[go: up one dir, main page]

JP2006281159A - Water treatment method and water treatment plant for water treatment plant - Google Patents

Water treatment method and water treatment plant for water treatment plant Download PDF

Info

Publication number
JP2006281159A
JP2006281159A JP2005107495A JP2005107495A JP2006281159A JP 2006281159 A JP2006281159 A JP 2006281159A JP 2005107495 A JP2005107495 A JP 2005107495A JP 2005107495 A JP2005107495 A JP 2005107495A JP 2006281159 A JP2006281159 A JP 2006281159A
Authority
JP
Japan
Prior art keywords
water
water treatment
treatment
treated
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005107495A
Other languages
Japanese (ja)
Other versions
JP5039283B2 (en
Inventor
晃治 ▲陰▼山
Koji Kageyama
Misaki Sumikura
みさき 隅倉
Takeshi Takemoto
剛 武本
Shoji Watanabe
昭二 渡辺
Naoki Hara
直樹 原
Ichiro Enbutsu
伊智朗 圓佛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005107495A priority Critical patent/JP5039283B2/en
Priority to CNB2006100710294A priority patent/CN100537444C/en
Publication of JP2006281159A publication Critical patent/JP2006281159A/en
Application granted granted Critical
Publication of JP5039283B2 publication Critical patent/JP5039283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Activated Sludge Processes (AREA)

Abstract

【課題】 各種用途に対応した中水を効率的に製造する。
【解決手段】 複数の水処理装置2−1〜2−4と、流入下水50を各水処理装置に分配する下水分配装置3と、各水処理装置の処理水を単独又は混合して複数の中水用途A〜Cに分配する処理水分配装置5と、運転制御装置30とを備え、運転制御装置は、流入下水量予測値31及び水質予測値32と用途A〜Cの需要水量33及び需要水質34とを入力し、各水処理装置の処理水を単独又は混合して用途A〜Cの需要水量と需要水質を満たす各水処理装置の処理水量と処理水水質とを設定し、その設定された処理水量と処理水水質に基づいて各水処理装置の運転費用と汚泥発生量を算出し、算出された運転費用と汚泥発生量が最小の各水処理装置の処理水量と処理水水質を抽出し、抽出された処理水量と処理水水質に基づいて原水分配装置と各水処理装置の運転条件と処理水分配装置を制御する。
【選択図】 図1
PROBLEM TO BE SOLVED: To efficiently produce intermediate water corresponding to various uses.
SOLUTION: A plurality of water treatment devices 2-1 to 2-4, a sewage distribution device 3 that distributes inflow sewage 50 to each water treatment device, and a plurality of water treated by each water treatment device alone or in combination. The treated water distribution device 5 that distributes to the intermediate water uses A to C and the operation control device 30 are provided. The operation control device includes the predicted inflow sewage amount 31, the predicted water quality 32, the demand water amount 33 for the uses A to C, and Demand water quality 34 is input, and the treated water of each water treatment device is set alone or mixed to set the treated water amount and treated water quality of each water treatment device satisfying the demand water amount and the demanded water quality of uses AC. Calculate the operating cost and sludge generation amount of each water treatment device based on the set treated water amount and treated water quality, and treat the treated water amount and treated water quality of each water treatment device with the smallest calculated operating cost and sludge generation amount. The raw water distribution device based on the extracted treated water volume and treated water quality And control the operating conditions of each water treatment device and the treated water distribution device.
[Selection] Figure 1

Description

本発明は、水処理方法及び装置に係り、特に、下水を浄化して再利用可能な中水又は雑用水を製造する水処理方法及び水処理プラントに関する。   The present invention relates to a water treatment method and apparatus, and more particularly, to a water treatment method and a water treatment plant for purifying sewage and producing reusable middle water or miscellaneous water.

水資源の有効活用の観点から、都市下水、産業排水、雨水などを浄化処理した中水を再利用することが行われている。例えば、中水は、水洗便所用水、散水用水、冷却用水、修景用水などの雑用水の他、農業用水、工業用水、さらには上水道の原水としても利用可能である。このように、下水を浄化処理した中水には様々な用途が想定されるが、それぞれの用途に対して必要な水質が異なることから、複数の用途に対応した中水を製造する下水処理プラントの開発が望まれる。   From the viewpoint of effective use of water resources, the reuse of middle water purified from urban sewage, industrial wastewater, rainwater, etc. is being carried out. For example, the middle water can be used as water for toilets, water for spraying, water for cooling, water for cooling, landscape water, agricultural water, industrial water, and raw water for waterworks. In this way, the sewage treatment plant that purifies the sewage is expected to have various uses, but because the water quality required for each use is different, a sewage treatment plant that produces sewage for multiple uses. Development is desired.

この点に関し、例えば、特許文献1には、雑用水として利用可能な中水や雨水を、上水と絡めて有効かつ経済的に利用可能な総合水利用システムの計画策定の支援システムが提案されている。これによれば、中水処理施設と雨水処理施設の2つの処理施設を備え、用途に応じて上水及び中水のいずれを供給するか選定し、その場合の事業コストを計算して総合水利用システムの計画を策定するようにしている。   In this regard, for example, Patent Document 1 proposes a support system for formulating a comprehensive water utilization system that can be used effectively and economically by linking water or rainwater that can be used as miscellaneous water with water. ing. According to this, it has two treatment facilities, a middle water treatment facility and a rainwater treatment facility, and selects which of the clean water and middle water to supply depending on the application, calculates the business cost in that case, and calculates the total water We plan to formulate a usage system plan.

特開平5−324601号公報JP-A-5-324601

ところで、下水から中水を製造するにあたって、例えば、修景用水の場合は処理水が十分に脱色及び脱臭されていることが要求され、一方、農業用水の場合は脱色及び脱臭は完全でなくてもよいが、有機物や溶解性リン及び溶解性窒素が残留していることが望まれる場合がある。   By the way, when producing middle water from sewage, for example, in the case of landscape water, it is required that the treated water is sufficiently decolored and deodorized, while in the case of agricultural water, decolorization and deodorization are not complete. However, it may be desired that organic matter, soluble phosphorus and soluble nitrogen remain.

しかし、特許文献1に記載の技術によれば、特定の用途に対して上水と中水のいずれを供給するか選定することができるが、要求水質が異なる複数の中水を製造することについては考慮されていない。   However, according to the technique described in Patent Document 1, it is possible to select whether to supply clean water or middle water for a specific application, but about producing a plurality of middle waters having different required water quality. Is not considered.

したがって、特許文献1に記載の技術によれば、1種類の中水により複数の用途に対応しなければならないから、最も清浄な要求水質の中水を製造するように下水処理装置を運転する必要がある。その場合、清浄な水質を必要としない用途に対しては、過度に清浄な中水を供給することになる。通常、下水処理においては、水質と電力量あるいは薬剤量はトレードオフの関係にあるから、過度に清浄な中水を供給することはエネルギー的、コスト的に無駄となる。また、中水を清浄にした分だけ発生する汚泥の量が増大するため、汚泥処分費も増大する。逆に、コスト的に無駄を生じないよう中水の水質を低下させると、清浄な水質を必要とする用途に適合した中水を得られない。   Therefore, according to the technique described in Patent Document 1, it is necessary to operate a sewage treatment apparatus so as to produce the most clean required water quality because it is necessary to support a plurality of uses with one kind of middle water. There is. In that case, excessively clean middle water will be supplied for applications that do not require clean water quality. Usually, in sewage treatment, since the water quality and the amount of electric power or the amount of chemicals are in a trade-off relationship, it is wasteful in terms of energy and cost to supply excessively clean water. In addition, since the amount of sludge generated by the amount of purified intermediate water increases, sludge disposal costs also increase. On the contrary, if the quality of the middle water is lowered so as not to be wasted in terms of cost, it is not possible to obtain the middle water suitable for the use requiring a clean water quality.

また、複数の中水の需要量及びその原水である下水流入量は、季節、曜日、時刻によってそれぞれ変動するから、その変動を考慮した運転を実施しなければ中水製造量が過剰になる場合や逆に不足する場合がありうる。同様に、原水である下水流入水質も季節、曜日、時刻により変動するため、中水水質が過度に清浄になる場合や逆に十分清浄にならない場合がありうる。   In addition, the demand for multiple sewage and the inflow of sewage, which is the raw water, vary depending on the season, the day of the week, and the time of day. Or conversely, there may be a shortage. Similarly, since the quality of the sewage inflow, which is the raw water, varies depending on the season, day of the week, and time, the quality of the middle water may be excessively purified or may not be sufficiently purified.

本発明は、各種用途に対応した中水を効率的に製造することを課題とする。   An object of the present invention is to efficiently produce intermediate water corresponding to various uses.

上記課題を解決するため、本発明の水処理方法及び装置は、流入される原水を独立した複数の水処理系列に分配し、各水処理系列で処理された処理水を混合して複数の需要先の需要水量及び需要水質にそれぞれ適合した処理水を生成して各需要先に供給することを特徴とする。   In order to solve the above-mentioned problems, the water treatment method and apparatus of the present invention distributes the inflowing raw water to a plurality of independent water treatment series, and mixes the treated water treated in each water treatment series to produce a plurality of demands. The present invention is characterized in that treated water corresponding to the amount of demand water and the quality of demand water is generated and supplied to each demand destination.

本発明によれば、各種用途に対応した中水を効果的に製造することができる。   According to the present invention, it is possible to effectively produce intermediate water corresponding to various uses.

本発明の水処理方法の実施の態様としては、複数の水処理系列を用いることにより、それぞれの水処理系列の運転条件を変えて種々の処理水水質の処理水を得ることができる。その結果、各水処理系列の処理水を単独又は混合することにより、要求水質が異なる複数種類の中水を製造することができる。これにより、要求水質に応じた中水を各需要先に供給することができるから、過度に清浄な中水を供給することを回避できるので、中水製造の水処理に係る電力量や薬剤量などの運転費用を低減できる。また、発生する汚泥の量が増大することによる汚泥処分費の増大を回避できる。   As an embodiment of the water treatment method of the present invention, by using a plurality of water treatment series, it is possible to obtain treated water of various treated water quality by changing the operating conditions of each water treatment series. As a result, a plurality of types of medium water having different required water qualities can be produced by individually or mixing the treated water of each water treatment series. As a result, since it is possible to supply each customer with intermediate water according to the required water quality, it is possible to avoid supplying excessively clean intermediate water. The operating cost can be reduced. Further, it is possible to avoid an increase in sludge disposal cost due to an increase in the amount of generated sludge.

この場合において、複数の水処理系列の運転費用と汚泥発生量の少なくとも一方を求め、各水処理系列の処理水量と処理水水質を、運転費用と汚泥発生量の少なくとも一方を最小とする値に定めることが好ましい。これによれば、複数種類の中水製造に係る運転費用と汚泥発生量を最小化できる。   In this case, obtain at least one of the operation cost and sludge generation amount of a plurality of water treatment series, and set the treated water amount and treated water quality of each water treatment series to a value that minimizes at least one of the operation cost and sludge generation amount. It is preferable to define. According to this, it is possible to minimize the operating cost and sludge generation amount related to the production of plural kinds of middle water.

また、流入される原水を独立した複数の水処理系列に分配して処理し、前記各水処理系列の処理水を単独又は混合して前記複数の需要先の需要水量と需要水質を満たす前記各水処理系列の処理水量と処理水水質とを設定し、該設定された前記各水処理系列の処理水量と処理水水質に基づいて前記各水処理系列の運転費用と汚泥発生量の少なくとも一方を算出し、算出した前記運転費用と前記汚泥発生量の少なくとも一方を最小とする前記各水処理系列の処理水量と処理水水質に基づいて前記各水処理系列を運転するとともに、前記各水処理系列の処理水を単独又は混合して前記複数の需要先に供給するように構成できる。   In addition, the raw water that is introduced is distributed and processed into a plurality of independent water treatment series, and each of the water treatment series treated water alone or mixed to satisfy the demand water quantity and the demand water quality of the plurality of demand destinations. A treatment water amount and a treatment water quality of the water treatment series are set, and at least one of an operating cost and a sludge generation amount of each water treatment series is set based on the set treatment water amount and the treatment water quality of each water treatment series. Calculate and operate each water treatment series based on the treated water amount and treated water quality of each water treatment series that minimizes at least one of the calculated operating cost and the generated sludge amount, and each water treatment series These treated waters can be configured to be supplied to the plurality of demand customers alone or in combination.

また、この場合において、需要先に供給する処理水を一時的に貯留する貯水池を設け、該貯水池に貯留することを加味して、各水処理系列の処理水量を設定し、需要先の需要水量の変動を吸収して各水処理系列の処理水量を平均化することができる。   Also, in this case, a reservoir is provided for temporarily storing treated water to be supplied to the customer, and the amount of treated water for each water treatment system is set by taking into account that the water is stored in the reservoir. The amount of treated water in each water treatment series can be averaged by absorbing the fluctuations of

さらに、各水処理系列は、活性汚泥処理とオゾン処理とを有してなり、運転費用は、活性汚泥処理の酸素を供給するブロワ、活性汚泥処理の処理水循環ポンプ、活性汚泥処理の汚泥循環ポンプ、余剰汚泥の排出ポンプ、凝集剤注入ポンプ、塩素注入ポンプ、オゾン発生器、薬剤費の少なくとも1つの運転費用を含むようにする。   Furthermore, each water treatment system has activated sludge treatment and ozone treatment, and the operating costs are a blower for supplying oxygen for activated sludge treatment, a treated water circulation pump for activated sludge treatment, and a sludge circulation pump for activated sludge treatment. Include excess sludge discharge pump, flocculant injection pump, chlorine injection pump, ozone generator, at least one operating cost of chemicals.

また、本発明の水処理プラントは、独立した複数の水処理装置と、流入される原水を前記複数の水処理装置に分配する原水分配装置と、前記複数の水処理装置の処理水を複数の需要先に分配する処理水分配装置と、前記原水分配装置と前記各水処理装置の運転条件と前記処理水分配装置を制御する運転制御装置とを備えて構成できる。特に、運転制御装置は、前記原水の流入量予測値及び水質予測値と複数の需要先の需要水量及び需要水質とを入力し、前記原水を前記各水処理装置に分配する分配量と、該分配量ごとに前記各水処理装置の運転条件を変えた運転パターンを複数設定し、該運転パターンごとに前記各水処理装置の処理水水質を計算し、前記各水処理装置の処理水を単独で又は混合して前記複数の需要先の需要水量と需要水質を満たす運転パターンを抽出し、該抽出された運転パターンのうち前記複数の水処理装置の運転費用と汚泥発生量の少なくとも一方が最小の最適な運転パターンを求め、該最適な運転パターンに従って前記原水分配装置と前記各水処理装置の運転条件と前記処理水分配装置を制御する手段を備えて構成する。   Further, the water treatment plant of the present invention includes a plurality of independent water treatment devices, a raw water distribution device that distributes the raw water that is introduced into the plurality of water treatment devices, and a plurality of treated water from the plurality of water treatment devices. A treated water distribution device that distributes to a demand destination, the raw water distribution device, operating conditions of each of the water treatment devices, and an operation control device that controls the treated water distribution device can be provided. In particular, the operation control device inputs the raw water inflow prediction value and the water quality prediction value, the demand water amount and the demand water quality of a plurality of demand destinations, a distribution amount for distributing the raw water to the water treatment devices, and A plurality of operation patterns in which the operation conditions of each water treatment device are changed for each distribution amount are set, the treated water quality of each water treatment device is calculated for each operation pattern, and the treated water of each water treatment device is used alone. Or an operation pattern that satisfies the demand water quantity and the demand water quality of the plurality of demand destinations is extracted, and at least one of the operation cost and sludge generation amount of the plurality of water treatment devices is the smallest among the extracted operation patterns. And the means for controlling the raw water distribution device, the operation conditions of each of the water treatment devices, and the treated water distribution device in accordance with the optimal operation pattern.

この場合、前記処理水分配装置の下流側に前記需要先に供給する処理水を一時的に貯留する貯水池を設け、該貯水池に貯留することを加味して、前記各水処理系列の運転パターンを設定することができる。   In this case, a reservoir for temporarily storing the treated water to be supplied to the demand destination is provided on the downstream side of the treated water distribution apparatus, and the operation pattern of each water treatment series is set in consideration of storing in the reservoir. Can be set.

さらに、前記各水処理装置は、活性汚泥処理槽と最終沈殿池とオゾン処理槽とを有してなり、前記運転費用は、前記活性汚泥処理槽に酸素を供給するブロワ、前記活性汚泥処理槽の処理水循環ポンプ、前記活性汚泥処理槽の汚泥循環ポンプ、前記最終沈殿池の余剰汚泥の排出ポンプ、前記活性汚泥処理槽に凝集剤を注入する凝集剤注入ポンプ、前記最終沈殿池から排出される処理水に塩素を注入する塩素注入ポンプ、及びオゾン処理槽に注入するオゾンを発生するオゾン発生器のそれぞれに必要な電力費及び薬剤費の少なくとも1つを含むことができる。   Furthermore, each said water treatment apparatus has an activated sludge treatment tank, a final sedimentation basin, and an ozone treatment tank, The said operating expense is the blower which supplies oxygen to the said activated sludge treatment tank, The said activated sludge treatment tank The treated water circulation pump, the sludge circulation pump of the activated sludge treatment tank, the excess sludge discharge pump of the final sedimentation basin, the flocculant injection pump for injecting the flocculant into the activated sludge treatment tank, and discharged from the final sedimentation basin It may include at least one of a power cost and a chemical cost required for each of a chlorine injection pump for injecting chlorine into the treated water and an ozone generator for generating ozone to be injected into the ozone treatment tank.

以下、本発明の水処理方法を適用した水処理プラントの実施例について説明する。   Hereinafter, the Example of the water treatment plant to which the water treatment method of this invention is applied is described.

図1に、本発明の水処理方法を適用した一実施例の下水処理プラントの系統構成を示す。図示のように、本実施例の下水処理プラント1は、独立した複数N(N=2以上、図示例では4系列)の水処理系列2−1、2−2、2−3、2−4を有して形成されている。各水処理系列2−1〜2−4は、同一構成の水処理プロセスを適用することもできるが、異なる水処理プロセスを適用することもできる。本実施例では、各水処理系列2−1〜2−4は同一に構成されているとして、各水処理系列2−1について詳細構成のみを示している。   In FIG. 1, the system configuration | structure of the sewage treatment plant of one Example to which the water treatment method of this invention is applied is shown. As shown in the figure, the sewage treatment plant 1 of the present embodiment has a plurality of independent N (N = 2 or more, four series in the illustrated example) water treatment series 2-1, 2-2, 2-3, 2-4. It is formed. Although each water treatment series 2-1 to 2-4 can apply the water treatment process of the same structure, it can also apply a different water treatment process. In the present embodiment, only the detailed configuration is shown for each water treatment series 2-1, assuming that the water treatment series 2-1 to 2-4 are configured identically.

本実施例の下水処理プラント1の原水である下水50は、最初沈殿池3に流入されるようになっている。最初沈殿池3では、流入された下水中の固形分を沈殿除去するようになっている。最初沈殿池3の上澄み液は、下水分配装置4によって各水処理系列2−1〜2−4に分配されようになっている。この下水分配装置4は、具体的には弁、ポンプ、堰などを有して構成される。各水処理系列2−1〜2−4に分配された下水はそれぞれ浄化処理され、それらの処理水は処理水分配装置5を介して中水の複数M(M=2以上、図示例では3つの用途)の用途別に設けられた中水貯水池6A、6B、6Cに一旦貯留されて、各用途A,B,Cに供給されるようになっている。処理水分配装置5は、各水処理系列2−1〜2−4から排出される処理水を、各用途A,B,Cの需要水量及び需要水質を満足するように、そのままあるいは混合して、各用途A,B,Cに適合した水質の中水7、8、9を生成して、中水貯水池6A、6B、6Cに分配するようになっている。なお、処理水分配装置5は、具体的には弁、ポンプ、堰などで構成することができる。また、流入下水量に対する中水の需要水量が少ない場合は、放流水10として河川等に排出するようになっている。   The sewage 50 which is the raw water of the sewage treatment plant 1 of the present embodiment is first introduced into the settling basin 3. In the first sedimentation basin 3, the solid content in the sewage that has flowed in is removed by sedimentation. The supernatant liquid of the first sedimentation basin 3 is distributed to each water treatment series 2-1 to 2-4 by the sewage distributor 4. Specifically, the sewage distribution device 4 includes a valve, a pump, a weir, and the like. The sewage distributed to each of the water treatment series 2-1 to 2-4 is purified, and the treated water is supplied to a plurality of M (M = 2 or more, 3 in the illustrated example) through the treated water distribution device 5. Are temporarily stored in the intermediate water reservoirs 6A, 6B, and 6C provided for the respective uses) and are supplied to the respective uses A, B, and C. The treated water distributor 5 mixes the treated water discharged from each of the water treatment series 2-1 to 2-4 as it is or so as to satisfy the demand water amount and the demand water quality of each application A, B, and C. The intermediate water 7, 8, 9 of water quality suitable for each application A, B, C is generated and distributed to the intermediate water reservoirs 6A, 6B, 6C. In addition, the treated water distribution apparatus 5 can be specifically comprised by a valve, a pump, a weir, etc. Moreover, when there is little demand water quantity of middle water with respect to inflow sewage quantity, it discharges to the river etc. as the discharge water 10. FIG.

各水処理系列2−1〜2−4の構成は、水処理系列2−1に代表して示すように、下水分配装置4から供給される下水が流入される活性汚泥処理槽11と、活性汚泥処理槽11により処理された処理水が流入される最終沈殿池12と、最終沈殿池12の上澄み水が流入されるオゾン処理槽13とを備えて構成される。活性汚泥処理槽11には、槽内に酸素を注入する酸素供給用ブロワ14と、槽内の処理水を循環させる循環ポンプ15と、凝集剤貯留槽16から槽内に凝集剤を注入する凝集剤注入ポンプ17が設けられている。最終沈殿池12には、沈殿された汚泥の一部を活性汚泥処理槽11に戻す汚泥循環ポンプ18と、余剰汚泥を系外に排出する汚泥排出ポンプ19を備えて構成される。また、最終沈殿池12から排出される上澄み水には、薬剤貯留槽20から薬剤注入ポンプ21を介して、例えば塩素が注入されるようになっている。オゾン処理槽13には、槽内にオゾンの気泡を注入するオゾン発生器22が設けられている。つまり、活性汚泥処理槽11においてエアレーションすることにより、溶解性BODを活性汚泥に取り込ませ、最終沈殿池12で活性汚泥を沈降分離して清澄な上澄み液を得て、最後に殺菌のため塩素を注入する。次いで、オゾン処理槽13において、脱色及び脱臭と残留している有機物をさらに分解して浄化するようになっている。   The configuration of each of the water treatment series 2-1 to 2-4 includes an activated sludge treatment tank 11 into which the sewage supplied from the sewage distribution device 4 flows, A final sedimentation basin 12 into which treated water treated by the sludge treatment tank 11 flows and an ozone treatment tank 13 into which the supernatant water of the final sedimentation basin 12 flows are configured. In the activated sludge treatment tank 11, an oxygen supply blower 14 for injecting oxygen into the tank, a circulation pump 15 for circulating the treated water in the tank, and a flocculant for injecting the flocculant from the flocculant storage tank 16 into the tank. An agent injection pump 17 is provided. The final sedimentation basin 12 includes a sludge circulation pump 18 that returns a part of the precipitated sludge to the activated sludge treatment tank 11 and a sludge discharge pump 19 that discharges excess sludge out of the system. Further, for example, chlorine is injected into the supernatant water discharged from the final sedimentation basin 12 through the drug storage tank 20 via the drug injection pump 21. The ozone treatment tank 13 is provided with an ozone generator 22 for injecting ozone bubbles into the tank. That is, by aeration in the activated sludge treatment tank 11, the soluble BOD is taken into the activated sludge, and the activated sludge is settled and separated in the final sedimentation basin 12 to obtain a clear supernatant, and finally chlorine for sterilization is obtained. inject. Next, in the ozone treatment tank 13, decolorization and deodorization and the remaining organic substances are further decomposed and purified.

このように構成される各水処理系列2−1〜2−4は、下水分配装置4及び処理水分配装置5と共に、運転制御装置30によって制御されるようになっている。この運転制御装置30には、流入下水量予測値31、流入下水水質予測値32、用途A〜C別の用途別需要水量33と、用途A〜C別の用途別需要水質34などのデータが入力されている。また、運転制御装置30には、入力される上記データに従って、各水処理系列2−1〜2−4の最適な運転条件(運転パラメータ)、及び処理水分配装置5における混合条件を計算する運転条件計算手段40が設けられている。そして、運転制御装置30は、運転条件計算手段40の計算結果に基づいて、各水処理系列2−1〜2−4と下水分配装置4と処理水分配装置5に運転制御指令を出力するようになっている。各水処理系列2−1〜2−4に対する運転制御指令は、具体的には、 酸素供給用ブロワ14、汚泥循環ポンプ18、処理水の循環ポンプ15、汚泥排出ポンプ19、凝集剤注入ポンプ17、薬剤注入ポンプ21、オゾン発生器22がある。   Each of the water treatment series 2-1 to 2-4 configured in this way is controlled by the operation control device 30 together with the sewage distribution device 4 and the treated water distribution device 5. The operation control device 30 includes data such as a predicted inflow sewage amount 31, a predicted inflow sewage quality 32, a demand water amount 33 for each use A to C and a demand water quality 34 for each use A to C. Have been entered. Further, the operation control device 30 calculates the optimum operation conditions (operation parameters) of the water treatment series 2-1 to 2-4 and the mixing conditions in the treated water distribution device 5 according to the input data. Condition calculation means 40 is provided. And the operation control apparatus 30 outputs an operation control command to each water treatment series 2-1 to 2-4, the sewage distribution apparatus 4, and the treated water distribution apparatus 5 based on the calculation result of the operation condition calculation means 40. It has become. Specifically, the operation control commands for the water treatment series 2-1 to 2-4 are the oxygen supply blower 14, the sludge circulation pump 18, the treated water circulation pump 15, the sludge discharge pump 19, and the flocculant injection pump 17. There are a medicine injection pump 21 and an ozone generator 22.

運転条件計算手段40は、流入下水水質と水処理系列2−Nの運転条件から処理水水質を計算できる下水処理プロセスの水質計算モジュールを備えて構成される。この水質計算モジュールは、水質に関する物質収支を計算する理論モデルあるいは過去の実績データを内挿した計算モデルのうち少なくとも1つが含まれる。水質に関する物質収支を計算する理論モデルとしては、例えばIWA(国際水協会、International Water Association)が提案しているIWA Activated Sludge Model(ASM)がある。このモデルは、活性汚泥を構成する微生物を分類し、それぞれの微生物の増殖と死滅、固形物と溶解性有機物の加水分解などの反応を考慮したものである。過去の実績データを内挿した計算モデルは、例えば運転条件と除去率の実績値をマトリクスで備え、所望する運転条件での除去率を内挿して求めるものがある。   The operation condition calculation means 40 includes a water quality calculation module of a sewage treatment process that can calculate the treated water quality from the inflow sewage quality and the operation conditions of the water treatment series 2-N. The water quality calculation module includes at least one of a theoretical model for calculating a material balance relating to water quality and a calculation model interpolating past performance data. As a theoretical model for calculating a material balance relating to water quality, for example, there is an IWA Activated Sludge Model (ASM) proposed by IWA (International Water Association). This model classifies the microorganisms that make up activated sludge, and considers reactions such as the growth and death of each microorganism and the hydrolysis of solids and soluble organic matter. A calculation model in which past performance data is interpolated includes, for example, a matrix of performance values of operation conditions and removal rates, and is obtained by interpolating the removal rates under desired operation conditions.

そして、運転条件計算手段40には、流入下水量予測値31、流入下水水質予測値32、用途別需要水量33、用途別需要水質34が入力条件として与えられる。流入下水量予測値31は、過去の流入下水水量実績値に基づいた値を与えることが有効である。通常、流入下水の水量は、季節、曜日、時刻によって異なるため、流入下水水量予測値31は経時変化する値となる。今後、雨天が予測される場合には、将来の降雨量予測情報に基づいた管路内の流下計算結果をもとに流入下水水量予測値31を与えることができる。   And the inflow sewage predicted value 31, the inflow sewage quality predicted value 32, the use demand water amount 33, and the use demand water quality 34 are given to the operation condition calculation means 40 as input conditions. It is effective to give the inflow sewage amount predicted value 31 based on the past inflow sewage amount actual value. Usually, since the amount of inflow sewage varies depending on the season, day of the week, and time, the inflow sewage amount prediction value 31 is a value that changes with time. In the future, when rainy weather is predicted, the predicted inflow sewage amount 31 can be given based on the flow calculation result in the pipeline based on the future rainfall prediction information.

流入下水水質予測値32も、過去の流入下水水質実績値に基づいた与えることが有効である。水量と同様に、水質も季節、曜日、時刻により異なるため、流入下水水質予測値32は経時変化する値となる。水質項目としては、汚濁物質、溶解性有機物、溶解性窒素成分、溶解性リン成分、水温、pHなどが挙げられる。   It is also effective to give the predicted inflow sewage quality value 32 based on the past inflow sewage quality actual value. Similar to the amount of water, the water quality varies depending on the season, day of the week, and time, so the inflowing sewage water quality prediction value 32 is a value that changes with time. Water quality items include pollutants, soluble organic substances, soluble nitrogen components, soluble phosphorus components, water temperature, pH, and the like.

用途別需要水量33は、農業用水、工業用水、浄水原水、修景用水、水洗便所洗浄水、冷却用水、散水用水など中水の各種用途で必要とされる水量である。この用途別需要水量33は一定値の場合もあるが、経時変化する値である場合が多い。例えば図1では用途Aから用途Cまで3種類の用途を想定しているため、用途別需要水量33の情報も3種類必要となる。   The demand water amount 33 by use is the amount of water required for various uses of middle water such as agricultural water, industrial water, purified water, landscape water, flush toilet wash water, cooling water, and water for spraying. The usage-specific demand water amount 33 may be a constant value, but is often a value that changes over time. For example, in FIG. 1, since three types of usages from usage A to usage C are assumed, three types of information on usage-specific demand water amount 33 are also required.

用途別需要水質34は、上述した中水の各種用途で必要とされる水質である。この値は経時変化しない一定値として与えられる。   The demand-specific water quality 34 is a water quality required for various uses of the above-described middle water. This value is given as a constant value that does not change with time.

運転条件計算手段40によって、各水処理系列2−1〜2−4の最適な運転条件(運転パラメータ)、処理水分配装置5における混合条件、及び下水分配装置4の分配条件を計算するアルゴリズムの一例を、図2〜図4を参照して以下に説明する。   An algorithm for calculating the optimum operating conditions (operating parameters) of each of the water treatment series 2-1 to 2-4, the mixing conditions in the treated water distribution device 5, and the distribution conditions of the sewage distribution device 4 by the operating condition calculation means 40. An example will be described below with reference to FIGS.

いま、中水の用途A〜Cとして、工業用水、水洗便所洗浄水、農業用水の3種類が求められているとする。それぞれの中水の需要水量と需要水質及びその他の特徴事項を、図2のように仮定する。このような異なる需要水量と需要水質の用途に対し、運転条件計算手段40において、下水処理プラント1の運転条件を最適化する。ここで、それぞれの用途の需要水量と需要水質を満足するために、複数の水処理系列の処理水を混合して中水を製造する中水の融通も可能として運転条件を最適化する。   Now, it is assumed that three types of industrial water, flush toilet flush water, and agricultural water are required as the uses A to C of middle water. Suppose that the amount of demand water, the quality of demand water, and other features are as shown in FIG. The operating condition calculation means 40 optimizes the operating conditions of the sewage treatment plant 1 for such different demand water volume and demand water quality applications. Here, in order to satisfy the demand water amount and the demand water quality of each use, the operation condition is optimized by allowing the interchange of the intermediate water for producing intermediate water by mixing the treated water of a plurality of water treatment series.

水量と水質を考慮した適正な運転条件を求める手法として、解析的に最適解を導出する方法もあるが、次の理由(1)、(2)からここでは総当り法の適用について述べる。   There is also a method of analytically deriving an optimal solution as a method for obtaining an appropriate operating condition in consideration of the amount of water and water quality, but the application of the brute force method is described here for the following reasons (1) and (2).

(1)下水処理プロセスの運転量は秒や分のオーダーで値を変更するものではないため、瞬間的に解を求める必要性はない
(2)理論的に求めた解であっても、需要水質や需要水量のパターンによっては最適解を求められない可能性がある
総当り法を導入する際の計算手順は、図3のフローチャートに示したようになる。
(1) Since the operation amount of the sewage treatment process does not change the value on the order of seconds or minutes, there is no need to obtain a solution instantaneously. (2) Even if the solution is theoretically obtained, demand The optimal solution may not be obtained depending on the water quality and demand water volume patterns. The calculation procedure when introducing the brute force method is as shown in the flowchart of FIG.

すなわち、図3に示すように、流入下水量予測値31、流入下水水質予測値32、用途別需要水量33、用途別需要水質34を取り込み(S1)、流入下水量予測値31を水処理系列2―Nの系列に分配する(S2)。このとき、等分配を基本とするが、下水分配装置4を用いて系列毎の処理水量を変えた場合についても検討に含める。また、流入下水量予測値31の変動や用途別需要水量33などに合わせて、一定時間ごとに区切って処理水量の分配を設定することが可能であり、この場合は分配パターンとして認識できる。   That is, as shown in FIG. 3, the inflow sewage predicted value 31, the inflow sewage quality prediction value 32, the use-specific demand water amount 33, and the use-specific demand water quality 34 are captured (S 1), and the inflow sewage amount prediction value 31 is used as the water treatment series. Distribute to 2-N series (S2). At this time, it is based on equal distribution, but the case where the amount of treated water for each series is changed using the sewage distribution device 4 is also included in the examination. Moreover, according to the fluctuation | variation of the inflow sewage predicted value 31, the demand water amount 33 according to a use, etc., it is possible to set division | segmentation of a treated water amount for every fixed time, and it can recognize as a distribution pattern in this case.

次に、各系列Nの運転条件を操作可能な範囲内で変更し、それらを組み合わせた複数の運転パターンを設定する(S3)。次いで、設定された全運転パターンについて各運転パターンごとの各系列Nの処理水水質を水質計算モジュールにより求める(S4)。また、各運転パターンについて、使用電力量と薬剤使用量から成る運転費用(ユーティリティコスト)と、発生する汚泥量を求めておく。なお、夜間電力を導入している機場に対しては、その料金体系を反映してユーティリティコストを計算する。次に、総当り法を用い、用途別需要水量33と用途別需要水質34を満足するようなステップS3の運転パターンを探索する(S5)。この場合、各系列Nの処理水を単独で、又は混合することを含めて、用途別需要水量33と用途別需要水質34を満足する運転パターンも探索する。   Next, the operation conditions of each series N are changed within the operable range, and a plurality of operation patterns combining them are set (S3). Next, the quality of treated water of each series N for each operation pattern for all set operation patterns is obtained by the water quality calculation module (S4). In addition, for each operation pattern, an operation cost (utility cost) composed of the amount of power used and the amount of chemical used and the amount of sludge generated are obtained. In addition, the utility cost is calculated to reflect the charge system for the aircraft that has introduced nighttime electricity. Next, using the brute force method, an operation pattern in step S3 that satisfies the usage-specific demand water amount 33 and the usage-specific demand water quality 34 is searched (S5). In this case, an operation pattern that satisfies the usage-specific demand water amount 33 and the usage-specific demand water quality 34 is also searched for, including singly or mixing the treated water of each series N.

そして、用途別需要水量33と用途別需要水質34を満足する運転パターンのうち、ユーティリティコストが最小になる組合せと、排出汚泥量が最小になる組合せの最適な運転パターンを抽出する(S6)。以上のアルゴリズムによって、流入下水量予測値31及び流入下水水質予測値32の条件に対し、用途別需要水量33と用途別需要水質34を満足し、かつユーティリティコスト又は排出汚泥量を最小にする系列Nごとの最適な運転条件を求めることができる。   And the optimal operation pattern of the combination with which utility cost becomes the minimum and the combination with which the amount of discharged sludge becomes the minimum is extracted among the operation patterns which satisfy the demand-specific water quantity 33 and the usage-specific demand water quality 34 (S6). By the above algorithm, the demand water quantity 33 for each use and the demand water quality 34 for each use are satisfied with respect to the conditions of the inflow sewage predicted value 31 and the inflow sewage quality predicted value 32, and the utility cost or the amount of discharged sludge is minimized. Optimal operating conditions for each N can be obtained.

次いで、運転制御装置30は、最適な運転パターンの運転条件に従って、下水分配装置4に制御指令を出力して各水処理系列2−1〜2−4に下水を分配し、各水処理系列2−1〜2−4に運転制御指令を出力し、さらに処理水分配装置5に制御指令を出力して各水処理系列2−1〜2−4から排出される処理水を単独又は混合して、対応する中水貯留地6A〜6Cに供給させる。   Next, the operation control device 30 outputs a control command to the sewage distribution device 4 according to the operation conditions of the optimal operation pattern, distributes the sewage to each water treatment series 2-1 to 2-4, and each water treatment series 2 -1 to 2-4, an operation control command is output, and further, a control command is output to the treated water distribution device 5, and the treated water discharged from each water treatment series 2-1 to 2-4 is singly or mixed. , It is made to supply to the corresponding middle water storage areas 6A-6C.

上記実施例によりユーティリティコストが最小となるような最適な運転条件を計算した結果の一例を、図4と図5に示す。これらの例においては、図3のステップS2における運転条件の変更に係る一定時間を6時間としているが、これに限らず、30分、1時間など、より短い間隔で設定してもよい。   An example of the result of calculating the optimum operating condition that minimizes the utility cost according to the above embodiment is shown in FIGS. In these examples, the fixed time related to the change of the operating condition in step S2 in FIG. 3 is set to 6 hours, but is not limited thereto, and may be set at shorter intervals such as 30 minutes and 1 hour.

図4に示すように、流入下水量が変動し、工業用水の需要水量は一定である。また、水洗便所洗浄水は図示のように変動するものとしている。農業用水は時間的に変動しているが、図2に示した条件のとおり、1日単位で需要水量を供給することを前提としている。図示のように、工業用水と水洗便所洗浄水は、それぞれ系列1及び系列2の処理水を供給することで需要水量を確保できる。農業用水としての中水は、9時から21時までは系列3の処理水のみを供給し、21時から翌日9時までは水処理系列3の処理水に加えて、系列1及び系列2の処理水を混合して供給するべき計算結果が得られた。また、各時間帯における工業用水、水洗便所洗浄水及び農業用水の合計と、流入下水量との差は、系列4の処理及び他の系列の余剰水と合わせて放流水として河川等に放流される。   As shown in FIG. 4, the inflow sewage amount fluctuates and the demand water amount for industrial water is constant. The flush toilet flush water is assumed to fluctuate as shown in the figure. Agricultural water fluctuates over time, but it is assumed that the amount of demand water is supplied on a daily basis as shown in the conditions shown in FIG. As shown in the figure, the industrial water and the flush toilet flush water can secure the demand water amount by supplying the treated water of series 1 and series 2, respectively. The middle water used as agricultural water supplies only the treated water of Series 3 from 9:00 to 21:00. From 19:00 to 9:00 on the next day, in addition to the treated water of Water Treatment Series 3, The calculation result which should supply mixed water was obtained. In addition, the difference between the total amount of industrial water, flush toilet wash water and agricultural water in each time zone and the amount of inflow sewage is discharged into rivers, etc. as discharge water together with the treatment of series 4 and surplus water of other series. The

このように、本実施例のアルゴリズムを用いると、複数の系列の処理水を異なる用途の中水として供給する際の混合及び分配を適正化することができる。図4の値に従って、運転制御装置30は、下水分配装置4に制御指令を出力して各水処理系列2−1〜2−4に下水を分配するとともに、各水処理系列2−1〜2−4に運転制御指令を出力して各水処理系列の処理水水質を制御する。さらに、処理水分配装置5に制御指令を出力して各水処理系列2−1〜2−4から排出される処理水を単独又は混合して用途別需要水量33を満足するよう制御する。   Thus, when the algorithm of the present embodiment is used, mixing and distribution when supplying a plurality of series of treated water as middle water for different uses can be optimized. According to the values in FIG. 4, the operation control device 30 outputs a control command to the sewage distribution device 4 to distribute sewage to each of the water treatment series 2-1 to 2-4, and each water treatment series 2-1 to 2. The operation control command is output to -4 to control the quality of treated water in each water treatment series. Furthermore, a control command is output to the treated water distribution apparatus 5 and the treated water discharged from each of the water treatment series 2-1 to 2-4 is controlled individually or mixed so as to satisfy the demand-specific water amount 33.

図5は、各水処理系列2−1〜2−4の酸素供給用ブロワ14の散気量の出力結果である。図示のように、高度な水質が求められる工業用水を供給する系列1のブロワ散気量は、他の系列2、3、4のブロワ散気量に対して多い。一方、溶解性有機物や溶解性窒素、溶解性リンが残存していても問題がない農業用水を主に供給する系列3のブロワ散気量は、活性汚泥が沈降せず、かつ活性汚泥の死滅量が過多にならない程度に少なくすべき結果となった。このように、本実施例のアルゴリズムを用いると、各系列ごとに酸素供給用ブロワの散気量の適正値が運転制御指令として出力される。この値に従って、酸素供給用ブロワ14を操作することにより、各用途の中水の需要水質が満足されるように、各系列の運転が制御される。   FIG. 5 is an output result of the amount of air diffused from the oxygen supply blower 14 in each of the water treatment series 2-1 to 2-4. As shown in the figure, the amount of blower air diffused in the series 1 supplying industrial water that requires high water quality is larger than the amount of blower diffused in the other series 2, 3, and 4. On the other hand, the amount of blower aeration of Series 3, which mainly supplies agricultural water that does not cause any problems even if soluble organic matter, soluble nitrogen, and soluble phosphorus remain, is that activated sludge does not settle and dead activated sludge. The result should be as small as not excessive. Thus, when the algorithm of the present embodiment is used, an appropriate value of the amount of air diffused from the oxygen supply blower is output as an operation control command for each series. By operating the oxygen supply blower 14 according to this value, the operation of each series is controlled so that the demand water quality of the middle water in each application is satisfied.

以上、中水の混合量と酸素供給用ブロワ散気量の適正値の出力結果について説明したが、この他の運転条件、例えばポンプ流量や凝集剤の注入量、塩素注入量などに関しても同様の結果を出力として得ることができる。   As described above, the output result of the proper value of the mixing amount of the middle water and the blower aeration amount for supplying oxygen has been described, but the same applies to other operating conditions such as the pump flow rate, the flocculant injection amount, and the chlorine injection amount. The result can be obtained as output.

また、適正解の算出手法として、上記実施例では、総当り法を用いた場合の手順とその試算例に関して述べたが、この代わりに遺伝子アルゴリズムや最急降下法、モンテカルロ法を用いることができる。   Moreover, as a method for calculating a proper solution, in the above-described embodiment, the procedure using the brute force method and an example of the trial calculation have been described, but a genetic algorithm, a steepest descent method, and a Monte Carlo method can be used instead.

以上、説明したように、本実施例1によれば、下水処理プラントの運転制御装置30に運転条件計算手段40を設けることによって、中水のそれぞれの用途の需要水量と需要水質を満足し、かつユーティリティコストまたは排出汚泥量を最小とする運転が可能となる。   As described above, according to the first embodiment, by providing the operation condition calculation means 40 in the operation control device 30 of the sewage treatment plant, the amount of demand water and the quality of demand water for each use of the middle water are satisfied, In addition, operation that minimizes utility costs or discharged sludge is possible.

すなわち、中水には様々な用途が想定され、それぞれの用途に対して必要な水質は異なる。例えば、修景用水として中水を使う場合は十分に脱色及び脱臭されている必要があるが、農業用水として使う場合には脱色及び脱臭は完全でなくても良く、逆に有機物、溶解性リン及び窒素が残留していることが望まれることもあるから、それぞれに対応した水処理装置を設ける必要がある。   That is, various uses are assumed for middle water, and the water quality required for each use is different. For example, when medium water is used as landscape water, it must be sufficiently decolored and deodorized. However, when used as agricultural water, decolorization and deodorization may not be complete. In addition, since it may be desired that nitrogen remains, it is necessary to provide a water treatment apparatus corresponding to each.

しかし、本実施例のように、流入される原水を独立した複数の水処理系列に分配し、各水処理系列で処理された処理水を単独又は混合して複数の需要先の需要水量及び需要水質にそれぞれ適合した処理水を生成して各需要先に供給するようにすることにより、それぞれの用途に対して必要な水質を合理的に製造することができる。また、流入下水量や中水の需要水量の変動に対応して、複数の水処理系列を備えた水処理プラントの各に図処理系列の運転条件を変更することにより、効果的に需要に適した中水を製造することができる。   However, as in the present embodiment, the raw water that is introduced is distributed to a plurality of independent water treatment systems, and the treated water that has been treated in each water treatment system is used alone or in combination to obtain the demand water volume and demand of a plurality of customers. By generating treated water suitable for each water quality and supplying it to each customer, the water quality required for each application can be reasonably manufactured. In addition, in response to fluctuations in the amount of inflow sewage and demand for middle water, it can be effectively adapted to demand by changing the operating conditions of the diagram treatment series to each of the water treatment plants with multiple water treatment series. Water can be produced.

さらに、複数種類の中水を製造するにあたって、運転費用又は汚泥発生量を最小化することができる。   Furthermore, in producing a plurality of types of middle water, the operating cost or sludge generation amount can be minimized.

図6に、本発明の水処理方法を適用した他の実施例の下水処理プラントの系統構成を示す。図示のように、本実施例が図1の実施例と相違する点は、運転制御装置30の運転条件計算手段40の入力条件の一つとして、中水貯水池6A、6B、6Cの貯留量35を加えたことにある。つまり、本実施例は、中水貯水池6A、6B、6Cをバッファとして考慮することにより、需要水量への柔軟性が増すため、ユーティリティコストあるいは排出汚泥をさらに低減できる。   FIG. 6 shows a system configuration of a sewage treatment plant according to another embodiment to which the water treatment method of the present invention is applied. As shown in the figure, this embodiment differs from the embodiment of FIG. 1 in that the storage amount 35 of the middle water reservoirs 6A, 6B, 6C is one of the input conditions of the operation condition calculation means 40 of the operation control device 30. It is in having added. That is, in the present embodiment, the utility cost or the discharged sludge can be further reduced because the flexibility to the amount of demand water is increased by considering the middle water reservoirs 6A, 6B, and 6C as buffers.

本実施例の中水貯水池を含めて最適な運転条件を計算する際にも、総当り法、遺伝子アルゴリズム、モンテカルロ法は有効である。また、計算の手順は実施例1の場合と同様である。この計算結果としては、実施例1の運転条件の他に、貯留量の望ましい時間的推移が出力される。この時間的推移の計算結果に従い、処理水分配装置5の関係する弁やポンプを直接に操作することで、より効果的な下水処理プラントの運転が可能となる。   The brute force method, genetic algorithm, and Monte Carlo method are also effective in calculating the optimum operating conditions including the middle water reservoir of this embodiment. The calculation procedure is the same as in the first embodiment. As the calculation result, in addition to the operation conditions of the first embodiment, a desirable temporal transition of the storage amount is output. By operating directly the valves and pumps related to the treated water distribution device 5 according to the calculation result of the temporal transition, it becomes possible to operate the sewage treatment plant more effectively.

図7に、本発明の水処理方法を適用したさらに他の実施例の下水処理プラントの系統構成を示す。図示のように、本実施例が図1の実施例と相違する点は、運転条件計算手段40により得られた計算結果を表示手段36に表示するようにしたことにある。これにより、オペレータは、表示手段36に表示された運転条件等の計算結果を確認して、その運転条件等の妥当性を判断することができる。また、水処理分配装置5で分配された各用途の水について、各水処理系列21〜24の混合された比率を表示手段36へ出力し、運転結果の妥当性を判断できる。   FIG. 7 shows a system configuration of a sewage treatment plant of still another embodiment to which the water treatment method of the present invention is applied. As shown in the figure, the present embodiment is different from the embodiment of FIG. 1 in that the calculation result obtained by the operating condition calculation means 40 is displayed on the display means 36. As a result, the operator can check the calculation results such as the operating conditions displayed on the display means 36 and determine the validity of the operating conditions. Moreover, about the water of each use distributed with the water treatment distribution apparatus 5, the mixed ratio of each water treatment series 21-24 can be output to the display means 36, and the validity of an operation result can be judged.

本発明の水処理方法を適用した一実施例の下水処理プラントの系統構成である。It is a system configuration | structure of the sewage treatment plant of one Example to which the water treatment method of this invention is applied. 工業用水、水洗便所洗浄水、農業用水の需要水量及び需要水質の一例を示す図である。It is a figure which shows an example of the amount of demand water and the quality of demand water of industrial water, flush toilet water, agricultural water. 図1実施例の下水処理プラントの運転制御装置における運転条件計算の手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure of the operating condition calculation in the operation control apparatus of the sewage treatment plant of FIG. 1 Example. ユーティリティコストが最小となるような最適な運転条件を計算した結果として、各水処理系列の処理水量の時間変化と各水処理系列の処理水を混合して中水を製造する一例を示す図である。As a result of calculating optimum operating conditions that minimize utility costs, it is a diagram showing an example of producing intermediate water by mixing the time variation of the treated water amount of each water treatment series and the treated water of each water treatment series is there. ユーティリティコストが最小となるような最適な運転条件を計算した結果として、各水処理系列のブロワ散気量の時間変化の一例を示す図である。It is a figure which shows an example of the time change of the blower aeration quantity of each water treatment series as a result of calculating the optimal operating condition that the utility cost becomes the minimum. 本発明の水処理方法を適用した他の実施例の下水処理プラントの系統構成を示す図である。It is a figure which shows the system | strain structure of the sewage treatment plant of the other Example to which the water treatment method of this invention is applied. 本発明の水処理方法を適用したさらに他の実施例の下水処理プラントの系統構成を示す図である。It is a figure which shows the system | strain structure of the sewage treatment plant of the further another Example to which the water treatment method of this invention is applied.

符号の説明Explanation of symbols

1 下水処理プラント
2−1〜2−4 水処理系列
3 最初沈殿池
4 下水分配装置
5 処理水分配装置
6A、6B、6C 中水貯水池
7、8、9 中水
10 放流水
11 活性汚泥処理槽
12 最終沈殿池
13 オゾン処理槽
14 酸素供給用ブロワ
15 循環ポンプ
16 凝集剤貯留槽
17 凝集剤注入ポンプ
18 汚泥循環ポンプ
19 汚泥排出ポンプ
20 塩素貯留槽
21 塩素注入ポンプ
22 オゾン発生器
30 運転制御装置
31 流入下水量予測値
32 流入下水水質予測値
33 用途別需要水量
34 用途別需要水質
40 運転条件計算手段
DESCRIPTION OF SYMBOLS 1 Sewage treatment plant 2-1 to 2-4 Water treatment series 3 Initial sedimentation tank 4 Sewage distribution device 5 Treatment water distribution device 6A, 6B, 6C Middle water reservoir 7, 8, 9 Middle water 10 Effluent water 11 Activated sludge treatment tank DESCRIPTION OF SYMBOLS 12 Final sedimentation tank 13 Ozone treatment tank 14 Oxygen supply blower 15 Circulation pump 16 Coagulant storage tank 17 Coagulant injection pump 18 Sludge circulation pump 19 Sludge discharge pump 20 Chlorine storage tank 21 Chlorine injection pump 22 Ozone generator 30 Operation control device 31 Predicted value of inflow sewage 32 Predicted value of inflow sewage quality 33 Demand water quantity by use 34 Demand water quality by use 40 Operating condition calculation means

Claims (10)

流入される原水を独立した複数の水処理系列に分配し、各水処理系列で処理された処理水を混合して需要先の需要水量及び需要水質に適合した処理水を生成して各需要先に供給する水処理プラントの水処理方法。   Distribute the raw water that flows into multiple independent water treatment systems, and mix the treated water treated in each water treatment system to generate treated water that matches the demand water quantity and quality of the demand customer. Water treatment method for a water treatment plant that supplies water. 水処理プラントを運転制御する運転制御装置が、前記複数の水処理系列の運転費用と汚泥発生量の少なくとも一方を求め、前記各水処理系列の処理水量と処理水水質を、前記運転費用と前記汚泥発生量の少なくとも一方を最小とする値に定めることを特徴とする請求項1に記載の水処理プラントの水処理方法。   An operation control device that operates and controls the water treatment plant obtains at least one of the operation cost and sludge generation amount of the plurality of water treatment sequences, and treats the amount of treated water and the quality of the treated water, The water treatment method for a water treatment plant according to claim 1, wherein at least one of the sludge generation amounts is set to a value that minimizes the amount of sludge generation. 独立した複数の水処理系列の処理水を混合して需要先の需要水量と需要水質を満たす前記各水処理系列の処理水量と処理水水質とを設定し、該設定された前記各水処理系列の処理水量と処理水水質に基づいて前記各水処理系列の運転費用と汚泥発生量の少なくとも一方を算出し、算出した前記運転費用と前記汚泥発生量の少なくとも一方を最小とする前記各水処理系列の処理水量と処理水水質に基づいて前記各水処理系列を運転するとともに、前記各水処理系列の処理水を混合する水処理プラント運転制御装置の水処理方法。   Mixing the treated water of a plurality of independent water treatment series to set the amount of treated water and the quality of the treated water satisfying the demand water quantity and the demanded water quality of the demand destination, and setting each of the set water treatment series Each water treatment that calculates at least one of the operating cost and sludge generation amount of each water treatment series based on the treated water amount and the quality of treated water, and minimizes at least one of the calculated operating cost and sludge generation amount A water treatment method for a water treatment plant operation control device that operates each water treatment series based on the amount of treated water and the quality of the treated water and mixes the treated water of each water treatment series. 前記需要先に供給する処理水を一時的に貯留する貯水池を設け、該貯水池に貯留することを加味して、前記各水処理系列の処理水量を設定することを特徴とする請求項3に記載の水処理方法。   4. A reservoir for temporarily storing treated water to be supplied to the demand destination is provided, and the amount of treated water for each water treatment series is set in consideration of storing in the reservoir. Water treatment method. 前記各水処理系列は、活性汚泥処理とオゾン処理とを有してなり、前記運転費用は、前記活性汚泥処理の酸素を供給するブロワ、前記活性汚泥処理の処理水循環ポンプ、前記活性汚泥処理の汚泥循環ポンプ、余剰汚泥の排出ポンプ、凝集剤注入ポンプ、塩素注入ポンプ、オゾン発生器、薬剤費の少なくとも1つを含むことを特徴とする請求項3に記載の水処理方法。   Each of the water treatment series includes activated sludge treatment and ozone treatment, and the operation cost includes a blower for supplying oxygen for the activated sludge treatment, a treated water circulation pump for the activated sludge treatment, and an activated sludge treatment. 4. The water treatment method according to claim 3, comprising at least one of a sludge circulation pump, a surplus sludge discharge pump, a flocculant injection pump, a chlorine injection pump, an ozone generator, and a chemical cost. 前記混合による水について、前記水処理系列の混合された比率を表示手段へ出力することを特徴とする請求項3に記載の水処理方法。   The water treatment method according to claim 3, wherein the mixed ratio of the water treatment series is output to display means for the water by the mixing. 独立した複数の水処理装置と、流入される原水を前記複数の水処理装置に分配する原水分配装置と、前記複数の水処理装置の処理水を複数の需要先に分配する処理水分配装置と、前記原水分配装置と前記各水処理装置の運転条件と前記処理水分配装置を制御する運転制御装置とを備え、
前記運転制御装置は、前記原水の流入量予測値及び水質予測値と複数の需要先の需要水量及び需要水質とを入力し、前記原水を前記各水処理装置に分配する分配量と、該分配量ごとに前記各水処理装置の運転条件を変えた運転パターンを複数設定し、該運転パターンごとに前記各水処理装置の処理水水質を計算し、前記各水処理装置の処理水を混合して前記需要先の需要水量と需要水質を満たす運転パターンを抽出し、該抽出された運転パターンのうち前記複数の水処理装置の運転費用と汚泥発生量の少なくとも一方が最小の最適な運転パターンを求め、該最適な運転パターンに従って前記原水分配装置と前記各水処理装置の運転条件と前記処理水分配装置を制御する手段を備えてなる水処理プラント。
A plurality of independent water treatment devices, a raw water distribution device that distributes the incoming raw water to the plurality of water treatment devices, and a treated water distribution device that distributes the treated water of the plurality of water treatment devices to a plurality of customers. The raw water distribution device, the operation condition of each water treatment device and an operation control device for controlling the treated water distribution device,
The operation control device inputs the raw water inflow prediction value and the water quality prediction value, the demand water amount and the demand water quality of a plurality of demand destinations, a distribution amount for distributing the raw water to each water treatment device, and the distribution Set a plurality of operation patterns with different operating conditions for each water treatment device for each quantity, calculate the treated water quality of each water treatment device for each operation pattern, and mix the treated water of each water treatment device And extracting an operation pattern that satisfies the demand water amount and the demand water quality of the customer, and among the extracted operation patterns, an optimum operation pattern in which at least one of the operation cost and sludge generation amount of the plurality of water treatment devices is minimum A water treatment plant comprising means for controlling the raw water distribution device, the operating conditions of each water treatment device, and the treated water distribution device according to the optimum operation pattern.
前記処理水分配装置の下流側に前記需要先に供給する処理水を一時的に貯留する貯水池を設け、該貯水池に貯留することを加味して、前記各水処理系列の運転パターンを設定することを特徴とする請求項7に記載の水処理プラント。   A reservoir for temporarily storing treated water to be supplied to the demand destination is provided on the downstream side of the treated water distributor, and the operation pattern of each water treatment series is set in consideration of storing in the reservoir. The water treatment plant according to claim 7. 前記各水処理装置は、活性汚泥処理槽と最終沈殿池とオゾン処理槽とを有してなり、前記運転費用は、前記活性汚泥処理槽に酸素を供給するブロワ、前記活性汚泥処理槽の処理水循環ポンプ、前記活性汚泥処理槽の汚泥循環ポンプ、前記最終沈殿池の余剰汚泥の排出ポンプ、前記活性汚泥処理槽に凝集剤を注入する凝集剤注入ポンプ、前記最終沈殿池から排出される処理水に塩素を注入する塩素注入ポンプ、及びオゾン処理槽に注入するオゾンを発生するオゾン発生器のそれぞれに必要な電力費及び薬剤費の少なくとも1つを含むことを特徴とする請求項7に記載の水処理プラント。   Each of the water treatment devices has an activated sludge treatment tank, a final sedimentation basin, and an ozone treatment tank, and the operating cost includes a blower for supplying oxygen to the activated sludge treatment tank, and the treatment of the activated sludge treatment tank. A water circulation pump, a sludge circulation pump of the activated sludge treatment tank, a discharge pump of excess sludge in the final sedimentation tank, a flocculant injection pump for injecting a flocculant into the activated sludge treatment tank, and treated water discharged from the final sedimentation tank The apparatus according to claim 7, further comprising at least one of a power cost and a chemical cost required for a chlorine injection pump for injecting chlorine into the ozone treatment chamber and an ozone generator for generating ozone to be injected into the ozone treatment tank. Water treatment plant. 前記混合による水について、前記水処理系列の混合された比率を表示手段へ出力することを特徴とする請求項7に記載の水処理プラント。   The water treatment plant according to claim 7, wherein the mixed ratio of the water treatment series is output to display means for the water by the mixing.
JP2005107495A 2005-04-04 2005-04-04 Water treatment method and water treatment plant for water treatment plant Expired - Fee Related JP5039283B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005107495A JP5039283B2 (en) 2005-04-04 2005-04-04 Water treatment method and water treatment plant for water treatment plant
CNB2006100710294A CN100537444C (en) 2005-04-04 2006-03-31 Water treatment method of water treatment equipment and water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005107495A JP5039283B2 (en) 2005-04-04 2005-04-04 Water treatment method and water treatment plant for water treatment plant

Publications (2)

Publication Number Publication Date
JP2006281159A true JP2006281159A (en) 2006-10-19
JP5039283B2 JP5039283B2 (en) 2012-10-03

Family

ID=37076947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005107495A Expired - Fee Related JP5039283B2 (en) 2005-04-04 2005-04-04 Water treatment method and water treatment plant for water treatment plant

Country Status (2)

Country Link
JP (1) JP5039283B2 (en)
CN (1) CN100537444C (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183353A (en) * 2010-03-11 2011-09-22 Hitachi Ltd Wastewater treatment apparatus and oxygen feed rate control method therefor
JP2012106198A (en) * 2010-11-18 2012-06-07 Toshiba Corp Biological wastewater treatment apparatus
WO2015083782A1 (en) * 2013-12-05 2015-06-11 三菱重工業株式会社 Remote monitoring method and remote monitoring system of circulated water utilization system group
US9611161B2 (en) 2013-12-05 2017-04-04 Mitsubishi Hitachi Power Systems, Ltd. Circulating water utilization system
WO2017056696A1 (en) * 2015-09-28 2017-04-06 株式会社日立製作所 Water treatment system
US9783963B2 (en) 2013-12-05 2017-10-10 Mitsubishi Hitachi Power Systems, Ltd. Safety device for circulating water utilization system and circulating-water utilization system
JP2018111065A (en) * 2017-01-11 2018-07-19 巴工業株式会社 AI-controlled centrifuge
JP2018161601A (en) * 2017-03-24 2018-10-18 三菱日立パワーシステムズ株式会社 Condensed water treatment system
JP2020142205A (en) * 2019-03-07 2020-09-10 オルガノ株式会社 Waste water treatment control device, waste water treatment control method and program
CN112209517A (en) * 2020-10-21 2021-01-12 宝利化(南京)制药有限公司 Storage and distribution device of pharmaceutical water system
US10997673B2 (en) 2013-12-05 2021-05-04 Wota Group Llc Charging device of circulating water utilization system and circulating-water utilization system
JP7596807B2 (en) 2021-01-18 2024-12-10 栗田工業株式会社 Water Treatment Systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9551982B2 (en) 2013-04-26 2017-01-24 Kabushiki Kaisha Toshiba Water treatment control apparatus and water treatment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554076A (en) * 1978-10-17 1980-04-21 Toshiba Corp Sewage inflow quantity distribution control
JPH11319797A (en) * 1998-05-19 1999-11-24 Meidensha Corp Mixed treatment water quality controller and its control

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10338958A (en) 1997-06-06 1998-12-22 Inax Corp Ozonized water supply device
JP2002275959A (en) * 2001-03-21 2002-09-25 Bogenpfeil:Kk Method for detecting cross connection of water supply system for clean water and reclaimed water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554076A (en) * 1978-10-17 1980-04-21 Toshiba Corp Sewage inflow quantity distribution control
JPH11319797A (en) * 1998-05-19 1999-11-24 Meidensha Corp Mixed treatment water quality controller and its control

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183353A (en) * 2010-03-11 2011-09-22 Hitachi Ltd Wastewater treatment apparatus and oxygen feed rate control method therefor
JP2012106198A (en) * 2010-11-18 2012-06-07 Toshiba Corp Biological wastewater treatment apparatus
US10315930B2 (en) 2013-12-05 2019-06-11 Mitsubishi Hitachi Power Systems, Ltd. Method and system for remotely monitoring a group of circulating-water utilization systems
WO2015083782A1 (en) * 2013-12-05 2015-06-11 三菱重工業株式会社 Remote monitoring method and remote monitoring system of circulated water utilization system group
US9611161B2 (en) 2013-12-05 2017-04-04 Mitsubishi Hitachi Power Systems, Ltd. Circulating water utilization system
US10997673B2 (en) 2013-12-05 2021-05-04 Wota Group Llc Charging device of circulating water utilization system and circulating-water utilization system
US9783963B2 (en) 2013-12-05 2017-10-10 Mitsubishi Hitachi Power Systems, Ltd. Safety device for circulating water utilization system and circulating-water utilization system
WO2017056696A1 (en) * 2015-09-28 2017-04-06 株式会社日立製作所 Water treatment system
JP2017064568A (en) * 2015-09-28 2017-04-06 株式会社日立製作所 Water treatment system
JP2018111065A (en) * 2017-01-11 2018-07-19 巴工業株式会社 AI-controlled centrifuge
JP2021184992A (en) * 2017-01-11 2021-12-09 巴工業株式会社 Centrifugal separation device with ai control system
JP7236190B2 (en) 2017-01-11 2023-03-09 巴工業株式会社 AI-controlled centrifuge
JP2023053416A (en) * 2017-01-11 2023-04-12 巴工業株式会社 Centrifugal separator of ai control system
JP7457174B2 (en) 2017-01-11 2024-03-27 巴工業株式会社 AI-controlled centrifugal separator
JP2018161601A (en) * 2017-03-24 2018-10-18 三菱日立パワーシステムズ株式会社 Condensed water treatment system
JP2020142205A (en) * 2019-03-07 2020-09-10 オルガノ株式会社 Waste water treatment control device, waste water treatment control method and program
JP7130579B2 (en) 2019-03-07 2022-09-05 オルガノ株式会社 Waste liquid treatment control device, waste liquid treatment control method and program
CN112209517A (en) * 2020-10-21 2021-01-12 宝利化(南京)制药有限公司 Storage and distribution device of pharmaceutical water system
JP7596807B2 (en) 2021-01-18 2024-12-10 栗田工業株式会社 Water Treatment Systems

Also Published As

Publication number Publication date
CN1847169A (en) 2006-10-18
CN100537444C (en) 2009-09-09
JP5039283B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
CN100537444C (en) Water treatment method of water treatment equipment and water treatment equipment
Robinson Landfill leachate treatment
Zhang et al. Distributed economic model predictive control of wastewater treatment plants
US5902484A (en) Method and system for treatment of water and wastewater
CN101522579B (en) Ozonation of wastewater for reduction of sludge or foam and bulking control
Kraemer et al. A practitioner’s perspective on the application and research needs of membrane bioreactors for municipal wastewater treatment
Ge et al. Full-scale demonstration of step feed concept for improving an anaerobic/anoxic/aerobic nutrient removal process
SK500412015U1 (en) Method and apparatus for waste water treatment by activation process with increased nitrogen and phosphorus removal
Yoon Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero excess sludge production
Liberman et al. Use of MBR to sustain active biomass for treatment of low organic load grey water
Chachuat et al. Dynamic optimisation of small size wastewater treatment plants including nitrification and denitrification processes
US11827550B2 (en) Simultaneous nitrification/denitrification (SNDN) in sequencing batch reactor applications
JP2003300093A (en) Operation support system and control system for water treatment process
Middlebrooks et al. Energy requirement for small wastewater treatment systems
JP5612005B2 (en) Water treatment system and water treatment method
JP2006136866A (en) Control unit for sewage disposal plant
Nabi Bidhendi et al. Water and wastewater minimization in Tehran oil refinery using water pinch analysis
Zairi et al. Optimisation of the energy consumption in activated sludge treatment plants using simulation model
Luccarini et al. Investigation of the potential energy saving in a pilot-scale sequencing batch reactor
Saagi et al. Model-based evaluation of a full-scale wastewater treatment plant for future influent and operational scenarios
Fdz-Polanco et al. Present and perspectives of anaerobic treatment of domestic sewage
JP7437144B2 (en) water treatment plant
JP5760182B2 (en) Organic waste water treatment apparatus and organic waste water treatment method
JP2008194631A (en) Sludge treatment method
Fouad et al. Upgrade of a large scale oxidation ditch plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5039283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees