JP2006294955A - Rigid flex multilayer printed wiring board and manufacturing method thereof - Google Patents
Rigid flex multilayer printed wiring board and manufacturing method thereof Download PDFInfo
- Publication number
- JP2006294955A JP2006294955A JP2005115346A JP2005115346A JP2006294955A JP 2006294955 A JP2006294955 A JP 2006294955A JP 2005115346 A JP2005115346 A JP 2005115346A JP 2005115346 A JP2005115346 A JP 2005115346A JP 2006294955 A JP2006294955 A JP 2006294955A
- Authority
- JP
- Japan
- Prior art keywords
- rigid
- flex
- wiring board
- multilayer printed
- printed wiring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 229920005989 resin Polymers 0.000 claims abstract description 34
- 239000011347 resin Substances 0.000 claims abstract description 34
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000000853 adhesive Substances 0.000 claims abstract description 20
- 230000001070 adhesive effect Effects 0.000 claims abstract description 20
- 239000012790 adhesive layer Substances 0.000 claims abstract description 20
- 238000003475 lamination Methods 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 6
- 230000003014 reinforcing effect Effects 0.000 claims description 6
- 239000010410 layer Substances 0.000 description 22
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 238000007747 plating Methods 0.000 description 8
- 239000011888 foil Substances 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000011889 copper foil Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 238000009824 pressure lamination Methods 0.000 description 3
- 238000005553 drilling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000007261 regionalization Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
【課題】 積層時に樹脂フローが少ない接着シートを用いた場合においても、リジッド部の表面に凹凸が発生することのないリジッドフレックス多層プリント配線板及びその製造方法の提供。
【解決手段】 リジッド部と部分的に折り曲げ可能なフレックス部とを備えたリジッドフレックス多層プリント配線板であって、少なくとも、フレックス基板上のリジッド部に積層される絶縁接着剤層が、積層時に樹脂フローの少ない接着シートからなり、且つ、表面がフラットな面に積層されているリジッドフレックス多層プリント配線板;リジッド部と部分的に折り曲げ可能なフレックス部とを備えたリジッドフレックス多層プリント配線板の製造方法であって、少なくとも、フレックス基板を形成する工程と、当該フレックス基板上のリジッド部における絶縁接着シート積層面をフラットな面にする工程と、当該フラットな面に、積層時に樹脂フローが少ない接着シートを介して配線パターンを形成する工程とを有するリジッドフレックス多層プリント配線板の製造方法。
【選択図】 図1PROBLEM TO BE SOLVED: To provide a rigid-flex multilayer printed wiring board that does not generate irregularities on the surface of a rigid part even when an adhesive sheet with a small resin flow is used at the time of lamination and a method for manufacturing the same.
A rigid-flex multilayer printed wiring board having a rigid part and a flex part that can be partially bent, wherein at least an insulating adhesive layer laminated on the rigid part on the flex substrate is a resin at the time of lamination. Rigid flex multilayer printed wiring board made of adhesive sheet with less flow and laminated on a flat surface; manufacture of rigid flex multilayer printed wiring board with rigid part and partially bendable flex part A method of forming at least a flex substrate, a step of flattening a laminated surface of an insulating adhesive sheet in a rigid portion on the flex substrate, and adhesion with less resin flow at the time of lamination to the flat surface Forming a wiring pattern through a sheet A method of manufacturing a multilayer printed wiring board.
[Selection] Figure 1
Description
本発明はリジッドフレックス多層プリント配線板に関し、特に、フレックス部の屈曲性、及びリジッド部の表面平滑性に優れたリジッドフレックス多層プリント配線板に関する。 The present invention relates to a rigid-flex multilayer printed wiring board, and more particularly to a rigid-flex multilayer printed wiring board excellent in flexibility of a flex portion and surface smoothness of a rigid portion.
従来のリジッドフレックス多層プリント配線板の構成について、図3の製造工程図を用いて簡単に説明する。 The configuration of a conventional rigid-flex multilayer printed wiring board will be briefly described with reference to the manufacturing process diagram of FIG.
まず、図3(a)に示したように、ベースフィルム1の表裏に配線パターン2を形成し、次いで、当該配線パターン2を保護するために、当該べースフィルム1の表裏にカバーレイ3を積層することによって、図3(b)に示したフレックス基板4を得る。 First, as shown in FIG. 3A, the wiring pattern 2 is formed on the front and back of the base film 1, and then the coverlay 3 is laminated on the front and back of the base film 1 in order to protect the wiring pattern 2. By doing so, the flex substrate 4 shown in FIG. 3B is obtained.
次に、図3(c)に示したように、当該フレックス基板4の表裏に、後に屈曲可能なフレックス部Fに相当する部位を刳り貫いた絶縁接着剤層5aと、絶縁基板6の片面に配線パターン2が形成されたリジッド基板7と、上記と同様な絶縁接着剤層5aと、フレックス部Fも覆うような連続的な金属箔2aとを順次配置し、加熱・加圧積層することによって一体化形成する。 Next, as shown in FIG. 3 (c), an insulating adhesive layer 5 a that penetrates a portion corresponding to the flex portion F that can be bent later on the front and back of the flex substrate 4, and one surface of the insulating substrate 6. By sequentially arranging a rigid substrate 7 on which the wiring pattern 2 is formed, an insulating adhesive layer 5a similar to the above, and a continuous metal foil 2a that also covers the flex portion F, and heating and pressure laminating. Integrated formation.
次に、図3(d)に示したように、所望の位置に貫通孔8を穿孔する。次いで図3(e)に示したように、デスミア処理を行った後、当該貫通孔8の導通処理として全面にめっき9を析出させる。 Next, as shown in FIG.3 (d), the through-hole 8 is drilled in a desired position. Next, as shown in FIG. 3E, after performing a desmear process, a plating 9 is deposited on the entire surface as a conduction process for the through hole 8.
次に、図3(f)に示したように、一般的なサブトラクティブ法にて外層の配線パターン2、及び配線パターン形成層間を接続するスルーホール10を形成し、次いで外層の配線パターン2を保護するソルダーレジスト11を形成した後、外形加工を行うことによって、リジッド部Rとフレックス部Fからなる6層のリジッドフレックス多層プリント配線板Pbを得るというものである。 Next, as shown in FIG. 3 (f), the outer layer wiring pattern 2 and the through hole 10 connecting the wiring pattern forming layers are formed by a general subtractive method, and then the outer layer wiring pattern 2 is formed. After forming the solder resist 11 to be protected, external processing is performed to obtain a six-layer rigid-flex multilayer printed wiring board Pb composed of a rigid portion R and a flex portion F.
従来のリジッドフレックス多層プリント配線板の構成としては、おおよそ以上に説明したようなものであるが、従来、当該絶縁接着剤層5aとしては、樹脂フローの大きい汎用品たるプリプレグ(Bステージ状態)を使用していたため、積層の際、図4(フレックス部Fの拡大断面図)に示したように、絶縁接着剤層5aの樹脂がフレックス部Fに流れ込んで、樹脂フロー部12が形成されるため、当該フレックス部Fの屈曲性が低下してしまうという不具合があった。 The configuration of the conventional rigid-flex multilayer printed wiring board is as described above, but conventionally, as the insulating adhesive layer 5a, a prepreg (B stage state) which is a general-purpose product having a large resin flow is used. Since it was used, as shown in FIG. 4 (enlarged cross-sectional view of the flex portion F), the resin of the insulating adhesive layer 5a flows into the flex portion F to form the resin flow portion 12 during lamination. There is a problem that the flexibility of the flex part F is lowered.
そこで、このような不具合を解消するために、図5に示したような構成のリジッドフレックス多層プリント配線板Paも既に知られている(特許文献1参照)。 Therefore, in order to solve such a problem, a rigid-flex multilayer printed wiring board Pa having a configuration as shown in FIG. 5 is already known (see Patent Document 1).
即ち、フレックス基板4とリジッド基板7とを、溶融粘度が10,000〜50,000poiseの樹脂をガラス基材に含浸して半硬化させた所謂ローフロープリプレグ(絶縁接着剤5)を介して積層することによって、配線パターン間への樹脂の追従性(ボイドレス)と、フレックス部Fへの樹脂フローの抑制を両立させるというものである。 That is, the flex substrate 4 and the rigid substrate 7 are laminated through a so-called low flow prepreg (insulating adhesive 5) in which a glass base material is impregnated with a resin having a melt viscosity of 10,000 to 50,000 poise and semi-cured. By doing this, it is possible to achieve both the followability (voidless) of the resin between the wiring patterns and the suppression of the resin flow to the flex portion F.
しかし、上記構成においては、下層の配線パターン形成層に直接当該ローフロープリプレグを介して上層の配線パターンを形成する場合に、当該下層の配線パターンの影響を受けて、上層の配線パターン形成層に大きな凹凸が発生(層数が増えるごとに当該凹凸が蓄積される)するため、依然として、上層のファインパターン形成性や部品実装性等において問題があった。
本発明は、リジッド部の積層の際に用いられる絶縁接着剤層として、積層時に樹脂フローが少ない接着シートを用いた場合においても、リジッド部の表面に凹凸が発生することのないリジッドフレックス多層プリント配線板とその製造方法を提供することを課題とする。 The present invention provides a rigid-flex multilayer print in which unevenness does not occur on the surface of a rigid part even when an adhesive sheet with a small resin flow is used as an insulating adhesive layer used when laminating the rigid part. It is an object to provide a wiring board and a manufacturing method thereof.
請求項1に係る本発明は、上記課題を、リジッド部と部分的に折り曲げ可能なフレックス部とを備えたリジッドフレックス多層プリント配線板であって、少なくとも、フレックス基板上のリジッド部に積層される絶縁接着剤層が、積層時に樹脂フローの少ない接着シートからなり、且つ、表面がフラットな面に積層されていることを特徴とするリジッドフレックス多層プリント配線板により解決したものである。 The present invention according to claim 1 is a rigid-flex multilayer printed wiring board having a rigid portion and a flex portion that can be partially bent, and is laminated at least on the rigid portion on the flex substrate. This is solved by a rigid-flex multilayer printed wiring board characterized in that the insulating adhesive layer is made of an adhesive sheet having a small resin flow during lamination and is laminated on a flat surface.
これにより、絶縁接着剤層として樹脂フローの少ない接着シートを用いた場合においても、リジッド部の表面を平滑にすることができる。 Thereby, even when an adhesive sheet with less resin flow is used as the insulating adhesive layer, the surface of the rigid portion can be smoothed.
また、請求項2に係る本発明は、前記リジッドフレックス多層プリント配線板において、樹脂フローの少ない接着シートが、補強基材に樹脂を含浸させたものからなることを特徴とする。 The present invention according to claim 2 is characterized in that, in the rigid-flex multilayer printed wiring board, the adhesive sheet having a small resin flow is formed by impregnating a reinforcing base material with a resin.
これにより、リジッド部の表面平滑性に加え剛性を確保できる。 Thereby, in addition to the surface smoothness of a rigid part, rigidity can be ensured.
また、請求項3に係る本発明は、上記課題を、リジッド部と部分的に折り曲げ可能なフレックス部とを備えたリジッドフレックス多層プリント配線板の製造方法であって、少なくとも、フレックス基板を形成する工程と、当該フレックス基板上のリジッド部における絶縁接着シート積層面をフラットな面にする工程と、当該フラットな面に、積層時に樹脂フローが少ない接着シートを介して配線パターンを形成する工程とを有することを特徴とするリジッドフレックス多層プリント配線板の製造方法により解決したものである。 According to a third aspect of the present invention, there is provided a method for manufacturing a rigid-flex multilayer printed wiring board having a rigid portion and a flex portion that can be partially bent, and at least forming a flex substrate. A step, a step of flattening the insulating adhesive sheet laminated surface in the rigid part on the flex substrate, and a step of forming a wiring pattern on the flat surface via an adhesive sheet with less resin flow at the time of lamination. This is solved by a method for producing a rigid-flex multilayer printed wiring board characterized by having the same.
これにより、絶縁接着剤層として樹脂フローの少ない接着シートを用いた場合においても、表面が平滑なリジッドフレックス多層プリント配線板を容易に得ることができる。 Thereby, even when an adhesive sheet with a small resin flow is used as the insulating adhesive layer, a rigid-flex multilayer printed wiring board having a smooth surface can be easily obtained.
また、請求項4に係る本発明は、前記リジッドフレックス多層プリント配線板の製造方法において、樹脂フローの少ない接着シートが、補強基材に樹脂を含浸させたものからなることを特徴とする。 According to a fourth aspect of the present invention, in the method for manufacturing a rigid-flex multilayer printed wiring board, the adhesive sheet having a small resin flow is formed by impregnating a reinforcing base material with a resin.
これにより、リジッド部の表面平滑性に加え、剛性をも確保したリジッドフレックス多層プリント配線板を容易に得ることができる。 Thereby, in addition to the surface smoothness of a rigid part, the rigid flex multilayer printed wiring board which also ensured rigidity can be obtained easily.
リジッドフレックス多層プリント配線板を本発明の構成とすることによって、絶縁接着剤層として樹脂フローの少ない接着シートを用いた場合においても、リジッド部の表面は凹凸のない平滑面となる。また、本発明の製造方法によれば、凹凸のない平滑なリジッド面を有するリジッドフレックス多層プリント配線板を容易に得ることができる。 By adopting the rigid-flex multilayer printed wiring board according to the configuration of the present invention, even when an adhesive sheet with a small resin flow is used as the insulating adhesive layer, the surface of the rigid portion becomes a smooth surface without unevenness. Moreover, according to the manufacturing method of this invention, the rigid-flex multilayer printed wiring board which has a smooth rigid surface without an unevenness | corrugation can be obtained easily.
本発明の第一の実施の形態を、図1の概略断面工程説明図を用いて説明する。尚、従来技術と同じ部位には、同じ符号を付した。 The first embodiment of the present invention will be described with reference to the schematic cross-sectional process explanatory diagram of FIG. In addition, the same code | symbol was attached | subjected to the site | part same as a prior art.
まず、図1(a)に示したように、一般的なサブトラクティブ法、あるいはアディティブ法等によって、ポリイミド等からなるベースフィルム1の表裏に配線パターン2(例えば銅箔をエッチングして得られる配線パターン)を形成し、次いで、当該配線パターン2を保護するためのカバーレイ3を積層することによって、図1(b)に示したフレックス基板4を得る。 First, as shown in FIG. 1A, a wiring pattern 2 (for example, a wiring obtained by etching a copper foil) on the front and back of a base film 1 made of polyimide or the like by a general subtractive method or an additive method. Pattern) and then laminating a cover lay 3 for protecting the wiring pattern 2 to obtain the flex substrate 4 shown in FIG.
次に、図1(c)に示したように、後に屈曲可能なフレックス部Fに相当する部分を刳り貫いた絶縁接着剤層5と銅箔等の金属箔2aをフレックス基板4の表裏に順次配置し、加熱・加圧積層により一体化形成する。 Next, as shown in FIG. 1 (c), the insulating adhesive layer 5 and the metal foil 2a such as copper foil, which are penetrated through the portion corresponding to the flex portion F that can be bent later, are sequentially arranged on the front and back of the flex substrate 4. Arrange and form integrally by heating and pressure lamination.
ここで、当該絶縁接着剤層5としては、積層工程において、樹脂フローの少ない接着シートを用いる必要があり、例えば、ボンディングシート、あるいはガラス基材、アラミド基材等の補強基材にエポキシ樹脂等を含浸させて半硬化状態(ここでいう半硬化状態とは、通常のプリプレグの硬化状態であるBステージ状態と完全硬化状態であるCステージ状態の中間程度の硬化状態である)にした接着シート(ローフロープリプレグ)が挙げられるが、部品実装時に要求される基板の剛性を加味した場合、補強基材を有するローフロープリプレグを用いるのが好ましい。因に、ローフロープリプレグとは、JIS規格C6521の試験方法による樹脂フローが1%以下のものをいう。 Here, as the insulating adhesive layer 5, it is necessary to use an adhesive sheet with a small resin flow in the laminating process. For example, an epoxy resin or the like is used as a bonding sheet or a reinforcing substrate such as a glass substrate or an aramid substrate. Is a semi-cured state (here, the semi-cured state is an intermediate cured state between the B stage state, which is a normal prepreg cured state, and the C stage state, which is a fully cured state) (Low flow prepreg) can be mentioned, but it is preferable to use a low flow prepreg having a reinforcing base material in consideration of the rigidity of the substrate required at the time of component mounting. Incidentally, the low flow prepreg means a resin flow of 1% or less according to a test method of JIS standard C6521.
次に、図1(d)に示したように、一般的なサブトラクティブ法により配線パターン2を形成し、次いで、図1(e)に示したように、当該配線パターン間に絶縁樹脂を印刷形成した後、当該配線パターン2の表面と平滑になるように研磨加工することによって、表面平滑層13を形成する。 Next, as shown in FIG. 1D, a wiring pattern 2 is formed by a general subtractive method, and then an insulating resin is printed between the wiring patterns as shown in FIG. After the formation, the surface smoothing layer 13 is formed by polishing so as to be smooth with the surface of the wiring pattern 2.
当該図1(e)に示した例では、絶縁樹脂を配線パターン2の表面と平滑になるように形成する例を示したが、当該配線パターン2の凹凸をなくすことができれば、必ずしも配線パターン2と平滑に形成しなくても構わない。 In the example shown in FIG. 1E, an example in which the insulating resin is formed so as to be smooth with the surface of the wiring pattern 2 is shown. However, if the unevenness of the wiring pattern 2 can be eliminated, the wiring pattern 2 is not necessarily provided. It does not have to be formed smoothly.
次に、図1(f)に示したように、図1(c)の工程と同様に、後に屈曲可能なフレックス部Fに相当する部分を刳り貫いた絶縁接着剤層5と銅箔等の金属箔2aを表裏に順次配置し、加熱・加圧積層により一体化形成する。 Next, as shown in FIG. 1 (f), as in the step of FIG. 1 (c), an insulating adhesive layer 5 and a copper foil or the like that penetrates a portion corresponding to the flex portion F that can be bent later. The metal foil 2a is sequentially arranged on the front and back, and is integrally formed by heating and pressure lamination.
次に、図1(g)に示したように、配線パターン形成層間を接続するスルーホール10の形成予定部にドリル加工等によって貫通孔8を穿孔し、次いで、図1(h)に示したように、当該貫通孔8のデスミア処理を行った後、無電解めっき(例えば、無電解銅めっき)、電解めっき(例えば、電解銅めっき)処理を行うことによって、当該貫通孔8を含んだ基板全体にめっき9を析出させる。 Next, as shown in FIG. 1 (g), a through hole 8 is drilled by drilling or the like in a portion to be formed of the through hole 10 connecting the wiring pattern forming layers, and then shown in FIG. 1 (h). Thus, after performing the desmear process of the said through-hole 8, the board | substrate containing the said through-hole 8 by performing electroless plating (for example, electroless copper plating) and electrolytic plating (for example, electrolytic copper plating) Plating 9 is deposited on the whole.
次に、図1(i)に示したように、一般的なサブトラクティブ法により、外層に配線パターン2を形成するとともにスルーホール10を形成し、次いで、外層の配線パターン2を保護するソルダーレジスト11を形成した後、外形加工を行うことによって、リジッド部Rとフレックス部Fからなるリジッドフレックス多層プリント配線板Pを得る。 Next, as shown in FIG. 1I, a solder resist for forming the wiring pattern 2 on the outer layer and forming the through hole 10 by the general subtractive method, and then protecting the wiring pattern 2 on the outer layer. After forming 11, a rigid flex multilayer printed wiring board P composed of a rigid portion R and a flex portion F is obtained by performing external processing.
本発明は、リジッド部Rに使用される絶縁接着剤層として、積層時の樹脂フローが少ない接着シート(例えばローフロープリプレグ等)を用いるとともに、当該接着シートを表面が平滑化された面に積層させる点に特徴を有している。 The present invention uses an adhesive sheet (for example, a low-flow prepreg) having a small resin flow during lamination as an insulating adhesive layer used for the rigid portion R, and laminates the adhesive sheet on a surface whose surface is smoothed. It has a feature in that
このような構成とすることによって、従来のローフロープリプレグを用いた構成のリジッドフレックス多層プリント配線板の効果(フレックス部Fへの樹脂フローの抑制と、配線パターン間に発生するボイドの防止)に加え、リジッド部Rの表面平滑化を容易に行うことができるため、ファインパターン形成性及び部品実装性を向上することができる。 By adopting such a configuration, the effect of a rigid flex multilayer printed wiring board having a configuration using a conventional low flow prepreg (suppression of resin flow to the flex portion F and prevention of voids generated between wiring patterns) is achieved. In addition, since the surface of the rigid portion R can be easily smoothed, fine pattern formability and component mountability can be improved.
続いて、本発明の第二の実施の形態について、図2の概略断面工程説明図を用いて説明する。尚、第二の実施の形態は、第一の実施の形態と図1(a)から図1(d)までは同じ工程であるため、これ以降の工程について説明する。 Next, a second embodiment of the present invention will be described using the schematic cross-sectional process explanatory diagram of FIG. In the second embodiment, the steps from FIG. 1A to FIG. 1D are the same as those in the first embodiment, and the subsequent steps will be described.
図2(a)に示した基板(図1(d)と同一)の表裏に、図2(b)に示したように、感光性の絶縁フィルムをラミネートするか、あるいは液状レジストを塗布するなどしてフォトレジスト14を形成し、次いで、図2(c)に示したように、当該フォトレジスト14に対して露光・現像処理を行うことによって、配線パターン2の形成面を平滑にする表面平滑層13aを形成する。 As shown in FIG. 2B, a photosensitive insulating film is laminated on the front and back of the substrate shown in FIG. 2A (same as FIG. 1D), or a liquid resist is applied. Then, the photoresist 14 is formed, and then, as shown in FIG. 2C, the photoresist 14 is exposed and developed to smooth the surface on which the wiring pattern 2 is formed. Layer 13a is formed.
次に、図2(d)に示すように、後に屈曲可能なフレックス部Fに相当する部分を刳り貫いた絶縁接着剤層5と銅箔等の金属箔2aを表裏に順次配置し、加熱・加圧積層により一体化形成する。 Next, as shown in FIG. 2 (d), an insulating adhesive layer 5 and a metal foil 2a such as a copper foil, which are wound through a portion corresponding to the flex portion F that can be bent later, and a metal foil 2a such as a copper foil are sequentially arranged on the front and back, Integrated formation by pressure lamination.
次に、図2(e)に示したように、配線パターン形成層間を接続するスルーホール10の形成予定部にドリル加工等によって貫通孔8を穿孔し、次いで、図2(f)に示したように、当該貫通孔8のデスミア処理を行った後、無電解めっき(例えば、無電解銅めっき)、電解めっき(例えば、電解銅めっき)処理を順次行うことによって、当該貫通孔8を含んだ基板全体にめっき9を析出させる。 Next, as shown in FIG. 2E, a through hole 8 is drilled by drilling or the like in a portion where the through hole 10 connecting the wiring pattern forming layers is to be formed, and then shown in FIG. Thus, after performing the desmear process of the said through-hole 8, the said through-hole 8 was included by performing electroless plating (for example, electroless copper plating) and electrolytic plating (for example, electrolytic copper plating) sequentially. Plating 9 is deposited on the entire substrate.
次に、図2(g)に示したように、一般的なサブトラクティブ法により、外層に配線パターン2を形成するとともにスルーホール10を形成し、次いで、外層の配線パターン2を保護するソルダーレジスト11を形成した後、外形加工を行うことによって、リジッド部Rとフレックス部Fからなるリジッドフレックス多層プリント配線板Pを得る。 Next, as shown in FIG. 2G, a solder resist for forming the wiring pattern 2 on the outer layer and the through-hole 10 by a general subtractive method, and then protecting the wiring pattern 2 on the outer layer. After forming 11, a rigid flex multilayer printed wiring board P composed of a rigid portion R and a flex portion F is obtained by performing external processing.
本発明の第二の実施の形態においては、第一の実施の形態と同様の効果が得られるが、表面平滑層を露光・現像処理にて形成できるため、第一の実施の形態で説明した印刷及び研磨工程で形成するのと比較して容易に形成することができる。 In the second embodiment of the present invention, the same effect as that of the first embodiment can be obtained, but the surface smoothing layer can be formed by exposure / development processing, so that it has been described in the first embodiment. It can be formed more easily than the printing and polishing processes.
また、本発明を説明するに当たって、下層の配線パターン形成層に表面平滑層を形成して表面の平滑化を図った例を用いて説明したが、予め配線パターン形成層を平滑化したリジッド基板を、樹脂フローの少ない絶縁接着剤層を介して積層することももちろん可能である。 Further, in explaining the present invention, the example in which the surface smoothing layer is formed on the lower wiring pattern forming layer to smooth the surface has been described. However, a rigid substrate having a smoothed wiring pattern forming layer in advance is used. Of course, it is also possible to laminate through an insulating adhesive layer having a small resin flow.
更に、本発明を説明するに当たって、フレックス基板の表裏に絶縁接着剤層と配線パターンとを遂次積層する6層のリジッドフレックス多層プリント配線板の例を用いて説明したが、本発明は、当該構成に限定されるものではなく、必要に応じて他の構成とすることも可能であることはいうまでもない。 Further, in explaining the present invention, it has been described using an example of a 6-layer rigid flex multilayer printed wiring board in which an insulating adhesive layer and a wiring pattern are sequentially laminated on the front and back of a flex substrate. It is needless to say that the present invention is not limited to the configuration, and other configurations can be used as necessary.
1:ベースフィルム
2:配線パターン
2a:金属箔
3:カバーレイ
4:フレックス基板
5:絶縁接着剤層(樹脂フローが少ないもの)
5a:絶縁接着剤層(Bステージ状態のもの)
6:絶縁基板
7:リジッド基板
8:貫通孔
9:めっき
10:スルーホール
11:ソルダーレジスト
12:樹脂フロー部
13、13a:表面平滑層
14:フォトレジスト
P、Pa、Pb:リジッドフレックス多層プリント配線板
1: Base film 2: Wiring pattern 2a: Metal foil 3: Coverlay 4: Flex substrate 5: Insulating adhesive layer (thin resin flow is low)
5a: Insulating adhesive layer (B stage state)
6: Insulating substrate 7: Rigid substrate 8: Through hole 9: Plating 10: Through hole 11: Solder resist 12: Resin flow part 13, 13a: Surface smooth layer 14: Photoresist P, Pa, Pb: Rigid flex multilayer printed wiring Board
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005115346A JP2006294955A (en) | 2005-04-13 | 2005-04-13 | Rigid flex multilayer printed wiring board and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005115346A JP2006294955A (en) | 2005-04-13 | 2005-04-13 | Rigid flex multilayer printed wiring board and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006294955A true JP2006294955A (en) | 2006-10-26 |
Family
ID=37415190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005115346A Pending JP2006294955A (en) | 2005-04-13 | 2005-04-13 | Rigid flex multilayer printed wiring board and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006294955A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021022617A (en) * | 2019-07-25 | 2021-02-18 | 日本シイエムケイ株式会社 | Rigid flex multilayer printed board |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04312996A (en) * | 1991-02-06 | 1992-11-04 | Nec Toyama Ltd | Manufacture of multilayer copper-clad board |
JPH05136575A (en) * | 1991-11-14 | 1993-06-01 | Hitachi Ltd | Manufacture of multilayer printed board and photosetting interlayer insulating film thereof |
JPH05327209A (en) * | 1992-05-22 | 1993-12-10 | Nitsukan Kogyo Kk | Manufacture of bonding sheet for multiple layer and of multilayer substrate |
JPH06334278A (en) * | 1993-05-19 | 1994-12-02 | Mitsui Toatsu Chem Inc | Rigid flex printed wiring board |
JPH07106765A (en) * | 1993-09-30 | 1995-04-21 | Hitachi Chem Co Ltd | Multilayered adhesive sheet and manufacture of multilayered wiring board using same |
JPH07176836A (en) * | 1993-12-21 | 1995-07-14 | Matsushita Electric Works Ltd | Rigid-flexible wiring board |
JP2000294932A (en) * | 1999-04-02 | 2000-10-20 | Ibiden Co Ltd | Manufacture of multilayer printed wiring board |
JP2001156445A (en) * | 1999-11-25 | 2001-06-08 | Sharp Corp | Method of manufacturing flexible build-up multilayered printed wiring board |
JP2002217547A (en) * | 2001-01-16 | 2002-08-02 | Ibiden Co Ltd | Method for manufacturing resin film and multilayer printed wiring board |
JP2005072219A (en) * | 2003-08-25 | 2005-03-17 | Cmk Corp | Manufacturing method of rigid-flex multilayer printed wiring board |
JP2005085839A (en) * | 2003-09-05 | 2005-03-31 | Cmk Corp | Manufacturing method of rigid-flex multilayer printed wiring board |
-
2005
- 2005-04-13 JP JP2005115346A patent/JP2006294955A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04312996A (en) * | 1991-02-06 | 1992-11-04 | Nec Toyama Ltd | Manufacture of multilayer copper-clad board |
JPH05136575A (en) * | 1991-11-14 | 1993-06-01 | Hitachi Ltd | Manufacture of multilayer printed board and photosetting interlayer insulating film thereof |
JPH05327209A (en) * | 1992-05-22 | 1993-12-10 | Nitsukan Kogyo Kk | Manufacture of bonding sheet for multiple layer and of multilayer substrate |
JPH06334278A (en) * | 1993-05-19 | 1994-12-02 | Mitsui Toatsu Chem Inc | Rigid flex printed wiring board |
JPH07106765A (en) * | 1993-09-30 | 1995-04-21 | Hitachi Chem Co Ltd | Multilayered adhesive sheet and manufacture of multilayered wiring board using same |
JPH07176836A (en) * | 1993-12-21 | 1995-07-14 | Matsushita Electric Works Ltd | Rigid-flexible wiring board |
JP2000294932A (en) * | 1999-04-02 | 2000-10-20 | Ibiden Co Ltd | Manufacture of multilayer printed wiring board |
JP2001156445A (en) * | 1999-11-25 | 2001-06-08 | Sharp Corp | Method of manufacturing flexible build-up multilayered printed wiring board |
JP2002217547A (en) * | 2001-01-16 | 2002-08-02 | Ibiden Co Ltd | Method for manufacturing resin film and multilayer printed wiring board |
JP2005072219A (en) * | 2003-08-25 | 2005-03-17 | Cmk Corp | Manufacturing method of rigid-flex multilayer printed wiring board |
JP2005085839A (en) * | 2003-09-05 | 2005-03-31 | Cmk Corp | Manufacturing method of rigid-flex multilayer printed wiring board |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021022617A (en) * | 2019-07-25 | 2021-02-18 | 日本シイエムケイ株式会社 | Rigid flex multilayer printed board |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009060076A (en) | Method of manufacturing multilayer printed circuit board | |
JP2008034433A (en) | Manufacturing method of rigid flex printed wiring board and rigid flex printed wiring board | |
JP2006140213A (en) | Rigid flex multilayer printed wiring board | |
JP2001015917A (en) | Manufacture of rigid flex printed wiring board | |
JP2007049004A (en) | Printed wiring board and manufacturing method thereof | |
JP2005236205A (en) | Mutilayer printed-wiring board and manufacturing method therefor | |
JP2009010266A (en) | Printed circuit board and method of manufacturing same | |
JP2011091312A (en) | Rigid flex circuit board, method of manufacturing the same, and electronic device | |
KR20120019144A (en) | Method for manufacturing a printed circuit board | |
CN100594758C (en) | Multilayer circuit board and method for fabricating same | |
JP2006294955A (en) | Rigid flex multilayer printed wiring board and manufacturing method thereof | |
JP2007288023A (en) | Manufacturing method of rigid-flex multilayer printed wiring board | |
JP2011211131A (en) | Flexible printed wiring board and method of manufacturing the same | |
JP4602783B2 (en) | Manufacturing method of rigid flex buildup wiring board | |
JP5057653B2 (en) | Flex-rigid wiring board and manufacturing method thereof | |
JP2006228887A (en) | Manufacturing method of rigid and flexible multilayer printed circuit board | |
JP2008085099A (en) | Rigid flex circuit board | |
JP2007129153A (en) | Rigid flex multilayer printed wiring board | |
JP2005236194A (en) | Method for manufacturing printed wiring board | |
JP3645780B2 (en) | Build-up multilayer printed wiring board and manufacturing method thereof | |
JP3305426B2 (en) | Manufacturing method of multilayer printed wiring board | |
JP2021009928A (en) | Rigid/flex multilayer printed board | |
JP4633457B2 (en) | Manufacturing method of rigid flexible printed wiring board | |
JP2005085839A (en) | Manufacturing method of rigid-flex multilayer printed wiring board | |
JP4295580B2 (en) | Manufacturing method of rigid-flex multilayer printed wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101130 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110329 |