[go: up one dir, main page]

JP2006305586A - Method for cutting plate-shaped body, and laser beam machining device - Google Patents

Method for cutting plate-shaped body, and laser beam machining device Download PDF

Info

Publication number
JP2006305586A
JP2006305586A JP2005129396A JP2005129396A JP2006305586A JP 2006305586 A JP2006305586 A JP 2006305586A JP 2005129396 A JP2005129396 A JP 2005129396A JP 2005129396 A JP2005129396 A JP 2005129396A JP 2006305586 A JP2006305586 A JP 2006305586A
Authority
JP
Japan
Prior art keywords
laser beam
plate
wavelength
region
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005129396A
Other languages
Japanese (ja)
Other versions
JP4838531B2 (en
Inventor
Satomi Sumiyoshi
哲実 住吉
Tomohiro Imahoko
友洋 今鉾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cyber Laser Inc
Original Assignee
Cyber Laser Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cyber Laser Inc filed Critical Cyber Laser Inc
Priority to JP2005129396A priority Critical patent/JP4838531B2/en
Priority to KR1020060037533A priority patent/KR101325200B1/en
Priority to TW095115089A priority patent/TWI387503B/en
Priority to CNB2006100886357A priority patent/CN100553853C/en
Publication of JP2006305586A publication Critical patent/JP2006305586A/en
Application granted granted Critical
Publication of JP4838531B2 publication Critical patent/JP4838531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/359Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laser Beam Processing (AREA)
  • Dicing (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cutting a plate-shaped body, such as a semiconductor wafer, by irradiating the body with a laser beam, in which the throughput of electronic parts manufactured by dividing the body is improved by raising the cutting speed. <P>SOLUTION: The laser beam of a first wave length having absorbability with respect to a plate-shaped body 1, and the laser beam of a second wave length having permeability with respect to the plate-shaped body 1, are simultaneously condensed, and the condensed beams are irradiated to the plate-shaped body 1. A condensing point 7 of the laser beam of the first wave length is formed on the surface part of the plate-shaped body, and a condensing point 8 of the laser beam of the second wave length is formed in the inside part of the plate-shaped body, by controlling a condensing optical system. Cracking or reforming of the composition of the surface part is caused by linear absorption, reforming of the composition of the inside part is caused by multiphoton absorption, and stress-generating regions are formed in the parts respectively. The plate-shaped body 1 is irradiated with the laser beam along a dividing line, and is thereafter divided along the scanning loci of the laser beam by exerting mechanical impact force. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本願発明は、所定のストリート(切断ライン)に沿ってレーザビームを照射することで板状体を切断する板状体の切断方法並びに当該切断方法で使用されるレーザビーム発生装置に係り、特に半導体ウエーハを分割して半導体チップを製造する際の半導体ウエーハの切断方法並びに当該方法で使用されるレーザビーム発生装置に関する。   The present invention relates to a plate-like body cutting method for cutting a plate-like body by irradiating a laser beam along a predetermined street (cutting line) and a laser beam generator used in the cutting method. The present invention relates to a method for cutting a semiconductor wafer when a semiconductor chip is manufactured by dividing a wafer, and a laser beam generator used in the method.

半導体デバイス製造工程においては、略円板形状である半導体ウエーハが、その表面上に格子状に配列されたストリートによって複数の領域に区画される。この区画された領域にはそれぞれIC,LSI等の回路が形成され、ストリートに沿って半導体ウエーハを切断することで、回路が形成された領域をそれぞれ分離して半導体チップを製造する。半導体ウエーハをストリートに沿って切断するには、通常ダイサーと称されている切削装置を用いている。この切削装置は、被加工物である半導体ウエーハを保持するチャックテーブルと、当該チャックテーブルに保持された半導体ウエーハを切削するための切断手段と、チャックテーブルと切断手段とを相対的に移動させる移動手段とを有して構成されている。切断手段は、高速回転する回転スピンドルと該スピンドルに装着された切削ブレードとを有している。切削ブレードは、円盤状の基台と、当該基台の側面外周部に装着された環状の切れ刃とから成る。切れ刃は、例えば粒径3μm程度のダイヤモンド砥粒を電鋳によって基台に固定して、厚さ15μm程度に形成されている。   In the semiconductor device manufacturing process, a substantially disc-shaped semiconductor wafer is partitioned into a plurality of regions by streets arranged in a lattice pattern on the surface thereof. Circuits such as IC and LSI are formed in the partitioned areas, respectively, and the semiconductor wafer is cut along the streets to separate the areas where the circuits are formed to manufacture semiconductor chips. In order to cut the semiconductor wafer along the street, a cutting device generally called a dicer is used. This cutting apparatus includes a chuck table for holding a semiconductor wafer as a workpiece, a cutting means for cutting the semiconductor wafer held on the chuck table, and a movement for relatively moving the chuck table and the cutting means. Means. The cutting means has a rotating spindle that rotates at a high speed and a cutting blade mounted on the spindle. The cutting blade is composed of a disk-shaped base and an annular cutting edge mounted on the outer peripheral portion of the side surface of the base. The cutting edge is formed to have a thickness of about 15 μm by fixing diamond abrasive grains having a particle size of about 3 μm to the base by electroforming, for example.

また、近時においては、IC、LSI等の回路をより微細に形成するために、シリコンウエーハ等の半導体ウエーハの本体表面上に低誘電率絶縁体を積層した形態を有する半導体ウエーハが製造され、実用に供されている。低誘電率絶縁体としては、SiO膜(誘電率k=約4.1)よりも誘電率が低い(例えばk=2.5乃至3.6程度)材料が使用される。このような低誘電率絶縁体としては、例えばSiOF、BSG(SiOB)、H含有ポリシロキサン(HSQ)等の無機物系の膜、ポリイミド系、パリレン系、ポリテトラフルオロエチレン系等のポリマー膜である有機物系の膜、並びにメチル含有ポリシロキサン等のポーラスシリカ膜が挙げられる。 Recently, in order to form circuits such as IC and LSI more finely, a semiconductor wafer having a form in which a low dielectric constant insulator is laminated on the surface of a main body of a semiconductor wafer such as a silicon wafer is manufactured. It is used for practical use. As the low dielectric constant insulator, a material having a dielectric constant lower than that of the SiO 2 film (dielectric constant k = about 4.1) (for example, about k = 2.5 to 3.6) is used. Examples of such a low dielectric constant insulator include inorganic films such as SiOF, BSG (SiOB), and H-containing polysiloxane (HSQ), and polymer films such as polyimide, parylene, and polytetrafluoroethylene. Examples thereof include organic films and porous silica films such as methyl-containing polysiloxane.

上記のような低誘電率絶縁体を表面部に積層した半導体ウエーハを上述したダイサーを用いて切断すると、低誘電率絶縁体が著しく脆いことに起因して、ストリート近傍領域において表面層である低誘電率絶縁体層が半導体ウエーハ本体から剥離することがある。さらに、半導体ウエーハは薄板化の傾向があり、機械強度が低下していることによりウエーハ本体がダイサーによる切断で破損することがある。このような半導体ウエーハに対しては、ダイサーに代えて、レーザビームを照射することで半導体ウエーハを切断するレーザ切断装置を使用するのが好適である。   When a semiconductor wafer in which a low dielectric constant insulator as described above is laminated on the surface portion is cut using the above-mentioned dicer, the low dielectric constant insulator is extremely fragile, resulting in a low-level surface layer in the street vicinity region. The dielectric constant insulator layer may peel off from the semiconductor wafer body. Further, semiconductor wafers tend to be thinned, and the mechanical strength of the semiconductor wafer is reduced, so that the wafer body may be damaged by cutting with a dicer. For such a semiconductor wafer, it is preferable to use a laser cutting apparatus that cuts the semiconductor wafer by irradiating a laser beam instead of the dicer.

図4は、レーザ切断装置によるウエーハ切断方法を示す概略図である。図4(a)では、吸収性波長を有するレーザビームを照射して半導体ウエーハを切断する。レーザビームの集光点を半導体ウエーハ101の表面部に設定すると、半導体ウエーハ101の表面部が主にレーザビームによる線形吸収を起こして、当該部分が融除され穿孔部が形成される。必要であれば、集光光学系103を垂直方向下方に移動させることで、集光点を下方に移動させ、部材の融除により形成された穿孔部を下方に延ばす。レーザビームをストリートに沿って走査すれば、穿孔部がストリートに沿って延伸され、ウエーハ表面上にストリートに沿った溝部が形成される。この溝部が形成された後に、曲げや引張りなどの機械的な衝撃力を加えると、溝部を起点としてクラックが発生し、半導体ウエーハを分割することが可能となる。このような吸収性波長を有するレーザビームを用いた半導体ウエーハの切断は、例えば特開昭56−129340号公報に記載されている。   FIG. 4 is a schematic view showing a wafer cutting method using a laser cutting device. In FIG. 4A, the semiconductor wafer is cut by irradiation with a laser beam having an absorptive wavelength. When the condensing point of the laser beam is set on the surface portion of the semiconductor wafer 101, the surface portion of the semiconductor wafer 101 mainly undergoes linear absorption by the laser beam, and this portion is ablated to form a perforated portion. If necessary, the condensing optical system 103 is moved downward in the vertical direction to move the condensing point downward, and the perforated part formed by ablation of the member is extended downward. When the laser beam is scanned along the street, the perforated portion is stretched along the street, and a groove portion along the street is formed on the wafer surface. When a mechanical impact force such as bending or pulling is applied after the groove is formed, a crack is generated starting from the groove and the semiconductor wafer can be divided. The cutting of a semiconductor wafer using a laser beam having such an absorptive wavelength is described in, for example, Japanese Patent Application Laid-Open No. 56-129340.

図4(b)では、透過性波長を有するレーザビームを照射して半導体ウエーハを切断する。レーザビームの集光点を半導体ウエーハ101の内部に設定すると、半導体ウエーハ101の内部領域が主にレーザビームによる多光子吸収を起こして、当該部分の材料組成が変質する。必要であれば、集光光学系103を垂直方向上方または下方に移動させることで、集光点を上方または下方に移動させ、多光子吸収により生じる改質領域を垂直方向に沿って延ばす。レーザビームをストリートに沿って走査すれば、改質領域がストリートに沿って延伸され、ウエーハ内部にストリートに沿った略線状または略帯状の改質領域が形成される。この改質領域が形成された後に、曲げや引張りなどの機械的衝撃力を加えると、熱応力の生じている改質領域近傍を起点としてクラックが発生して半導体ウエーハを分割することが可能となる。このような透過性波長を有するレーザビームを用いた半導体ウエーハの切断は、例えば特開2002−205180号公報に記載されている。   In FIG. 4B, the semiconductor wafer is cut by irradiation with a laser beam having a transmissive wavelength. When the condensing point of the laser beam is set inside the semiconductor wafer 101, the internal region of the semiconductor wafer 101 mainly causes multiphoton absorption by the laser beam, and the material composition of the portion is altered. If necessary, the condensing optical system 103 is moved upward or downward in the vertical direction to move the condensing point upward or downward, and the modified region caused by multiphoton absorption is extended along the vertical direction. When the laser beam is scanned along the street, the modified region is stretched along the street, and a substantially linear or substantially strip-shaped modified region along the street is formed inside the wafer. If a mechanical impact force such as bending or pulling is applied after this modified region is formed, it is possible to divide the semiconductor wafer by generating cracks starting from the vicinity of the modified region where thermal stress occurs. Become. Cutting of a semiconductor wafer using a laser beam having such a transmission wavelength is described in, for example, Japanese Patent Application Laid-Open No. 2002-205180.

特開昭56−129340JP 56-129340 特開2005−28438JP 2005-28438 特開2002−192367JP 2002-192367 A 特開2002−205180JP-A-2002-205180 特開2003−88973JP2003-88973 特開2003−88978JP 2003-88978 A 特開2003−88979JP 2003-88979 A 特開2004−188475JP 2004-188475 A

図4(a)および図4(b)に示されるような従来のレーザビームを用いた切断装置では、クラックを生じさせる起点となり得る十分な大きさの穿孔部または改質領域を形成するために、ストリート上の略同一の部位において相当回数以上のパルス数の短パルスレーザを照射する必要があり、レーザビーム走査時にストリート上の略同一部位に停留する時間が長くなる。すなわち、半導体ウエーハを分割するために、半導体ウエーハ表面上に溝部を形成する、あるいは半導体ウエーハ内部に改質領域を形成すると、パルス幅に依存した熱変性層が照射部位周辺に発生し、切断面の物性が損なわれるという課題があった。   In a conventional cutting apparatus using a laser beam as shown in FIGS. 4A and 4B, in order to form a sufficiently large perforated portion or modified region that can be a starting point for generating a crack. In addition, it is necessary to irradiate a short pulse laser having a pulse number more than a considerable number of times on substantially the same part on the street, and the time for stopping at the substantially same part on the street during the laser beam scanning becomes long. That is, when a groove is formed on the surface of the semiconductor wafer or a modified region is formed inside the semiconductor wafer in order to divide the semiconductor wafer, a thermally denatured layer depending on the pulse width is generated around the irradiated region, and the cut surface There was a problem that the physical properties of these were impaired.

本願発明は、上記課題を解決するためになされたものであり、フェムト秒レーザーパルスを用いて切断面の物性を損なうことなく半導体ウエーハ等の板状体の分割を高速に実現することができる切断方法並びに当該切断方法に使用されるレーザビーム発生装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can cut a plate-like body such as a semiconductor wafer at high speed without impairing the physical properties of the cut surface by using femtosecond laser pulses. It is an object of the present invention to provide a method and a laser beam generator used for the cutting method.

上記の技術的課題を解決するために、本願発明によれば、板状体の上方から照射される複数波長の短パルスレーザのレーザビームを板状体の表面部および内部で集光する。特に、表面上に格子状に配列されたストリートによって区画される各領域毎に回路が形成される半導体ウエーハでは、半導体ウエーハの上方から照射される複数波長のレーザビームをストリート上に集光し、ストリートに沿ってスクライビングを施すことで半導体ウエーハを分割する。   In order to solve the above technical problem, according to the present invention, a laser beam of a short-pulse laser with a plurality of wavelengths irradiated from above the plate-like body is condensed on the surface portion and inside of the plate-like body. In particular, in a semiconductor wafer in which a circuit is formed for each region partitioned by streets arranged in a lattice pattern on the surface, a laser beam with a plurality of wavelengths irradiated from above the semiconductor wafer is condensed on the streets, The semiconductor wafer is divided by scribing along the street.

板状体にレーザビームを照射する際には、板状体の吸収領域にある波長と、透過領域にある波長とを少なくとも同時に用いて、板状体の表面部と内部とにおいてレーザビームによる加工作用を同時に進行させる。   When irradiating a plate-like body with a laser beam, processing using a laser beam on the surface and inside of the plate-like body is performed at least simultaneously using the wavelength in the absorption region of the plate-like body and the wavelength in the transmission region. The action proceeds simultaneously.

また、本願発明によれば、板状体の内部にビームを到達させて集光領域近傍の材料組成の改質を高速に進行させるように、透過性波長でも多光子吸収等により吸収率の向上が予測される高パワー集光密度状態を発生させる。一方、表面部ではパワー集光密度を内部より低い条件に設定して、熱的な吸収を図る。板状体の表面部に吸収性波長の短パルスレーザで主に線形吸収を生じさせて分解による穿孔部または変質作用による改質部を形成するように加工するとともに、板状体の内部に透過性波長の短パルスレーザで主に多光子吸収を生じさせて改質領域を形成する。板状体においては、レーザビームが集光された部位には、圧縮応力が作用するとともにその周辺領域には引張り応力が作用して熱応力が作用し残留応力が発生するので、板状体の表面部に形成された表面近傍加工領域を起点として残留応力に起因してクラックが改質領域に容易に伝播する。レーザビームを板状体上で所定の方向に走査すれば、その軌跡に沿って、板状体内をクラックが進行する。板状体が薄ければ、このクラックの形成のみにより、板状体を分割することができる。また、板状体が厚ければ、レーザビームの走査が完了した後に、曲げや引張り等の機械的衝撃力を半導体ウエーハに加えることで、板状体を分割することができる。   Further, according to the present invention, the absorptance is improved by multiphoton absorption or the like even at a transmissive wavelength so that the beam can reach the inside of the plate-like body and the modification of the material composition in the vicinity of the condensing region proceeds at high speed Generate the expected high power concentration state. On the other hand, in the surface portion, the power condensing density is set to a lower condition than the inside to achieve thermal absorption. The surface of the plate-like body is processed to form linear perforations by a short-pulse laser with an absorptive wavelength to form a perforated part due to decomposition or a modified part due to alteration, and is transmitted through the inside of the plate-like body. The modified region is formed mainly by generating multiphoton absorption with a short pulse laser having a characteristic wavelength. In the plate-like body, a compressive stress acts on the portion where the laser beam is focused, and a tensile stress acts on the peripheral area, and a thermal stress acts on the peripheral area, thereby generating a residual stress. Cracks easily propagate to the modified region due to residual stress starting from the near-surface processed region formed on the surface. When the laser beam is scanned in a predetermined direction on the plate-like body, cracks progress in the plate-like body along the trajectory. If the plate-like body is thin, the plate-like body can be divided only by the formation of the cracks. If the plate-like body is thick, the plate-like body can be divided by applying a mechanical impact force such as bending or pulling to the semiconductor wafer after the scanning of the laser beam is completed.

本願発明によれば、板状体表面に対して垂直方向に表面近傍加工領域と改質領域とが同時に形成されて、レーザビームの集光により発生する残留応力に起因して表面近傍加工領域を起点として改質領域へ向けてクラックが容易に伝播するから、レーザビームを板状体上で所定の方向に走査するのみ、あるいは走査した後に機械的外力を加えることで高速に板状体を分割することが可能となる。半導体ウエーハを分割する場合には、半導体ウエーハを高速に分割できるので、半導体チップ製造のスループットが向上する。   According to the present invention, the near-surface processed region and the modified region are formed simultaneously in the direction perpendicular to the surface of the plate-like body, and the near-surface processed region is caused by the residual stress generated by the focusing of the laser beam. Cracks propagate easily toward the modified region as a starting point, so the plate can be divided at high speed only by scanning the laser beam in a predetermined direction on the plate or by applying a mechanical external force after scanning. It becomes possible to do. In the case of dividing a semiconductor wafer, the semiconductor wafer can be divided at a high speed, so that the throughput of manufacturing a semiconductor chip is improved.

本願発明によれば、板状体の表面部における短パルスレーザのパワー集光密度を比較的低いレベルに抑えられることで、板状体の表面部における加工物除去量を低減することができる。半導体ウエーハではレーザビームを照射することでデブリ(蒸発物除去物)が発生するが、本発明によれば、デブリの発生量を低減できることにより、半導体チップに形成されたボンディングパッド等にデブリが付着するのを相当程度防止できる。また、表面部近傍では、融解再凝固のほとんどない分解作用によって溝が形成され、デブリの発生量を低減できることで、半導体素子の信頼性低下を招くマイクロクラックの発生を相当程度防止することができる。デブリの付着の防止、マイクロクラックの発生の防止等を実現することで半導体チップの歩留まりを向上することが可能となる。   According to the present invention, the power removal density of the short pulse laser at the surface portion of the plate-like body can be suppressed to a relatively low level, so that the amount of workpiece removal at the surface portion of the plate-like body can be reduced. Semiconductor wafers generate debris (evaporated product) by irradiating a laser beam. However, according to the present invention, debris adheres to bonding pads formed on a semiconductor chip by reducing the amount of debris generated. Can be prevented to a great extent. Further, in the vicinity of the surface portion, grooves are formed by a decomposition action with almost no melting and re-solidification, and the generation amount of debris can be reduced, so that the generation of microcracks that cause a decrease in the reliability of the semiconductor element can be prevented to a considerable extent. . It is possible to improve the yield of semiconductor chips by realizing prevention of debris adhesion, prevention of microcracks, and the like.

また、板状体の表面部における短パルスレーザのパワー集光密度を比較的低いレベルに抑えられることで、ストリートに沿った加工幅を狭くすることができ、半導体ウエーハ上に占める半導体チップの面積を広くとることが可能となる。さらに、半導体ウエーハの分割に短パルスレーザを用いることで、半導体ウエーハ表面近傍の成膜層の熱損傷を防止することができる。   In addition, since the power collection density of the short pulse laser on the surface of the plate-like body can be suppressed to a relatively low level, the processing width along the street can be reduced, and the area of the semiconductor chip on the semiconductor wafer Can be taken widely. Furthermore, by using a short pulse laser for dividing the semiconductor wafer, it is possible to prevent thermal damage to the film formation layer in the vicinity of the semiconductor wafer surface.

また、主に線形吸収される吸収領域に属する波長を有するレーザビームのエネルギと、主に多光子吸収される透過領域に属する波長を有する1または複数のレーザビームのそれぞれのエネルギとの比率を任意に変更できるように構成したので、加工対象の板状体の材質に応じて最適な加工条件を設定することが可能となる。   Further, the ratio of the energy of a laser beam having a wavelength belonging to an absorption region mainly absorbed linearly and the energy of each of one or a plurality of laser beams having a wavelength belonging to a transmission region mainly absorbed by multiphotons is arbitrarily set. Therefore, it is possible to set optimum machining conditions according to the material of the plate-like body to be machined.

また、板状体に対して主に線形吸収される吸収領域に属する波長を有するレーザビームのパルスを、板状体に対して主に多光子吸収される透過領域に属する波長を有する1または複数のレーザビームのパルスよりも所定の時間だけ遅延させて板状体に照射できるように構成したので、表面部の加工状態に影響を受けることなく透過領域に属する波長を有するレーザビームを板状体内部に到達させることができ、加工効率を向上することが可能になる。   Further, one or a plurality of pulses of a laser beam having a wavelength belonging to an absorption region mainly absorbed linearly with respect to the plate-like body, and having a wavelength belonging to a transmission region mainly absorbing multiphotons with respect to the plate-like body. The laser beam is configured to be able to irradiate the plate-like body with a delay by a predetermined time from the pulse of the laser beam, so that the laser beam having a wavelength belonging to the transmission region is not affected by the processing state of the surface portion. It is possible to reach the inside, and it becomes possible to improve the processing efficiency.

また、レーザビーム発生装置の集光光学系をレーザビームの光軸方向に移動可能としたことで、表面近傍加工領域および改質領域を、板状体表面に対して垂直方向に延ばすことが可能となり、種々の厚みを有する板状体の切断に対応することが可能となる。   In addition, since the condensing optical system of the laser beam generator can be moved in the optical axis direction of the laser beam, it is possible to extend the near-surface processed region and the modified region in a direction perpendicular to the plate-like body surface. Thus, it becomes possible to cope with cutting of plate-like bodies having various thicknesses.

以下、本発明に従って構成された半導体ウエーハの分割加工方法の好適な実施形態を添付図面を参照して、更に詳細に説明する。   Preferred embodiments of a method for dividing a semiconductor wafer constructed according to the present invention will be described below in detail with reference to the accompanying drawings.

図1は、板状半導体であるシリコンウエーハの分割工程を示す説明図である。図1(a)は、レーザビームによる半導体ウエーハの加工状態を示し、図1(b)は加工された半導体ウエーハのストリートに沿った断面を示している。半導体ウエーハ1は、通常、XYテーブル上に搭載された図示されないウエーハテーブル上に真空チャックで吸引される。レーザ光源から略平行に入射されるレーザビームは、集光光学系2によって集光されて、ウエーハに向けて照射される。レーザ光源から照射されるレーザビームは、板状体であるウエーハに対して吸収領域にある第1の波長のレーザビーム3と透過領域にある第2の波長のレーザビーム4とを含んでいる。第1の波長のレーザビーム3は、集光光学系2により集光されて収束ビーム5となり、半導体ウエーハ1の表面部に集光点7を形成する。第2の波長のレーザビーム4は、集光光学系2により集光されて収束ビーム6となり、半導体ウエーハ1の内部に集光点8を形成する。この実施例では2種類の波長のレーザビームを照射するが、加工速度を高速化するために、例えば透過領域にある2種類以上の波長を有するレーザビームを用いて、合わせて3種類以上の波長を有するレーザビームを半導体ウエーハに対して照射するようにしてもよい。   FIG. 1 is an explanatory view showing a dividing process of a silicon wafer which is a plate-like semiconductor. FIG. 1A shows a processing state of a semiconductor wafer by a laser beam, and FIG. 1B shows a cross section along the street of the processed semiconductor wafer. The semiconductor wafer 1 is normally sucked by a vacuum chuck onto a wafer table (not shown) mounted on an XY table. A laser beam incident from the laser light source substantially in parallel is condensed by the condensing optical system 2 and irradiated toward the wafer. The laser beam emitted from the laser light source includes a laser beam 3 having a first wavelength in an absorption region and a laser beam 4 having a second wavelength in a transmission region with respect to a wafer that is a plate-like body. The laser beam 3 having the first wavelength is condensed by the condensing optical system 2 to become a convergent beam 5, and a condensing point 7 is formed on the surface portion of the semiconductor wafer 1. The laser beam 4 having the second wavelength is condensed by the condensing optical system 2 to become a convergent beam 6, and a condensing point 8 is formed inside the semiconductor wafer 1. In this embodiment, a laser beam having two types of wavelengths is irradiated. In order to increase the processing speed, for example, a laser beam having two or more types of wavelengths in the transmission region is used, and three or more types of wavelengths are combined. The semiconductor wafer may be irradiated with a laser beam having

2種類の波長を有するレーザビームは、レーザ発振の基本波を基にして非線形光学結晶を用いた波長変換を実施することで生成される。ここでシリコンウエーハを例にとれば、吸収領域にある第1の波長としては可視光域にある波長である400nm〜1.1μmの波長領域の波長を用いる。また、透過領域にある第2の波長としては、1.3μm〜1.7μmの波長領域の波長を用いる。特に、第1の波長として吸収性が概ね最大となる780nmの波長を用いるとともに、第2の波長として第1の波長を2倍にした1560nmの波長を用いるのが好適である。   A laser beam having two types of wavelengths is generated by performing wavelength conversion using a nonlinear optical crystal based on a fundamental wave of laser oscillation. Taking a silicon wafer as an example, the wavelength in the wavelength region of 400 nm to 1.1 μm, which is the wavelength in the visible light region, is used as the first wavelength in the absorption region. In addition, as the second wavelength in the transmission region, a wavelength in the wavelength region of 1.3 μm to 1.7 μm is used. In particular, it is preferable to use a wavelength of 780 nm at which the absorption is substantially maximum as the first wavelength, and a wavelength of 1560 nm that is twice the first wavelength as the second wavelength.

上記のように2種類の波長を有するレーザビームを例えば凸レンズ等として与えられる集光光学系2を用いて集光すると、色収差に起因して、それぞれの波長のレーザビームが光軸方向に沿って異なる位置に集光点を有するようになる。図1に示されるように、吸収領域にある第1の波長のビームを半導体ウエーハの表面部に集光すると、透過領域にある第2の波長のレーザビームは半導体ウエーハの内部に集光される。第1の波長のレーザビームが集光される半導体ウエーハの表面部では、主にレーザビームの線形吸収により、表面近傍加工領域9が形成される。吸収された光エネルギーが熱に変化する前にパルス時間が終了している短パルスレーザーであれば、この表面近傍加工領域9では、半導体ウエーハが融解することなく、溝が形成されるか、あるいは材料組成の変質による改質領域が形成される。   When a laser beam having two types of wavelengths as described above is condensed using, for example, the condensing optical system 2 provided as a convex lens, the laser beams of the respective wavelengths are aligned along the optical axis direction due to chromatic aberration. It has condensing points at different positions. As shown in FIG. 1, when the beam having the first wavelength in the absorption region is condensed on the surface of the semiconductor wafer, the laser beam having the second wavelength in the transmission region is condensed inside the semiconductor wafer. . In the surface portion of the semiconductor wafer on which the laser beam of the first wavelength is condensed, a near-surface processed region 9 is formed mainly by linear absorption of the laser beam. In the case of a short pulse laser in which the pulse time ends before the absorbed light energy changes to heat, in this near-surface processed region 9, grooves are formed without melting the semiconductor wafer, or A modified region is formed by the alteration of the material composition.

また、第2の波長のレーザビームが集光される半導体ウエーハの内部では、主にレーザビームの多光子吸収により、材料組成が変質して改質領域10が形成される。レーザビームが集光された部位には圧縮応力が作用するとともにその周辺領域には引張り応力が作用するので、表面近傍加工領域9及びその周辺領域並びに改質領域10及びその周辺領域には残留応力が発生する。半導体ウエーハに照射するレーザビームとして短パルスレーザを使用しているので、多光子吸収を生じさせる第2の波長のレーザビームのパルス幅を制御して、より高いパワー集光密度に設定することが可能である。なお、集光光学系2を半導体ウエーハ1の表面に対して垂直方向に移動させることにより、集光点7および集光点8を下方に移動させて、表面近傍加工領域9並びに改質領域10を垂直方向に延ばすように加工することが可能である。さらに、第1の波長のレーザビームのエネルギと第2の波長のレーザビームのエネルギとの比率を任意に変更できる構成としておくのが好適であり、これにより加工対象の板状体の材質に応じた最適な加工条件を設定することが可能となる。   In addition, inside the semiconductor wafer where the laser beam of the second wavelength is condensed, the material composition is altered and the modified region 10 is formed mainly by multiphoton absorption of the laser beam. Since compressive stress acts on the portion where the laser beam is focused and tensile stress acts on the peripheral region thereof, residual stress is applied to the near-surface processed region 9 and its peripheral region, the modified region 10 and its peripheral region. Will occur. Since a short pulse laser is used as the laser beam irradiated to the semiconductor wafer, the pulse width of the laser beam having the second wavelength that causes multiphoton absorption can be controlled to set a higher power condensing density. Is possible. In addition, by moving the condensing optical system 2 in a direction perpendicular to the surface of the semiconductor wafer 1, the condensing point 7 and the condensing point 8 are moved downward, so that the near-surface processed region 9 and the modified region 10. Can be processed so as to extend in the vertical direction. Furthermore, it is preferable that the ratio of the energy of the laser beam of the first wavelength and the energy of the laser beam of the second wavelength can be arbitrarily changed, and thus, depending on the material of the plate-like body to be processed. It is possible to set optimum machining conditions.

上記のように、半導体ウエーハの表面部における線形吸収と内部における多光子吸収とにより穿孔部あるいは改質領域が形成されることで、ストリートに沿って半導体ウエーハの表面に対して垂直方向に延びる面方向に残留応力発生領域が形成される。ストリートに沿ったレーザビームの走査完了後に、半導体ウエーハに対して曲げによる機械的衝撃力を加えるブレーキング工程を実施すると、表面近傍加工領域9を起点として、内部に形成された残留応力発生領域にクラックが伝播して、ストリートに沿って半導体ウエーハを容易に分割することができる。この場合、加工溝のみを形成した後に分割する従来の方法と比較すると、表面近傍加工領域9に照射するレーザビームのパワー集光密度を低く設定することができるから、デブリの発生量を大幅に低減できるとともに、表面近傍加工領域9の加工幅を狭くすることができる。なお、半導体ウエーハが薄い場合には、機械的衝撃力を加えることなく、レーザビームを走査するのみで半導体ウエーハを分割することも可能である。   As described above, a surface extending in a direction perpendicular to the surface of the semiconductor wafer along the street is formed by forming a perforated portion or a modified region by linear absorption at the surface portion of the semiconductor wafer and multiphoton absorption inside. A residual stress generation region is formed in the direction. After the completion of the scanning of the laser beam along the street, when a breaking process is performed to apply a mechanical impact force by bending to the semiconductor wafer, the residual stress generation region formed inside starts from the near-surface processed region 9. Cracks propagate and the semiconductor wafer can be easily divided along the street. In this case, compared with the conventional method of dividing only after forming the machining groove, the power collection density of the laser beam irradiated to the near-surface machining region 9 can be set low, so that the amount of debris generated is greatly increased. While being able to reduce, the process width | variety of the surface vicinity process area | region 9 can be narrowed. When the semiconductor wafer is thin, it is possible to divide the semiconductor wafer only by scanning the laser beam without applying a mechanical impact force.

また、板状体の厚みが小さい場合には、第2の波長のレーザビームの集光点が板状体の裏面近傍に形成され、板状体の裏面近傍を加工することが、この発明の実施により可能となる。また、使用する2種類の波長のレーザビームが同じ基本波のレーザビームから生成されても、それぞれの光路長が異なる場合がある。このような場合には、半導体ウエーハに対して透過領域にある第2の波長のレーザビームの光路長を、吸収領域にある第1の波長のレーザビームの光路長よりも短縮して、第2の波長のレーザビームが時間的に先に到着するような構成を採ることが可能である。この場合には、表面部の加工に妨げられないで、内部に第2の波長のレーザビームを入射させることが可能となる。   Further, when the thickness of the plate-like body is small, the condensing point of the laser beam having the second wavelength is formed in the vicinity of the back surface of the plate-like body, and the vicinity of the back surface of the plate-like body is processed. It becomes possible by implementation. Further, even when two types of laser beams having different wavelengths are generated from laser beams having the same fundamental wave, the respective optical path lengths may be different. In such a case, the optical path length of the laser beam having the second wavelength in the transmission region with respect to the semiconductor wafer is made shorter than the optical path length of the laser beam having the first wavelength in the absorption region. It is possible to adopt a configuration in which a laser beam having a wavelength of 1 arrives first in time. In this case, the laser beam having the second wavelength can be incident inside without being obstructed by the processing of the surface portion.

図2は、本願発明による切断方法に用いられるレーザビーム発生装置の構成の例を示す図である。モード同期光ファイバレーザ発振器21は、超短パルス発振光22を出力する。光ファイバ23は、入力した超短パルス発振光22に対して、波長分散作用によるパルス幅のストレッチングを施すことでパルス幅を増大し、ピーク出力の低下した比較的長パルスのレーザビーム24を出力する。   FIG. 2 is a diagram showing an example of the configuration of a laser beam generator used in the cutting method according to the present invention. The mode-locked optical fiber laser oscillator 21 outputs an ultrashort pulse oscillation light 22. The optical fiber 23 increases the pulse width by stretching the pulse width by the wavelength dispersion action on the input ultrashort pulse oscillation light 22, and generates a relatively long pulse laser beam 24 with a reduced peak output. Output.

次に、広帯域利得を有する利得媒体である例えばTi添加のサファイヤ結晶を用いた再生増幅器25にレーザビーム24を入射させ、パルスエネルギーを広帯域増幅したレーザビーム出力26を得る。この再生増幅器25は、Nd:YAGレーザの第2高調波波長変換のレーザ出力を得るような例えばSHG−Nd:YAGレーザ装置27を利用して光励起される。   Next, a laser beam 24 is incident on a regenerative amplifier 25 using, for example, Ti-added sapphire crystal, which is a gain medium having a broadband gain, to obtain a laser beam output 26 in which pulse energy is amplified in a wide band. The regenerative amplifier 25 is optically pumped by using, for example, an SHG-Nd: YAG laser device 27 that obtains a laser output of second harmonic wavelength conversion of the Nd: YAG laser.

回折格子対を用いた周知のパルス圧縮器28は、増幅されたレーザビーム26を入力して、パルス圧縮を実施する。これにより、ストレッチング前に近いパルス幅までパルス幅が圧縮され、再び短パルスに戻される。すなわち、再生増幅器25によりパルスストレッチされた長パルスのレーザビームが、長パルスの状態で増幅されたパルスエネルギーを時間的に圧縮することで高ピーク出力値を有する短パルスビーム29になる。   A well-known pulse compressor 28 using a diffraction grating pair inputs an amplified laser beam 26 and performs pulse compression. As a result, the pulse width is compressed to a pulse width close to that before stretching, and returned to a short pulse again. That is, the long pulse laser beam pulse-stretched by the regenerative amplifier 25 becomes a short pulse beam 29 having a high peak output value by temporally compressing the pulse energy amplified in the long pulse state.

次に、この高ピーク出力値を有する短パルスビーム29を光パラメトリック増幅用の非線形光学結晶を有する光パラメトリック増幅器30に入射して、非線形光学結晶を光励起する。これにより、非線形光学結晶から光パラメトリック増幅波長である信号光周波数成分ωsとアイドラ光の周波数成分ωiから成る少なくとも2種類の周波数を含むレーザビームを波長変換して取り出す。光パラメトリックは原理的には周知の技術であり、励起光の周波数をωとすると、光パラメトリック増幅による発振出力として得られる信号光周波数ωs及びアイドラ光の周波数ωiとの間にはω=ωs+ωiの関係が成立する。ωs=ωiのときは、縮退した2倍の波長のパルス出力を得る。光パラメトリック増幅器30は、光パラメトリック増幅の原理に基づいて、第1の波長を有するレーザビーム31と第2の波長を有するレーザビーム32とを出力する。このように生成された第1の波長のレーザビームおよび第2の波長のレーザビームは、図1に示される集光光学系2を介して半導体ウエーハ1に照射され、それぞれ半導体ウエーハ1の表面部および内部に集光点を形成する。   Next, the short pulse beam 29 having the high peak output value is incident on the optical parametric amplifier 30 having the nonlinear optical crystal for optical parametric amplification, and the nonlinear optical crystal is optically excited. As a result, a laser beam including at least two types of frequencies composed of the signal light frequency component ωs, which is the optical parametric amplification wavelength, and the idler light frequency component ωi is extracted from the nonlinear optical crystal by wavelength conversion. The optical parametric is a well-known technique in principle. If the frequency of the pumping light is ω, there is ω = ωs + ωi between the signal light frequency ωs obtained as the oscillation output by the optical parametric amplification and the frequency ωi of the idler light. A relationship is established. When ωs = ωi, a degenerate double wavelength pulse output is obtained. The optical parametric amplifier 30 outputs a laser beam 31 having a first wavelength and a laser beam 32 having a second wavelength based on the principle of optical parametric amplification. The laser beam of the first wavelength and the laser beam of the second wavelength generated in this way are irradiated onto the semiconductor wafer 1 via the condensing optical system 2 shown in FIG. And a condensing point is formed inside.

図3は、本願発明による切断方法に用いられるレーザビーム発生装置の他の構成の例を示す図である。周知のフェムト秒レーザ発振器41から出力される短パルスのレーザ発振基本波ビーム42をビームスプリッタ43で2本のビーム44,45に分割する。白色光発生器47は、レーザビーム44を入力して、白色スペクトルを有するコヒーレント光48を出力する。このコヒーレント光48は、ミラー49およびダイクロイックミラー50により反射されて、種光として光パラメトリック増幅器51に入射する。また、基本波周波数を有するレーザビーム45は、ダイクロイックミラー50を通過して、光パラメトリック増幅器51に入射する。光パラメトリック増幅器51は、基本波周波数のパワーで非線形光学結晶を励起し、この結晶内に同時に導かれた種光ビーム48内に含まれる信号光のなかで、周波数ωsの成分と周波数ωiの成分を選択的に増幅する。これによって、基本波周波数ωを有するレーザ光線を周波数ωsを有するレーザ光線52と周波数ωiを有するレーザ光線53とに変換する。このように生成された第1の波長のレーザビームおよび第2の波長のレーザビームは、図1に示される集光光学系2を介して半導体ウエーハ1に照射され、それぞれ半導体ウエーハ1の表面部および内部に集光点を形成する。   FIG. 3 is a diagram showing an example of another configuration of the laser beam generator used in the cutting method according to the present invention. A short pulse laser oscillation fundamental wave beam 42 output from a known femtosecond laser oscillator 41 is split into two beams 44 and 45 by a beam splitter 43. The white light generator 47 receives the laser beam 44 and outputs coherent light 48 having a white spectrum. The coherent light 48 is reflected by the mirror 49 and the dichroic mirror 50 and enters the optical parametric amplifier 51 as seed light. Further, the laser beam 45 having the fundamental frequency passes through the dichroic mirror 50 and enters the optical parametric amplifier 51. The optical parametric amplifier 51 excites the nonlinear optical crystal with the power of the fundamental frequency, and the component of the frequency ωs and the component of the frequency ωi are included in the signal light contained in the seed light beam 48 simultaneously guided into the crystal. Is selectively amplified. As a result, the laser beam having the fundamental frequency ω is converted into the laser beam 52 having the frequency ωs and the laser beam 53 having the frequency ωi. The laser beam of the first wavelength and the laser beam of the second wavelength generated in this way are irradiated onto the semiconductor wafer 1 via the condensing optical system 2 shown in FIG. And a condensing point is formed inside.

なお、パルス幅が極度に狭い場合は、光路44−48と光路45との光路長が異なることによって光パラメトリック増幅器51に同時にパルスが到達しない場合がある。この場合には、適宜、光路45を延長して光路44−48の光路長と一致させ、種光48と励起光45とを時間的に同一空間に存在させるような構成とすることもできる。   When the pulse width is extremely narrow, the pulses may not reach the optical parametric amplifier 51 at the same time because the optical path lengths of the optical paths 44 to 48 and the optical path 45 are different. In this case, it is possible to appropriately extend the optical path 45 so that it matches the optical path length of the optical paths 44-48 so that the seed light 48 and the excitation light 45 exist in the same space in time.

本発明の適用例としては、シリコンウエーハの切断に限られるものではなく、半導体基板のレーザ精密加工に広く適用できるものである。本願発明を用いることにより、電子部品製造のスループットが向上され、また加工除去物を低減できることで製品歩留まりを向上することが可能になる。   The application example of the present invention is not limited to the cutting of a silicon wafer, but can be widely applied to laser precision processing of a semiconductor substrate. By using the present invention, it is possible to improve the throughput of manufacturing electronic components and to improve the product yield by reducing the amount of processed removal.

板状半導体であるシリコンウエーハの分割工程を示す説明図。Explanatory drawing which shows the division | segmentation process of the silicon wafer which is a plate-shaped semiconductor. 本願発明による切断方法に用いられるレーザビーム発生装置の構成の一例を示す図。The figure which shows an example of a structure of the laser beam generator used for the cutting method by this invention. 本願発明による切断方法に用いられるレーザビーム発生装置の構成の他の例を示す図。The figure which shows the other example of a structure of the laser beam generator used for the cutting method by this invention. レーザ切断装置によるウエーハ切断方法を示す概略図。Schematic which shows the wafer cutting method by a laser cutting device.

符号の説明Explanation of symbols

1:半導体ウエーハ、2:集光光学系、3,4:レーザビーム、5,6:収束ビーム、7,8:集光点、9:表面近傍加工領域、10:改質領域、21:モード同期光ファイバレーザ発振器、23:光ファイバ、25:再生増幅器、27:YAGレーザ装置、28:パルス圧縮器、30:光パラメトリック増幅器、41:フェムト秒レーザ発振器、43,50:ダイクロイックミラー、46,49:ミラー、47:白色光発生器、51:光パラメトリック増幅器、101:半導体ウエーハ、102:回路部、103:集光光学系、104:光軸、105:レーザビーム、106:収束ビーム、107,108:集光点 1: Semiconductor wafer, 2: Condensing optical system, 3, 4: Laser beam, 5, 6: Converging beam, 7, 8: Condensing point, 9: Surface processing region, 10: Modified region, 21: Mode Synchronous fiber laser oscillator, 23: optical fiber, 25: regenerative amplifier, 27: YAG laser device, 28: pulse compressor, 30: optical parametric amplifier, 41: femtosecond laser oscillator, 43, 50: dichroic mirror, 46, 49: mirror, 47: white light generator, 51: optical parametric amplifier, 101: semiconductor wafer, 102: circuit unit, 103: condensing optical system, 104: optical axis, 105: laser beam, 106: convergent beam, 107 108: Focusing point

Claims (12)

2種類以上の波長を含む短パルスのレーザビームを集光して板状体に照射し、該板状体の表面部にレーザビームの集光点を形成するとともに該板状体の内部に1または複数の集光点を形成し、切断方向に沿ってレーザビームを走査することで板状体を切断する板状体の切断方法。   A short pulse laser beam including two or more wavelengths is condensed and irradiated to the plate-like body, and a condensing point of the laser beam is formed on the surface of the plate-like body, and 1 inside the plate-like body. Or the cutting method of the plate-shaped body which forms a some condensing point and cut | disconnects a plate-shaped body by scanning a laser beam along a cutting direction. 2種類以上の波長を含む短パルスのレーザビームを集光して板状体に照射し、該板状体の表面部にレーザビームの集光点を形成するとともに該板状体の内部に1または複数の集光点を形成し、切断方向に沿ってレーザビームを走査した後に、機械的外力を加えてレーザビームによる加工軌跡に沿って板状体を切断する板状体の切断方法。   A short pulse laser beam including two or more wavelengths is condensed and irradiated to the plate-like body, and a condensing point of the laser beam is formed on the surface of the plate-like body, and 1 inside the plate-like body. Alternatively, a plate-like body cutting method in which a plurality of condensing points are formed, a laser beam is scanned along the cutting direction, and then a plate-like body is cut along a processing locus by the laser beam by applying a mechanical external force. 板状体に照射するレーザビームに含まれる一つの波長が該板状体により主に線形吸収される吸収領域に属する波長であり、
該板状体に照射するレーザビームに含まれる他の波長が該板状体により主に多光子吸収される透過領域に属する波長であることを特徴とする請求項1または請求項2に記載の板状体の切断方法。
One wavelength included in the laser beam applied to the plate-like body is a wavelength belonging to an absorption region that is mainly linearly absorbed by the plate-like body,
The other wavelength included in the laser beam applied to the plate-like body is a wavelength belonging to a transmission region mainly absorbed by multiphotons by the plate-like body. A method for cutting a plate-like body.
板状体に照射するレーザビームに含まれる一つの波長が約780nmであり、
該板状体に照射するレーザビームに含まれる他の波長が1.3μm〜1.7μmの波長領域に属する波長であることを特徴とする請求項1または請求項2に記載の板状体の切断方法。
One wavelength included in the laser beam applied to the plate-shaped body is about 780 nm,
3. The plate-like body according to claim 1, wherein another wavelength included in the laser beam applied to the plate-like body is a wavelength belonging to a wavelength region of 1.3 μm to 1.7 μm. Cutting method.
板状体により主に線形吸収される吸収領域に属する波長を有するレーザビームのエネルギと、板状体により主に多光子吸収される透過領域に属する波長を有する1または複数のレーザビームのそれぞれのエネルギとの比率を任意に変更できることを特徴とする請求項1または請求項2に記載の板状体の切断方法。   The energy of a laser beam having a wavelength belonging to an absorption region that is mainly linearly absorbed by the plate-like body, and each of one or a plurality of laser beams having a wavelength belonging to a transmission region mainly absorbed by the plate-like body by multiphoton absorption The ratio of energy can be changed arbitrarily, The cutting method of the plate-shaped body of Claim 1 or Claim 2 characterized by the above-mentioned. 板状体により主に線形吸収される吸収領域に属する波長を有するレーザビームのパルスを、該板状体により主に多光子吸収される透過領域に属する波長を有する1または複数のレーザビームのパルスよりも所定の時間だけ遅延させて該板状体に照射することを特徴とする請求項1または請求項2に記載の板状体の切断方法。   A pulse of a laser beam having a wavelength belonging to the absorption region mainly absorbed linearly by the plate-like body, and a pulse of one or a plurality of laser beams having a wavelength belonging to the transmission region mainly absorbed by the plate-like body by multiphotons 3. The method for cutting a plate-like body according to claim 1, wherein the plate-like body is irradiated with a delay by a predetermined time. 加工対象の板状体により主に線形吸収される吸収領域に属する波長を有する短パルスのレーザビームと、該板状体により主に多光子吸収される透過領域に属する1または複数の波長を有する短パルスのレーザビームとをそれぞれが略同一の光軸を有するように出力するレーザ光源と、
該レーザ光源から照射される2種類以上の波長を含むレーザビームを集光する集光光学系とを有して構成されることを特徴とするレーザビーム発生装置。
A short-pulse laser beam having a wavelength belonging to an absorption region that is mainly linearly absorbed by the plate-like object to be processed, and one or more wavelengths belonging to a transmission region that is mainly absorbed by multiphotons by the plate-like member. A laser light source for outputting a short pulse laser beam so that each has a substantially identical optical axis;
A laser beam generating apparatus comprising: a condensing optical system that condenses a laser beam including two or more wavelengths irradiated from the laser light source.
吸収領域に属する波長が約780nmであり、透過領域に属する波長が1.3μm〜1.7μmの波長領域に属する波長であることを特徴とする請求項7に記載のレーザビーム発生装置。   8. The laser beam generator according to claim 7, wherein the wavelength belonging to the absorption region is about 780 nm, and the wavelength belonging to the transmission region is a wavelength belonging to a wavelength region of 1.3 μm to 1.7 μm. 集光光学系をレーザビームの光軸方向に移動可能としたことを特徴とする請求項7に記載のレーザビーム発生装置。   8. The laser beam generator according to claim 7, wherein the condensing optical system is movable in the optical axis direction of the laser beam. 主に線形吸収される吸収領域に属する波長を有するレーザビームのエネルギと、主に多光子吸収される透過領域に属する波長を有する1または複数のレーザビームのそれぞれのエネルギとの比率を任意に変更できることを特徴とする請求項7に記載のレーザビーム発生装置。 The ratio between the energy of a laser beam having a wavelength belonging to an absorption region that is mainly linearly absorbed and the energy of each of one or more laser beams having a wavelength belonging to a transmission region that is mainly absorbed by multiphotons is arbitrarily changed. The laser beam generator according to claim 7, wherein the laser beam generator can be used. 主に線形吸収される吸収領域に属する波長を有するレーザビームのパルスを、主に多光子吸収される透過領域に属する波長を有する1または複数のレーザビームのパルスよりも所定の時間だけ遅延させて出力することを特徴とする請求項7に記載のレーザビーム発生装置。   A pulse of a laser beam having a wavelength belonging to an absorption region mainly absorbed linearly is delayed by a predetermined time from a pulse of one or a plurality of laser beams having a wavelength belonging to a transmission region mainly absorbing multiphotons. 8. The laser beam generator according to claim 7, wherein the laser beam generator outputs the laser beam. 吸収領域に属する波長としてTi(チタン)添加のサファイヤレーザの基本波発振波長を用いることを特徴とする請求項7に記載のレーザビーム発生装置。   8. The laser beam generator according to claim 7, wherein a fundamental oscillation wavelength of a sapphire laser added with Ti (titanium) is used as a wavelength belonging to the absorption region.
JP2005129396A 2005-04-27 2005-04-27 Plate cutting method and laser processing apparatus Expired - Fee Related JP4838531B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005129396A JP4838531B2 (en) 2005-04-27 2005-04-27 Plate cutting method and laser processing apparatus
KR1020060037533A KR101325200B1 (en) 2005-04-27 2006-04-26 Cutting method of plate-like body and laser processing machine
TW095115089A TWI387503B (en) 2005-04-27 2006-04-27 Plate cutting method and laser processing device
CNB2006100886357A CN100553853C (en) 2005-04-27 2006-04-27 Plate cutting method and laser processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005129396A JP4838531B2 (en) 2005-04-27 2005-04-27 Plate cutting method and laser processing apparatus

Publications (2)

Publication Number Publication Date
JP2006305586A true JP2006305586A (en) 2006-11-09
JP4838531B2 JP4838531B2 (en) 2011-12-14

Family

ID=37194459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005129396A Expired - Fee Related JP4838531B2 (en) 2005-04-27 2005-04-27 Plate cutting method and laser processing apparatus

Country Status (4)

Country Link
JP (1) JP4838531B2 (en)
KR (1) KR101325200B1 (en)
CN (1) CN100553853C (en)
TW (1) TWI387503B (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035610A1 (en) * 2006-09-19 2008-03-27 Hamamatsu Photonics K.K. Laser processing method
JP2008272794A (en) * 2007-04-27 2008-11-13 Cyber Laser Kk Laser beam machining method and apparatus
JP2010046703A (en) * 2008-08-25 2010-03-04 Disco Abrasive Syst Ltd Laser machining apparatus and laser machining method
JP2010158686A (en) * 2009-01-06 2010-07-22 Disco Abrasive Syst Ltd Optical device for laser processing, laser processing device and laser processing method
JP2010534140A (en) * 2007-07-24 2010-11-04 イーオー テクニクス カンパニー リミテッド Laser processing apparatus and method using laser beam splitting
JP2011115853A (en) * 2009-11-05 2011-06-16 Toshiba Corp Laser machining device and method using the same
JP2011519175A (en) * 2008-04-30 2011-06-30 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Semiconductor wafer dicing
WO2012108503A1 (en) * 2011-02-09 2012-08-16 住友電気工業株式会社 Laser processing method
JP2012173246A (en) * 2011-02-24 2012-09-10 Fujifilm Corp Photoacoustic imaging apparatus
CN102699526A (en) * 2012-06-01 2012-10-03 苏州德龙激光有限公司 Method and device for cutting machined object by using laser
CN103193381A (en) * 2013-04-07 2013-07-10 北京工业大学 Method for removing laser selection area of glass
JP2014037006A (en) * 2008-03-07 2014-02-27 Imra America Inc Transparent material treatment by ultra-short pulse laser
JP2014079794A (en) * 2012-10-18 2014-05-08 Sumitomo Electric Ind Ltd Laser processing method
JP2015520938A (en) * 2012-04-13 2015-07-23 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Laser nano machining apparatus and method
JP2015149445A (en) * 2014-02-07 2015-08-20 株式会社ディスコ Method for processing wafer
EP2944412A1 (en) 2014-05-16 2015-11-18 Valstybinis moksliniu tyrimu institutas Fiziniu ir technologijos mokslu centras Method and apparatus for laser cutting of transparent media
EP2465634A4 (en) * 2009-08-11 2017-08-23 Hamamatsu Photonics K.K. Laser machining device and laser machining method
KR20180027179A (en) * 2016-09-06 2018-03-14 주식회사 이오테크닉스 Laser processing apparatus and laser processing method using the same
KR20180060827A (en) * 2016-11-29 2018-06-07 주식회사 이오테크닉스 Laser processing apparatus and laser processing method
CN114083150A (en) * 2021-11-29 2022-02-25 中国工程物理研究院激光聚变研究中心 Method for cutting pipe body by laser composite cutting and cutting system

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070097189A (en) * 2006-03-28 2007-10-04 삼성전자주식회사 Substrate cutting method and substrate cutting apparatus used therein
JP5241525B2 (en) * 2009-01-09 2013-07-17 浜松ホトニクス株式会社 Laser processing equipment
JP5241527B2 (en) * 2009-01-09 2013-07-17 浜松ホトニクス株式会社 Laser processing equipment
CN102307699B (en) * 2009-02-09 2015-07-15 浜松光子学株式会社 Workpiece cutting method
KR101149594B1 (en) * 2010-06-01 2012-05-29 한국과학기술원 Method for cutting processing side using femtosecond pulse laser applied PZT element
JP5770436B2 (en) * 2010-07-08 2015-08-26 株式会社ディスコ Laser processing apparatus and laser processing method
JP5104919B2 (en) * 2010-07-23 2012-12-19 三星ダイヤモンド工業株式会社 Laser processing apparatus, workpiece processing method, and workpiece dividing method
KR101217698B1 (en) * 2010-08-16 2013-01-02 주식회사 이오테크닉스 Laser processing method and laser processing apparatus using sequential multi-focusing
KR101232008B1 (en) * 2010-11-29 2013-02-08 한국과학기술원 The depth of the modified cutting device through a combination of characteristics
CN102990227A (en) * 2011-09-08 2013-03-27 技鼎股份有限公司 Method for single wavelength multilayer laser processing
CN105324207B (en) * 2013-03-27 2018-01-16 浜松光子学株式会社 Laser processing device and laser processing
TWI574767B (en) * 2014-07-29 2017-03-21 Improved laser structure
JP6395632B2 (en) * 2015-02-09 2018-09-26 株式会社ディスコ Wafer generation method
JP6395633B2 (en) * 2015-02-09 2018-09-26 株式会社ディスコ Wafer generation method
CN107511596A (en) * 2016-06-16 2017-12-26 南京魔迪多维数码科技有限公司 The laser machining device and method of multilayer material
WO2018094349A1 (en) * 2016-11-18 2018-05-24 Ipg Photonics Corporation System and method laser for processing of materials.
TWI615228B (en) * 2016-11-29 2018-02-21 財團法人金屬工業研究發展中心 Method for manufacturing metal strip
JP7188886B2 (en) 2018-01-29 2022-12-13 浜松ホトニクス株式会社 processing equipment
KR102191666B1 (en) * 2018-11-09 2020-12-17 한국과학기술원 Method for processing transparent materials using spatio-temporally shaped pulsed-laser beam and Apparatus for the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293589A (en) * 2000-04-11 2001-10-23 Fanuc Ltd Laser beam machining device
JP2002324768A (en) * 2001-02-21 2002-11-08 Nec Machinery Corp Substrate cutting method
JP2003211400A (en) * 2002-01-22 2003-07-29 Japan Science & Technology Corp Fine processing method using ultra-short pulse laser and processed product
JP2003290961A (en) * 2002-03-28 2003-10-14 Sumitomo Heavy Ind Ltd Laser beam machining device
JP2004160483A (en) * 2002-11-12 2004-06-10 Disco Abrasive Syst Ltd Laser processing method and laser processing apparatus
JP2004351466A (en) * 2003-05-29 2004-12-16 Aisin Seiki Co Ltd Laser processing method and laser processing apparatus
JP2005007427A (en) * 2003-06-19 2005-01-13 Y E Data Inc Laser marking method
JP2005077606A (en) * 2003-08-29 2005-03-24 Toshiba Corp Laser oscillation device and air pollutant monitoring device
JP2005088068A (en) * 2003-09-19 2005-04-07 Matsushita Electric Ind Co Ltd Laser processing apparatus and laser processing method
JP2005096459A (en) * 2002-03-12 2005-04-14 Hamamatsu Photonics Kk Laser machining method
JP2005100599A (en) * 2003-08-25 2005-04-14 Fuji Photo Film Co Ltd Photon mode recording method and 3-dimensional optical recording method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100495329B1 (en) * 2002-09-19 2005-06-13 주식회사 서울레이저발형시스템 Laser Machine for processing slits
US8685838B2 (en) * 2003-03-12 2014-04-01 Hamamatsu Photonics K.K. Laser beam machining method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293589A (en) * 2000-04-11 2001-10-23 Fanuc Ltd Laser beam machining device
JP2002324768A (en) * 2001-02-21 2002-11-08 Nec Machinery Corp Substrate cutting method
JP2003211400A (en) * 2002-01-22 2003-07-29 Japan Science & Technology Corp Fine processing method using ultra-short pulse laser and processed product
JP2005096459A (en) * 2002-03-12 2005-04-14 Hamamatsu Photonics Kk Laser machining method
JP2003290961A (en) * 2002-03-28 2003-10-14 Sumitomo Heavy Ind Ltd Laser beam machining device
JP2004160483A (en) * 2002-11-12 2004-06-10 Disco Abrasive Syst Ltd Laser processing method and laser processing apparatus
JP2004351466A (en) * 2003-05-29 2004-12-16 Aisin Seiki Co Ltd Laser processing method and laser processing apparatus
JP2005007427A (en) * 2003-06-19 2005-01-13 Y E Data Inc Laser marking method
JP2005100599A (en) * 2003-08-25 2005-04-14 Fuji Photo Film Co Ltd Photon mode recording method and 3-dimensional optical recording method
JP2005077606A (en) * 2003-08-29 2005-03-24 Toshiba Corp Laser oscillation device and air pollutant monitoring device
JP2005088068A (en) * 2003-09-19 2005-04-07 Matsushita Electric Ind Co Ltd Laser processing apparatus and laser processing method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9138913B2 (en) 2005-09-08 2015-09-22 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
WO2008035610A1 (en) * 2006-09-19 2008-03-27 Hamamatsu Photonics K.K. Laser processing method
US8278592B2 (en) 2006-09-19 2012-10-02 Hamamatsu Photonics K.K. Laser processing method
JP2008272794A (en) * 2007-04-27 2008-11-13 Cyber Laser Kk Laser beam machining method and apparatus
JP2010534140A (en) * 2007-07-24 2010-11-04 イーオー テクニクス カンパニー リミテッド Laser processing apparatus and method using laser beam splitting
JP2014037006A (en) * 2008-03-07 2014-02-27 Imra America Inc Transparent material treatment by ultra-short pulse laser
JP2017024083A (en) * 2008-03-07 2017-02-02 イムラ アメリカ インコーポレイテッド Transparent material processing by ultrashort pulse laser
JP2011519175A (en) * 2008-04-30 2011-06-30 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Semiconductor wafer dicing
JP2010046703A (en) * 2008-08-25 2010-03-04 Disco Abrasive Syst Ltd Laser machining apparatus and laser machining method
JP2010158686A (en) * 2009-01-06 2010-07-22 Disco Abrasive Syst Ltd Optical device for laser processing, laser processing device and laser processing method
US10556293B2 (en) 2009-08-11 2020-02-11 Hamamatsu Photonics K.K. Laser machining device and laser machining method
EP2465634A4 (en) * 2009-08-11 2017-08-23 Hamamatsu Photonics K.K. Laser machining device and laser machining method
JP2011115853A (en) * 2009-11-05 2011-06-16 Toshiba Corp Laser machining device and method using the same
WO2012108503A1 (en) * 2011-02-09 2012-08-16 住友電気工業株式会社 Laser processing method
US8933367B2 (en) 2011-02-09 2015-01-13 Sumitomo Electric Industries, Ltd. Laser processing method
JP2012173246A (en) * 2011-02-24 2012-09-10 Fujifilm Corp Photoacoustic imaging apparatus
JP2015520938A (en) * 2012-04-13 2015-07-23 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Laser nano machining apparatus and method
US10131017B2 (en) 2012-04-13 2018-11-20 Centre National de la Recherche Scientifique—CNRS Laser nanomachining device and method
CN102699526A (en) * 2012-06-01 2012-10-03 苏州德龙激光有限公司 Method and device for cutting machined object by using laser
JP2014079794A (en) * 2012-10-18 2014-05-08 Sumitomo Electric Ind Ltd Laser processing method
CN103193381A (en) * 2013-04-07 2013-07-10 北京工业大学 Method for removing laser selection area of glass
JP2015149445A (en) * 2014-02-07 2015-08-20 株式会社ディスコ Method for processing wafer
LT6240B (en) * 2014-05-16 2016-01-25 Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras Method and apparatus for laser cutting of transparent media
EP2944412A1 (en) 2014-05-16 2015-11-18 Valstybinis moksliniu tyrimu institutas Fiziniu ir technologijos mokslu centras Method and apparatus for laser cutting of transparent media
KR20180027179A (en) * 2016-09-06 2018-03-14 주식회사 이오테크닉스 Laser processing apparatus and laser processing method using the same
KR20180060827A (en) * 2016-11-29 2018-06-07 주식회사 이오테크닉스 Laser processing apparatus and laser processing method
CN114083150A (en) * 2021-11-29 2022-02-25 中国工程物理研究院激光聚变研究中心 Method for cutting pipe body by laser composite cutting and cutting system
CN114083150B (en) * 2021-11-29 2023-11-17 中国工程物理研究院激光聚变研究中心 Method and system for cutting pipe body by laser combination

Also Published As

Publication number Publication date
TWI387503B (en) 2013-03-01
JP4838531B2 (en) 2011-12-14
KR20060113454A (en) 2006-11-02
KR101325200B1 (en) 2013-11-04
TW200711775A (en) 2007-04-01
CN100553853C (en) 2009-10-28
CN1853840A (en) 2006-11-01

Similar Documents

Publication Publication Date Title
JP4838531B2 (en) Plate cutting method and laser processing apparatus
JP5607138B2 (en) Method for laser individualization of chip scale package on glass substrate
JP6231469B2 (en) Method and apparatus for laser processing silicon by filamentation of burst ultrafast laser pulses
US8847104B2 (en) Wafer cutting method and a system thereof
JP6899653B2 (en) Composite wafer manufacturing method using laser processing and temperature-induced stress
JP5784273B2 (en) Laser processing method, cutting method, and method for dividing structure having multilayer substrate
JP2005288503A (en) Laser beam machining method
JP2008300475A (en) Wafer division method
JP2005179154A (en) Method and apparatus for fracturing brittle material
JP2006315017A (en) Laser beam cutting method, and member to be cut
JP2018523291A (en) Method for scribing semiconductor workpiece
JP2005294325A (en) Method and apparatus for manufacturing substrate
KR101345229B1 (en) Cutting apparatus of substrate
KR101232008B1 (en) The depth of the modified cutting device through a combination of characteristics
JP2005294656A (en) Substrate manufacturing method and apparatus thereof
JP2022191949A (en) Element chip manufacturing method and substrate processing method
JP2005142303A (en) Silicon wafer dividing method and apparatus
JP2006082232A (en) Laser processing method
JP2005123329A (en) How to divide a plate
JP6952092B2 (en) Scrivener method for semiconductor processing objects
JP4060405B2 (en) Manufacturing method of semiconductor wafer
JP2007012733A (en) Substrate dividing method
KR101012332B1 (en) Semiconductor wafer cutting system
JP2011159827A (en) Method for forming reformed area of transparent substrate
JP7047493B2 (en) Ceramic substrate manufacturing method and circuit board manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4838531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees