions. However, in order to make the lubricating properties of the hard coating of the present invention excellent, it is preferable to contain oxygen in the reaction gas used during film formation. As a result, the hard coating has Si—O bonds. This is because this Si—O bond contributes to the lubricating properties of the hard coating.
The AIP target may be a single alloy target or a target of a plurality of metals or alloys having different compositions. When the AIP method and the MS method are simultaneously performed while the substrate is alternately approaching both targets in a state where the reaction gas is turned into plasma, ions having different valences reach the substrate at the same time. When the substrate approaches an AIP evaporation source with a high plasma density, a hard layer is formed, and then when a substrate approaches an MS evaporation source with a low plasma density, a soft layer is formed. As a result, distortion occurs in the entire film, and the film is hardened by internal stress. At this time, there is no clear interface between the hard layer and the soft layer. Further, the composition in the interface region gradually changes with a slope. As described above, since the soft layer is sandwiched between the hard layers through the region where the composition gradually changes, the entire hard film has toughness and impact resistance while maintaining high hardness due to the cushion effect. The hard film has a columnar structure and has columnar crystal grains having a soft layer and a hard layer.
By simultaneously discharging the AIP method and the MS method, the crystal grain structure in the hard film having a multilayer structure is allowed to grow continuously without being divided and the multilayer structure exists in the same crystal grain. Is possible. As a result, it is possible to improve mechanical strength such as toughness of the hard coating. The reason for this is that even when films having different compositions are laminated, there is no clear lamination interface, and therefore peeling and destruction from the lamination interface are difficult to occur. Furthermore, by simultaneously discharging the AIP method and the MS method, it is possible to add a high melting point material or a highly lubricating material, which was difficult to generate plasma by the AIP method, to the hard coating film. When performing the AIP method and the MS method at the same time, the arrangement of each deposition source comprising an AIP deposition source that generates a high-density plasma and an MS deposition source that generates a low-density plasma and the coated substrate is as follows. It is preferable to arrange them so that the films are laminated alternately.
By simultaneously discharging the AIP method and the MS method with different plasma densities, Si 3 N 4 can be present in the hard coating containing Si. For example, consider the case of adding Si by the MS method. There are α-type crystals and β-type crystals having different crystal forms in Si 3 N 4 , and the existence ratio of both can be controlled by film forming conditions in the MS method. The α-type crystal is relatively soft and the β-type crystal is relatively hard, but both exist in the coating at an appropriate ratio, so that in addition to increasing the hardness and toughness of the Si-containing hard coating, further lubrication The characteristics can also be improved. When the AIP method and the MS method are used simultaneously, Si 3 N 4 is in the form of α-type crystals and β-type crystals by setting the discharge output of the MS evaporation source to 6.5 kW or less. Furthermore, if it is set to 3.5 kW or less, the plasma density becomes smaller, so more α-type Si 3 N 4 is contained than β-type Si 3 N 4 , which is a preferred embodiment in the present invention. This is because when the soft layer is formed by the evaporation source of the MS method having a low plasma density, the soft layer contains a large amount of α-type Si 3 N 4. This is because the difference is effective for the cushion effect. In the above, the case where Si is added by the MS method has been described. However, when the coating substrate is passed through the plasma of the AIP method and the coating is laminated, the Si element is deposited on the coating by wraparound. As a result, when viewed from the cross section of the film, the Si element is present in the entire stacking direction, although the content difference occurs.
When simultaneously discharging the AIP method and the MS method with different plasma densities, it is desirable to optimize the setting of the necessary reaction gas pressure. In the AIP method, a relatively high reaction gas pressure is used, and a range of about 1 Pa to about 8 Pa can be stably coated. On the other hand, since the plasma density is low, the MS method is performed at a reaction gas pressure of less than 0.5 Pa in order to increase the deposition rate. Then, the conditions of the reactive gas pressure that can form plasma at the same time by the AIP method and the MS method and can improve the high hardness and toughness, which are physical properties of the formed hard film, were examined. As a result, when the reaction gas pressure P1 (Pa) was 0.5 ≦ P1 ≦ 8.0, a hard coating satisfying the characteristics was obtained. If it is less than 0.5 Pa, it is difficult to discharge by the AIP method. In the AIP method, it is important to suppress the generation of macro particles. As a suppression measure, a magnetic field region is applied around the target, but many macro particles are generated even under a condition of less than 0.5 Pa. This macro particle is not preferable because it increases the number of defects inside the hard film. On the other hand, if it exceeds 8.0 Pa, it is difficult to discharge in the MS method, and it is difficult to generate uniform plasma. As a result, the toughness of the hard coating is inferior, which is not preferable.
Regarding the film forming conditions, the current value of the AIP method is preferably set in the range of 100 to 150A. The discharge output of the MS method is preferably set to 6.5 kW or less. This is preferred to make Si 3 N 4 crystalline. Furthermore, it is suitable for controlling the thickness T of each layer of the multilayer hard coating having a columnar structure to 100 nm or less and making the lattice fringes of the columnar crystal grains continuous. Thereby, it is possible to secure a strong adhesion and to form a hard film having high hardness and high toughness.
切削工具に本願発明の硬質皮膜を形成すると、優れた潤滑性、密着性及び耐摩耗性を有するために、被削材の溶着が防がれる。該硬質皮膜は潤滑性を有し、切れ刃部が高温となる乾式切削加工での被削材元素の溶着及び拡散を抑制することができる。該硬質皮膜を被覆した切削工具は、切削加工の乾式化、高速化、高送り化に対応する。高送りの切削は、例えば1刃当たりの送り量が0.3mm/刃を超える切削を意味する。本願発明の硬質皮膜の表面を機械加工により平滑化することにより、耐摩擦性が安定化し、工具の切削寿命のばらつきが低減する効果を有する。基体表面にTiの窒化物、炭窒化物又は硼窒化物、TiAl合金、Cr、W等からなる中間層を設けると、基体と硬質皮膜との密着力が増大し、硬質皮膜の耐剥離性及び耐欠損性が向上する。本願発明の硬質皮膜を被覆した切削工具は、乾式切削加工に好適であるが、湿式切削加工にも使用できる。いずれの場合も、中間層の存在により繰り返し疲労による硬質皮膜の破壊を防止することができる。
本願発明の硬質皮膜を形成する切削工具の材質は限定的ではない。超硬合金、高速度鋼、ダイス鋼等、いずれでも良い。本願発明の硬質皮膜は切削工具の他、金型、軸受け、ロール、ピストンリング、摺動部材等、高硬度が要求される耐摩耗部材や内燃機関部品等の耐熱部材にも形成することができる。本願発明を以下の実施例により更に詳細に説明するが、本願発明はそれらに限定されるものではない。
When the hard film of the present invention is formed on the cutting tool, the work material is prevented from being welded because of excellent lubricity, adhesion and wear resistance. The hard film has lubricity and can suppress welding and diffusion of the work material element in dry cutting where the cutting edge portion is at a high temperature. The cutting tool coated with the hard coating corresponds to dry, high speed, and high feed cutting. High feed cutting means, for example, cutting in which the feed amount per blade exceeds 0.3 mm / tooth. By smoothing the surface of the hard coating of the present invention by machining, the friction resistance is stabilized, and the variation in the cutting life of the tool is reduced. When an intermediate layer made of Ti nitride, carbonitride or boronitride, TiAl alloy, Cr, W, or the like is provided on the surface of the substrate, the adhesion between the substrate and the hard coating increases, and the peel resistance of the hard coating and Improved fracture resistance. The cutting tool coated with the hard coating of the present invention is suitable for dry cutting, but can also be used for wet cutting. In either case, the presence of the intermediate layer can prevent the hard film from being broken due to repeated fatigue.
The material of the cutting tool that forms the hard coating of the present invention is not limited. Any of cemented carbide, high speed steel, die steel, etc. may be used. The hard coating of the present invention can be formed not only on cutting tools but also on heat resistant members such as dies, bearings, rolls, piston rings, sliding members, wear resistant members and internal combustion engine parts that require high hardness. . The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
本発明の硬質皮膜の被覆には、小型真空装置内にAIP方式の蒸発源とMS方式の蒸発源とを併設した装置を用いて、基体となる超硬合金製インサートに被覆を行った。各蒸発源は各種合金製ターゲットを用い、反応ガスはN2ガス、CH4ガス、Ar/O2混合ガスから目的の皮膜が得られるものを選択し、両成膜法が真空装置内で同時にプラズマを発生させることが可能な反応圧力を選定した。他の被覆条件は、基体温度450℃、バイアス電圧は、−40Vから−150Vの範囲の電圧を印加した。被覆工程においては、同時放電を行う前にAIP法による成膜を行い、密着性を確保した後にAIP法とMS法との同時放電を行うことが望ましい。得られた硬質皮膜被覆インサートを用い、以下に示す切削条件にて切削試験を行った。切削試験で用いた被削材は、表面に予めドリルにて等間隔に穴をあけたものを使用した。この被削材表面を高能率加工条件にて切削を行う事により断続加工を想定し、インサートが衝撃を受けて欠損に至るまでの切削可能長を評価した。
(切削条件)
工具:正面フライス
インサート形状:SDE53タイプ特殊形状
切削方法:センターカット方式
被削材形状:巾100mm×長さ250mm
被削材:SCM440、硬さHB280、表面にはΦ10ドリル穴多数有り
切り込み量:2.0mm
切削速度:180m/min
1刃送り量:1.5mm/刃
切削油:なし、乾式切削
評価方法は、インサート刃先に強い衝撃を加えることができる断続環境下での評価を行い、インサート刃先部に欠損が発生するか、又は硬質皮膜の摩耗等により工具が切削不能となるまで加工を行い、その時の切削可能距離を工具寿命とした。表1、表2に本願発明例、比較例及び従来例に関する硬質皮膜の詳細及び切削試験の結果を示す。
For the coating of the hard coating of the present invention, a cemented carbide insert serving as a substrate was coated using a device in which an AIP evaporation source and an MS evaporation source were provided in a small vacuum apparatus. Each evaporation source uses various alloy targets, and the reaction gas is selected from N 2 gas, CH 4 gas, and Ar / O 2 mixed gas so that the desired film can be obtained. A reaction pressure capable of generating plasma was selected. As other coating conditions, a substrate temperature of 450 ° C. and a bias voltage of −40V to −150V were applied. In the coating step, it is desirable to perform film formation by the AIP method before performing simultaneous discharge, and to perform simultaneous discharge by the AIP method and the MS method after ensuring adhesion. Using the obtained hard coating-coated insert, a cutting test was performed under the following cutting conditions. The work material used in the cutting test was prepared by drilling holes on the surface in advance at equal intervals. By cutting the surface of the work material under high-efficiency machining conditions, intermittent cutting was assumed, and the possible cutting length until the insert was impacted and damaged was evaluated.
(Cutting conditions)
Tool: Face mill Insert shape: SDE53 type special shape Cutting method: Center cut method Workpiece shape: width 100mm x length 250mm
Work material: SCM440, Hardness HB280, There are many Φ10 drill holes on the surface. Cutting depth: 2.0mm
Cutting speed: 180 m / min
1 blade feed amount: 1.5 mm / blade Cutting oil: None, dry cutting The evaluation method evaluates in an intermittent environment where a strong impact can be applied to the insert blade edge, and whether the insert blade edge part is damaged, Alternatively, machining was performed until the tool became uncuttable due to wear of the hard coating or the like, and the cuttable distance at that time was defined as the tool life. Tables 1 and 2 show the details of the hard coating and the results of the cutting test for the invention examples, comparative examples, and conventional examples.
表2には本発明例1から14、比較例15から28、従来例29から33の評価結果を示す。本発明例1から14に示したように、本発明の硬質皮膜を適用することで、高能率加工を行うことが可能となった。即ち、硬質皮膜表面付近にSi−O結合が存在すること及び、2種以上の物理蒸発源を用いてSiを硬質皮膜に添加させたときのSi含有量の多少により、切削性能差が明瞭に現われる結果となった。特に、本発明例9に示したNbSi2によってSiが添加された硬質皮膜は、今回の評価の中で最も良い結果を示した。そこで本発明例9について詳細に硬質皮膜を調査した。その結果を図1に示す。XPS分析において100〜105eVの範囲にSi−O結合が確認された。このSi−O結合の存在により、切削加工初期の激しい溶着が抑制された。このように、本発明例9の硬質皮膜表面付近には、潤滑特性の優れる緻密な酸化物の存在し、溶着が激しく発生する金属の加工において、著しい効果を発揮したのである。また添加されたSiはNbSi2をMS蒸着源に設置し、放電出力を6.5kWに設定した。その結果、添加されたSi量が14.8原子%となり、適正なSi添加量の範囲であった。更に、硬質皮膜の破断面組織を、走査電子顕微鏡(以下、SEMと記す。)により倍率15000倍で観察した。その結果を図2に示す。図2より硬質皮膜の破断面組織は柱状組織形態であった。このような組成及び構造を有する硬質皮膜被覆インサートは、高送り加工などの衝撃の激しい切削加工において、せん断方向に対する機械的強度も得られた。更に、図3は、破断面組織をTEMにより倍率2万倍で観察した結果である。硬質皮膜の柱状組織を有する各結晶粒は多層構造を有していた。図4は、図3の結晶粒をTEMにより倍率20万倍で拡大観察を行った結果である。結晶粒は明暗が異なる黒色層と灰色層とが交互に複数の積層した多層構造を有していた。各結晶粒は基体表面に対して垂直方向となる様に、ほぼ同一方向に成長したものであることが今回の観察により確認された。図4に示す縞模様から、各層の厚さは約3〜4nmであることが分かる。なお、図3と図4では倍率が異なるので、両者における縞模様の数は一致しない。図5は、図4の視野内の部分を更に拡大観察し、倍率200万倍で多層部における各層の格子縞の連続性を確認した結果である。図5の観察領域は図4で見られた黒色層及び灰色層の位置を確認しながら拡大したものであり、図5中の黒色層及び灰色層はそれぞれ図4中のものに対応する。図5に描いた2本の線は夫々黒色層及び灰色層に対応する領域を別ける。
図6は図5の写真に相当する模式図である。ただし、格子縞の間隔は説明の明瞭化のために拡大してある。図5から、多層構造における層間の境界領域で結晶格子縞が連続していることが分かる。結晶格子縞の連続性は全ての境界領域で成立する必要はなく、TEM写真中に格子縞の連続性が認められる領域があれば良い。図5の左側に黒色領域があるが、これは図4に示す黒色層と関係ない。図6中の丸で囲まれた領域の電子回折像を図7に示し、図7の模式図を図8に示す。図7及び8から明らかなように、星印で示す黒色層の電子回折像と丸印で示す灰色層の電子回折像とがほぼ一致しているので、黒色層と灰色層の境界領域ではエピタキシャルな関係により格子縞が連続している。このように多層構造を有する柱状結晶粒は単結晶のような形態をしていることが分かる。本発明例9の多層柱状結晶粒における黒色層及び灰色層の組成として、図5中の点P(黒色層)及び点Q(灰色層)の組成をTEMに付設されたEDXにより分析した。表3は黒色層及び灰色層の組成を示す。
Table 2 shows the evaluation results of Invention Examples 1 to 14, Comparative Examples 15 to 28, and Conventional Examples 29 to 33. As shown in Examples 1 to 14 of the present invention, high-efficiency processing can be performed by applying the hard coating of the present invention. That is, there is a clear difference in cutting performance depending on the presence of Si-O bonds near the hard coating surface and the amount of Si content when Si is added to the hard coating using two or more physical evaporation sources. As a result, it appeared. In particular, the hard film to which Si was added by NbSi 2 shown in Invention Example 9 showed the best result in this evaluation. Therefore, the hard coating was examined in detail for Example 9 of the present invention. The result is shown in FIG. In the XPS analysis, Si—O bonds were confirmed in the range of 100 to 105 eV. Due to the presence of this Si—O bond, intense welding at the initial stage of cutting was suppressed. Thus, in the vicinity of the hard coating surface of Example 9 of the present invention, a dense oxide having excellent lubricating properties is present, and a remarkable effect was exhibited in the processing of a metal in which welding is intensely generated. The added Si was NbSi 2 installed in the MS vapor deposition source, and the discharge output was set to 6.5 kW. As a result, the amount of added Si was 14.8 atomic%, which was in the range of an appropriate Si addition amount. Furthermore, the fracture surface structure of the hard film was observed with a scanning electron microscope (hereinafter referred to as SEM) at a magnification of 15000 times. The result is shown in FIG. As shown in FIG. 2, the fracture surface structure of the hard coating was a columnar structure. The hard film-coated insert having such a composition and structure has also obtained mechanical strength in the shearing direction in cutting with high impact such as high feed processing. Furthermore, FIG. 3 is a result of observing the fractured surface structure with a TEM at a magnification of 20,000 times. Each crystal grain having the columnar structure of the hard film had a multilayer structure. FIG. 4 shows the result of magnifying and observing the crystal grains of FIG. The crystal grains had a multi-layered structure in which a plurality of black layers and gray layers having different brightnesses were alternately laminated. This observation confirmed that each crystal grain was grown in almost the same direction so as to be perpendicular to the substrate surface. From the striped pattern shown in FIG. 4, it can be seen that the thickness of each layer is about 3 to 4 nm. Since the magnification is different between FIG. 3 and FIG. 4, the number of striped patterns in both does not match. FIG. 5 shows the result of further observing the portion in the field of view of FIG. 4 and confirming the continuity of the lattice fringes of each layer in the multilayer portion at a magnification of 2 million times. The observation region in FIG. 5 is enlarged while confirming the positions of the black layer and the gray layer seen in FIG. 4, and the black layer and the gray layer in FIG. 5 correspond to those in FIG. The two lines drawn in FIG. 5 separate the areas corresponding to the black layer and the gray layer, respectively.
FIG. 6 is a schematic diagram corresponding to the photograph of FIG. However, the spacing of the checkered pattern is enlarged for clarity of explanation. FIG. 5 shows that crystal lattice fringes are continuous in the boundary region between layers in the multilayer structure. The continuity of the crystal fringes need not be established in all the boundary regions, and it is sufficient if there is a region in the TEM photograph where the continuity of the lattice fringes is recognized. Although there is a black region on the left side of FIG. 5, this is not related to the black layer shown in FIG. FIG. 7 shows an electron diffraction image of a region surrounded by a circle in FIG. 6, and FIG. 8 shows a schematic diagram of FIG. As apparent from FIGS. 7 and 8, the electron diffraction image of the black layer indicated by the star mark and the electron diffraction image of the gray layer indicated by the circle mark substantially coincide with each other, so that the epitaxial region is epitaxial in the boundary region between the black layer and the gray layer. The checkered pattern is continuous due to the relationship Thus, it can be seen that the columnar crystal grains having a multi-layer structure are in the form of a single crystal. As the composition of the black layer and the gray layer in the multilayer columnar crystal grain of Example 9 of the present invention, the composition of point P (black layer) and point Q (gray layer) in FIG. 5 was analyzed by EDX attached to the TEM. Table 3 shows the composition of the black and gray layers.
表3より、添加したSiの含有量の差が確認された。Si含有量が30原子%を超えると、結晶組織が微細化するため、含有量の差は30原子%以内に制御しなければならない。本発明例9は、NbSi2の放電出力を6.5kWに設定したため、含有量の差は12.4原子%であった。
本発明例9についてSiの化学状態をラマン分光分析によって調査したところ、図9に
示す様に波数800から850cm−1の範囲にα型結晶構造のSi3N4ピークが、また波数1020から1170cm−1の範囲にβ型結晶構造のSi3N4ピークが得られた。図10は、本発明例8、9、従来例30、32の摩擦係数の測定結果を示す。測定にはボールオンディスク方式を用いた摩擦摩耗試験機を用い、大気中600℃の高温環境下で行った。測定結果より、硬質皮膜中にSiを添加することにより、潤滑特性が大幅に向上することが確認された。Siを含有する本発明例6は、比較例20に対して3倍の切削性能が得られた。本発明のSi添加を適用することにより、(TiAl)Nを基本組成とする皮膜も摩擦係数は大きく低減した。更に本発明例9は、上記の切削条件とは別に金型加工で見られる様な固定穴加工等、断続となる部位の加工も行った。ここでも、硬質皮膜の靭性の向上により、激しい衝撃に対しても欠損することなく、安定した切削が行うことができた。
上記評価結果より、硬質皮膜の潤滑特性を改善し安定的した切削性能を得るために、Si添加源はNbSi2、CrSi2、WSi2、TiSi2などの金属間化合物によるターゲット材が適していた。また、WSi、CrSi、NbSi、TiSiなどの合金ターゲットも好ましかった。本発明の硬質皮膜をドリル、エンドミル、パンチ、ダイスなど適用し、断続環境下での適用についても効果を発揮した。
From Table 3, the difference of the content of added Si was confirmed. When the Si content exceeds 30 atomic%, the crystal structure becomes finer, so the difference in content must be controlled within 30 atomic%. In Invention Example 9, since the discharge output of NbSi 2 was set to 6.5 kW, the difference in content was 12.4 atomic%.
For Inventive Example 9 The chemical state of Si was investigated by Raman spectroscopy, Si 3 N 4 peak of the α-type crystal structure ranges from wave number 800 of 850 cm -1 as shown in FIG. 9, and from the wave number 1020 1170Cm A Si 3 N 4 peak having a β-type crystal structure was obtained in the range of −1 . FIG. 10 shows the measurement results of the friction coefficients of Invention Examples 8 and 9 and Conventional Examples 30 and 32. For the measurement, a friction and wear tester using a ball-on-disk system was used, and the measurement was performed in an atmosphere at a high temperature of 600 ° C. From the measurement results, it was confirmed that the lubrication characteristics were significantly improved by adding Si to the hard coating. Invention Example 6 containing Si obtained cutting performance three times that of Comparative Example 20. By applying the Si addition of the present invention, the friction coefficient of the coating having (TiAl) N as a basic composition was also greatly reduced. Further, in Example 9 of the present invention, in addition to the above-described cutting conditions, intermittent parts such as a fixing hole as seen in mold processing were also processed. Here too, due to the improvement in the toughness of the hard coating, stable cutting could be performed without loss even under severe impact.
From the above evaluation results, in order to improve the lubrication characteristics of the hard coating and to obtain stable cutting performance, the Si addition source was a target material made of an intermetallic compound such as NbSi 2 , CrSi 2 , WSi 2 , or TiSi 2 . . Also preferred are alloy targets such as WSi, CrSi, NbSi, TiSi. The hard coating of the present invention was applied to drills, end mills, punches, dies, etc., and was effective for application in an intermittent environment.
比較例17、21、22、23、27以外は、Si含有量が多く30原子%以上であった。特に比較例20はSi−O結合を有し多層構造における1層の厚みが適正範囲内であったが、Si含有量が34原子%と多量に添加されていた。皮膜破断面の組織を確認した結果、図11に示すようなアモルファス状の微細組織になっていた。硬質皮膜硬度は26GPaと軟質化傾向にあった。この皮膜の軟質化はSi含有量が適正値でなかったことによる。比較例17は、Si−O結合が確認され、Si含有量が9.1原子%と適正範囲であった。しかし、AIP方式とMS方式を同時に放電させて得られた硬質皮膜の多層積層構造における1層の厚みが134.5nmであった。そのため、切削試験結果は早期摩耗により短寿命であった。この理由は、成膜時の条件であるMS法によるCrSiターゲットの放電出力が6.6kWであったために層積層構造における1層の厚みが100nmを超え、更に多層構造中の各層の格子に歪が発生したことによって結晶格子縞が不連続となり、硬質皮膜の結晶組織が微細化したことによるものである。比較例23は、Si−O結合が確認されず、Si含有量が7原子%と適正範囲であった。多層構造の1層の厚みは30.6nmであった。そのため、切削試験結果はSi添加による高硬度化現象の効果で、ある程度の距離は加工できたが、切削初期に発生する溶着の抑制には不十分であった。この理由は、成膜時に使用する反応ガス中に酸素を添加しなかったためSi−O結合が形成されていなかったことによるものである。比較例21、22は、Si−O結合が確認されず、Si含有量はXPSなどの分析装置を使用してもSiの検出が不可能であった。多層構造の1層の厚みは確認限界に近い、0.2、0.8nmであった。そのため、切削試験結果は切削初期の溶着が激しく発生した。特に比較例22では火花が発生し評価を中止した。この理由は、成膜時に使用したMS法によるWSi、NbSiのターゲット材の放電出力が0.5kWであったために、Si含有量や化学結合状態、積層の1層の厚みが小さいためである。 Except for Comparative Examples 17, 21, 22, 23, and 27, the Si content was large and was 30 atomic% or more. In particular, Comparative Example 20 had a Si—O bond and the thickness of one layer in the multilayer structure was within an appropriate range, but the Si content was added in a large amount of 34 atomic%. As a result of confirming the structure of the film fracture surface, an amorphous microstructure as shown in FIG. 11 was obtained. The hardness of the hard film was 26 GPa and was in a softening tendency. The softening of the film is due to the fact that the Si content was not an appropriate value. In Comparative Example 17, Si—O bonds were confirmed, and the Si content was within an appropriate range of 9.1 atomic%. However, the thickness of one layer in the multilayer laminated structure of the hard coating obtained by discharging the AIP method and the MS method simultaneously was 134.5 nm. Therefore, the cutting test result was short life due to early wear. This is because the discharge output of the CrSi target by the MS method, which is the condition at the time of film formation, was 6.6 kW, so that the thickness of one layer in the layer stack structure exceeded 100 nm, and the lattice of each layer in the multilayer structure was distorted. This is because the crystal lattice fringes become discontinuous due to the occurrence of, and the crystal structure of the hard coating is refined. In Comparative Example 23, no Si—O bond was confirmed, and the Si content was an appropriate range of 7 atomic%. The thickness of one layer of the multilayer structure was 30.6 nm. For this reason, the cutting test result was an effect of increasing the hardness by adding Si, and it was possible to process a certain distance, but it was insufficient for suppressing welding that occurred at the initial stage of cutting. This is because the Si—O bond was not formed because oxygen was not added to the reaction gas used during film formation. In Comparative Examples 21 and 22, the Si—O bond was not confirmed, and the Si content was not detectable even when using an analyzer such as XPS. The thickness of one layer of the multilayer structure was 0.2 and 0.8 nm, which are close to the confirmation limit. Therefore, in the cutting test result, welding at the initial stage of cutting was intense. In particular, in Comparative Example 22, sparks were generated and the evaluation was stopped. This is because the discharge output of the target material of WSi and NbSi by the MS method used at the time of film formation was 0.5 kW, so that the Si content, the chemical bonding state, and the thickness of one layer of the stack were small.
従来例29から33は、AIP法のみにより被覆した例である。AIP法のみで被覆された硬質皮膜は、硬度、残留圧縮応力が非常に高い上、硬質膜の靭性が不足し、硬質膜内部で破壊を起こしやすいため、硬質皮膜の靭性を向上させることが困難であった。AIP法における成膜条件中の温度、バイアス電圧、反応圧力、アーク電流、また硬質膜の出発源であるターゲットの組成の検討を行えば、ある程度可能である。しかし、AIP蒸発源のみの成膜で形成されるSiを含有した硬質皮膜は、靭性を向上させると硬度が低下し、耐摩耗性が著しく低下した。このため、被覆部材の耐衝撃特性は向上するものの、耐摩耗性の確保が困難となり満足する寿命が得られなかった。一方で、従来例には記載していないがMS法のみで成膜された硬質皮膜の場合は、プラズマ密度が低いため、プラズマ内でイオン化した金属やガスイオンが被処理物へ入射する際のエネルギーが低く、密着性が低かった。また、AIP法で成膜される硬質膜に対し、高靭性の硬質皮膜を得ることが可能であるが、高硬度な硬質皮膜を得ることが困難であるため、硬質皮膜被覆部材として高寿命を得ることは困難であった。 Conventional examples 29 to 33 are examples in which coating is performed only by the AIP method. Hard film coated only by the AIP method has very high hardness and residual compressive stress, and lacks the toughness of the hard film, making it difficult to improve the toughness of the hard film because it easily breaks inside the hard film. Met. It is possible to some extent if the temperature, bias voltage, reaction pressure, arc current, and composition of the target that is the starting source of the hard film are studied in the AIP method. However, the hard coating containing Si formed by the film formation of only the AIP evaporation source, when toughness was improved, the hardness was lowered and the wear resistance was significantly lowered. For this reason, although the impact resistance of the covering member is improved, it is difficult to ensure wear resistance and a satisfactory life cannot be obtained. On the other hand, although it is not described in the conventional example, in the case of a hard film formed only by the MS method, since the plasma density is low, metal ions or gas ions ionized in the plasma are incident on the workpiece. Energy was low and adhesion was low. In addition, it is possible to obtain a hard film with high toughness for a hard film formed by the AIP method, but it is difficult to obtain a hard film with high hardness. It was difficult to get.
Claims (4)
The hard film according to any one of claims 1 to 3, wherein the surface of the hard film is smoothed by machining.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005127575A JP2006307242A (en) | 2005-04-26 | 2005-04-26 | Hard film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005127575A JP2006307242A (en) | 2005-04-26 | 2005-04-26 | Hard film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006307242A true JP2006307242A (en) | 2006-11-09 |
Family
ID=37474460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005127575A Withdrawn JP2006307242A (en) | 2005-04-26 | 2005-04-26 | Hard film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006307242A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5038303B2 (en) * | 2006-12-25 | 2012-10-03 | 京セラ株式会社 | Surface coating tool and method for machining workpiece |
JP2017066487A (en) * | 2015-09-30 | 2017-04-06 | 三菱日立ツール株式会社 | Hard film, hard film coated member and method for manufacturing them |
-
2005
- 2005-04-26 JP JP2005127575A patent/JP2006307242A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5038303B2 (en) * | 2006-12-25 | 2012-10-03 | 京セラ株式会社 | Surface coating tool and method for machining workpiece |
JP2017066487A (en) * | 2015-09-30 | 2017-04-06 | 三菱日立ツール株式会社 | Hard film, hard film coated member and method for manufacturing them |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101170943B1 (en) | Hard coating and its forming method, and hard-coated tool | |
WO2011122553A1 (en) | Cutting tool | |
KR20060051931A (en) | Hard coating having excellent abrasion resistance and oxidation resistance, and a target for forming the hard coating, and a hard coating having excellent high temperature lubrication and wear resistance, and a target for forming the hard coating. | |
JP2007015106A (en) | Multilayered film coated tool and its coating method | |
JP4304170B2 (en) | Hard coating | |
CN110603342A (en) | Metal cutting tool with multi-layer coating | |
KR101170396B1 (en) | Hard coating and its production method | |
JP2006225708A (en) | Abrasion-resistant coating, wear-resistant coating-coated cutting tool, and method for producing abrasion-resistant coating | |
US20180355469A1 (en) | Hard coating and hard coating-covered member | |
JP2007046103A (en) | Hard film | |
JP5995091B2 (en) | Surface coated cutting tool with excellent adhesion strength and chipping resistance | |
JP2006307242A (en) | Hard film | |
JP2007056324A (en) | Hard film | |
JP2007056323A (en) | Hard film | |
JP2007056310A (en) | Hard film | |
JP2007056311A (en) | Hard film | |
CN108778585B (en) | Surface-coated cutting tool having excellent chipping resistance and wear resistance | |
JP2007056305A (en) | Hard film | |
JP2007056290A (en) | Hard film | |
JP2007056293A (en) | Hard film | |
JP2005226102A (en) | Hard coating, and tool coated with the hard coating | |
JP4663336B2 (en) | Hard coating and method for manufacturing hard coating | |
JP2007056304A (en) | Hard film | |
JP4304179B2 (en) | Hard coating and method for producing the same | |
JP4304175B2 (en) | Hard coating and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20080723 |