[go: up one dir, main page]

JP2006283713A - Lift/drag combined type vertical shaft windmill - Google Patents

Lift/drag combined type vertical shaft windmill Download PDF

Info

Publication number
JP2006283713A
JP2006283713A JP2005107087A JP2005107087A JP2006283713A JP 2006283713 A JP2006283713 A JP 2006283713A JP 2005107087 A JP2005107087 A JP 2005107087A JP 2005107087 A JP2005107087 A JP 2005107087A JP 2006283713 A JP2006283713 A JP 2006283713A
Authority
JP
Japan
Prior art keywords
lift
blade
support shaft
blades
drag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005107087A
Other languages
Japanese (ja)
Other versions
JP4727277B2 (en
Inventor
Tatsuhiro Namikawa
達浩 南川
Jiro Tsukahara
次郎 塚原
Yasunobu Kishigami
泰庸 岸上
Takashi Mesaki
高志 目崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inaba Electric Work Co Ltd
Daiwa House Industry Co Ltd
Inaba Denki Sangyo Co Ltd
Original Assignee
Inaba Electric Work Co Ltd
Daiwa House Industry Co Ltd
Inaba Denki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inaba Electric Work Co Ltd, Daiwa House Industry Co Ltd, Inaba Denki Seisakusho KK filed Critical Inaba Electric Work Co Ltd
Priority to JP2005107087A priority Critical patent/JP4727277B2/en
Publication of JP2006283713A publication Critical patent/JP2006283713A/en
Application granted granted Critical
Publication of JP4727277B2 publication Critical patent/JP4727277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lift/drag combined type vertical shaft windmill materializing further improvement of startability and further improvement of windmill performance at low wind velocity. <P>SOLUTION: A half cylinder shape blade 5 is provided to make air received by a wind receiving concave surface 6 flow relatively concentratedly in a space with a shaft 2 rather than a space with an aerofoil shape blade 3. Also, the half cylinder shape blade 5 is provided to make air received by a wind relieving convex surface 7 flow relatively concentratedly in the space with an aerofoil shape lift blade 3 rather than the space with a shaft 2 rather. Air made flow through the space with the aerofoil shape lift blade 3 acts on the aerofoil shape lift blade 3 to enhance rotary force by lift of the aerofoil shape lift blade 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えばジャイロミルなどの翼形揚力羽根とサボニウスなどの抗力羽根との両方を垂直軸風車の羽根として備えた、揚力・抗力複合型垂直軸風車に関する。   The present invention relates to a combined lift and drag type vertical axis wind turbine provided with both a blade-type lift blade such as a gyromill and a drag blade such as Savonius as a blade of the vertical axis wind turbine.

揚力型垂直軸風車の一つとして知られている例えばジャイロミル風車は、高風速域において、風速を越える回転数で回転することができるという利点を有し、風力発電用風車などとして好適に用いることができるが、その一方で、起動性が悪く、低風速時の風車性能もあまり良いとはいえないという問題がある。   For example, a gyromill wind turbine known as one of the lift type vertical axis wind turbines has an advantage that it can rotate at a rotational speed exceeding the wind speed in a high wind speed region, and is suitably used as a wind turbine for wind power generation. However, on the other hand, there is a problem that the startability is poor and the wind turbine performance at low wind speed is not so good.

この問題点を解決する策の一つとして、ジャイロミル風車に、抗力型垂直軸風車として知られているサボニウス風車の半円筒羽根を組み合わせ、該半円筒羽根を、支軸と翼形揚力羽根との間に配置し、翼形揚力羽根と半円筒羽根とが一体回転するように備えさせて、揚力・抗力複合型垂直軸風車にすることが考えられる。   One solution to this problem is to combine a gyromill wind turbine with a half-cylinder blade of a Savonius wind turbine known as a drag-type vertical axis wind turbine. It is conceivable to provide a vertical axis wind turbine with a combined lift and drag force by arranging the airfoil lift blades and the semi-cylindrical blades so as to rotate together.

この複合型垂直軸風車によれば、半円筒羽根がジャイロミルの起動性と低風速時の風車性能を補い、起動性を向上させ、低風速時の風車性能を改善することができる。
意匠登録第1217722号
According to this combined vertical axis wind turbine, the semi-cylindrical blades supplement the gyro mill startability and the wind turbine performance at a low wind speed, improve the start performance, and improve the wind turbine performance at a low wind speed.
Design registration No. 1217722

しかしながら、発明者らは、更なる緻密な調査と研究を進めていくうち、この揚力・抗力複合型垂直軸風車では、半円筒羽根の風受け凹面が風の方向に対して正対するように備えられているため、風受け凹面において空気のよどみを生じ、このよどみによって半円筒羽根が空気を効率良く受けることができず、それが起動性の更なる向上と低風速での更なる風車性能改善の妨げの一つになっていることを突き止めた。   However, as the inventors proceeded with further detailed investigation and research, in this combined lift / drag vertical axis wind turbine, the semi-cylindrical blade windshield concave surface is prepared to face the wind direction. As a result, air stagnation occurs on the concave surface of the wind receiving, and this stagnation prevents the semi-cylindrical blades from receiving air efficiently, which further improves startability and further improves wind turbine performance at low wind speeds. I found out that it was one of the obstacles.

また、半円筒羽根の風逃がし凸面も風の方向に対して正対するように備えられているため、風逃がし凸面の受けた空気によって、裏面側の風受け凹面の側に大きな負圧域を生じ、この負圧域によって抵抗が大きくなり、そのことも、起動性の更なる向上と低風速での更なる風車性能改善の妨げの一つなっていることを突き止めた。   In addition, since the air escape convex surface of the semi-cylindrical blades is provided so as to face the wind direction, the air received by the air escape convex surface generates a large negative pressure area on the wind receiving concave side on the back surface side. This negative pressure region increased the resistance, which was one of the obstacles to further improving the startability and further improving the wind turbine performance at low wind speeds.

本発明は、上記のような調査と研究に基づいてなされたもので、起動性の更なる向上と低風速での更なる風車性能改善を実現することができる揚力・抗力複合型垂直軸風車を提供することを課題とする。   The present invention has been made based on the above investigations and researches, and is a combined lift and drag type vertical axis wind turbine capable of further improving startability and further improving wind turbine performance at a low wind speed. The issue is to provide.

上記の課題は、複数の翼形揚力羽根が支軸回りに周方向に間隔的に配置される共に、複数の抗力羽根が支軸回りに周方向に間隔的に配置され、これら羽根が一体回転するようになされており、かつ、
前記抗力羽根は、風受け凹面で受けた空気を、支軸側と反支軸側のいずれか一方に相対的に集中させて流すように備えられていることを特徴とする、揚力・抗力複合型垂直軸風車によって解決される(第1発明)。
The above problem is that a plurality of airfoil lift blades are arranged circumferentially around the support shaft, and a plurality of drag blades are arranged circumferentially around the support shaft, and these blades rotate together. And is designed to
The drag blade is provided to cause the air received by the wind receiving concave surface to flow while being concentrated relatively on either the support shaft side or the counter-support shaft side. This is solved by a type vertical axis wind turbine (first invention).

この複合型風車では、抗力羽根が、風受け凹面で受けた空気を、支軸側と反支軸側のいずれか一方に相対的に集中させて流すように備えられているので、風受け凹面における空気のよどみが減少し、半円筒羽根が空気を効率良く受けるようになり、起動性の更なる向上と低風速での更なる風車性能改善を実現することができる。   In this combined type windmill, the drag blades are provided so as to cause the air received by the wind receiving concave surface to flow in a concentrated manner on either the support shaft side or the anti-support shaft side. The stagnation of the air in the cylinder is reduced, and the semi-cylindrical blades receive the air efficiently, so that the startability can be further improved and the wind turbine performance can be further improved at a low wind speed.

また、上記の課題は、複数の翼形揚力羽根が支軸回りに周方向に間隔的に配置される共に、複数の抗力羽根が支軸回りに周方向に間隔的に配置され、これら羽根が一体回転するようになされており、かつ、
前記抗力羽根は、風逃がし凸面で受けた空気を、支軸側と反支軸側のいずれか一方に相対的に集中させて流すように備えられていることを特徴とする、揚力・抗力複合型垂直軸風車によって解決される(第2発明)。
In addition, the above-described problem is that a plurality of airfoil lift blades are circumferentially arranged around the support shaft, and a plurality of drag blades are arranged circumferentially around the support shaft. It is designed to rotate as a unit, and
The drag blade is equipped with a lift / drag combination, characterized in that the air received by the wind escape convex surface is flowed in such a way as to be relatively concentrated on either the support shaft side or the counter support shaft side. This is solved by a type vertical axis wind turbine (second invention).

この複合型風車では、抗力羽根が、風逃がし凸面で受けた空気を、支軸側と反支軸側のいずれか一方に相対的に集中させて流すように備えられているので、風逃がし凸面の受けた空気によって裏面側の風受け凹面の側に生じる負圧域を小さくすることができ、そのため、抵抗を小さくすることができて、起動性の更なる向上と低風速での更なる風車性能改善を実現することができる。   In this combined type windmill, the drag blades are provided so that the air received by the wind escape convex surface is concentrated and flowed on either the support shaft side or the counter support shaft side. The negative pressure region generated on the back side of the wind receiving concave surface by the air received can be reduced, so that the resistance can be reduced, further improving the startability and further wind turbine at a low wind speed Performance improvement can be realized.

また、この第2発明の複合型風車において、前記抗力羽根が、支軸と各翼形揚力羽根との間に配置され、風逃がし凸面で受けた空気を、支軸との間よりも翼形揚力羽根との間に相対的に集中させて流すように備えられ、かつ、
翼形揚力羽根との間を通じて流される前記空気が、翼形揚力羽根に作用し、翼形揚力羽根の揚力による回転力を大きくするようになされているとよい。
Further, in the composite wind turbine according to the second aspect of the present invention, the drag blade is disposed between the support shaft and each airfoil lift blade, and the air received by the wind escape convex surface is more airfoil than between the support shaft. Provided to flow relatively concentrated between the lift blades, and
The air flowing between the airfoil lift blades may act on the airfoil lift blades to increase the rotational force due to the lift of the airfoil lift blades.

この場合は、抗力羽根が風逃がし凸面で受けた空気を支軸側と反支軸側のいずれか一方に相対的に集中させて流すこととの組み合わせにおいて、抗力羽根を支軸と各翼形揚力羽根との間に配置すること、及び、風逃がし凸面で受けた空気を、支軸との間よりも翼形揚力羽根との間に相対的に集中させて流すようにすることを構成要件として採用したものであるから、上記のように負圧域を小さくして抵抗を小さくすることができることに加え、翼形揚力羽根との間を通じて流される空気を翼形揚力羽根に作用させ、翼形揚力羽根の揚力による回転力を大きくすることができ、起動性の向上と低風速での風車性能改善をより一層効果的に実現することができる。   In this case, in the combination of the airflow received by the drag blades on the convex surface and the airflow being relatively concentrated on either the support shaft side or the counter-support shaft side, It is arranged between the lift blades and the air received by the wind escape convex surface is made to flow relatively concentrated between the airfoil lift blades rather than between the support shafts. As described above, in addition to being able to reduce the resistance by reducing the negative pressure region as described above, the air flowing between the airfoil lift blades acts on the airfoil lift blades, and the airfoil The rotational force generated by the lifting force of the shaped lifting blade can be increased, and the startability can be improved and the wind turbine performance can be improved more effectively at a low wind speed.

上記の各発明において、抗力羽根が支軸方向に延びる半円筒状羽根からなる場合は、例えば、パドル型などの半球形の抗力羽根の場合に比べて、起動性の向上と低風速での風車性能改善を効果的に実現することができる。   In each of the above-described inventions, when the drag blades are formed of semi-cylindrical blades extending in the support shaft direction, for example, compared to the case of a hemispherical drag blade such as a paddle type, the wind turbine is improved in startability and at a low wind speed. The performance improvement can be effectively realized.

本発明の揚力・抗力複合型垂直軸風車は、以上のとおりのものであるから、起動性の更なる向上と低風速での更なる風車性能改善を実現することができる。   Since the lift / drag combined vertical axis wind turbine of the present invention is as described above, it is possible to further improve the startability and further improve the wind turbine performance at a low wind speed.

次に、本発明の実施最良形態を図面に基づいて説明する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings.

図1に示す実施形態の揚力・抗力複合型垂直軸風車1は、複合風力発電用として用いられるもので、図1及び図2に示すように、支軸2回りに、支軸2から半径線方向外方に離れるようにして、2つの翼形揚力羽根3が周方向に間隔的に配置され、各翼形揚力羽根3…は、高さ方向の中間部2箇所において、支軸2に対してアーム4…で連結されている。   1 is used for combined wind power generation, and as shown in FIGS. 1 and 2, a radial line extends from the support shaft 2 around the support shaft 2. As shown in FIG. Two airfoil lift blades 3 are spaced apart in the circumferential direction so as to be separated outward in the direction, and each airfoil lift blade 3... Are connected by arms 4.

また、支軸2と各翼形揚力羽根3…との間に、抗力羽根としての半円筒状羽根5…が、支軸2、翼形揚力羽根3の両方との間に間隔をおくようにして配置され、各半円筒状羽根5は、上下の端部を上下のアーム4,4に連結されて備えられ、これら半円筒状羽根5…と、翼形揚力羽根3…とは、それらの相対位置関係及び相対的な向き関係を一定にして、支軸2の軸線回りで、一体回転するようになされて、ジャイロミルとサボニウスの複合による揚力・抗力複合型垂直軸風車1を構成している。   Further, a semi-cylindrical blade 5 as a drag blade is spaced between both the support shaft 2 and the airfoil lift blade 3 between the support shaft 2 and each airfoil lift blade 3. Each semi-cylindrical blade 5 is provided with upper and lower ends connected to upper and lower arms 4 and 4, and these semi-cylindrical blades 5 ... and airfoil lift blades 3 ... The relative position relationship and the relative orientation relationship are made constant, and it is designed to rotate integrally around the axis of the support shaft 2 to constitute a combined lift / drag vertical axis wind turbine 1 by a combination of a gyro mill and a Savonius. Yes.

そして、半円筒状羽根5は、図3(イ)に示すように、風受け凹面6で受けた空気を、翼形揚力羽根3との間よりも支軸2との間に相対的に集中させて流すように備えられている。また、半円筒状羽根5は、図3(ロ)に示すように、風逃がし凸面7で受けた空気を、支軸2との間よりも翼形揚力羽根3との間に相対的に集中させて流すように備えられ、かつ、本実施形態では、翼形揚力羽根3との間を通じて流される空気が、翼形揚力羽根3に作用し、翼形揚力羽根3の揚力による回転力を大きくするようになされている。   The semi-cylindrical blade 5 concentrates the air received by the wind receiving concave surface 6 relatively to the support shaft 2 rather than to the airfoil lift blade 3 as shown in FIG. It is prepared to let it flow. Further, as shown in FIG. 3B, the semicylindrical blade 5 concentrates the air received by the wind escape convex surface 7 relatively between the airfoil lift blade 3 and the airfoil lift blade 3. In the present embodiment, the air flowing between the airfoil lift blades 3 acts on the airfoil lift blades 3 and increases the rotational force due to the lift of the airfoil lift blades 3. It is made to do.

具体的には、半円筒状羽根5が図1に示すような形態のものなどからなっている場合には、円弧方向における反支軸側の端部が、風車の回転方向と反対方向に後退し、その後退の大きさが、支軸2と翼形揚力羽根3とを結ぶ線に対する傾斜角度θでみた場合に、該θが例えば25〜35°の範囲となるように設定すれば、上記のような空気の流れを効果的に形成することができる。   Specifically, when the semi-cylindrical blade 5 has a shape as shown in FIG. 1, the end on the side opposite to the support shaft in the arc direction moves backward in the direction opposite to the rotation direction of the windmill. Then, when the magnitude of the retreat is set at a tilt angle θ with respect to a line connecting the support shaft 2 and the airfoil lift blade 3, if the θ is set in a range of 25 to 35 °, for example, The air flow can be effectively formed.

上記の複合型風車1では、半円筒状羽根5が、図3(イ)に示すように、風受け凹面6で受けた空気を、翼形揚力羽根3との間よりも支軸2との間に相対的に集中させて流すように備えられているので、風受け凹面6における空気のよどみ8が減少し、半円筒状羽根5が空気を効率良く受けるようになって、起動性の更なる向上と低風速での更なる風車性能改善を実現することができる。   In the composite wind turbine 1 described above, the semi-cylindrical blade 5 receives the air received by the wind receiving concave surface 6 from the support shaft 2 rather than between the airfoil lift blades 3 as shown in FIG. Since it is provided so as to flow in a relatively concentrated manner, air stagnation 8 on the wind receiving concave surface 6 is reduced, and the semi-cylindrical blade 5 receives air efficiently, thereby further improving the startability. Improvement and further improvement of wind turbine performance at low wind speed can be realized.

しかも、同半円筒状羽根5は、図3(ロ)に示すように、風逃がし凸面7で受けた空気を、支軸2との間よりも翼形揚力羽根3との間に相対的に集中させて流すように備えられているので、風逃がし凸面7の受けた空気によって裏面側の風受け凹面6の側に生じる負圧域9を小さくすることができ、そのため、受ける抵抗を小さくすることができて、起動性の向上と低風速での風車性能改善をより一層効果的に実現することができる。   Moreover, as shown in FIG. 3B, the semicylindrical blade 5 receives air received by the wind escape convex surface 7 relatively to the airfoil lift blade 3 rather than to the support shaft 2. Since it is provided so as to flow in a concentrated manner, the negative pressure region 9 generated on the side of the wind receiving concave surface 6 on the back surface side by the air received by the wind escape convex surface 7 can be reduced, so that the resistance received is reduced. Therefore, it is possible to more effectively realize an improvement in startability and an improvement in wind turbine performance at a low wind speed.

加えて、同半円筒状羽根5が、図3(ロ)に示すように、風逃がし凸面7で受けた空気を、支軸2との間よりも翼形揚力羽根3との間に相対的に集中させて流すように備えられていることとの組み合わせにおいて、翼形揚力羽根3との間を通じて流される空気が翼形揚力羽根3に作用し、翼形揚力羽根3の揚力による回転力を大きくするようになされているので、翼形揚力羽根3に風で受けて生じる揚力による回転力のほか、それに加えて半円筒状羽根5の作用によって生じさせられる揚力による回転力も加えられて、起動性の向上と低風速での風車性能改善を更に一層効果的に実現することができる。   In addition, as shown in FIG. 3B, the semi-cylindrical blade 5 receives the air received by the wind escape convex surface 7 relative to the airfoil lift blade 3 rather than the support shaft 2. In combination with being provided to concentrate and flow, air flowing between the airfoil lift blades 3 acts on the airfoil lift blades 3 and the rotational force due to the lift of the airfoil lift blades 3 is reduced. Since it is designed to be large, in addition to the rotational force caused by the lift generated by the wind on the airfoil lift blade 3, the rotational force caused by the lift generated by the action of the semi-cylindrical blade 5 is also applied to start the operation. Improvement of wind power and improvement of wind turbine performance at a low wind speed can be realized even more effectively.

以上に、本発明の実施形態を示したが、本発明はこれに限られるものではなく、発明思想を逸脱しない範囲で各種の変更が可能である。例えば、上記の実施形態では、風受け凹面6で受けた空気を、翼形揚力羽根3との間よりも支軸2との間に相対的に集中させて流し、また、風逃がし凸面7で受けた空気を、支軸2との間よりも翼形揚力羽根3との間に相対的に集中させて流すようにするための具体的手段として、半円筒状羽根5の円弧方向における反支軸側の端部を、風車の回転方向と反対方向に後退させ、その後退の大きさを、支軸2と翼形揚力羽根3とを結ぶ線に対する傾斜角度θでみた場合に、該θが例えば25〜35°の範囲となるように設定した場合を示した。しかし、それに限らず、半円筒状羽根の円弧状形状の形態を眉毛形などにしたり、あるいは、同羽根の肉厚寸法を円弧の方向において異ならせることなどによって、上記のような傾斜角度をつけることなく、あるいは、つけて、上記のような空気の流れを形成するようにしてもよい。   Although the embodiment of the present invention has been described above, the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention. For example, in the above-described embodiment, the air received by the wind receiving concave surface 6 is caused to flow relatively concentrated between the air bearing lift surface 3 and the support shaft 2 rather than between the airfoil lift blades 3, and the wind escape convex surface 7. As a specific means for allowing the received air to flow relatively concentrated between the airfoil lift blades 3 rather than between the support shafts 2, the semi-cylindrical blades 5 are counter-supported in the arc direction. When the shaft end is retracted in the direction opposite to the rotational direction of the windmill, and the magnitude of the retract is viewed as an inclination angle θ with respect to a line connecting the support shaft 2 and the airfoil lift blade 3, the θ is For example, the case where it set so that it might become the range of 25-35 degrees was shown. However, the present invention is not limited thereto, and the arcuate shape of the semicylindrical blade is changed to an eyebrow shape, or the thickness of the blade is made different in the direction of the arc so that the inclination angle as described above is given. Without or in addition, the air flow as described above may be formed.

また、上記の実施形態では、翼形揚力羽根3と半円筒状羽根5とが2つづつ備えられている場合を示したが、3以上づつ備えられていてもよい。また、第1発明、第2発明では、半円筒状羽根が、風受け凹面で受けた空気を、支軸との間よりも翼形揚力羽根との間に相対的に集中させて流すように備えられていてもよいし、また、風逃がし凸面で受けた空気を、翼形揚力羽根との間よりも支軸との間に相対的に集中させて流すように備えられていてもよい。   In the above-described embodiment, two airfoil lift blades 3 and two semi-cylindrical blades 5 are provided. However, three or more airfoil lift blades 3 may be provided. In the first and second inventions, the semi-cylindrical blades cause the air received by the wind receiving concave surface to flow relatively concentrated between the airfoil lift blades rather than between the support shafts. It may be provided, or it may be provided so that the air received by the wind escape convex surface is relatively concentrated between the airfoil lift blades and the support shaft.

また、上記の実施形態では、半円筒状羽根5が、支軸2と翼形揚力羽根3との間に配置されている場合を示したが、第1発明、第2発明では、半円筒状羽根は、翼形揚力羽根を挟んで支軸とは反対の側に備えられていてもよいし、また、翼形揚力羽根の上側あるいは下側、あるいは上下両側に備えられていてもよいし、また、支軸回りにおける半円筒状羽根の数を翼形揚力羽根よりも多くしたり、少なくしたり、同じにしたりして、半円筒状羽根と翼形揚力羽根との支軸回りでの配置関係における位相を支軸回りで異ならせるようにするのもよい。   In the above embodiment, the case where the semi-cylindrical blade 5 is disposed between the support shaft 2 and the airfoil lift blade 3 has been described. However, in the first and second inventions, the semi-cylindrical blade is used. The blades may be provided on the side opposite to the support shaft across the airfoil lift blades, or may be provided on the upper or lower side of the airfoil lift blades, or on both upper and lower sides, In addition, the number of semi-cylindrical blades around the support shaft can be increased, decreased, or the same as that of the airfoil lift blades. It is also possible to vary the phase in the relationship around the support shaft.

更に、上記の実施形態では、抗力羽根として半円筒状羽根5を用いた場合を示したが、パドル風車に用いられる半球羽根など各種抗力羽根であってよいし、翼形揚力羽根3についても、ジャイロミル風車に用いられる翼形揚力羽根に限らず、各種翼形揚力羽根が用いられてよい。また、本発明の揚力・抗力複合型垂直軸風車は、発電以外の用途に用いられてももちろんよい。   Furthermore, in the above embodiment, the case where the semi-cylindrical blade 5 is used as the drag blade is shown. However, various drag blades such as a hemispheric blade used in a paddle windmill may be used, and the airfoil lift blade 3 is also used. Not only the airfoil lift blades used in the gyromill wind turbine but also various airfoil lift blades may be used. The combined lift / drag vertical axis wind turbine of the present invention may of course be used for applications other than power generation.

実施形態の揚力・抗力複合型垂直軸風車を示す概略平面図である。It is a schematic plan view showing a combined lift and drag type vertical axis wind turbine of the embodiment. 同複合型風車の斜視図である。It is a perspective view of the composite type windmill. 図(イ)及び図(ロ)はそれぞれ、同複合型風車の作動状態を示す部分平面図である。FIGS. 1A and 1B are partial plan views showing the operating state of the combined wind turbine.

符号の説明Explanation of symbols

1…抗力複合型垂直軸風車
2…支軸
3…翼形揚力羽根
5…半円筒状羽根
6…風受け凹面
7…風逃がし凸面
DESCRIPTION OF SYMBOLS 1 ... Drag compound type vertical axis windmill 2 ... Support shaft 3 ... Wing-shaped lift blade 5 ... Semi-cylindrical blade 6 ... Wind receiving concave surface 7 ... Wind escape convex surface

Claims (4)

複数の翼形揚力羽根が支軸回りに周方向に間隔的に配置される共に、複数の抗力羽根が支軸回りに周方向に間隔的に配置され、これら羽根が一体回転するようになされており、かつ、
前記抗力羽根は、風受け凹面で受けた空気を、支軸側と反支軸側のいずれか一方に相対的に集中させて流すように備えられていることを特徴とする、揚力・抗力複合型垂直軸風車。
A plurality of airfoil lift blades are arranged circumferentially around the support shaft, and a plurality of drag blades are arranged circumferentially around the support shaft so that these blades rotate together. And
The drag blade is provided to cause the air received by the wind receiving concave surface to flow while being concentrated relatively on either the support shaft side or the counter-support shaft side. Type vertical axis windmill.
複数の翼形揚力羽根が支軸回りに周方向に間隔的に配置される共に、複数の抗力羽根が支軸回りに周方向に間隔的に配置され、これら羽根が一体回転するようになされており、かつ、
前記抗力羽根は、風逃がし凸面で受けた空気を、支軸側と反支軸側のいずれか一方に相対的に集中させて流すように備えられていることを特徴とする、揚力・抗力複合型垂直軸風車。
A plurality of airfoil lift blades are arranged circumferentially around the support shaft, and a plurality of drag blades are arranged circumferentially around the support shaft so that these blades rotate together. And
The drag blade is equipped with a lift / drag combination, characterized in that the air received by the wind escape convex surface is flowed in such a way as to be relatively concentrated on either the support shaft side or the counter support shaft side. Type vertical axis windmill.
前記抗力羽根が、支軸と各翼形揚力羽根との間に配置され、風逃がし凸面で受けた空気を、支軸との間よりも翼形揚力羽根との間に相対的に集中させて流すように備えられ、かつ、
翼形揚力羽根との間を通じて流される前記空気が、翼形揚力羽根に作用し、翼形揚力羽根の揚力による回転力を大きくするようになされている請求項2に記載の揚力・抗力複合型垂直軸風車。
The drag blade is disposed between the support shaft and each airfoil lift blade, and the air received by the wind escape convex surface is concentrated relatively between the airfoil lift blade and the support shaft. Provided to flow, and
The combined lift / drag type according to claim 2, wherein the air flowing between the airfoil lift blades acts on the airfoil lift blades to increase the rotational force due to the lift of the airfoil lift blades. Vertical axis windmill.
前記抗力羽根が支軸方向に延びる半円筒状羽根からなる請求項1乃至3のいずれか一に記載の揚力・抗力複合型垂直軸風車。   The combined lift and drag type vertical axis wind turbine according to any one of claims 1 to 3, wherein the drag vane is a semi-cylindrical vane extending in a support shaft direction.
JP2005107087A 2005-04-04 2005-04-04 Combined lift and drag type vertical axis wind turbine Expired - Fee Related JP4727277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005107087A JP4727277B2 (en) 2005-04-04 2005-04-04 Combined lift and drag type vertical axis wind turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005107087A JP4727277B2 (en) 2005-04-04 2005-04-04 Combined lift and drag type vertical axis wind turbine

Publications (2)

Publication Number Publication Date
JP2006283713A true JP2006283713A (en) 2006-10-19
JP4727277B2 JP4727277B2 (en) 2011-07-20

Family

ID=37405888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005107087A Expired - Fee Related JP4727277B2 (en) 2005-04-04 2005-04-04 Combined lift and drag type vertical axis wind turbine

Country Status (1)

Country Link
JP (1) JP4727277B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100906814B1 (en) * 2007-10-02 2009-07-09 김병준 Rotor for vertical axis wind turbine
KR100906811B1 (en) * 2007-10-02 2009-07-09 김병준 Vertical Axis Wind Power Unit
WO2011045820A1 (en) * 2009-10-13 2011-04-21 Roberto Bolelli Energy conversion assembly
KR101032668B1 (en) 2010-09-09 2011-05-06 명용국 Stackable Unit Wind Power Generator
CN102312789A (en) * 2010-07-06 2012-01-11 欧韩株式会社 Compound wind generating unit
JP2012082713A (en) * 2010-10-07 2012-04-26 chui-nan Qiu Vertical shaft type wind force kinetic energy generating device by composite rotation mechanism of drag airfoil and erected lift airfoil using tower type multipolar wind tunnel effect
WO2012073321A1 (en) * 2010-11-30 2012-06-07 株式会社Cno Vertical shaft windmill
WO2012073320A1 (en) * 2010-11-30 2012-06-07 株式会社Cno Vertical shaft windmill
KR101196356B1 (en) 2010-06-18 2012-11-01 한국에너지기술연구원 Magnetism-operation of Vertical axis a Water current Hydraulic turbine
KR101294277B1 (en) 2010-09-27 2013-08-07 이달은 Rotor blade using lift frorce and drag for wind turbine
JP2015505594A (en) * 2012-02-03 2015-02-23 リ,ジ ウン Low wind speed wind power generator {WINDENGERGELECTRICITYGENERATORORFLOWLOWVELDOCITY}
RU2610875C2 (en) * 2015-05-21 2017-02-17 Илья Сергеевич Быков Sail-type wind-driven plant rotor with three or more blades arranged inside flow hub dividing flow on active and dead zones
CN109826749A (en) * 2019-02-21 2019-05-31 清华大学 A large-scale Darieu wind turbine with pitch-adjustable auxiliary wings and self-starting

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5963146B2 (en) 2013-05-25 2016-08-03 吉二 玉津 Vertical axis water turbine generator using wind face opening and closing blade system
JP5421498B1 (en) * 2013-10-01 2014-02-19 康典 前田 Vertical axis windmill

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208320A (en) * 1994-01-17 1995-08-08 Michiaki Tsutsumi Vertical shaft wind mill to be laminated on multistorey tower
JP2005054757A (en) * 2003-08-07 2005-03-03 Mizuno Technics Kk Hybrid type wind mill

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208320A (en) * 1994-01-17 1995-08-08 Michiaki Tsutsumi Vertical shaft wind mill to be laminated on multistorey tower
JP2005054757A (en) * 2003-08-07 2005-03-03 Mizuno Technics Kk Hybrid type wind mill

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100906811B1 (en) * 2007-10-02 2009-07-09 김병준 Vertical Axis Wind Power Unit
KR100906814B1 (en) * 2007-10-02 2009-07-09 김병준 Rotor for vertical axis wind turbine
WO2011045820A1 (en) * 2009-10-13 2011-04-21 Roberto Bolelli Energy conversion assembly
JP2013507573A (en) * 2009-10-13 2013-03-04 ロベルト ボレリ, Energy conversion assembly
KR101196356B1 (en) 2010-06-18 2012-11-01 한국에너지기술연구원 Magnetism-operation of Vertical axis a Water current Hydraulic turbine
CN102312789A (en) * 2010-07-06 2012-01-11 欧韩株式会社 Compound wind generating unit
KR101032668B1 (en) 2010-09-09 2011-05-06 명용국 Stackable Unit Wind Power Generator
KR101294277B1 (en) 2010-09-27 2013-08-07 이달은 Rotor blade using lift frorce and drag for wind turbine
JP2012082713A (en) * 2010-10-07 2012-04-26 chui-nan Qiu Vertical shaft type wind force kinetic energy generating device by composite rotation mechanism of drag airfoil and erected lift airfoil using tower type multipolar wind tunnel effect
WO2012073321A1 (en) * 2010-11-30 2012-06-07 株式会社Cno Vertical shaft windmill
WO2012073320A1 (en) * 2010-11-30 2012-06-07 株式会社Cno Vertical shaft windmill
JPWO2012073320A1 (en) * 2010-11-30 2014-05-19 株式会社Cno Vertical axis windmill
JPWO2012073321A1 (en) * 2010-11-30 2014-05-19 株式会社Cno Vertical axis windmill
JP2015505594A (en) * 2012-02-03 2015-02-23 リ,ジ ウン Low wind speed wind power generator {WINDENGERGELECTRICITYGENERATORORFLOWLOWVELDOCITY}
RU2610875C2 (en) * 2015-05-21 2017-02-17 Илья Сергеевич Быков Sail-type wind-driven plant rotor with three or more blades arranged inside flow hub dividing flow on active and dead zones
CN109826749A (en) * 2019-02-21 2019-05-31 清华大学 A large-scale Darieu wind turbine with pitch-adjustable auxiliary wings and self-starting

Also Published As

Publication number Publication date
JP4727277B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP4727277B2 (en) Combined lift and drag type vertical axis wind turbine
TWI231840B (en) Windmill for wind power generation
TWI226919B (en) Straight blade type turbine
US9284944B2 (en) Vertical shaft type darius windmill
US8905704B2 (en) Wind sail turbine
CN102713265B (en) Turbine
JP2008115781A (en) H-darrieus type windmill having opening and closing auxiliary blade
JPWO2018194105A1 (en) Vertical axis turbine
JP2012215148A (en) Lift-type vertical axis wind turbine
JP6376679B2 (en) Stern duct, stern duct design method, and ship equipped with stern duct
JP2005090332A (en) Darrieus wind turbine
EP2432998A1 (en) Eolic generator
JP4754316B2 (en) Straight blade vertical axis windmill
JP2005054757A (en) Hybrid type wind mill
JP6426869B1 (en) Horizontal axis rotor
JP4814186B2 (en) Drag type windmill
JP4173773B2 (en) Rotating wheel and rotating wheel
JP7612470B2 (en) Wind turbines and wind power generation equipment
JP7161747B2 (en) Magnus type thrust generator, wind power generator, hydraulic power generator, tidal power generator using the Magnus type thrust generator, and wind power generator, water power generator, tidal power generator using the Magnus type thrust generator
WO2022202488A1 (en) Wind turbine and wind power generation apparatus
JP6130680B2 (en) Vertical axis fluid power generator
JP2002221143A (en) Aerofoil for vertical shaft type wind power generation device and design method for the same
CN208915425U (en) Scroll safety propeller
JP2005083224A (en) Vertical shaft type windmill
JP2023115519A (en) Wind turbines and wind power generators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110413

R150 Certificate of patent or registration of utility model

Ref document number: 4727277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees