[go: up one dir, main page]

JP2006291033A - Method for producing polyester using only trace amount of titanium compound as catalyst - Google Patents

Method for producing polyester using only trace amount of titanium compound as catalyst Download PDF

Info

Publication number
JP2006291033A
JP2006291033A JP2005113539A JP2005113539A JP2006291033A JP 2006291033 A JP2006291033 A JP 2006291033A JP 2005113539 A JP2005113539 A JP 2005113539A JP 2005113539 A JP2005113539 A JP 2005113539A JP 2006291033 A JP2006291033 A JP 2006291033A
Authority
JP
Japan
Prior art keywords
acid
catalyst
polyester
titanium compound
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005113539A
Other languages
Japanese (ja)
Inventor
Nobuhachi Konuma
伸八 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2005113539A priority Critical patent/JP2006291033A/en
Publication of JP2006291033A publication Critical patent/JP2006291033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a polyester having good hue in which only a trace amount of titanium compound is used as a catalyst. <P>SOLUTION: The method for producing a polyethylene terephthalate having ≤1.0 Col-b value comprises using a polycondensation catalyst composed of a titanium compound component containing at least one kind of material selected from a group consisting of a product obtained by reacting a titanium compound represented by general formula (I) (wherein R<SP>1</SP>, R<SP>2</SP>, R<SP>3</SP>and R<SP>4</SP>are each the same or different and they are each an alkyl group or a phenyl group and m is an integer of 1-4 and when m is 2, 3 or 4, two, three or four R<SP>2</SP>and R<SP>3</SP>may be each the same or different) with an aromatic polyhydric carboxylic acid represented by general formula (II) (wherein n is an integer of 2-4) or its anhydride so that number of moles of titanium atom to ton of polyethylene terephthalate produced becomes ≤0.031 mol and ≥0.020 mol. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

チタン化合物のみを触媒として用いる色相なポリエステルの製法に関する。   The present invention relates to a method for producing a hueable polyester using only a titanium compound as a catalyst.

ポリエステル、特にポリエチレンテレフタレート(以下PETと略する。)は、その優れた機械的性質、化学的性質から、繊維、フィルム、工業用樹脂、ボトル、カップ、又はトレイ等に成形されて広く用いられている。   Polyester, particularly polyethylene terephthalate (hereinafter abbreviated as PET), is widely used by being molded into fibers, films, industrial resins, bottles, cups, trays, etc. because of its excellent mechanical and chemical properties. Yes.

通常、ポリエステルはテレフタル酸などの芳香族ジカルボン酸類と、エチレングリコールなどの脂肪族ジオール類とを原料として製造される。具体的には、まず、芳香族ジカルボン酸類と脂肪族ジオール類とのエステル化反応により低次縮合物(エステル低重合体)を形成し、次いで重縮合触媒の存在下にこの低次縮合物を脱グリコール反応(液相重縮合)させて、高分子量化している。また、場合によっては固相重縮合を行い、更に分子量を高めている。   Usually, polyester is produced from aromatic dicarboxylic acids such as terephthalic acid and aliphatic diols such as ethylene glycol as raw materials. Specifically, first, a low-order condensate (ester low polymer) is formed by an esterification reaction of an aromatic dicarboxylic acid and an aliphatic diol, and then this low-order condensate is formed in the presence of a polycondensation catalyst. It is deglycolized (liquid phase polycondensation) to increase the molecular weight. In some cases, solid state polycondensation is performed to further increase the molecular weight.

ポリエステルの製造方法では、従来重縮合触媒として、アンチモン化合物、ゲルマニウム化合物などが使用されている。しかしながら、アンチモン化合物を触媒として製造したポリエチレンテレフタレートは透明性、耐熱性の点でゲルマニウム化合物を触媒として製造したポリエチレンテレフタレートに劣っている。また、得られるポリエステル中のアセトアルデヒド含有量が依然として多いことが知られており、これを低減させることも要望されている。   In the polyester production method, an antimony compound, a germanium compound, or the like is conventionally used as a polycondensation catalyst. However, polyethylene terephthalate produced using an antimony compound as a catalyst is inferior to polyethylene terephthalate produced using a germanium compound as a catalyst in terms of transparency and heat resistance. Further, it is known that the content of acetaldehyde in the obtained polyester is still high, and there is a demand for reducing this content.

また、ゲルマニウム化合物はかなり高価であるため、ポリエステルの製造コストが高くなるという問題があった。このため製造コストを下げるため、重縮合時に飛散するゲルマニウム化合物を回収して再利用するなどのプロセスが検討されている。   Moreover, since the germanium compound is quite expensive, there is a problem that the production cost of the polyester is increased. For this reason, in order to reduce the production cost, a process of recovering and reusing the germanium compound scattered during the polycondensation has been studied.

ところでチタンはエステルの重縮合反応を促進する作用のある元素であることが知られており、チタンアルコキシド、四塩化チタン、シュウ酸チタニル、オルソチタン酸などが重縮合触媒として公知であり、このようなチタン化合物を重縮合触媒として利用するために多くの検討が行われている。   By the way, titanium is known to be an element having an action of promoting ester polycondensation reaction, and titanium alkoxide, titanium tetrachloride, titanyl oxalate, orthotitanic acid and the like are known as polycondensation catalysts. Many studies have been conducted in order to use a titanium compound as a polycondensation catalyst.

しかしながら、従来のチタン系触媒を重縮合触媒に用いた場合、アンチモン化合物、ゲルマニウム化合物に比べ活性はあるものの、得られたポリエステルが著しく黄色に着色するなどの問題がある。   However, when a conventional titanium-based catalyst is used as a polycondensation catalyst, there is a problem that the obtained polyester is remarkably colored in yellow although it is more active than antimony compounds and germanium compounds.

上記着色問題を解決するために、コバルト化合物をポリエステルに添加して黄味を抑えることが一般的に行われている。確かにコバルト化合物を添加することによってポリエステルの色相(b値)は改善することができるが、コバルト化合物を添加することによってポリエステルの溶融熱安定性が低下し、ポリマーの分解も起こりやすくなるという問題がある。   In order to solve the above-mentioned coloring problem, it is generally performed to add a cobalt compound to polyester to suppress yellowing. Certainly, the hue (b value) of the polyester can be improved by adding a cobalt compound, but the problem that the melting heat stability of the polyester is lowered and the polymer is easily decomposed by adding the cobalt compound. There is.

また、他のチタン化合物として、水酸化チタンをポリエステル製造用触媒として用いること(例えば特許文献1参照。)、またα−チタン酸をポリエステル製造用触媒として用いること(例えば特許文献2参照。)が開示されている。しかしながら、前者の方法では水酸化チタンの粉末化が容易でなく、一方、後者の方法ではα−チタン酸が変質し易いため、その保存、取り扱いが容易でなく、したがっていずれも工業的に採用するには適当ではない。更に、これらの方法では良好な色調(b値)のポリマーを得ることも困難である。   Further, as other titanium compounds, use of titanium hydroxide as a catalyst for producing a polyester (for example, see Patent Document 1) and use of α-titanic acid as a catalyst for producing a polyester (for example, see Patent Document 2). It is disclosed. However, in the former method, powdering of titanium hydroxide is not easy. On the other hand, in the latter method, α-titanic acid is easily changed in quality, so its storage and handling are not easy. Not suitable for. Furthermore, it is difficult to obtain a polymer having a good color tone (b value) by these methods.

また、チタン化合物と亜リン酸エステルとを反応させて得られた生成物をポリエステル製造用触媒として使用すること(例えば、特許文献3参照。)が開示されている。   In addition, the use of a product obtained by reacting a titanium compound and a phosphite as a polyester production catalyst is disclosed (for example, see Patent Document 3).

確かに、これらの方法によれば、ポリエステルの溶融熱安定性はある程度向上しているものの、得られるポリマーの色調が十分なものではなく、したがってポリマー色調のさらなる改善が望まれている。   Certainly, according to these methods, although the melt heat stability of the polyester is improved to some extent, the color tone of the obtained polymer is not sufficient, and therefore further improvement of the polymer color tone is desired.

更に、チタン化合物とリン化合物との錯体をポリエステル製造用触媒とすることも提案されている(例えば、特許文献4参照。)。確かに、この方法によれば溶融熱安定性もある程度は向上するものの、得られるポリマーの色調は十分なものではない。   Furthermore, it has also been proposed to use a complex of a titanium compound and a phosphorus compound as a polyester production catalyst (see, for example, Patent Document 4). Certainly, this method also improves the heat stability of melting to some extent, but the color tone of the resulting polymer is not sufficient.

また、チタン化合物とアルカリ土類金属化合物とを反応させた触媒も提案されている(例えば、特許文献5参照)。しかしながら、この方法でも、ポリエステルの色相は十分なものではなかった。   A catalyst obtained by reacting a titanium compound with an alkaline earth metal compound has also been proposed (see, for example, Patent Document 5). However, even with this method, the hue of the polyester is not sufficient.

他には、リン化合物、周期律表第1A族及び第2A族の金属化合物、場合によってはゲルマニウムの共存下にポリエステル樹脂1トンあたりチタン原子として0.02〜1モルになるようチタン化合物を重縮合触媒として使用する方法も提案されている(例えば、特許文献6参照)。しかし、周期律表第1A族及び第2A族の金属化合物のようなエステル交換活性を有する金属化合物は着色や凝集異物、アセトアルデヒド副生量増加の原因となり、ポリエステルに添加するのはできるだけ控えた方がよい(例えば非特許文献1参照。)。   In addition, a phosphorus compound, a metal compound of Groups 1A and 2A of the periodic table, and in some cases, a titanium compound is added in an amount of 0.02 to 1 mole as titanium atoms per ton of polyester resin in the presence of germanium. A method of using it as a condensation catalyst has also been proposed (see, for example, Patent Document 6). However, metal compounds having transesterification activity such as those of Group 1A and Group 2A of the Periodic Table may cause coloring, aggregated foreign matter, and acetaldehyde by-product, and should be added to polyester as little as possible. (For example, refer nonpatent literature 1).

特公昭48−2229号公報Japanese Patent Publication No. 48-2229 特公昭47−26597号公報Japanese Patent Publication No. 47-26597 特開昭58−38722号公報JP 58-38722 A 特開平7−138354号公報JP 7-138354 A 特開2000−109552号公報JP 2000-109552 A 特開2002−226562号公報JP 2002-226562 A 飽和ポリエステル樹脂ハンドブック、湯木和夫、日刊工業新聞社、1981年12月22日初版1刷発行、99ページ及び148ページSaturated Polyester Resin Handbook, Kazuo Yuki, Nikkan Kogyo Shimbun, December 22, 1981, 1st edition, 1 issue, 99 pages and 148 pages

本発明の課題は極少量チタン化合物のみを触媒として用いる色相良好なポリエステルの製造方法を提供することである。   The subject of this invention is providing the manufacturing method of polyester with favorable hue which uses only a very small amount of titanium compounds as a catalyst.

本発明は上記課題を解決するために、下記一般式(I)で表されるチタン化合物及び下記一般式(II)で表される芳香族多価カルボン酸又はその無水物とを反応させた生成物からなる群から選ばれた少なくとも一種を含むチタン化合物成分からなる重縮合触媒を、生成ポリエチレンテレフタレート1トンに対してチタン原子のモル数が0.020モル以上0.031モル以下になるように用い、Col−b値が1.0以下のポリエチレンテレフタレートの製造方法を提供する。   In order to solve the above problems, the present invention is a product obtained by reacting a titanium compound represented by the following general formula (I) and an aromatic polyvalent carboxylic acid represented by the following general formula (II) or an anhydride thereof. The polycondensation catalyst comprising a titanium compound component containing at least one selected from the group consisting of the product is such that the number of moles of titanium atoms is 0.020 mol or more and 0.031 mol or less with respect to 1 ton of polyethylene terephthalate produced. A method for producing polyethylene terephthalate having a Col-b value of 1.0 or less is provided.

Figure 2006291033
[上記式中、R、R、R及びRはそれぞれ同一若しくは異なって、アルキル基又はフェニル基を示し、mは1〜4の整数を示し、かつmが2、3又は4の場合、2個、3個又は4個のR及びRは、それぞれ同一であっても異なっていてもどちらでもよい。]
Figure 2006291033
[Wherein R 1 , R 2 , R 3 and R 4 are the same or different and each represents an alkyl group or a phenyl group, m represents an integer of 1 to 4, and m represents 2, 3 or 4] In this case, 2, 3 or 4 R 2 and R 3 may be the same or different from each other. ]

Figure 2006291033
[上記式中、nは2〜4の整数を表わす。]
Figure 2006291033
[In the above formula, n represents an integer of 2 to 4. ]

本発明の方法により、チタン化合物のみを触媒として用い色相良好なポリエチレンテレフタレートの製造することができる。   By the method of the present invention, polyethylene terephthalate having a good hue can be produced using only a titanium compound as a catalyst.

本発明において、ポリエステル製造用触媒は、前記チタン化合物成分を含むものであるが、以下、本発明のポリエステル製造用触媒を効率よく得るための製造方法を説明する。本発明に用いるチタン化合物の重縮合触媒としては、下記一般式(I)で表されるチタン化合物及び下記一般式(II)で表される芳香族多価カルボン酸又はその無水物とを反応させた生成物からなる群から選ばれた少なくとも一種を含むチタン化合物成分である。   In the present invention, the polyester production catalyst contains the titanium compound component. Hereinafter, a production method for efficiently obtaining the polyester production catalyst of the present invention will be described. As a polycondensation catalyst for the titanium compound used in the present invention, a titanium compound represented by the following general formula (I) and an aromatic polyvalent carboxylic acid represented by the following general formula (II) or an anhydride thereof are reacted. And a titanium compound component containing at least one selected from the group consisting of the products.

Figure 2006291033
[上記式中、R、R、R及びRはそれぞれ同一若しくは異なって、アルキル基又はフェニル基を示し、mは1〜4の整数を示し、かつmが2、3又は4の場合、2個、3個又は4個のR及びRは、それぞれ同一であっても異なっていてもどちらでもよい。]
Figure 2006291033
[Wherein R 1 , R 2 , R 3 and R 4 are the same or different and each represents an alkyl group or a phenyl group, m represents an integer of 1 to 4, and m represents 2, 3 or 4] In this case, 2, 3 or 4 R 2 and R 3 may be the same or different from each other. ]

Figure 2006291033
[上記式中、nは2〜4の整数を表わす。]
Figure 2006291033
[In the above formula, n represents an integer of 2 to 4. ]

〜Rとしてはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ヘキシル基、フェニル器などを具体的に挙げることができる。mは1〜4の整数であるが、1〜3の整数が好ましい。またmも2〜4の整数であるが、2〜3の整数が好ましい。 Specific examples of R 1 to R 4 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a hexyl group, and a phenyl unit. . Although m is an integer of 1-4, the integer of 1-3 is preferable. M is an integer of 2 to 4, and an integer of 2 to 3 is preferable.

ここで、一般式(I)で表されるチタン化合物としては、具体的にはテトラエトキシチタン、テトライソプロポキシチタン、テトラ−n−プロポキシチタン、テトラ−n−ブトキシチタン、テトラフェノキシチタン、オクタアルキルトリチタネート、又はヘキサアルキルジチタネートなどが好ましく用いられる。   Here, as the titanium compound represented by the general formula (I), specifically, tetraethoxy titanium, tetraisopropoxy titanium, tetra-n-propoxy titanium, tetra-n-butoxy titanium, tetraphenoxy titanium, octaalkyl Trititanate or hexaalkyl dititanate is preferably used.

また、該チタン化合物と反応させる一般式(II)で表される芳香族多価カルボン酸又はその無水物としては、フタル酸、トリメリット酸、ヘミメリット酸、若しくはピロメリット酸又はこれらの無水物が挙げられる。これらは一般に水分や熱に対して不安定な上記一般式(I)のチタン化合物を、溶媒中でより安定化させる働きを有し、その添加量について特に限定は無いが、チタン原子に対して0.5〜4.0倍モル量が好ましく、1.0〜2.0倍モル量を添加することが更に好ましい。この範囲内にあるときは、上記の安定化効果が最大限に発揮されるとともに、最終的に得られるポリエステルの品質にも問題が無い。   In addition, the aromatic polyvalent carboxylic acid represented by the general formula (II) to be reacted with the titanium compound or an anhydride thereof includes phthalic acid, trimellitic acid, hemimellitic acid, pyromellitic acid, or an anhydride thereof. Is mentioned. These have a function of stabilizing the titanium compound of the above general formula (I), which is generally unstable to moisture and heat, in a solvent, and the amount of addition is not particularly limited. 0.5-4.0 times mole amount is preferable and it is still more preferable to add 1.0-2.0 times mole amount. When it is within this range, the above stabilizing effect is exhibited to the maximum, and there is no problem in the quality of the finally obtained polyester.

上記チタン化合物と芳香族多価カルボン酸又はその無水物とを反応させる場合には、溶媒に芳香族多価カルボン酸又はその無水物の一部又は全部を溶解し、この混合液にチタン化合物を滴下し、0〜200℃の温度で少なくとも30分間、好ましくは30〜150℃の温度で40〜90分間加熱することによって行われる。この際の反応圧力については特に制限はなく、常圧で十分である。なお、芳香族多価カルボン酸又はその無水物を溶解させる溶媒としては、エタノール、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ベンゼン又はキシレン等から所望に応じていずれを用いることもできる。   In the case of reacting the titanium compound with an aromatic polyvalent carboxylic acid or an anhydride thereof, a part or all of the aromatic polyvalent carboxylic acid or an anhydride thereof is dissolved in a solvent, and the titanium compound is dissolved in the mixed solution. It is carried out by dripping and heating at a temperature of 0-200 ° C. for at least 30 minutes, preferably at a temperature of 30-150 ° C. for 40-90 minutes. There is no restriction | limiting in particular about the reaction pressure in this case, A normal pressure is enough. As a solvent for dissolving the aromatic polyvalent carboxylic acid or its anhydride, any of ethanol, ethylene glycol, trimethylene glycol, tetramethylene glycol, benzene, xylene and the like can be used as desired.

ここで、チタン化合物と芳香族多価カルボン酸又はその無水物との反応モル比には特に限定はないが、チタン化合物の割合が高すぎると、得られるポリエステルの色調が悪化したり、軟化点が低下したりすることがあり、逆にチタン化合物の割合が低すぎると重縮合反応が進みにくくなることがある。このため、チタン化合物と芳香族多価カルボン酸又はその無水物との反応モル比は、2/1〜2/5の範囲内とすることが好ましい。またこれ以外の条件によっても上記チタン化合物と芳香族多価カルボン酸又はその無水物とを反応させることができる条件であれば特に限定はない。   Here, the reaction molar ratio between the titanium compound and the aromatic polyvalent carboxylic acid or its anhydride is not particularly limited, but if the proportion of the titanium compound is too high, the color tone of the resulting polyester deteriorates, or the softening point. In contrast, if the proportion of the titanium compound is too low, the polycondensation reaction may be difficult to proceed. For this reason, it is preferable that the reaction molar ratio of a titanium compound and aromatic polyvalent carboxylic acid or its anhydride shall be in the range of 2/1-2/5. Also, there is no particular limitation as long as the above titanium compound can be reacted with the aromatic polyvalent carboxylic acid or its anhydride under other conditions.

上記生成物は、重縮合反応時に存在していればよい。このため触媒の添加は、原料スラリー調製工程、エステル化工程、液相重縮合工程等のいずれの工程で行ってもよく、また、触媒全量を一括添加しても、複数回に分けて添加してもよいが触媒の添加量は生成ポリエチレンテレフタレート1トンに対してチタン原子のモル数が0.020モル以上0.031モル以下になるように用いなくてはならない。またCol−b値が1.0以下になるようにする必要がある。生成ポリエチレンテレフタレート1トンに対してチタン原子のモル数が0.031超過になるとポリマー色相の黄色味が強くなりCol−b値が1.0を超過するようになり、これが0.020を下回るようだと重縮合が不十分で良好な形状のポリマーチップが得られなくなる。   The product may be present during the polycondensation reaction. For this reason, the catalyst may be added in any step such as a raw material slurry preparation step, an esterification step, a liquid phase polycondensation step, etc. However, the addition amount of the catalyst must be used so that the number of moles of titanium atoms is 0.020 mol or more and 0.031 mol or less with respect to 1 ton of the generated polyethylene terephthalate. In addition, the Col-b value needs to be 1.0 or less. When the number of moles of titanium atoms exceeds 0.031 with respect to 1 ton of polyethylene terephthalate produced, the yellowness of the polymer hue becomes strong and the Col-b value exceeds 1.0, which is below 0.020. Then, polycondensation is insufficient and a polymer chip with a good shape cannot be obtained.

また、酸化防止剤、紫外線吸収剤、難燃剤、蛍光増白剤、艶消剤、整色剤、消泡剤その他の添加剤などを配合してもよい。   Moreover, you may mix | blend antioxidant, a ultraviolet absorber, a flame retardant, a fluorescent whitening agent, a matting agent, a color adjusting agent, an antifoamer, and other additives.

更に、得られるポリエステルの色相の改善補助をするために、反応系のポリエステルの製造段階において、アゾ系、トリフェニルメタン系、キノリン系、アントラキノン系、フタロシアニン系等の有機青色顔料等や無機系以外の整色剤を添加することもできる。さらにこれらのポリエチレンテレフタレートを製造する際に必要に応じて他の添加剤、例えば、着色剤、抗酸化剤、紫外線吸収剤、帯電防止剤、難燃剤などを使用してもよい。   Furthermore, in order to help improve the hue of the polyester obtained, in the production stage of the reactive polyester, organic blue pigments such as azo, triphenylmethane, quinoline, anthraquinone, phthalocyanine, etc. and other than inorganic It is also possible to add the color adjusting agent. Furthermore, when manufacturing these polyethylene terephthalates, you may use another additive, for example, a coloring agent, an antioxidant, a ultraviolet absorber, an antistatic agent, a flame retardant, etc. as needed.

なお、本発明において安定剤としてリン化合物を添加してもよい。該リン化合物としては、トリメチルホスフェート、トリエチルホスフェート、トリフェニルホスフェート、トリエチルホスホノアセテート、トリフェニルホスファイト、トリスドデシルホスファイト、メチルアシッドホスフェート、ジブチルホスフェート、モノブチルホスフェート、リン酸、亜リン酸、次亜リン酸、ポリリン酸フェニルホスホン酸、メチルホスホン酸、エチルホスホン酸、プロピルホスホン酸、イソプロピルホスホン酸、ブチルホスホン酸、トリルホスホン酸、キシリルホスホン酸、ビフェニルホスホン酸、ナフチルホスホン酸、アントリルホスホン酸、2−カルボキシフェニルホスホン酸、3−カルボキシフェニルホスホン酸、4−カルボキシフェニルホスホン酸、2,3−ジカルボキシフェニルホスホン酸、2,4−ジカルボキシフェニルホスホン酸、2,5−ジカルボキシフェニルホスホン酸、2,6−ジカルボキシフェニルホスホン酸、3,4−ジカルボキシフェニルホスホン酸、3,5−ジカルボキシフェニルホスホン酸、2,3,4−トリカルボキシフェニルホスホン酸、2,3,5−トリカルボキシフェニルホスホン酸、2,3,6−トリカルボキシフェニルホスホン酸、2,4,5−トリカルボキシフェニルホスホン酸、2,4,6−トリカルボキシフェニルホスホン酸、モノメチルホスフェート、モノエチルホスフェート、モノトリメチルホスフェート、モノ−n−ブチルホスフェート、モノヘキシルホスフェート、モノヘプチルホスフェート、モノノニルホスフェート、モノデシルホスフェート、モノドデシルホスフェート、モノフェニルホスフェート、モノベンジルホスフェート、モノ(4−ドデシル)フェニルホスフェート、モノ(4−メチルフェニル)ホスフェート、モノ(4−エチルフェニル)ホスフェート、モノ(4−プロピルフェニル)ホスフェート、モノ(4−ドデシルフェニル)ホスフェート、モノトリルホスフェート、モノキシリルホスフェート、モノビフェニルホスフェート、モノナフチルホスフェート、モノアントリルホスフェート等から選ばれることが好ましい。   In the present invention, a phosphorus compound may be added as a stabilizer. Examples of the phosphorus compound include trimethyl phosphate, triethyl phosphate, triphenyl phosphate, triethyl phosphonoacetate, triphenyl phosphite, trisdodecyl phosphite, methyl acid phosphate, dibutyl phosphate, monobutyl phosphate, phosphoric acid, phosphorous acid, next Phosphorous acid, phenylphosphonic acid polyphosphoric acid, methylphosphonic acid, ethylphosphonic acid, propylphosphonic acid, isopropylphosphonic acid, butylphosphonic acid, tolylphosphonic acid, xylylphosphonic acid, biphenylphosphonic acid, naphthylphosphonic acid, anthrylphosphonic acid 2-carboxyphenylphosphonic acid, 3-carboxyphenylphosphonic acid, 4-carboxyphenylphosphonic acid, 2,3-dicarboxyphenylphosphonic acid, 2,4-di Ruboxyphenylphosphonic acid, 2,5-dicarboxyphenylphosphonic acid, 2,6-dicarboxyphenylphosphonic acid, 3,4-dicarboxyphenylphosphonic acid, 3,5-dicarboxyphenylphosphonic acid, 2,3, 4-tricarboxyphenylphosphonic acid, 2,3,5-tricarboxyphenylphosphonic acid, 2,3,6-tricarboxyphenylphosphonic acid, 2,4,5-tricarboxyphenylphosphonic acid, 2,4,6- Tricarboxyphenylphosphonic acid, monomethyl phosphate, monoethyl phosphate, monotrimethyl phosphate, mono-n-butyl phosphate, monohexyl phosphate, monoheptyl phosphate, monononyl phosphate, monodecyl phosphate, monododecyl phosphate, monophenyl phosphate Fate, monobenzyl phosphate, mono (4-dodecyl) phenyl phosphate, mono (4-methylphenyl) phosphate, mono (4-ethylphenyl) phosphate, mono (4-propylphenyl) phosphate, mono (4-dodecylphenyl) phosphate , Monotolyl phosphate, monoxyl phosphate, monobiphenyl phosphate, mononaphthyl phosphate, monoanthryl phosphate and the like.

次に、本発明のチタン化合物触媒を用いたポリエチレンテレフタレートの製造方法について説明する。本発明においては、ポリエチレンテレフタレートを製造するにあたり、テレフタル酸と、エチレングリコール、及び目的物性に応じた適当量のジエチレングリコールを重縮合させて製造することができる。   Next, the manufacturing method of the polyethylene terephthalate using the titanium compound catalyst of this invention is demonstrated. In the present invention, in producing polyethylene terephthalate, it can be produced by polycondensation of terephthalic acid, ethylene glycol, and an appropriate amount of diethylene glycol according to the intended physical properties.

ここで酸成分として、例えば、フタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェノキシエタンジカルボン酸、アジピン酸、セバシン酸、アゼライン酸、デカンジカルボン酸などの脂肪族ジカルボン酸、シクロヘキサンジカルボン酸などの脂環式ジカルボン酸など又はそのエステル形成性誘導体を共重合成分として使用することができる。ジオール成分としては、トリメチレングリコール、プロピレングリコール、テトラメチレングリコール、ネオペンチルグリコール、ヘキサンメチレングリコール、ドデカメチレングリコール、シクロヘキサンジメタノール、ポリエチレングリコールなどの脂環式グリコール、ビスフェノール、ハイドロキノン、2,2−ビス(4−β−ヒドロキシエトキシフェニル)プロパン類などの芳香族ジオールなどを原料として使用することができる。更に、トリメシン酸、トリメチロールエタン、トリメチロールプロパン、トリメチロールメタン、ペンタエリスリトール、トリメリット酸、ピロメリット酸などの多官能性化合物を共重合成分として使用することができる。   Examples of the acid component include phthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid, adipic acid, sebacic acid, azelaic acid, decanedicarboxylic acid and other aliphatic dicarboxylic acids, cyclohexanedicarboxylic acid Or an ester-forming derivative thereof can be used as a copolymerization component. Examples of the diol component include trimethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol, hexanemethylene glycol, dodecamethylene glycol, cyclohexanedimethanol, polyethylene glycol and other alicyclic glycols, bisphenol, hydroquinone, and 2,2-bis. Aromatic diols such as (4-β-hydroxyethoxyphenyl) propanes can be used as raw materials. Furthermore, polyfunctional compounds such as trimesic acid, trimethylolethane, trimethylolpropane, trimethylolmethane, pentaerythritol, trimellitic acid, and pyromellitic acid can be used as the copolymerization component.

まず、上記の原料を用いてポリエステルを製造するに際しては、テレフタル酸と、エチレングリコールとを直接エステル化反応させ得たオリゴマーを本発明のポリエステル重縮合触媒を用いて重縮合反応させる。   First, when producing a polyester using the above raw materials, an oligomer obtained by directly esterifying terephthalic acid and ethylene glycol is subjected to a polycondensation reaction using the polyester polycondensation catalyst of the present invention.

例えば、直接エステル化する方法は具体的には、テレフタル酸と、エチレングリコールとを含むスラリーを調製する。このようなスラリーにはテレフタル酸1モルに対して、通常1.1〜1.6モル、好ましくは1.2〜1.4モルのエチレングリコールが含まれる。このスラリーは、エステル化反応工程に連続的に供給される。   For example, the direct esterification method specifically prepares a slurry containing terephthalic acid and ethylene glycol. Such a slurry usually contains 1.1 to 1.6 mol, preferably 1.2 to 1.4 mol, of ethylene glycol with respect to 1 mol of terephthalic acid. This slurry is continuously supplied to the esterification reaction step.

エステル化反応は、反応物を自己循環させなから一段で実施する方法、又は2つ以上のエステル化反応基を直列に連結し実施する方法が好ましく、いずれもエチレングリコールが還流する条件下で、反応によって生成した水を精留塔で系外に除去しながら行う。   The esterification reaction is preferably carried out in a single stage without allowing the reactants to circulate, or a method in which two or more esterification reaction groups are connected in series, both of which are under conditions where ethylene glycol is refluxed. It is carried out while removing water produced by the reaction from the system with a rectification column.

反応物を自己循環させなから一段で連続的にエステル化を行う場合の反応条件は、通常、反応温度が240〜280℃、好ましくは250〜270℃であり、反応圧力は常圧〜0.3MPaの条件下で行われ、エステル化率が通常90%以上、好ましくは95%以上になるまで反応させることが望ましい。このエステル化工程により、テレフタル酸とエチレングリコールとのエステル化反応物(オリゴマー)が得られ、このオリゴマーの重合度が4〜10程度である。上記のようなエステル化工程で得られたオリゴマーは、次いで重縮合(液相重縮合)工程に供給される。   The reaction conditions in the case of carrying out esterification continuously in one stage without allowing the reactants to circulate are usually a reaction temperature of 240 to 280 ° C., preferably 250 to 270 ° C., and a reaction pressure of normal pressure to 0.00. The reaction is carried out under the condition of 3 MPa, and the reaction is desirably carried out until the esterification rate is usually 90% or more, preferably 95% or more. By this esterification step, an esterification reaction product (oligomer) of terephthalic acid and ethylene glycol is obtained, and the degree of polymerization of this oligomer is about 4-10. The oligomer obtained in the esterification step as described above is then supplied to a polycondensation (liquid phase polycondensation) step.

次に、液相重縮合工程において、上記した重縮合触媒の存在下に、エステル化工程で得られたオリゴマーを、減圧下で、かつポリエステルの融点以上の温度(通常240〜280℃)に加熱することにより重縮合させる。この重縮合反応では、未反応のエチレングリコール及び重縮合で発生するエチレングリコールを反応系外に留去させながら行われることが望ましい。   Next, in the liquid phase polycondensation step, in the presence of the polycondensation catalyst described above, the oligomer obtained in the esterification step is heated under reduced pressure to a temperature not lower than the melting point of the polyester (usually 240 to 280 ° C.). To polycondense. This polycondensation reaction is preferably carried out while distilling off unreacted ethylene glycol and ethylene glycol generated by polycondensation outside the reaction system.

重縮合反応は、1槽で行ってもよく、複数の槽に分けて行ってもよい。例えば、重縮合反応が2段階で行われる場合には、第1槽目の重縮合反応は、反応温度が245〜290℃、好ましくは260〜280℃、圧力が100〜1kPa、好ましくは50〜2kPaの条件下で行われ、最終第2槽での重縮合反応は、反応温度が265〜300℃、好ましくは270〜290℃、反応圧力は通常1000〜10Paで、好ましくは500〜30Paの条件下で行われる。   The polycondensation reaction may be performed in one tank or may be performed in a plurality of tanks. For example, when the polycondensation reaction is performed in two stages, the polycondensation reaction in the first tank has a reaction temperature of 245 to 290 ° C., preferably 260 to 280 ° C., and a pressure of 100 to 1 kPa, preferably 50 to The polycondensation reaction is carried out under the condition of 2 kPa, and the polycondensation reaction in the final second tank is a reaction temperature of 265 to 300 ° C., preferably 270 to 290 ° C., and a reaction pressure of usually 1000 to 10 Pa, preferably 500 to 30 Pa. Done under.

このようにして、本発明のポリエステル製造用触媒を用いてポリエステルを製造することができるが、この重縮合工程で得られるポリエステルは、通常、溶融状態で押し出しながら、冷却後、粒状(チップ状)とする。得られたポリエステルの固有粘度は0.40〜0.80dL/g、好ましくは0.50〜0.70dL/gであることが望ましい。   In this way, a polyester can be produced using the catalyst for producing a polyester of the present invention. The polyester obtained in this polycondensation step is usually extruded in a molten state, cooled, and then granulated (chips). And The intrinsic viscosity of the obtained polyester is 0.40 to 0.80 dL / g, preferably 0.50 to 0.70 dL / g.

このようにして得られたポリエチレンテレフタレートはペレット化されたのち、必要に応じて固相重合工程で更に重縮合を進めてもよく、その固相重合方法に関しては従来公知のいずれの方法を採用してもよい。固相重縮合反応に供給される粒状ポリエステルは、予め、固相重縮合を行う場合の温度より低い温度に加熱して予備結晶化を行った後、固相重縮合工程に供給すると、固相重合反応中に粒状のポリエステル同士及び/又は反応容器内壁への融着を抑止することができるので好ましい。   After the polyethylene terephthalate obtained in this way is pelletized, it may be further subjected to polycondensation in a solid phase polymerization step as necessary. Any known method can be used for the solid phase polymerization method. May be. When the granular polyester supplied to the solid phase polycondensation reaction is preliminarily crystallized by heating to a temperature lower than the temperature in the case of performing solid phase polycondensation, It is preferable because the fusion between the granular polyesters and / or the inner wall of the reaction vessel can be suppressed during the polymerization reaction.

このような予備結晶化工程は、粒状ポリエステルを乾燥状態で通常、120〜200℃、好ましくは130〜180℃の温度に1分間から4時間加熱することによって行うことができる。またこのような予備結晶化は、粒状のポリエステルを水蒸気雰囲気、水蒸気含有不活性ガス雰囲気下、あるいは水蒸気含有空気雰囲気下で、120〜200℃の温度で1分間以上加熱することによって行うこともできる。   Such a precrystallization step can be performed by heating the granular polyester in a dry state to a temperature of usually 120 to 200 ° C., preferably 130 to 180 ° C. for 1 minute to 4 hours. Such pre-crystallization can also be performed by heating the granular polyester at a temperature of 120 to 200 ° C. for 1 minute or more in a steam atmosphere, a steam-containing inert gas atmosphere, or a steam-containing air atmosphere. .

予備結晶化されたポリエステルは、結晶化度が20〜50%であることが望ましい。なお、この予備結晶化処理によっては、いわゆるポリエステルの固相重縮合反応は進行せず、予備結晶化されたポリエステルの固有粘度は、重縮合後のポリエステルの固有粘度とほぼ同じであり、予備結晶化前後の固有粘度差は、通常0.06dL/g以下である。   The precrystallized polyester desirably has a crystallinity of 20 to 50%. The so-called polyester solid-phase polycondensation reaction does not proceed by this precrystallization treatment, and the intrinsic viscosity of the precrystallized polyester is almost the same as the intrinsic viscosity of the polyester after polycondensation. The intrinsic viscosity difference before and after the formation is usually 0.06 dL / g or less.

固相重縮合工程は、少なくとも1段からなり、温度が190〜230℃、好ましくは195〜225℃であり、圧力が200kPa〜1kPa、好ましくは常圧から10kPaの条件下で、窒素、アルゴン、炭酸ガスなどの不活性ガス雰囲気下で行われる。使用する不活性ガスとしては窒素ガスが望ましい。   The solid phase polycondensation step comprises at least one stage, a temperature of 190 to 230 ° C., preferably 195 to 225 ° C., and a pressure of 200 kPa to 1 kPa, preferably from normal pressure to 10 kPa, under conditions of nitrogen, argon, It is performed under an inert gas atmosphere such as carbon dioxide. Nitrogen gas is desirable as the inert gas used.

このような固相重縮合工程を経て得られた粒状ポリエステルには、必要に応じて水処理を行ってもよく、この水処理は、粒状ポリエステルを水、水蒸気、水蒸気含有不活性ガス、水蒸気含有空気などと接触させることにより行われる。   The granular polyester obtained through such a solid-phase polycondensation step may be subjected to water treatment as necessary. This water treatment is carried out by treating the granular polyester with water, steam, steam-containing inert gas, steam-containing. It is performed by contacting with air or the like.

上記のようなポリエステルの製造工程はバッチ式、半連続式、連続式のいずれでも行うことができる。特に固相重縮合を行うポリエチレンテレフタレートは、一般的にボトルなどに利用する場合が多く、そのため、固有粘度が0.70〜1.0dL/gであるとともに、ポリエチレンテレフタレート中の環状三量体が0.5wt%以下、アセトアルデヒド含有量が5ppm以下であることが好ましい。   The production process of the polyester as described above can be performed by any of a batch type, a semi-continuous type, and a continuous type. In particular, polyethylene terephthalate that undergoes solid phase polycondensation is often used in bottles and the like, and therefore has an intrinsic viscosity of 0.70 to 1.0 dL / g and a cyclic trimer in polyethylene terephthalate. It is preferable that the content is 0.5 wt% or less and the acetaldehyde content is 5 ppm or less.

なお、ポリエチレンテレフタレート中の環状三量体及びアセトアルデヒドは、通常、固相重縮合工程で低減されるため、固相重縮合前の溶融縮合の固有粘度及び固相重縮合の条件などを調整することで対応できる。   In addition, since the cyclic trimer and acetaldehyde in polyethylene terephthalate are usually reduced in the solid phase polycondensation step, the intrinsic viscosity of the melt condensation before the solid phase polycondensation and the conditions of the solid phase polycondensation should be adjusted. It can respond.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれにより何等限定を受けるものでは無い。なお、実施例中の各値は以下の方法により求めた。
1)固有粘度([η]):
ポリエチレンテレフタレート0.6gをo-クロロフェノール50cc中に加熱溶解した後、一旦冷却させ、ウベローデ式粘度計を用いて35℃の温度条件で測定したその溶液の溶液粘度から算出した。
2)色相(Col)
粒状のポリマーサンプルを160℃×90分乾燥機中で熱処理し、結晶化させた後、カラーマシン社製CM−7500型カラーマシンで測定して求めた。Col−b値により黄色味を評価した。
3)ジエチレングリコール(DEG)含有量
サンプルを抱水ヒドラジンにて分解し、ガスクロマトグラフィー(GC)にて測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention does not receive any limitation by this. In addition, each value in an Example was calculated | required with the following method.
1) Intrinsic viscosity ([η]):
After 0.6 g of polyethylene terephthalate was dissolved by heating in 50 cc of o-chlorophenol, it was once cooled and calculated from the solution viscosity of the solution measured at 35 ° C. using an Ubbelohde viscometer.
2) Hue (Col)
The granular polymer sample was heat-treated in a dryer at 160 ° C. for 90 minutes to crystallize, and then measured with a CM-7500 type color machine manufactured by Color Machine Co., Ltd. Yellowness was evaluated by the Col-b value.
3) Diethylene glycol (DEG) content The sample was decomposed with hydrazine hydrate and measured by gas chromatography (GC).

[参考例1]
攪拌機付き反応器中を窒素雰囲気下にエチレングリコール919重量部と無水トリメリット酸80重量部を入れて混合攪拌した中に、テトラ−n−ブトキシチタン71重量部をゆっくり徐々に添加して透明なチタン化合物のエチレングリコール溶液(以下、TMT触媒と称する。)を得た。テトラ−n−ブトキシチタンと無水トリメリット酸の反応モル比は1/2であった。
[Reference Example 1]
In a reactor equipped with a stirrer, 919 parts by weight of ethylene glycol and 80 parts by weight of trimellitic anhydride were mixed and stirred in a nitrogen atmosphere, and 71 parts by weight of tetra-n-butoxytitanium was slowly added gradually to obtain a transparent An ethylene glycol solution of a titanium compound (hereinafter referred to as TMT catalyst) was obtained. The reaction molar ratio of tetra-n-butoxytitanium and trimellitic anhydride was ½.

[実施例1]
ポリエステルの製造:
予め225部のオリゴマーが滞留する反応器内に、撹拌下、窒素雰囲気で255℃、常圧下に維持された条件下に、179部の高純度テレフタル酸と95部のエチレングリコールとを混合して調製されたスラリーを一定速度供給し、反応で発生する水とエチレングリコールを系外に留去ながら、エステル化反応を4時間し反応を完結させた。この時のエステル化率は、98%以上で、生成されたオリゴマーの重合度は、約5〜7であった。
[Example 1]
Production of polyester:
In a reactor in which 225 parts of oligomers have been retained in advance, 179 parts of high-purity terephthalic acid and 95 parts of ethylene glycol were mixed under conditions of 255 ° C. and normal pressure in a nitrogen atmosphere under stirring. The prepared slurry was supplied at a constant rate, and the esterification reaction was completed for 4 hours while water and ethylene glycol generated in the reaction were distilled out of the system to complete the reaction. The esterification rate at this time was 98% or more, and the polymerization degree of the produced oligomer was about 5 to 7.

このエステル化反応で得られたオリゴマー225部を重縮合反応槽に移し、重縮合触媒として、実施例1で得られたTMT触媒をポリエチレンテレフタレートに対してチタン原子が0.031モルになる量にて投入した。引続き系内の反応温度を255から280℃、又、反応圧力を常圧から60Paにそれぞれ段階的に上昇及び減圧し、反応で発生する水、エチレングリコールを系外に除去しながら重縮合反応を行った。   225 parts of the oligomer obtained by the esterification reaction was transferred to a polycondensation reaction tank, and the TMT catalyst obtained in Example 1 was used as a polycondensation catalyst in an amount such that the titanium atom was 0.031 mol with respect to polyethylene terephthalate. And put it in. Subsequently, the reaction temperature in the system is increased from 255 to 280 ° C., and the reaction pressure is gradually increased and reduced from normal pressure to 60 Pa, respectively, and the polycondensation reaction is carried out while removing water and ethylene glycol generated in the reaction from the system. went.

重縮合反応の進行度合いを、系内の撹拌翼への負荷をモニターしなから確認し、所望の重合度に達した時点で、反応を終了した。その後、系内の反応物を吐出部からストランド状に連続的に押出し、冷却,カッティングして、約3mm程度の粒状ペレットを得た。この時の重縮合反応時間は、189分間であった。得られたポリエチレンテレフタレートの品質を表1に示した。   The progress of the polycondensation reaction was confirmed without monitoring the load on the stirring blades in the system, and the reaction was terminated when the desired degree of polymerization was reached. Thereafter, the reaction product in the system was continuously extruded in a strand form from the discharge part, cooled and cut to obtain a granular pellet of about 3 mm. The polycondensation reaction time at this time was 189 minutes. The quality of the obtained polyethylene terephthalate is shown in Table 1.

[実施例2]
実施例2において、TMT触媒をポリエチレンテレフタレートに対してチタン原子が0.020モルになる量にて投入使用した以外は同様の操作を行った。この時の重縮合反応時間は、210分間であった。生成したポリエチレンテレフタレートの品質を表1に示す。
[Example 2]
In Example 2, the same operation was performed except that the TMT catalyst was used in an amount such that the titanium atom was 0.020 mol relative to polyethylene terephthalate. The polycondensation reaction time at this time was 210 minutes. The quality of the produced polyethylene terephthalate is shown in Table 1.

[比較例1]
実施例2において、TMT触媒をポリエチレンテレフタレートに対してチタン原子が0.052モルになる量にて投入使用した以外は同様の操作を行った。この時の重縮合反応時間は、143分間であった。生成したポリエチレンテレフタレートの品質を表1に示す。
[Comparative Example 1]
In Example 2, the same operation was performed except that the TMT catalyst was charged and used in such an amount that the titanium atom was 0.052 mol relative to polyethylene terephthalate. The polycondensation reaction time at this time was 143 minutes. The quality of the produced polyethylene terephthalate is shown in Table 1.

[比較例2]
実施例2において、TMT触媒をポリエチレンテレフタレートに対してチタン原子が0.016モルになる量にて投入使用した以外は同様の操作を行った。この時の重縮合反応が充分に進まなかったため、ポリマーをカッター処理せず放流した。
[Comparative Example 2]
In Example 2, the same operation was carried out except that the TMT catalyst was charged and used in such an amount that the titanium atom was 0.016 mol relative to polyethylene terephthalate. Since the polycondensation reaction at this time did not proceed sufficiently, the polymer was discharged without cutter treatment.

[比較例3]
実施例2において、TMT触媒の代わりにテトラブトキシチタンを使用した以外は同様の操作を行った。この時の重縮合反応時間は、151分間であった。生成したポリエチレンテレフタレートの品質を表1に示す。
[Comparative Example 3]
In Example 2, the same operation was performed except that tetrabutoxy titanium was used instead of the TMT catalyst. The polycondensation reaction time at this time was 151 minutes. The quality of the produced polyethylene terephthalate is shown in Table 1.

[比較例4]
実施例2において、TMT触媒の代わりにテトラメトキシチタンを使用した以外は同様の操作を行った。この時の重縮合反応時間は、154分間であった。生成したポリエチレンテレフタレートの品質を表1に示す。
[Comparative Example 4]
In Example 2, the same operation was performed except that tetramethoxy titanium was used instead of the TMT catalyst. The polycondensation reaction time at this time was 154 minutes. The quality of the produced polyethylene terephthalate is shown in Table 1.

Figure 2006291033
Figure 2006291033

本発明の方法により、極少量のチタン化合物のみを触媒として用い色相良好なポリエチレンテレフタレートを得ることができるので、その工業的意義は大きい。   According to the method of the present invention, polyethylene terephthalate having a good hue can be obtained using only a very small amount of a titanium compound as a catalyst, so that its industrial significance is great.

Claims (1)

下記一般式(I)で表されるチタン化合物及び下記一般式(II)で表される芳香族多価カルボン酸又はその無水物とを反応させた生成物からなる群から選ばれた少なくとも一種を含むチタン化合物成分からなる重縮合触媒を、生成ポリエチレンテレフタレート1トンに対してチタン原子のモル数が0.020モル以上0.031モル以下になるように用い、Col−b値が1.0以下のポリエチレンテレフタレートの製造方法。
Figure 2006291033
[上記式中、R、R、R及びRはそれぞれ同一若しくは異なって、アルキル基又はフェニル基を示し、mは1〜4の整数を示し、かつmが2、3又は4の場合、2個、3個又は4個のR及びRは、それぞれ同一であっても異なっていてもどちらでもよい。]
Figure 2006291033
[上記式中、nは2〜4の整数を表わす。]
At least one selected from the group consisting of a product obtained by reacting a titanium compound represented by the following general formula (I) and an aromatic polycarboxylic acid represented by the following general formula (II) or an anhydride thereof: A polycondensation catalyst comprising a titanium compound component is used so that the number of moles of titanium atoms is 0.020 mol or more and 0.031 mol or less with respect to 1 ton of polyethylene terephthalate produced, and the Col-b value is 1.0 or less Of manufacturing polyethylene terephthalate.
Figure 2006291033
[Wherein R 1 , R 2 , R 3 and R 4 are the same or different and each represents an alkyl group or a phenyl group, m represents an integer of 1 to 4, and m represents 2, 3 or 4] In this case, 2, 3 or 4 R 2 and R 3 may be the same or different from each other. ]
Figure 2006291033
[In the above formula, n represents an integer of 2 to 4. ]
JP2005113539A 2005-04-11 2005-04-11 Method for producing polyester using only trace amount of titanium compound as catalyst Pending JP2006291033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005113539A JP2006291033A (en) 2005-04-11 2005-04-11 Method for producing polyester using only trace amount of titanium compound as catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005113539A JP2006291033A (en) 2005-04-11 2005-04-11 Method for producing polyester using only trace amount of titanium compound as catalyst

Publications (1)

Publication Number Publication Date
JP2006291033A true JP2006291033A (en) 2006-10-26

Family

ID=37411951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005113539A Pending JP2006291033A (en) 2005-04-11 2005-04-11 Method for producing polyester using only trace amount of titanium compound as catalyst

Country Status (1)

Country Link
JP (1) JP2006291033A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119060315A (en) * 2024-09-24 2024-12-03 浙江建信佳人新材料有限公司 A high-efficiency green titanium polyester catalyst and its preparation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119618A (en) * 2001-10-15 2003-04-23 Teijin Ltd Polyester fiber and method for producing the same
JP2003238673A (en) * 2002-02-19 2003-08-27 Toray Ind Inc Method for producing polyester
JP2004091585A (en) * 2002-08-30 2004-03-25 Teijin Ltd Polyethylene terephthalate resin composition and its production method
JP2004217750A (en) * 2003-01-14 2004-08-05 Teijin Ltd Catalyst for manufacturing polyester and polyester produced by using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119618A (en) * 2001-10-15 2003-04-23 Teijin Ltd Polyester fiber and method for producing the same
JP2003238673A (en) * 2002-02-19 2003-08-27 Toray Ind Inc Method for producing polyester
JP2004091585A (en) * 2002-08-30 2004-03-25 Teijin Ltd Polyethylene terephthalate resin composition and its production method
JP2004217750A (en) * 2003-01-14 2004-08-05 Teijin Ltd Catalyst for manufacturing polyester and polyester produced by using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119060315A (en) * 2024-09-24 2024-12-03 浙江建信佳人新材料有限公司 A high-efficiency green titanium polyester catalyst and its preparation method

Similar Documents

Publication Publication Date Title
JP5288676B2 (en) Catalyst for producing polyester, method for producing polyester, and polyester
JP2000504770A (en) Process for producing a copolyester of terephthalic acid, ethylene glycol and 1,4-cyclohexanedimethanol, exhibiting neutral hue, high transparency and increased brightness
JP5639651B2 (en) Process for producing polyethylene terephthalate
JP2004224858A (en) Catalyst for polyester production and polyester produced therewith
JP2000143789A (en) Production of polyester
JP5555266B2 (en) Process for producing polyethylene terephthalate
JP2004217750A (en) Catalyst for manufacturing polyester and polyester produced by using the same
JP2004189921A (en) Titanium catalyst solution for polyester production and method for producing polyester using the same
JP2008195845A (en) Polycondensation catalyst for polyester and method for producing polyester using the same
JP2006291033A (en) Method for producing polyester using only trace amount of titanium compound as catalyst
JP5215074B2 (en) Catalyst for producing polyester and production of polyester using the catalyst
JP4397733B2 (en) Catalyst for producing polyester and polyester using the same
JP4030206B2 (en) Polyester manufacturing method
JP4107699B2 (en) Reaction liquid of titanium halide and ethylene glycol, preparation method thereof, polyester production catalyst, production method of polyester
JP2005325201A (en) Catalyst for producing polyester and polyester using the same
JP4086983B2 (en) Polyester manufacturing method
JP2009024088A (en) Polyester resin for rubber reinforced fiber and method for producing the same
JP4886526B2 (en) Highly active / floating titanium compound catalyst and method for producing polyester with good hue using the same
JP3864004B2 (en) Polyester production method
JP4660108B2 (en) Difficult-precipitation fine titanium catalyst for polyester production
JP4459712B2 (en) Catalyst for producing polyester and polyester using the same
JP2008150412A (en) Catalyst for manufacturing polyester and manufacturing method of polyester using the same
JP4669272B2 (en) Method for producing polyethylene terephthalate using bis- (2-hydroxyethyl) terephthalate as a raw material
JP2008174581A (en) Method for producing polyester having good hue at high polymerization rate
JP4660109B2 (en) Floating titanium catalyst for polyester production

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080118

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100901

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110111