JP2006283817A - Vacuum insulation - Google Patents
Vacuum insulation Download PDFInfo
- Publication number
- JP2006283817A JP2006283817A JP2005102028A JP2005102028A JP2006283817A JP 2006283817 A JP2006283817 A JP 2006283817A JP 2005102028 A JP2005102028 A JP 2005102028A JP 2005102028 A JP2005102028 A JP 2005102028A JP 2006283817 A JP2006283817 A JP 2006283817A
- Authority
- JP
- Japan
- Prior art keywords
- packaging material
- heat insulating
- core material
- vacuum heat
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009413 insulation Methods 0.000 title abstract description 15
- 239000005022 packaging material Substances 0.000 claims abstract description 105
- 239000011162 core material Substances 0.000 claims abstract description 102
- 239000000835 fiber Substances 0.000 claims abstract description 89
- 239000011810 insulating material Substances 0.000 claims abstract description 59
- 229920000728 polyester Polymers 0.000 claims abstract description 32
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 21
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 21
- -1 polyethylene terephthalate Polymers 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 abstract description 16
- 230000007613 environmental effect Effects 0.000 abstract description 7
- 238000004064 recycling Methods 0.000 abstract description 5
- 239000000463 material Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 14
- 238000001035 drying Methods 0.000 description 11
- 239000010410 layer Substances 0.000 description 11
- 238000007789 sealing Methods 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 239000003365 glass fiber Substances 0.000 description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 230000004888 barrier function Effects 0.000 description 8
- 238000003825 pressing Methods 0.000 description 8
- 239000003463 adsorbent Substances 0.000 description 7
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 6
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 6
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 6
- 230000004927 fusion Effects 0.000 description 6
- 229920001903 high density polyethylene Polymers 0.000 description 6
- 239000004700 high-density polyethylene Substances 0.000 description 6
- 239000004745 nonwoven fabric Substances 0.000 description 6
- 229920001778 nylon Polymers 0.000 description 6
- 239000004677 Nylon Substances 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920000742 Cotton Polymers 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 238000002074 melt spinning Methods 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002759 woven fabric Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229920005830 Polyurethane Foam Polymers 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000011496 polyurethane foam Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000001275 scanning Auger electron spectroscopy Methods 0.000 description 2
- 238000009958 sewing Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- 229920001407 Modal (textile) Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 239000005340 laminated glass Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920006306 polyurethane fiber Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000002166 wet spinning Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Landscapes
- Thermal Insulation (AREA)
- Refrigerator Housings (AREA)
- Laminated Bodies (AREA)
Abstract
【課題】 製造時およびリサイクル時において環境負荷が極めて低く、取扱い性・作業性および生産効率に優れ、しかも長期にわたって良好な断熱性を維持する真空断熱材を提供すること。
【解決手段】 ポリエステル繊維を含有する芯材を収容した内包材が減圧状態で外包材に収容されてなることを特徴とする真空断熱材。
【選択図】なし
PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material that has an extremely low environmental load at the time of manufacture and at the time of recycling, is excellent in handleability / workability and production efficiency, and maintains good heat insulation over a long period of time.
A vacuum heat insulating material is characterized in that an inner packaging material containing a core material containing polyester fiber is accommodated in an outer packaging material in a reduced pressure state.
[Selection figure] None
Description
本発明は、冷蔵庫、自動販売機、保冷箱、保冷車等の断熱材として用いる真空断熱材に関する。 The present invention relates to a vacuum heat insulating material used as a heat insulating material for a refrigerator, a vending machine, a cold box, a cold car, and the like.
従来、冷蔵庫、自動販売機、保冷箱、保冷車等には、種々の構造・性能を有する断熱材が使用されている。近年においては、非常に優れた断熱性を有する真空断熱材が上記用途に多く使用されている。真空断熱材とは、一般的には、ガスバリア性の金属蒸着フィルム等からなる外包材に芯材を充填し、その内部を減圧して密封した構造を有するものである。このような真空断熱材の断熱性・生産性・取扱い性能は、上記芯材によって大きく左右されるが、現在汎用される芯材としては、連続気泡ポリウレタンフォーム(特許文献1)、平均繊維径が0.5〜8μm程度のガラス繊維集合体(特許文献2)およびガラス繊維集合体と他の熱可塑性樹脂繊維の複合体(特許文献3)が挙げられる。 Conventionally, heat insulating materials having various structures and performances are used in refrigerators, vending machines, cold storage boxes, cold cars, and the like. In recent years, a vacuum heat insulating material having a very excellent heat insulating property has been used in many applications. The vacuum heat insulating material generally has a structure in which a core material is filled in an outer packaging material made of a gas barrier metal deposition film or the like, and the inside thereof is decompressed and sealed. The heat insulating properties, productivity, and handling performance of such a vacuum heat insulating material greatly depend on the core material, but as a core material that is currently widely used, open cell polyurethane foam (Patent Document 1), the average fiber diameter is Examples thereof include a glass fiber aggregate (Patent Document 2) of about 0.5 to 8 μm and a composite of a glass fiber aggregate and other thermoplastic resin fibers (Patent Document 3).
しかしながら、上記汎用の真空断熱材用芯材は次のような課題を有している。
連続気泡ポリウレタンフォームを用いた芯材は、作業性、取扱い性、軽量性等非常に優れているが、ガラス繊維等の繊維状材料に比較して、断熱性が劣る面がある。
However, the general-purpose core for vacuum heat insulating material has the following problems.
Although the core material using the open-cell polyurethane foam is very excellent in workability, handleability, lightness and the like, it has a poor heat insulating property as compared with a fibrous material such as glass fiber.
平均繊維径が0.5〜8μm程度のガラス繊維集合体を用いた芯材は、アウトガス(芯材から揮発するガス分)の発生もなく、断熱性に極めて優れた性質を有するが、ガラス繊維という材質自身の取扱い性・作業性に大きな難がある。取扱い性を改善すべく、ガラス繊維を重ね合わせたものにニードルパンチを施し、外包材に芯材を挿入する作業について改善したものも見られるが、材質そのものに由来する取扱い性、作業性の難点を解決し得るものではない。特に、当該芯材をリサイクルする時点における、作業環境性、取扱い性の問題点は以前残ったままである。例えば、リサイクルする時に外包材を開封すると、ガラス繊維集合体芯材が飛散し、取扱い性・作業性が問題となるだけでなく、環境負荷の面においても問題となる。 Although the core material using the glass fiber aggregate having an average fiber diameter of about 0.5 to 8 μm has no outgas (gas component volatilized from the core material) and has excellent heat insulation properties, the glass fiber The material itself has great difficulty in handling and workability. In order to improve handling, some improvements have been made to the work of inserting the core material into the outer packaging material by applying needle punch to the laminated glass fiber, but the handling and workability difficulties derived from the material itself are difficult. Is not something that can be solved. In particular, the problems of working environment and handling at the time of recycling the core material remain. For example, if the outer packaging material is opened at the time of recycling, the glass fiber aggregate core material scatters, which causes problems not only in handling and workability but also in terms of environmental burden.
ガラス繊維集合体と他の熱可塑性樹脂繊維との複合体を用いた芯材については、若干の取扱い性の向上は見られるものの満足すべきものではない。熱可塑性樹脂繊維と同様に、ロックウール、パルプ等の繊維質を複合したものも見られるが、ガラス繊維が使用されるため、ガラス繊維自体に由来する取扱い性・作業性および環境負荷の難点は依然、残ったままである。 A core material using a composite of glass fiber aggregates and other thermoplastic resin fibers is not satisfactory, although a slight improvement in handleability is observed. Similar to thermoplastic resin fibers, some composites of rock wool, pulp, and other fibers are also seen, but because glass fibers are used, the difficulties in handling and workability derived from the glass fibers themselves and the environmental burden are Still remains.
熱可塑性樹脂繊維等の有機繊維のみを芯材として用いた真空断熱材も考えられるが、有機繊維から生じるアウトガスの問題により具体化された例は見られない。特に、0.75dのポリエステル繊維集綿体を芯材として使用した例も見られるが(特許文献4)、わた状で使用すると、取扱い性が極めて悪く、現実的な商品としては考えられない。そこで、取り扱い性の向上を目的として集綿体をシート状にすることも考えられるが、上記のように極細の繊維を使用する場合、ニードルパンチ法は使用困難なので、ケミカルボンド法によりバインダーを用いると、アウトガスが発生し、経時変化が大きく、時間と共に断熱性が大きく低下する問題がある。 A vacuum heat insulating material using only organic fibers such as thermoplastic resin fibers as a core material is also conceivable, but no example is realized due to the problem of outgas generated from organic fibers. In particular, an example in which a 0.75d polyester fiber collection is used as a core material can be seen (Patent Document 4), but if used in a wrinkled form, handling properties are extremely poor and cannot be considered as a practical product. Therefore, it is possible to make the cotton collection into a sheet for the purpose of improving the handleability. However, when using ultrafine fibers as described above, the needle punch method is difficult to use, so a binder is used by the chemical bond method. And there is a problem that outgas is generated, the change with time is large, and the heat insulation is greatly deteriorated with time.
また、上記いずれの真空断熱材も外包材に直接的に芯材を収容させ、外包材内部を減圧状態に保持しながら、外包材開口部をシールすることによって製造されるので、真空断熱材の生産効率が問題となっていた。すなわち、外包材に直接的に芯材を収容させると、外包材にキズが付き易いので、真空断熱材の歩留まりが低下した。また外包材に直接的に芯材を収容させると、最終的にシールされる外包材開口部に芯材が静電気等によって付着し易く、当該付着芯材を十分に除去することは困難なため、開口部のシールによって付着芯材由来の通気口が外包材内部と外部との間で形成されて、真空断熱材の歩留まりが低下した。そのような歩留まり低下の問題は、取扱いが困難なわた状の芯材を用いる場合に顕著であった。しかも、わた状の芯材を外包材に直接的に収容させる場合には、上記したように外包材のキズの観点から収容作業が制限されるので、均一な厚みになるように収容させることが困難であった。そのため断熱性が低下した。
本発明は、上記のような課題を解決するためになされたもので、製造時およびリサイクル時において環境負荷が極めて低く、取扱い性・作業性および生産効率に優れ、しかも長期にわたって良好な断熱性を維持する真空断熱材を提供することを目的とする。 The present invention has been made to solve the above-described problems, and has an extremely low environmental load during manufacturing and recycling, and is excellent in handleability, workability and production efficiency, and has good heat insulation over a long period of time. It aims at providing the vacuum heat insulating material to maintain.
本発明は、ポリエステル繊維を含有する芯材を収容した内包材が減圧状態で外包材に収容されてなることを特徴とする真空断熱材に関する。 The present invention relates to a vacuum heat insulating material characterized in that an inner packaging material containing a core material containing polyester fiber is accommodated in an outer packaging material in a reduced pressure state.
本発明の真空断熱材は、芯材がポリエステル繊維から構成されているため、環境負荷が小さく、使用後のリサイクル性についても非常に優れる。しかも、本発明の真空断熱材は、冷蔵庫等に採用されている連続気泡ウレタンフォームを用いた真空断熱材を上回る断熱性を長期にわたって発揮し、またガラス繊維と比較して取扱い性および作業性に優れる。
さらに本発明の真空断熱材において芯材は内包材に収容された状態で外包材に収容されるため、外包材にキズが付きにくく、しかも外包材開口部への芯材付着が起こりにくい。よって、真空断熱材の歩留まりが向上し、生産効率が上昇する。
In the vacuum heat insulating material of the present invention, since the core material is made of polyester fiber, the environmental load is small, and the recyclability after use is very excellent. Moreover, the vacuum heat insulating material of the present invention exhibits a heat insulating property that exceeds the vacuum heat insulating material using the open-cell urethane foam employed in refrigerators and the like over a long period of time, and is easier to handle and work than glass fiber. Excellent.
Further, in the vacuum heat insulating material of the present invention, since the core material is accommodated in the outer packaging material in a state of being accommodated in the inner packaging material, the outer packaging material is hardly scratched, and the core material is hardly attached to the opening of the outer packaging material. Accordingly, the yield of the vacuum heat insulating material is improved and the production efficiency is increased.
本発明の真空断熱材は芯材を収容した内包材が減圧状態で外包材に収容されてなる。 The vacuum heat insulating material of the present invention is configured such that an inner packaging material containing a core material is accommodated in an outer packaging material in a reduced pressure state.
本発明において芯材はポリエステル繊維を含有する繊維集合体からなっている。環境負荷、取扱い性・作業性、リサイクル性および断熱性の観点から芯材はポリエステル繊維のみからなる繊維集合体であることが好ましい。芯材がポリエステル繊維を含有せずに、ポリエチレン繊維等の他の有機繊維からなっていると、アウトガス発生による断熱性の経時的な低下が起こる。 In the present invention, the core material is composed of a fiber assembly containing polyester fibers. The core material is preferably a fiber assembly made only of polyester fibers from the viewpoints of environmental load, handleability / workability, recyclability and heat insulation. When the core material does not contain polyester fibers and is made of other organic fibers such as polyethylene fibers, the heat insulating property is lowered over time due to outgassing.
本発明においてポリエステル繊維とは、化学構造単位が主としてエステル結合で結合されてなる高分子からなる繊維を意味し、製造法は特に限定されるものではい。例えば、ジカルボン酸成分とジオール成分との反応により得られるポリエステル繊維であってもよいし、または一分子中にヒドロキシル基とカルボキシル基とを有するヒドロキシカルボン酸成分同士の反応により得られるポリエステル繊維であってもよい。 In the present invention, the term “polyester fiber” means a fiber made of a polymer in which chemical structural units are bonded mainly by ester bonds, and the production method is not particularly limited. For example, it may be a polyester fiber obtained by a reaction between a dicarboxylic acid component and a diol component, or a polyester fiber obtained by a reaction between hydroxycarboxylic acid components having a hydroxyl group and a carboxyl group in one molecule. May be.
ポリエステル繊維の具体例として、ポリエチレンテレフタレート(PET)繊維、ポリブチレンテレフタレート(PBT)繊維、ポリプロピレンテレフタレート繊維、ポリアリレート繊維などが挙げられる。例えば、PET繊維は、テレフタル酸ジメチル(DMT)とエチレングリコール(EG)またはテレフタル酸(TPA)とEGとの反応等により得られ、PBT繊維はDMTとテトラメチレングリコール(TMG)またはTPAとTMGとの反応等により得られる。量産性及びコストを加味すれば、好ましくはポリエチレンテレフタレート繊維である。当然ながら、リサイクルPET繊維を使用しても何ら問題はない。 Specific examples of the polyester fiber include polyethylene terephthalate (PET) fiber, polybutylene terephthalate (PBT) fiber, polypropylene terephthalate fiber, and polyarylate fiber. For example, PET fiber is obtained by a reaction of dimethyl terephthalate (DMT) and ethylene glycol (EG) or terephthalic acid (TPA) and EG, and PBT fiber is DMT and tetramethylene glycol (TMG) or TPA and TMG. It can be obtained by the reaction of Considering mass productivity and cost, polyethylene terephthalate fiber is preferable. Of course, there is no problem even if recycled PET fibers are used.
ポリエステル繊維の繊維太さは本発明の目的を達成できる限り特に制限されるものはなく、例えば1〜6デニール、特に1〜3デニールであることが好ましい。上記繊維太さを有するポリエステル繊維の平均繊維径はそれぞれ9〜25μm、9〜17μmに相当する。平均繊維径は、10本の繊維に対し、繊維1本当たり2箇所の径をCCDカメラ画像により処理して測定し、計20箇所の径の平均値を求めて平均繊維径値として用いた。 The fiber thickness of the polyester fiber is not particularly limited as long as the object of the present invention can be achieved. For example, it is preferably 1 to 6 denier, particularly preferably 1 to 3 denier. The average fiber diameters of the polyester fibers having the fiber thickness correspond to 9 to 25 μm and 9 to 17 μm, respectively. The average fiber diameter was measured by processing two diameters per 10 fibers with a CCD camera image for 10 fibers, and calculating the average value of the diameters at a total of 20 positions as the average fiber diameter value.
ポリエステル繊維は軟化点200〜260℃程度、強度0.3〜1.2GPa程度のものが、繊維製造の容易さの観点から好ましい。 A polyester fiber having a softening point of about 200 to 260 ° C. and a strength of about 0.3 to 1.2 GPa is preferable from the viewpoint of easy fiber production.
ポリエステルを繊維化する方法としては、溶融紡糸法、湿式紡糸法、乾式紡糸法等があるが、本発明において好ましくは溶融紡糸法である。溶融紡糸法とは、高分子の融液を細孔ノズルより空気中に吐出し、吐出された溶融糸条を細化させながら空気で冷却、固化し、その後一定の速度で引き取る方式である。本方法では、前記繊維太さを有するポリエステル繊維が容易に製造可能である。 Examples of the method for fiberizing polyester include a melt spinning method, a wet spinning method, and a dry spinning method. In the present invention, the melt spinning method is preferable. The melt spinning method is a system in which a polymer melt is discharged into the air from a pore nozzle, cooled and solidified with air while thinning the discharged molten yarn, and then taken up at a constant speed. In this method, the polyester fiber having the fiber thickness can be easily produced.
ポリエステル繊維を含有する繊維集合体の形態は特に制限されず、例えば、シート状またはわた状であってよい。シート状とすることによって、芯材の取扱い性および作業性がより向上し、また製造時およびリサイクル時における環境負荷をより低減でき、しかも真空断熱材の断熱性がより向上する。わた状とすることによって、本発明の目的をより有効に達成できる。従来では、わた状の繊維集合体を用いると、外包材キズや外包材開口部への芯材付着により外包材内部を減圧状態に維持できず真空断熱材の歩留まりが低下したり、芯材の不均一化により断熱性が低下し易いが、本発明においてはわた状芯材を用いる場合であっても、そのような問題を有効に防止できるためである。 The form of the fiber assembly containing the polyester fiber is not particularly limited, and may be, for example, a sheet shape or a wicker shape. By making it into a sheet form, the handling property and workability of the core material are further improved, the environmental load during manufacturing and recycling can be further reduced, and the heat insulating property of the vacuum heat insulating material is further improved. By using the wrinkled shape, the object of the present invention can be achieved more effectively. Conventionally, when a cotton-like fiber assembly is used, the inside of the outer packaging material cannot be maintained in a reduced pressure state due to the outer packaging material scratches or adhesion of the core material to the opening of the outer packaging material, and the yield of the vacuum heat insulating material is reduced. This is because heat insulation is likely to deteriorate due to non-uniformization, but in the present invention, such a problem can be effectively prevented even when a wrinkled core material is used.
「シート状」とは平板形状を有しているという意味である。シート状繊維集合体はバインダー等の他の材料を使用されないで加工されることが好ましく、例えば、いわゆるニードルパンチ法等でシート状に加工するようにする。バインダーを用いるケミカルボンド法等は、アウトガス発生による断熱性の経時的な低下が起こり問題となる。なお、ニードルパンチ法とは、繊維の方向がある程度揃ったポリエステル繊維塊、すなわちポリエステル繊維ウェブに対し、フックの付いた多数の針を垂直に突き刺したり引き上げたりすることを繰返し、ウェブ中の繊維同士を互いに絡ませることによりシート状にする方法である。 “Sheet” means having a flat plate shape. The sheet-like fiber assembly is preferably processed without using other materials such as a binder. For example, the sheet-like fiber assembly is processed into a sheet by a so-called needle punch method or the like. The chemical bond method using a binder causes a problem in that the heat insulating property is lowered over time due to outgas generation. The needle punching method is a method of repeatedly piercing or pulling up many needles with hooks against a polyester fiber lump in which the directions of fibers are aligned to some extent, that is, a polyester fiber web. It is the method of making it into a sheet form by mutually entanglement.
「わた状」とはいわゆる原綿のような状態を指し、繊維が不規則に絡み合って一体化されている形態を意味する。いわゆる原綿をすいてなるウェッブ形状やニードルパンチ加工形状等のシート状形状は含まない。 “Water” refers to a state like a so-called raw cotton, and means a form in which fibers are irregularly intertwined and integrated. It does not include sheet-like shapes such as a web shape made of so-called raw cotton or a needle punched shape.
本発明においてそのような繊維集合体からなる芯材の厚みは本発明の目的が達成される限り特に制限されるものではなく、通常は真空断熱材としたときに1mm〜100mm程度、特に5mm〜75mm程度であればよい。特に、シート状繊維集合体は、1層のシートでも良いが、ポリエステル繊維の1層シートからなり真空断熱材としたときに5mm程度以上の厚いものは、シート製造が難しいため、芯材を比較的厚く設定したいときは、2層以上のシートを積層した積層型シート状繊維集合体(芯材)を用いるのが好ましい。 In the present invention, the thickness of the core material composed of such a fiber assembly is not particularly limited as long as the object of the present invention is achieved, and is usually about 1 mm to 100 mm, particularly 5 mm to the vacuum heat insulating material. What is necessary is just about 75 mm. In particular, the sheet-like fiber assembly may be a single-layer sheet, but when it is made of a single-layer polyester fiber sheet and used as a vacuum heat insulating material, it is difficult to manufacture a sheet having a thickness of about 5 mm or more. When it is desired to set a specific thickness, it is preferable to use a laminated sheet-like fiber assembly (core material) in which two or more sheets are laminated.
本発明において芯材の密度は、断熱性及び強度の観点から、100〜300kg/m3が好ましく、より好ましくは150〜300kg/m3である。
芯材の密度は、芯材を収容した内包材を外包材に収容し、真空引きした後の密度を測定したものである。すなわち、真空断熱材を作成した後、真空断熱材の重量から、あらかじめ測定した内包材、外包材及びゲッター材等の重量を引き、芯材の重量を得る。また真空断熱材の体積から、あらかじめ測定したゲッター材等の体積を引き、芯材の体積を得る。なお、内包材および外包材は厚みが非常に小さいので、体積算出には考慮しない。得られた真空断熱材の重量および体積から密度を算出する。
The density of the core material in the present invention, from the viewpoint of heat insulation and strength, preferably from 100 to 300 / m 3, more preferably from 150~300kg / m 3.
The density of the core material is obtained by measuring the density after the inner packaging material containing the core material is accommodated in the outer packaging material and vacuumed. That is, after creating the vacuum heat insulating material, the weight of the inner packaging material, the outer packaging material, the getter material, and the like measured in advance is subtracted from the weight of the vacuum heat insulating material to obtain the weight of the core material. Further, the volume of the getter material or the like measured in advance is subtracted from the volume of the vacuum heat insulating material to obtain the volume of the core material. Note that the inner packaging material and the outer packaging material are very small in thickness, and thus are not considered for volume calculation. The density is calculated from the weight and volume of the obtained vacuum heat insulating material.
本発明は芯材を構成する繊維集合体がポリエステル繊維以外の繊維を含有することを妨げるものではない。ポリエステル繊維の含有量は本発明の目的が達成される限り特に制限されず、通常はアウトガス発生による断熱性の経時的低下防止の観点から芯材全量に対して50重量%以上、好ましくは90〜100重量%である。 This invention does not prevent that the fiber assembly which comprises a core material contains fibers other than a polyester fiber. The content of the polyester fiber is not particularly limited as long as the object of the present invention is achieved, and is usually 50% by weight or more, preferably 90 to 90% by weight based on the total amount of the core material from the viewpoint of preventing temporal deterioration of heat insulation due to outgas generation. 100% by weight.
ポリエステル繊維とともに繊維集合体に含有されてもよい他の繊維として、例えば、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維、アラミド繊維、ナイロン繊維、ポリビニルアルコール繊維、フッ素繊維、ポリウレタン繊維、ポリノジック繊維、レーヨン繊維等の合成繊維、アルミナ、チタン酸カリウム等の無機繊維、麻、絹、綿、羊毛等の天然繊維等が挙げられる。 Other fibers that may be contained in the fiber assembly together with the polyester fiber include, for example, polyethylene fiber, polypropylene fiber, acrylic fiber, aramid fiber, nylon fiber, polyvinyl alcohol fiber, fluorine fiber, polyurethane fiber, polynosic fiber, rayon fiber, etc. Synthetic fibers, inorganic fibers such as alumina and potassium titanate, natural fibers such as hemp, silk, cotton and wool.
内包材は上記芯材を収容できる限り特に制限されず、通気性を有する形態を有していることが好ましい。そのような形態として例えば、少なくとも一部に通気孔を有するフィルム、ならびに織物、編物および不織布等が挙げられる。フィルムの孔の大きさおよび織物、編物および不織布の目付は、真空断熱材製造時の減圧排気によって芯材が内包材から飛散せず、かつ内包材内部も円滑に減圧排気可能な限り特に制限されない。本発明は内包材として通気性を有しないフィルム形態のものを使用することを妨げるものではない。通気性を有しない内包材を用いることによって、内包材内部を内包材単独で減圧状態に維持できる。 The inner packaging material is not particularly limited as long as the core material can be accommodated, and preferably has a form having air permeability. Examples of such a form include a film having a vent hole at least partially, and a woven fabric, a knitted fabric, and a non-woven fabric. The size of the holes in the film and the basis weight of the woven fabric, knitted fabric, and nonwoven fabric are not particularly limited as long as the core material does not scatter from the inner packaging material due to reduced pressure exhaust during the production of the vacuum heat insulating material, and the inner packaging material can be smoothly decompressed and exhausted. . The present invention does not preclude the use of a film form that does not have air permeability as the inner packaging material. By using an internal packaging material that does not have air permeability, the internal packaging material alone can be maintained in a reduced pressure state.
内包材の材質は、本発明の目的を達成できる限り特に制限されず、例えば、ポリエステル、ポリプロピレン、ナイロン等が挙げられる。アウトガス発生の観点から、ポリエステル製が好ましく、さらにリサイクル性の観点からは、芯材及び内包材共にPETを材質として用いるのが最も好ましい。また真空断熱材製造時における芯材乾燥の観点からは、融点が100℃以上、特に100〜300℃程度の材質を用いることが好ましい。
例えば、ポリエステルからなる織物、編物および不織布は、芯材として前記した同様のポリエステル繊維からなっていてよい。
The material of the inner packaging material is not particularly limited as long as the object of the present invention can be achieved, and examples thereof include polyester, polypropylene, and nylon. From the viewpoint of outgas generation, polyester is preferable, and from the viewpoint of recyclability, it is most preferable to use PET as a material for both the core material and the inner packaging material. Further, from the viewpoint of drying the core material during the production of the vacuum heat insulating material, it is preferable to use a material having a melting point of 100 ° C. or higher, particularly about 100 to 300 ° C.
For example, a woven fabric, a knitted fabric and a non-woven fabric made of polyester may be made of the same polyester fiber as described above as a core material.
芯材を収容した内包材を収容する外包材は、ガスバリア性を有し、内部を減圧に維持できるものであれば、どのようなものでも用いることができ、好ましくはヒートシール可能なものである。好適な具体例として、例えば、最外層から、ナイロン、アルミ蒸着PET(ポリエチレンテレフタレート)、アルミ箔、及び最内層として高密度ポリエチレンの4層構造からなるガスバリアフィルム、最外層から、ポリエチレンテレフタレート樹脂、中間層にアルミ箔、最内層に高密度ポリエチレン樹脂からなるガスバリアフィルム、最外層にPET樹脂、中間層にアルミニウム蒸着層を有するエチレン−ビニルアルコール共重合体樹脂、最内層に高密度ポリエチレン樹脂からなるガスバリアフィルム等が挙げられる。 As the outer packaging material that contains the inner packaging material containing the core material, any material can be used as long as it has gas barrier properties and can maintain the inside at a reduced pressure, and is preferably heat-sealable. . Preferable specific examples include, for example, a gas barrier film having a four-layer structure of nylon, aluminum vapor-deposited PET (polyethylene terephthalate), aluminum foil, and high-density polyethylene as the innermost layer, from the outermost layer, polyethylene terephthalate resin, intermediate Gas barrier film consisting of aluminum foil as the layer, high density polyethylene resin as the innermost layer, PET resin as the outermost layer, ethylene-vinyl alcohol copolymer resin having an aluminum vapor deposition layer as the intermediate layer, and gas barrier consisting of high density polyethylene resin as the innermost layer A film etc. are mentioned.
本発明の真空断熱材においては、経時的な断熱性をより向上させる観点から、外包材と内包材との間または内包材の中には、水蒸気もしくは空気の構成ガスのうち少なくとも1種類を吸着するガス吸着剤(ゲッター材)を封入することが好ましい。好ましくは、内包材内部の芯材にガス吸着剤に応じた窪みを形成しておき、当該窪みに直接的にガス吸着剤を配置してもよいし、内包材の上から当該窪みの位置にガス吸着剤を配置してもよい。ガス吸着剤は通気孔を有する硬質容器に収容されたものであってもよいし、または通気性を有する軟質容器(例えば、不織布からなる袋)に収容されたものであってもよい。 In the vacuum heat insulating material of the present invention, from the viewpoint of further improving heat insulation over time, at least one kind of constituent gas of water vapor or air is adsorbed between the outer packaging material and the inner packaging material or in the inner packaging material. It is preferable to enclose a gas adsorbent (getter material). Preferably, a depression corresponding to the gas adsorbent may be formed in the core material inside the inner packaging material, and the gas adsorbent may be arranged directly in the depression, or the position of the depression from above the inner packaging material. A gas adsorbent may be arranged. The gas adsorbent may be contained in a hard container having vent holes, or may be contained in a soft container having air permeability (for example, a bag made of nonwoven fabric).
本発明の真空断熱材の製造方法について好ましい実施形態を以下説明する。
まず、所定形態の芯材を、袋状の通気性内包材に挿入する。このとき芯材とともにガス吸着剤を内包材に挿入してもよい。芯材がシート状の場合は2以上の芯材を重ねて内包材に挿入してもよい。袋状の内包材は開口部を有していればよく、例えば、四角形状の二枚の内包材を重ね合わせ三方を結合したものが挙げられる。結合は内包材の材質に依存し、例えば、熱融着によって達成されてもよいし、または縫い取りによって達成されてもよい。
Preferred embodiments of the method for producing a vacuum heat insulating material of the present invention will be described below.
First, a core material of a predetermined form is inserted into a bag-shaped breathable inner packaging material. At this time, the gas adsorbent may be inserted into the inner packaging material together with the core material. When the core material is in the form of a sheet, two or more core materials may be stacked and inserted into the inner packaging material. The bag-shaped inner packaging material only needs to have an opening, and examples thereof include a material in which two rectangular inner packaging materials are stacked and joined in three directions. Bonding depends on the material of the enveloping material and may be achieved, for example, by heat sealing or by sewing.
次いで、芯材を収容した内包材の開口部を封じる。このとき、プレス機等の治具によって上記した所定の芯材厚みを確保しながら封じることが好ましい。プレスによって真空断熱材の表面平滑性が向上し、例えば冷蔵庫箱体内面への貼り付け時の作業性が向上し、さらに断熱性がより向上する。また、プレスの際には圧力だけでなく、熱も付与することが好ましい。熱と圧力を付与することによって、真空断熱材の表面平滑性がより向上し、優れた断熱性を容易に確保できるためである。特に芯材の繊維集合体としてわた状のものを使用する場合には、プレス時に熱を付与することがより好ましい。プレス時の温度は30〜100℃、特に35〜85℃が適当である。 Next, the opening of the inner packaging material containing the core material is sealed. At this time, it is preferable to seal the above-mentioned predetermined core material thickness with a jig such as a press machine. The surface smoothness of the vacuum heat insulating material is improved by pressing, for example, the workability at the time of attaching to the inner surface of the refrigerator box is improved, and the heat insulating property is further improved. Moreover, it is preferable to apply not only pressure but also heat during pressing. This is because by applying heat and pressure, the surface smoothness of the vacuum heat insulating material is further improved and excellent heat insulating properties can be easily secured. In particular, when a wrinkled fiber assembly is used as the core, it is more preferable to apply heat during pressing. The temperature at the time of pressing is suitably 30 to 100 ° C, particularly 35 to 85 ° C.
内包材開口部の封止は、熱融着によって達成されてもよいし、または縫い取りによって達成されてもよい。 The sealing of the inner packaging material opening may be achieved by heat sealing or may be achieved by sewing.
内包材に芯材を収容させ、開口部を封じた後は、得られた内包材を、三方が熱融着された袋状の外包材に挿入する。このときガス吸着剤を一緒に挿入してもよい。また芯材を収容した内包材を2以上重ね合わせて外包材に挿入してもよい。 After the core material is accommodated in the inner packaging material and the opening is sealed, the obtained inner packaging material is inserted into a bag-shaped outer packaging material that is heat-sealed on three sides. At this time, a gas adsorbent may be inserted together. Two or more inner packaging materials containing the core material may be overlapped and inserted into the outer packaging material.
内包材が収容された外包材は、開口した状態で真空引き装置内に移送され、内圧が0.1〜0.01Torr程度の真空度となるよう減圧排気する。その後、外包材の開口部を熱融着により封止し、真空断熱材が得られる。
真空断熱材には、芯材厚みおよび芯材密度を調整すべく、室温でプレス加工してもよい。
The outer packaging material in which the inner packaging material is accommodated is transferred into the vacuuming device in an open state, and is evacuated so that the internal pressure becomes a vacuum degree of about 0.1 to 0.01 Torr. Then, the opening part of an outer packaging material is sealed by heat sealing, and a vacuum heat insulating material is obtained.
The vacuum heat insulating material may be pressed at room temperature to adjust the core material thickness and core material density.
断熱性のさらなる向上の観点からは、外包材開口部の封止前に、芯材を乾燥させることが好ましい。詳しくは、乾燥は、芯材を収容し開口部が封された内包材を、外包材に挿入する直前に行ってもよいし、または外包材に挿入した後であって、減圧排気する前に、外包材に挿入した状態で行ってもよい。乾燥は芯材に含まれる水分等を除去できれば特に制限されず、例えば、120℃で1時間程度の条件にて行われることが好ましく、特にポリエステル繊維の水分等をより有効に除去するために、120℃において真空乾燥するのが好ましい。さらに、遠赤外線による乾燥を併用してもよい。真空度については、0.5〜0.01Torr程度で乾燥を行うのが好ましい。 From the viewpoint of further improving the heat insulating properties, it is preferable to dry the core material before sealing the outer packaging material opening. Specifically, the drying may be performed immediately before the inner packaging material containing the core material and the opening sealed is inserted into the outer packaging material, or after being inserted into the outer packaging material and before evacuating under reduced pressure. You may carry out in the state inserted in the outer packaging material. Drying is not particularly limited as long as moisture contained in the core material can be removed, for example, preferably performed under conditions of about 1 hour at 120 ° C., in particular, in order to more effectively remove moisture and the like of the polyester fiber, Vacuum drying at 120 ° C. is preferred. Furthermore, you may use together the drying by far infrared rays. About a vacuum degree, it is preferable to dry at about 0.5-0.01 Torr.
通気性を有さない内包材を使用する場合には、芯材を袋状の内包材に挿入した状態で真空引き装置内に入れて、内圧が0.1〜0.01Torr程度の真空度となるよう減圧排気した後、内包材の開口部を熱融着により封止する。好ましくは減圧排気しながら、プレス機等の治具によって上記した所定の芯材厚みを確保する。これによって、内部に芯材を減圧状態で収容した内包材を得ることができる。この場合の袋状の内包材は、開口部を有し、かつ該開口部を減圧状態で封止することによって内部を減圧状態に維持可能であればよく、例えば、四角形状の二枚の内包材を重ね合わせ三方を熱融着したものが挙げられる。この場合の芯材乾燥については、芯材を収容し開口部が未封の内包材を、減圧排気する前に、乾燥に供すればよい。内部に芯材を減圧状態で収容した内包材を得た後は、通気性を有する内包材を使用した場合と同様に、外包材に挿入し、減圧下で外包材開口部を封止すればよい。 When using a non-breathable inner packaging material, the core material is inserted into a bag-shaped inner packaging material and placed in a vacuuming device, and the internal pressure is about 0.1 to 0.01 Torr. After exhausting under reduced pressure, the opening of the inner packaging material is sealed by heat sealing. Preferably, the predetermined core material thickness is secured by a jig such as a press while evacuating under reduced pressure. Thereby, the inner packaging material which accommodated the core material in the pressure reduction state inside can be obtained. The bag-shaped inner packaging material in this case only has to have an opening and can be maintained in a reduced pressure state by sealing the opening in a reduced pressure state. A material in which three materials are stacked and heat-sealed on three sides is mentioned. For the core material drying in this case, the core material and the encapsulating material whose opening is not sealed may be subjected to drying before being evacuated under reduced pressure. After obtaining the inner packaging material in which the core material is housed in a reduced pressure state, the inner packaging material is inserted into the outer packaging material in the same manner as in the case of using a breathable inner packaging material, and the outer packaging material opening is sealed under reduced pressure. Good.
<実施例1>
通気性PET不織布(PET繊維の融点:260℃)を四角形状(250mm×270mm:シール部も含む)に裁断し、二枚の不織布を重ね合わせ、三方を熱融着によって結合し、通気性を有する袋状内包材を作製した。
袋状内包材に、PET繊維(1.5デニール、融点260℃)からなるわた状芯材88gを均一に挿入した。芯材を収容した内包材を、加熱温度40℃でプレスしながら、開口部を熱融着によって封じた。プレス時の芯材厚みは10mmであった。プレスの上型には高さ5mmの凸部形成されており、プレスによってゲッター材用の窪みを形成した。
芯材を収容し、かつ開口部が封じられ内包材を、120℃で60分間乾燥した後、ナイロン、アルミ蒸着PET、アルミ箔、高密度ポリエチレンの4層構造からなるガスバリアフィルム製外包材(250mm×270mm:シール部も含む)に挿入するとともに、外包材中の内包材の上にゲッター材(サエス ゲッターズ社製:COMBO−3)を1個挿入した。その状態で直ちに真空引き装置に入れて、内圧が0.01Torrとなるよう減圧排気を行い、熱融着により密封した。得られた真空断熱材は、芯材部が200mm×200mmの大きさで、厚み10mmであった。得られた真空断熱材の芯材の密度は220kg/m3であった。
<Example 1>
A breathable PET nonwoven fabric (melting point of PET fiber: 260 ° C.) is cut into a square shape (250 mm × 270 mm: including the seal portion), the two nonwoven fabrics are overlapped, and the three sides are bonded together by heat fusion to provide air permeability. A bag-shaped inner packaging material was prepared.
88 g of a wrinkle-shaped core material made of PET fiber (1.5 denier, melting point 260 ° C.) was uniformly inserted into the bag-shaped inner packaging material. While the inner packaging material containing the core material was pressed at a heating temperature of 40 ° C., the opening was sealed by thermal fusion. The core material thickness at the time of pressing was 10 mm. A convex part having a height of 5 mm was formed on the upper die of the press, and a depression for the getter material was formed by the press.
After the core material is accommodated and the opening is sealed, the inner packaging material is dried at 120 ° C. for 60 minutes, and then a gas barrier film outer packaging material (250 mm) made of nylon, aluminum vapor-deposited PET, aluminum foil, and high-density polyethylene. × 270 mm (including the seal portion), and one getter material (SAS Getters: COMBO-3) was inserted on the inner packaging material in the outer packaging material. In this state, it was immediately put into a vacuum evacuation apparatus, and evacuation was performed so that the internal pressure became 0.01 Torr, followed by sealing by heat fusion. The obtained vacuum heat insulating material had a core part size of 200 mm × 200 mm and a thickness of 10 mm. The density of the core material of the obtained vacuum heat insulating material was 220 kg / m 3 .
<実施例2>
実施例1と同様の袋状内包材に、実施例1で使用のわた状PET繊維をすくことにより得られるウェッブからなるシート状芯材88gを挿入した。芯材を収容した内包材を、加熱温度40℃でプレスしながら、開口部を熱融着によって封じた。プレス時の芯材厚みは10mmであった。
芯材を収容し、かつ開口部が封じられ内包材を、ナイロン、アルミ蒸着PET、アルミ箔、高密度ポリエチレンの4層構造からなるガスバリアフィルム製外包材(250mm×270mm)に挿入した状態で、120℃で60分間の乾燥を行った。乾燥後、外包材中の内包材の上にゲッター材(サエス ゲッターズ社製:COMBO−3)を1個挿入した。その状態で直ちに真空引き装置に入れて、内圧が0.01Torrとなるよう減圧排気を行い、熱融着により密封した。得られた真空断熱材は、芯材部が200mm×200mmの大きさで、厚み10mmであった。得られた真空断熱材の芯材の密度は220kg/m3であった。
<Example 2>
88 g of a sheet-like core material made of a web obtained by scouring the cotton-like PET fiber used in Example 1 was inserted into the same bag-like inner packaging material as in Example 1. While the inner packaging material containing the core material was pressed at a heating temperature of 40 ° C., the opening was sealed by thermal fusion. The core material thickness at the time of pressing was 10 mm.
In a state where the core material is accommodated and the opening is sealed, the inner packaging material is inserted into a gas barrier film outer packaging material (250 mm × 270 mm) having a four-layer structure of nylon, aluminum vapor-deposited PET, aluminum foil, and high-density polyethylene. Drying was performed at 120 ° C. for 60 minutes. After drying, one getter material (manufactured by SAES Getters: COMBO-3) was inserted on the inner packaging material in the outer packaging material. In this state, it was immediately put into a vacuum evacuation apparatus, and evacuation was performed so that the internal pressure became 0.01 Torr, and the product was sealed by heat fusion. The obtained vacuum heat insulating material had a core part size of 200 mm × 200 mm and a thickness of 10 mm. The density of the core material of the obtained vacuum heat insulating material was 220 kg / m 3 .
<実施例3>
繊維太さ1.5デニールおよび平均繊維径11μmのPET繊維(融点260℃)をニードルパンチ法によりシート状に加工した。シート目付は550g/m2であった。シート厚みは10mmであった。当該シートを200mm×200mmの大きさに裁断し芯材を得た。
得られた芯材を、実施例1と同様の袋状内包材に挿入した。芯材を収容した内包材の開口部を熱融着によって封じた。
芯材を収容し、かつ開口部が封じられ内包材を、ナイロン、アルミ蒸着PET、アルミ箔、高密度ポリエチレンの4層構造からなるガスバリアフィルム製外包材(250mm×270mm:シール部も含む)に挿入した状態で、120℃で60分間の乾燥を行った。乾燥後、外包材中の内包材の上にゲッター材(サエス ゲッターズ社製:COMBO−3)を1個挿入した。その状態で直ちに真空引き装置に入れて、内圧が0.01Torrとなるよう減圧排気を行い、熱融着により密封した。得られた真空断熱材は、芯材部が200mm×200mmの大きさで厚み10mmであった。得られた真空断熱材の芯材の密度は220kg/m3であった。
<Example 3>
A PET fiber (melting point 260 ° C.) having a fiber thickness of 1.5 denier and an average fiber diameter of 11 μm was processed into a sheet by the needle punch method. The sheet basis weight was 550 g / m 2 . The sheet thickness was 10 mm. The sheet was cut into a size of 200 mm × 200 mm to obtain a core material.
The obtained core material was inserted into the same bag-shaped inner packaging material as in Example 1. The opening of the inner packaging material containing the core material was sealed by heat sealing.
Gas barrier film outer packaging material (250mm x 270mm: including seal part) consisting of four layers of nylon, aluminum vapor-deposited PET, aluminum foil, and high-density polyethylene. In the inserted state, drying was performed at 120 ° C. for 60 minutes. After drying, one getter material (manufactured by SAES Getters: COMBO-3) was inserted on the inner packaging material in the outer packaging material. In this state, it was immediately put into a vacuum evacuation apparatus, and evacuation was performed so that the internal pressure became 0.01 Torr, followed by sealing by heat fusion. The obtained vacuum heat insulating material had a core part size of 200 mm × 200 mm and a thickness of 10 mm. The density of the core material of the obtained vacuum heat insulating material was 220 kg / m 3 .
<実施例4>
袋状内包材に、わた状芯材176gを均一に挿入したこと、プレス時の芯材厚みは20mmであったこと以外、実施例1と同様の方法で真空断熱材を得た。真空断熱材の厚みは約20mmであり、芯材密度は220kg/m3であった。
<Example 4>
A vacuum heat insulating material was obtained in the same manner as in Example 1, except that 176 g of the cotton-like core material was uniformly inserted into the bag-shaped inner packaging material and the core material thickness at the time of pressing was 20 mm. The thickness of the vacuum heat insulating material was about 20 mm, and the core material density was 220 kg / m 3 .
<実施例5>
袋状内包材に、ウェッブを三枚重ねてなるシート状芯材264gを挿入したこと、プレス時の芯材厚みは30mmであったこと以外、実施例2と同様の方法で真空断熱材を得た。真空断熱材の厚みは約30mmであり、芯材密度は220kg/m3であった。
<Example 5>
A vacuum heat insulating material was obtained in the same manner as in Example 2 except that a sheet-like core material 264g formed by stacking three webs was inserted into the bag-like inner material, and the core material thickness at the time of pressing was 30 mm. It was. The thickness of the vacuum heat insulating material was about 30 mm, and the core material density was 220 kg / m 3 .
<実施例6>
実施例3で得られた芯材用シートを三枚重ねて芯材として用いたこと以外、実施例3と同様の方法で真空断熱材を得た。真空断熱材の厚みは約30mmであり、芯材密度は220kg/m3であった。
<比較例1>
わた状PET繊維芯材を120℃で60分間乾燥した後、直接的に外包材(250mm×270mm:シール部も含む)に挿入したこと以外、実施例1と同様の方法で真空断熱材を得た。芯材密度は220kg/m3であった。
<Example 6>
A vacuum heat insulating material was obtained in the same manner as in Example 3 except that three sheets for the core material obtained in Example 3 were used as a core material. The thickness of the vacuum heat insulating material was about 30 mm, and the core material density was 220 kg / m 3 .
<Comparative Example 1>
After drying the cotton-like PET fiber core material at 120 ° C. for 60 minutes, a vacuum heat insulating material was obtained in the same manner as in Example 1 except that it was directly inserted into the outer packaging material (250 mm × 270 mm: including the seal portion). It was. The core material density was 220 kg / m 3 .
<初期断熱性>
初期断熱性の評価は、「Autoλ HC−074」(英弘精機(株)製)を用いて、平均温度20℃の熱伝導率を測定することにより行った。なお、測定は真空引き工程から1日経過後に測定した。
<Initial insulation>
The initial heat insulation was evaluated by measuring the thermal conductivity at an average temperature of 20 ° C. using “Autoλ HC-074” (manufactured by Eihiro Seiki Co., Ltd.). The measurement was made after 1 day from the vacuuming step.
<長期断熱性>
長期断熱性の評価は、初期断熱性を評価した真空断熱材を70℃の恒温槽に入れ、4週間経過後に取り出し、「Autoλ HC−074」(英弘精機(株)製)を用いて、平均温度20℃の熱伝導率を測定することにより行った。
<Long-term insulation>
Evaluation of long-term heat insulation is carried out by putting the vacuum heat insulating material evaluated for initial heat insulation into a constant temperature bath of 70 ° C. and taking it out after 4 weeks, and using “Autoλ HC-074” (manufactured by Eihiro Seiki Co., Ltd.) This was done by measuring the thermal conductivity at a temperature of 20 ° C.
<作業性>
芯材または該芯材を収容した内包材を外包材に挿入するときの作業性を以下の基準に従って評価した。
○;外包材への挿入が簡便である;
×;外包材への挿入が煩雑である。
<Workability>
The workability when inserting the core material or the inner packaging material containing the core material into the outer packaging material was evaluated according to the following criteria.
○: Easy insertion into outer packaging material;
X: The insertion into an outer packaging material is complicated.
<生産効率>
各実施例または比較例において真空断熱材の製造手順を50回繰り返した。得られた50個の真空断熱材のうち、製造後1日経過後において、真空を維持できなかったものの数(x)に基づいて評価した。
○;0〜1個;
×;2個以上。
<Production efficiency>
In each example or comparative example, the manufacturing procedure of the vacuum heat insulating material was repeated 50 times. Evaluation was made based on the number (x) of the 50 vacuum heat insulating materials obtained that could not maintain the vacuum after 1 day from the production.
○: 0 to 1;
X: Two or more.
Claims (6)
The vacuum heat insulating material according to any one of claims 1 to 5, wherein the core material comprises only polyester fibers.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005102028A JP2006283817A (en) | 2005-03-31 | 2005-03-31 | Vacuum insulation |
PCT/JP2005/013255 WO2006009146A1 (en) | 2004-07-20 | 2005-07-19 | Vacuum heat insulation material |
US11/632,911 US7947347B2 (en) | 2004-07-20 | 2005-07-19 | Vacuum heat insulator |
KR1020087031650A KR20090017645A (en) | 2004-07-20 | 2005-07-19 | Vacuum insulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005102028A JP2006283817A (en) | 2005-03-31 | 2005-03-31 | Vacuum insulation |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006283817A true JP2006283817A (en) | 2006-10-19 |
Family
ID=37405958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005102028A Pending JP2006283817A (en) | 2004-07-20 | 2005-03-31 | Vacuum insulation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006283817A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2105648A1 (en) | 2008-03-25 | 2009-09-30 | Mitsubishi Electric Corporation | Vacuum heat insulating material and heat insulating box using the same |
JP2010053979A (en) * | 2008-08-28 | 2010-03-11 | Hitachi Appliances Inc | Vacuum heat insulating material, and heat insulating box and refrigerator using the same |
JP2010053980A (en) * | 2008-08-28 | 2010-03-11 | Hitachi Appliances Inc | Vacuum heat insulation material, heat insulation box using the same and refrigerator |
WO2010073762A1 (en) | 2008-12-26 | 2010-07-01 | 三菱電機株式会社 | Vacuum insulation material, and heat-insulating box, refrigerator, freezing/air-conditioning apparatus, hot-water supply device, and appliance each employing vacuum insulation material, and process for producing vacuum insulation material |
WO2010087039A1 (en) | 2009-01-29 | 2010-08-05 | 三菱電機株式会社 | Vacuum insulation material and insulation box using the same |
WO2010116583A1 (en) | 2009-03-30 | 2010-10-14 | 三菱電機株式会社 | Vacuum heat insulating member, method of manufacturing the same and heat insulating box including the same |
EP2306128A2 (en) | 2009-09-29 | 2011-04-06 | Mitsubishi Electric Corporation | Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator |
WO2011045947A1 (en) | 2009-10-16 | 2011-04-21 | 三菱電機株式会社 | Vacuum heat insulation material and refrigerator |
WO2011045946A1 (en) | 2009-10-16 | 2011-04-21 | 三菱電機株式会社 | Device for manufacturing core of vacuum heat insulation member and method for manufacturing vacuum heat insulation member, as well as vacuum heat insulation member and refrigerator |
WO2011048824A1 (en) | 2009-10-19 | 2011-04-28 | 三菱電機株式会社 | Vacuum heat insulating material, heat insulating box, refrigerator, freezing/air-conditioning device, hot-water supply device, apparatus, and method for manufacturing vacuum heat insulating material |
JP2011153630A (en) * | 2010-01-26 | 2011-08-11 | Hitachi Appliances Inc | Vacuum heat insulating material and refrigerator using the same |
JP2012145166A (en) * | 2011-01-12 | 2012-08-02 | Mitsubishi Electric Corp | Vacuum thermal insulating material, vacuum thermal insulating box, and method for manufacturing the vacuum insulating material |
WO2014103773A1 (en) * | 2012-12-25 | 2014-07-03 | 株式会社 東芝 | Refrigerator, heat insulating box for refrigerator, and method for manufacturing heat insulating box for refrigerator |
JP2014126224A (en) * | 2012-12-25 | 2014-07-07 | Toshiba Corp | Refrigerator |
JP2014142160A (en) * | 2012-12-26 | 2014-08-07 | Toshiba Corp | Refrigerator heat insulation box and method of manufacturing refrigerator heat insulation box |
JP2017524886A (en) * | 2014-06-10 | 2017-08-31 | キョン ドン ウォン コーポレーション | Continuous production method of vacuum insulation |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04225775A (en) * | 1990-12-27 | 1992-08-14 | Sharp Corp | Vacuum heat insulating panel |
JP2001089963A (en) * | 1999-09-21 | 2001-04-03 | Asahi Kasei Corp | High strength non-woven fabric |
JP2002188791A (en) * | 2000-12-21 | 2002-07-05 | Matsushita Refrig Co Ltd | Vacuum heat insulating material, vacuum heat insulator, disposal method of heat insulating box, method of manufacturing vacuum heat insulating material and vacuum heat insulator, and refrigerator |
JP2002333092A (en) * | 2001-05-09 | 2002-11-22 | Kanegafuchi Chem Ind Co Ltd | Fiber and fine particle composite heat-insulating material |
JP2002339217A (en) * | 2001-05-09 | 2002-11-27 | Kanebo Ltd | Heat insulating material |
JP2003292597A (en) * | 2002-03-29 | 2003-10-15 | Toray Ind Inc | Polyethylene terephthalate for nonwoven fabric |
JP2003293256A (en) * | 2002-03-29 | 2003-10-15 | Sanyo Electric Co Ltd | Method of producing core material for vacuum heat insulation material |
JP2004036749A (en) * | 2002-07-03 | 2004-02-05 | Matsushita Refrig Co Ltd | Vacuum insulating material and equipment using vacuum insulating material |
JP3528846B1 (en) * | 2003-02-12 | 2004-05-24 | 松下電器産業株式会社 | Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using the vacuum insulation material |
-
2005
- 2005-03-31 JP JP2005102028A patent/JP2006283817A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04225775A (en) * | 1990-12-27 | 1992-08-14 | Sharp Corp | Vacuum heat insulating panel |
JP2001089963A (en) * | 1999-09-21 | 2001-04-03 | Asahi Kasei Corp | High strength non-woven fabric |
JP2002188791A (en) * | 2000-12-21 | 2002-07-05 | Matsushita Refrig Co Ltd | Vacuum heat insulating material, vacuum heat insulator, disposal method of heat insulating box, method of manufacturing vacuum heat insulating material and vacuum heat insulator, and refrigerator |
JP2002333092A (en) * | 2001-05-09 | 2002-11-22 | Kanegafuchi Chem Ind Co Ltd | Fiber and fine particle composite heat-insulating material |
JP2002339217A (en) * | 2001-05-09 | 2002-11-27 | Kanebo Ltd | Heat insulating material |
JP2003292597A (en) * | 2002-03-29 | 2003-10-15 | Toray Ind Inc | Polyethylene terephthalate for nonwoven fabric |
JP2003293256A (en) * | 2002-03-29 | 2003-10-15 | Sanyo Electric Co Ltd | Method of producing core material for vacuum heat insulation material |
JP2004036749A (en) * | 2002-07-03 | 2004-02-05 | Matsushita Refrig Co Ltd | Vacuum insulating material and equipment using vacuum insulating material |
JP3528846B1 (en) * | 2003-02-12 | 2004-05-24 | 松下電器産業株式会社 | Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using the vacuum insulation material |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2105648A1 (en) | 2008-03-25 | 2009-09-30 | Mitsubishi Electric Corporation | Vacuum heat insulating material and heat insulating box using the same |
JP2010053979A (en) * | 2008-08-28 | 2010-03-11 | Hitachi Appliances Inc | Vacuum heat insulating material, and heat insulating box and refrigerator using the same |
JP2010053980A (en) * | 2008-08-28 | 2010-03-11 | Hitachi Appliances Inc | Vacuum heat insulation material, heat insulation box using the same and refrigerator |
US9074716B2 (en) | 2008-12-26 | 2015-07-07 | Mitsubishi Electric Corporation | Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material |
WO2010073762A1 (en) | 2008-12-26 | 2010-07-01 | 三菱電機株式会社 | Vacuum insulation material, and heat-insulating box, refrigerator, freezing/air-conditioning apparatus, hot-water supply device, and appliance each employing vacuum insulation material, and process for producing vacuum insulation material |
US9074717B2 (en) | 2008-12-26 | 2015-07-07 | Mitsubishi Electric Corporation | Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material |
EP2538125A2 (en) | 2008-12-26 | 2012-12-26 | Mitsubishi Electric Corporation | Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material |
EP2538124A2 (en) | 2008-12-26 | 2012-12-26 | Mitsubishi Electric Corporation | Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material |
EP2500617A1 (en) | 2008-12-26 | 2012-09-19 | Mitsubishi Electric Corporation | Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating /air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material |
WO2010087039A1 (en) | 2009-01-29 | 2010-08-05 | 三菱電機株式会社 | Vacuum insulation material and insulation box using the same |
US8617684B2 (en) | 2009-01-29 | 2013-12-31 | Mitsubishi Electric Corporation | Vacuum thermal insulating material and thermal insulating box including the same |
WO2010116583A1 (en) | 2009-03-30 | 2010-10-14 | 三菱電機株式会社 | Vacuum heat insulating member, method of manufacturing the same and heat insulating box including the same |
US8211523B2 (en) | 2009-03-30 | 2012-07-03 | Mitsubishi Electric Corporation | Vacuum thermal insulating material and method of manufacturing the same, and thermal insulating box having the vacuum thermal insulating material |
EP2636936A1 (en) | 2009-03-30 | 2013-09-11 | Mitsubishi Electric Corporation | Vacuum thermal insulating material and thermal insulating box having the vacuum thermal insulating material |
EP2306128A2 (en) | 2009-09-29 | 2011-04-06 | Mitsubishi Electric Corporation | Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator |
WO2011045947A1 (en) | 2009-10-16 | 2011-04-21 | 三菱電機株式会社 | Vacuum heat insulation material and refrigerator |
US8920899B2 (en) | 2009-10-16 | 2014-12-30 | Mitsubishi Electric Corporation | Vacuum heat insulating material and refrigerator |
US20120201997A1 (en) | 2009-10-16 | 2012-08-09 | Mitsubishi Electric Corporation | Vacuum heat insulating material and refrigerator |
WO2011045946A1 (en) | 2009-10-16 | 2011-04-21 | 三菱電機株式会社 | Device for manufacturing core of vacuum heat insulation member and method for manufacturing vacuum heat insulation member, as well as vacuum heat insulation member and refrigerator |
US9068683B2 (en) | 2009-10-16 | 2015-06-30 | Mitsubishi Electric Corporation | Manufacturing apparatus of core material of vacuum heat insulating material, manufacturing method of vacuum heat insulating material, vacuum heat insulating material, and refrigerator |
US9103482B2 (en) | 2009-10-19 | 2015-08-11 | Mitsubishi Electric Corporation | Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material |
JP5362024B2 (en) * | 2009-10-19 | 2013-12-11 | 三菱電機株式会社 | Vacuum heat insulating material, heat insulating box, refrigerator, refrigeration / air conditioning device, hot water supply device and equipment, and method for manufacturing vacuum heat insulating material |
WO2011048824A1 (en) | 2009-10-19 | 2011-04-28 | 三菱電機株式会社 | Vacuum heat insulating material, heat insulating box, refrigerator, freezing/air-conditioning device, hot-water supply device, apparatus, and method for manufacturing vacuum heat insulating material |
JP2011153630A (en) * | 2010-01-26 | 2011-08-11 | Hitachi Appliances Inc | Vacuum heat insulating material and refrigerator using the same |
JP2012145166A (en) * | 2011-01-12 | 2012-08-02 | Mitsubishi Electric Corp | Vacuum thermal insulating material, vacuum thermal insulating box, and method for manufacturing the vacuum insulating material |
JP2014126224A (en) * | 2012-12-25 | 2014-07-07 | Toshiba Corp | Refrigerator |
WO2014103773A1 (en) * | 2012-12-25 | 2014-07-03 | 株式会社 東芝 | Refrigerator, heat insulating box for refrigerator, and method for manufacturing heat insulating box for refrigerator |
TWI570373B (en) * | 2012-12-25 | 2017-02-11 | 東芝生活電器股份有限公司 | Heat insulation box of refrigerator and refrigerator, and manufacturing method of refrigerator heat insulation box |
JP2014142160A (en) * | 2012-12-26 | 2014-08-07 | Toshiba Corp | Refrigerator heat insulation box and method of manufacturing refrigerator heat insulation box |
JP2017524886A (en) * | 2014-06-10 | 2017-08-31 | キョン ドン ウォン コーポレーション | Continuous production method of vacuum insulation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006029505A (en) | Vacuum insulation | |
KR20090017645A (en) | Vacuum insulation | |
JP2006283817A (en) | Vacuum insulation | |
CN101660648B (en) | Vacuum heat insulation material, heat insulation box body using the same, and refrigerator | |
KR100540522B1 (en) | Vacuum Insulation and Devices Using it | |
KR101417249B1 (en) | Material for vacuum insulation pannel and method for fabricating the same | |
JP4012903B2 (en) | Vacuum insulation | |
JP2010060048A (en) | Vacuum heat insulating core material, vacuum heat insulating material using the same, and method of manufacturing the vacuum heat insulating core maerial | |
JP2015530340A (en) | Manufacturing method and molding machine of low density inorganic powder heat insulating material using expanded perlite | |
JP2008286282A (en) | Vacuum heat insulation material | |
JP5111331B2 (en) | Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material | |
JP2006183810A (en) | Manufacturing method of vacuum insulation | |
JP2007239764A (en) | Method of using vacuum heat insulating material and vacuum heat insulating material | |
JP5033595B2 (en) | Vacuum insulation | |
JP2009228886A (en) | Vacuum heat insulating material and heat insulating box using the same | |
JP2006162076A (en) | Vacuum insulation | |
JP5591612B2 (en) | Vacuum insulation core material and vacuum insulation material using the core material | |
KR100965971B1 (en) | Vacuum insulation | |
WO2010116720A1 (en) | Vacuum insulation material and device provided with same | |
JP4997198B2 (en) | Vacuum heat insulating material, heat insulating box using the same, and refrigerator | |
JP2006057213A (en) | Vacuum insulation core material and vacuum insulation material using the core material | |
JP2013036595A (en) | Vacuum heat insulating material | |
JP3171480U (en) | Vacuum insulation | |
JP2008232374A (en) | Vacuum insulation | |
JP2006153150A (en) | Vacuum insulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20080131 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101116 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110531 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110727 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111101 |