[go: up one dir, main page]

JP2006278172A - Separator material for fuel sell - Google Patents

Separator material for fuel sell Download PDF

Info

Publication number
JP2006278172A
JP2006278172A JP2005096469A JP2005096469A JP2006278172A JP 2006278172 A JP2006278172 A JP 2006278172A JP 2005096469 A JP2005096469 A JP 2005096469A JP 2005096469 A JP2005096469 A JP 2005096469A JP 2006278172 A JP2006278172 A JP 2006278172A
Authority
JP
Japan
Prior art keywords
film
thickness
fuel cell
base material
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005096469A
Other languages
Japanese (ja)
Inventor
Ikuya Kurosaki
郁也 黒▲崎▼
Kazuhiko Fukamachi
一彦 深町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2005096469A priority Critical patent/JP2006278172A/en
Publication of JP2006278172A publication Critical patent/JP2006278172A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator material for a fuel cell reconciling sufficient corrosion resistance with conductivity by using a base material excellent in corrosion resistance and by forming a thinner film of noble metal. <P>SOLUTION: The separator material for the fuel cell, composed of one or not less than two kinds of components selected from Pt, Pd, Rh, and Ru, has a thickness of not less than 10 nm, and formed on a base material made of titanium. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体高分子電解質型燃料電池用金属セパレータに用いられる材料に関する。   The present invention relates to a material used for a metal separator for a solid polymer electrolyte fuel cell.

固体高分子電解質型燃料電池用セパレータは、複数の単セルが積層された燃料電池スタックを構成する部材であって、十分なガス不透過性と、セル同士を導通するための電気伝導性が必要である。さらには、酸雰囲気に対して高い耐食性も要求される。従来、このような燃料電池用ガスセパレータは、炭素材料あるいは金属材料が用いられてきた。炭素材料は、金属材料よりも強度が低いため、薄くすることが困難であり、また、加工費が高いために、近年は、金属材料が広く検討されている。   A solid polymer electrolyte fuel cell separator is a member that constitutes a fuel cell stack in which a plurality of single cells are stacked, and requires sufficient gas impermeability and electrical conductivity for electrical connection between cells. It is. Furthermore, high corrosion resistance is also required for the acid atmosphere. Conventionally, carbon materials or metal materials have been used for such fuel cell gas separators. Since the carbon material has a lower strength than the metal material, it is difficult to reduce the thickness, and the processing cost is high, so in recent years, the metal material has been widely studied.

燃料電池用ガスセパレータとして用いる材料に必要な特性は種々あるが、特に金属材料を用いる場合の問題点は、耐食性と導電性の両立である。   There are various characteristics required for materials used as gas separators for fuel cells, but the problem particularly when using metal materials is compatibility between corrosion resistance and conductivity.

耐食性の付与に着目して、基材上に窒化物の保護層を被覆する技術(特許文献1)が、また、導電性と耐食性を両立させる手法として、ステンレスなどの基材上にAuめっき層を成膜する技術(特許文献2、3)が開示されている。   Focusing on the provision of corrosion resistance, a technique for coating a nitride protective layer on a base material (Patent Document 1) is another technique for achieving both conductivity and corrosion resistance. (Patent Documents 2 and 3) are disclosed.

さらに、金属基材上に低電気抵抗層、耐食性層、耐剥離性層のうち2層以上からなる多層構造を厚み120nm以上形成して必要な特性を達成する技術(特許文献4)が開示されている。   Furthermore, a technique (Patent Document 4) is disclosed in which a multilayer structure composed of two or more layers of a low electrical resistance layer, a corrosion resistance layer, and a peel resistance layer is formed on a metal substrate to achieve a required characteristic by forming a thickness of 120 nm or more. ing.

特開2000−353531号公報JP 2000-353531 A 特開1998−228914号公報JP 1998-228914 A 特開2001−6713号公報JP 2001-6713 A 特開2000−164228号公報JP 2000-164228 A

しかしながら、基材上に窒化物を形成する場合は、耐食性は得られるものの十分な導電性が得らない。また、ステンレスなどの基材上にAuめっきを施す場合は、導電性は得られるものの0.01μm程度の薄い成膜では微小欠陥の発生が避けられないために耐食性が悪く、これを避けるためにAuめっきを厚く成膜する方法も考えられるが、コストの観点から工業的に実用的ではない。
一方、耐食性と導電性を両立させるために種々の機能を有する多層膜構造とする場合は、材料の加工性、コストの観点から、工業的実用化に困難が伴う。
本発明は、かかる問題点を解決するためになされたものであり、耐食性に優れた基材を用い、さらに薄い貴金属を成膜することで、十分な耐食性と導電性を両立する燃料電池のセパレータ用材料を提供することを目的とする。
However, when forming a nitride on a substrate, corrosion resistance is obtained but sufficient conductivity is not obtained. In addition, when Au plating is performed on a base material such as stainless steel, although conductivity is obtained, the occurrence of minute defects is unavoidable in thin film formation of about 0.01 μm, so the corrosion resistance is poor. Although a method of forming a thick Au plating is also conceivable, it is not industrially practical from the viewpoint of cost.
On the other hand, in the case of a multilayer film structure having various functions in order to achieve both corrosion resistance and conductivity, it is difficult to achieve industrial practical use from the viewpoint of workability and cost of the material.
The present invention has been made to solve such problems, and is a fuel cell separator that achieves both sufficient corrosion resistance and conductivity by forming a thin noble metal film using a substrate having excellent corrosion resistance. The purpose is to provide materials.

本発明者らは、前記耐食性と導電性を両立する技術を鋭意検討した結果、セパレータの基材の耐食性はステンレスレベルでは不十分であり、より耐食性に優れるチタンを用い、さらに、必要な導電率を得るために基材上にPt、Pd、Rh、Ruのうち1種もしくは2種以上を薄く成膜することが有効であることを見出した。この場合、成膜元素であるPt、Pd、Rh、Ruは、単独でも優れた耐食性を示すが、チタンと合金化することで、より強固な耐食層を形成するため、耐食性の付与に非常に有効である。また、基材の表面粗さを一定範囲とし、基材上にPt、Pd、Rh、Ruのうち1種もしくは2種以上を成膜する、あるいは、成膜後に圧延や熱処理で基材と成膜材の密着性をより強くすることが、耐食性と導電率を両立するためにより有効であることを見出した。
ここで、チタン基材については、基材の最表層部分が純チタンと同等レベル以上の耐食性が得られれば良く、チタン合金、あるいは純チタンやチタン合金のクラッド材などを用いることも可能である。
As a result of earnestly examining the technology for achieving both the corrosion resistance and the conductivity, the present inventors have found that the corrosion resistance of the separator base material is insufficient at the stainless steel level, and uses titanium that is more excellent in corrosion resistance. In order to obtain the above, it has been found that it is effective to thinly form one or more of Pt, Pd, Rh, and Ru on the substrate. In this case, Pt, Pd, Rh, and Ru, which are film forming elements, exhibit excellent corrosion resistance by themselves, but forming a stronger corrosion-resistant layer by alloying with titanium makes it extremely effective in imparting corrosion resistance. It is valid. Also, the surface roughness of the base material is set within a certain range, and one or more of Pt, Pd, Rh, and Ru are formed on the base material, or the base material is formed by rolling or heat treatment after the film formation. It has been found that strengthening the adhesion of the film material is more effective for achieving both corrosion resistance and electrical conductivity.
Here, as for the titanium base material, it is only necessary that the outermost layer portion of the base material has a corrosion resistance equal to or higher than that of pure titanium, and it is also possible to use a titanium alloy or a clad material of pure titanium or titanium alloy. .

すなわち、本発明は、
(1)組成がPt、Pd、Rh、Ruのうち1種もしくは2種以上よりなり、厚みが10nm以上で、チタン基材上に成膜したことを特徴とする燃料電池のセパレータ用材料、
(2)組成がPt、Pd、Rh、Ruのうち1種もしくは2種以上よりなり、厚みが10nm以上で、厚みが90μm以下のチタン基材上に成膜したことを特徴とする燃料電池のセパレータ用材料、
(3)組成がPt、Pd、Rh、Ruのうち1種もしくは2種以上よりなり、厚みが10nm以上で、表面粗さRaが0.2〜2.0μmであり、チタン基材上に成膜したことを特徴とする燃料電池のセパレータ用材料。
(4)蒸着、スパッタなどの乾式工程で成膜したことを特徴とする、上記(1)〜(3)に記載の燃料電池のセパレータ用材料。
(5)上記(1)〜(4)に記載の複合材を圧延加工度0.1〜40%で圧延加工することを特徴とする燃料電池のセパレータ用材料。
(6)上記(1)〜(5)に記載の複合材を温度800〜1000℃、熱処理時間5分以上で熱処理することを特徴とする燃料電池のセパレータ用材料。
(7)チタン基材上の成膜層がPt、Pd、Rh、Ruのうち1種又は2種以上とチタン基材との合金層であり、その厚みが10nm以上であることを特徴とする燃料電池のセパレータ用材料、
である。
That is, the present invention
(1) A material for a fuel cell separator, wherein the composition is one or more of Pt, Pd, Rh, and Ru, the thickness is 10 nm or more, and a film is formed on a titanium substrate.
(2) A fuel cell comprising a titanium substrate having a composition of one or more of Pt, Pd, Rh, and Ru, a thickness of 10 nm or more, and a thickness of 90 μm or less. Separator material,
(3) The composition is one or more of Pt, Pd, Rh, and Ru, the thickness is 10 nm or more, the surface roughness Ra is 0.2 to 2.0 μm, and the composition is formed on a titanium substrate. A fuel cell separator material, characterized by being formed into a film.
(4) The fuel cell separator material as described in (1) to (3) above, which is formed by a dry process such as vapor deposition or sputtering.
(5) A material for a fuel cell separator, wherein the composite material according to (1) to (4) is rolled at a rolling degree of 0.1 to 40%.
(6) A fuel cell separator material, wherein the composite material according to (1) to (5) is heat-treated at a temperature of 800 to 1000 ° C. and a heat treatment time of 5 minutes or more.
(7) The film-forming layer on the titanium substrate is an alloy layer of one or more of Pt, Pd, Rh, and Ru and the titanium substrate, and the thickness thereof is 10 nm or more. Fuel cell separator material,
It is.

基材にチタンを用い、これに組成がPt、Pd、Rh、Ruのうち1種もしくは2種以上からなる薄い成膜を形成することで、耐食性と導電性を併せ持った燃料電池のセパレータ用材料を提供することができる。   A material for a fuel cell separator having both corrosion resistance and conductivity by using titanium as a base material and forming a thin film of one or more of Pt, Pd, Rh, and Ru in the composition. Can be provided.

以下に限定の理由を説明する。
(1)基材と成膜元素
本発明では、基材上に導電性と耐食性に優れた成膜を形成し、燃料電池用のセパレータとして使用するが、成膜材料は高価であり、コストの観点からは、膜厚を薄くする必要が生じる。成膜層が薄くなると、ピットなどの微細な欠陥が発生しやすくなり、この欠陥部を通して基材が直接腐食環境にさらされることとなるため、基材には十分な耐食性が必要である。上記の腐食環境では、セパレータ基材としてステンレスの耐食性では不十分であり、より耐食性に優れた材料が必須となる。
基材にチタン、成膜層にPt、Pd、Rh、Ruを用いると、チタンには耐食性、Pt、Pd、Rh、Ruには耐食性と導電性を併せ持つと共に、チタンとPt、Pd、Rh、Ruが合金化することで、上記の腐食環境にも対応可能なより強固な耐食性が付与される。
従って、基材にはチタン、成膜層にはPt、Pd、Rh、Ruを用いた。
The reason for limitation will be described below.
(1) Substrate and film-forming element In the present invention, a film having excellent conductivity and corrosion resistance is formed on the substrate and used as a separator for a fuel cell. However, the film-forming material is expensive, and the cost is low. From the viewpoint, it is necessary to reduce the film thickness. When the film formation layer becomes thin, fine defects such as pits are likely to be generated, and the base material is directly exposed to a corrosive environment through the defective portion. Therefore, the base material needs to have sufficient corrosion resistance. In the above corrosive environment, the corrosion resistance of stainless steel as a separator substrate is insufficient, and a material with more excellent corrosion resistance is essential.
When titanium is used for the substrate and Pt, Pd, Rh, Ru is used for the film formation layer, titanium has corrosion resistance, Pt, Pd, Rh, Ru has both corrosion resistance and conductivity, and titanium and Pt, Pd, Rh, When Ru is alloyed, stronger corrosion resistance that can cope with the above-described corrosive environment is provided.
Therefore, titanium was used for the base material, and Pt, Pd, Rh, and Ru were used for the film formation layer.

(2)基材の厚さ
実用性の観点から電池の体積当たりの発電量を考慮すると、燃料電池の小型化は必須であり、これに寄与するセパレータには基材の薄肉化が求められる。現在実用化されているセパレータを考慮すると、その厚さは90μm以下が求められるため、その上限を90μmとした。
(2) Thickness of base material Considering the amount of power generation per volume of the battery from the viewpoint of practicality, it is essential to reduce the size of the fuel cell, and a separator that contributes to this requires a thin base material. Considering a separator that is currently in practical use, the thickness is required to be 90 μm or less, so the upper limit was set to 90 μm.

(3)成膜層の厚さ
セパレータが十分な導電性を得るためには、成膜層を高導電率にする必要があり、その厚みの下限は10nmである。一方、厚みの上限については、技術的な制限はない。しかしながら、成膜成分であるPt、Pd、Rh、Ruは高価な貴金属であり、コストを考慮して100nm以下とすることが好ましい。
(3) Thickness of film forming layer In order for the separator to obtain sufficient conductivity, the film forming layer needs to have high conductivity, and the lower limit of the thickness is 10 nm. On the other hand, there is no technical limitation on the upper limit of the thickness. However, Pt, Pd, Rh, and Ru, which are film forming components, are expensive noble metals and are preferably set to 100 nm or less in consideration of cost.

(4)基材の表面粗さ
チタン基材の表面粗さは、基材上の成膜層との密着性に大きく影響する。基材の表面粗さRaが0.2μm未満では、燃料電池用セパレータの腐食環境下での密着性が不十分なため下限値を0.2μmとした。また、表面粗さRaが2.0μmを超えると、厚さが薄い成膜層において均一な厚さで成膜することが困難となるため、その上限を2.0μmとした。
(4) Surface roughness of base material The surface roughness of the titanium base material greatly affects the adhesion with the film-forming layer on the base material. When the surface roughness Ra of the substrate is less than 0.2 μm, the adhesion of the fuel cell separator in a corrosive environment is insufficient, so the lower limit is set to 0.2 μm. Further, if the surface roughness Ra exceeds 2.0 μm, it is difficult to form a film with a uniform thickness in a thin film-forming layer, so the upper limit was set to 2.0 μm.

(5)複合材の圧延加工度
チタン基材上に組成がPt、Pd、Rh、Ruのいずれか1種もしくは2種以上を成膜した後に実施する圧延加工は、基材と成膜材の密着性を向上させることが目的である。密着性は、低圧下率(低加工度)でも改善がみられ、その下限値は0.1%である。また、加工度が高くなりすぎると、成膜層が薄くなり過ぎて導電性が損なわれるため、上限値を40%とした。
(5) Rolling degree of composite material The rolling process carried out after depositing one or more of Pt, Pd, Rh, and Ru on the titanium base material is carried out between the base material and the film forming material. The purpose is to improve adhesion. The adhesiveness is improved even at a low pressure reduction rate (low processing degree), and the lower limit is 0.1%. Further, if the degree of processing becomes too high, the film formation layer becomes too thin and the conductivity is impaired, so the upper limit was made 40%.

(6)熱処理
チタン基材上にPt、Pd、Rh、Ruのいずれか1種もしくは2種以上を成膜した後に実施する熱処理では、基材と成膜材の金属間化合物を生成させることで密着性を向上させることが目的である。温度が低い場合には、金属原子の拡散速度が遅く、金属間化合物の生成に時間がかかるため、温度の下限は800℃とした。また、温度が高くなると、極薄い成膜層が短時間に金属間化合物を生成することから、金属間化合物層の厚みを制御することが困難となる。そのため、上限温度を1000℃とした。なお、加熱時間は温度により変わるが、5分以上で目的の達成が可能である。
(6) Heat treatment In the heat treatment performed after depositing one or more of Pt, Pd, Rh, and Ru on a titanium substrate, an intermetallic compound of the substrate and the film-forming material is generated. The purpose is to improve adhesion. When the temperature is low, the diffusion rate of metal atoms is slow, and it takes time to generate an intermetallic compound, so the lower limit of the temperature was set to 800 ° C. Further, when the temperature is increased, an extremely thin film-forming layer generates an intermetallic compound in a short time, so that it becomes difficult to control the thickness of the intermetallic compound layer. Therefore, the upper limit temperature was set to 1000 ° C. The heating time varies depending on the temperature, but the object can be achieved in 5 minutes or more.

(1)実施例1
板厚60μmのチタンあるいはSUS316をアセトンで超音波洗浄、酸素ガスプラズマ照射前処理の後に、スパッタリングによりPt、Pd、Rh、Ruについて膜厚を5〜1000nmの成膜を形成させた。なお、基材の表面粗さは、最終圧延のロール粗さを調整することにより、0.8〜1.2μmとした。
このようにして作製した各貴金属で成膜したチタン箔の硫酸浸漬後の接触抵抗、チタン溶出量を以下の条件で調査した。
(1) Example 1
Titanium or SUS316 having a thickness of 60 μm was ultrasonically cleaned with acetone and pretreated with oxygen gas plasma irradiation, and a film having a thickness of 5 to 1000 nm was formed by sputtering on Pt, Pd, Rh, and Ru. The surface roughness of the base material was adjusted to 0.8 to 1.2 μm by adjusting the roll roughness of the final rolling.
The contact resistance after the sulfuric acid immersion of the titanium foil formed into a film with each noble metal thus prepared and the amount of titanium elution were investigated under the following conditions.

接触抵抗
山崎試験機製:電気接点シミレータ CRS−1
プローブ:金
接圧:10gf
側定数:400点
Contact resistance <br/> Made by Yamazaki Tester: Electric contact simulator CRS-1
Probe: Gold contact pressure: 10 gf
Side constant: 400 points

硫酸浸漬試験
溶液:硫酸 5%
温度:80℃
液量:5cc
供試材:10×50mm 浸漬
浸漬時間:〜30日
測定方法:ICP分析にてTi基材はTi、SUS316基材はFeイオンを定量
Sulfuric acid immersion test Solution: Sulfuric acid 5%
Temperature: 80 ° C
Liquid volume: 5cc
Specimen: 10 × 50 mm Immersion immersion time: ˜30 days Measurement method: Ti base material is Ti and SUS316 base material is Fe ion determined by ICP analysis

Figure 2006278172
Figure 2006278172

発明例No.1〜7は、セパレータの基材としてTiを用いており、基材上のPt、Pd、Rh、Ru成膜層の厚さが10nm以上となっており、接触抵抗が20mΩ以下と導電性が良好で、さらに、硫酸浸漬後30日間で溶出したTi濃度は1mg/L未満となっており、耐食性も良好である。
一方、比較例No.8は、基材にTiを使用しており、耐食性は良好であるが、Pt成膜層の厚さが5nmと小さいために、接触抵抗が100mΩを超えており、導電性が悪い。
比較例No.9、10、11は、Pt成膜層の厚さが10nm以上であるために接触抵抗が20mΩ以下で良好であるが、基材にSUS316を用いており、30日間浸漬後のFe溶出量がいずれも1000mg/Lを超えているため、耐食性が悪い。
また、比較例No.12は、接触抵抗が20mΩ以下で良好であり、さらに、基材にSUS316を用いているにもかかわらず、30日間浸漬後のFe溶出量がいずれも12mg/Lと良好であるが、Pt成膜層の厚さが1000nmであり、工業的にはコストが高いために、実用化は困難である。
Invention Example No. Nos. 1 to 7 use Ti as the base material of the separator, the thickness of the Pt, Pd, Rh, and Ru film formation layer on the base material is 10 nm or more, and the contact resistance is 20 mΩ or less and the conductivity is high. Further, the Ti concentration eluted in 30 days after immersion in sulfuric acid is less than 1 mg / L, and the corrosion resistance is also good.
On the other hand, Comparative Example No. No. 8 uses Ti as a base material and has good corrosion resistance. However, since the thickness of the Pt film-forming layer is as small as 5 nm, the contact resistance exceeds 100 mΩ and the conductivity is poor.
Comparative Example No. 9, 10 and 11 have good contact resistance of 20 mΩ or less because the thickness of the Pt film-forming layer is 10 nm or more, but SUS316 is used for the base material, and the amount of Fe elution after immersion for 30 days is Since both exceed 1000 mg / L, corrosion resistance is bad.
Comparative Example No. No. 12 is good with a contact resistance of 20 mΩ or less, and even though SUS316 is used as the base material, the Fe elution amount after immersion for 30 days is as good as 12 mg / L. Since the thickness of the film layer is 1000 nm and the cost is industrially high, practical application is difficult.

(2)実施例2
最終圧延の圧延ロール粗さを調整して、表面粗さの異なる板厚60μmのチタン箔を作製した。これを実施例1と同様の方法でPtを膜厚10nm成膜し、実施例1と同じ硫酸浸漬試験を30日間実施後に純水で洗浄、乾燥して接触抵抗を測定した。
(2) Example 2
The rolling roll roughness of final rolling was adjusted to produce a titanium foil having a thickness of 60 μm and different surface roughness. A Pt film having a thickness of 10 nm was formed in the same manner as in Example 1, and the same sulfuric acid immersion test as in Example 1 was carried out for 30 days, followed by washing with pure water and drying to measure contact resistance.

Figure 2006278172
Figure 2006278172

発明例No.1〜4では、基材であるチタンの表面粗さ:Raが0.2μm〜2.0μmと請求項の範囲であり、30日間硫酸浸漬前後の接触抵抗にほとんど変化は見られず、Ptの剥離は見られない。
一方、比較例No.5、6では、基材であるチタンの表面粗さRaが0.2μm未満となっており、硫酸浸漬前の接触抵抗は良好であるが、30日間硫酸浸漬後の接触抵抗は大きくなっており、Ptの剥離が見られる。
Invention Example No. 1-4, the surface roughness of titanium as a base material: Ra is in the range of claims from 0.2 μm to 2.0 μm, and there is almost no change in contact resistance before and after sulfuric acid immersion for 30 days. No peeling is seen.
On the other hand, Comparative Example No. In 5 and 6, the surface roughness Ra of titanium as a base material is less than 0.2 μm, and the contact resistance before sulfuric acid immersion is good, but the contact resistance after 30 days sulfuric acid immersion is large. Pt peeling is observed.

また、比較例No.7、8では、基材であるチタンの表面粗さRaが2.0μmを超えており、硫酸浸漬前の接触抵抗が20mΩを超えている。これは、基材の表面粗さが大きすぎるために成膜層の厚さが一部で不均一となり、部分的に成膜層が薄くなっているためである。これは、基材の表面粗さが大きくなるほど影響が強くなり、このため、比較例No.7よりも比較例No.8の方が、さらに接触抵抗が増大した。 Comparative Example No. 7 and 8, the surface roughness Ra of titanium as a base material exceeds 2.0 μm, and the contact resistance before immersion in sulfuric acid exceeds 20 mΩ. This is because the surface roughness of the base material is too large, the thickness of the film formation layer is partially uneven, and the film formation layer is partially thinned. This has a stronger effect as the surface roughness of the base material increases. Comparative example no. In the case of 8, contact resistance further increased.

(3)実施例3
板厚60μmのチタン基材を実施例1と同様の方法でPtを20nm成膜した後、圧延した。これを実施例1と同じ硫酸浸漬試験を30日間実施後に純水で洗浄、乾燥して接触抵抗を測定した。なお、基材の表面粗さRaは0.2μm未満とした。
(3) Example 3
A titanium substrate having a thickness of 60 μm was formed into a 20-nm thick Pt film by the same method as in Example 1, and then rolled. This was subjected to the same sulfuric acid immersion test as in Example 1 for 30 days, then washed with pure water and dried to measure contact resistance. Note that the surface roughness Ra of the substrate was less than 0.2 μm.

Figure 2006278172
Figure 2006278172

発明例No.1〜3では、チタン基材上にPtを成膜後の圧延加工度が0.1〜40%と請求項の範囲であり、30日間硫酸浸漬前後の接触抵抗に変化は見られず、Ptの剥離は見られない。
一方、比較例No.4では、チタン基材上にPtを成膜後圧延加工しておらず、硫酸浸漬前の接触抵抗は良好であるが、30日間硫酸浸漬後の接触抵抗は大きくなっており、Ptの剥離が見られる。
Invention Example No. 1 to 3, the rolling degree after film formation of Pt on the titanium substrate is in the range of 0.1 to 40%, and there is no change in the contact resistance before and after immersion in sulfuric acid for 30 days. No peeling is observed.
On the other hand, Comparative Example No. In No. 4, Pt was not rolled after forming a film on a titanium substrate, and the contact resistance before sulfuric acid immersion was good, but the contact resistance after 30 days of sulfuric acid immersion was large, and Pt was peeled off. It can be seen.

また、比較例No.5では、チタン基材上にPtを成膜後の圧延加工度が0.05%と請求項の下限値未満となっており、基材と成膜層の成膜層の密着性が不十分なため、30日間硫酸浸漬後の接触抵抗は大きくなっており、Ptの剥離が見られる。
比較例No.6では、チタン基材上にPtを成膜後の圧延加工度が42%と請求項の上限を超えており、30日間硫酸浸漬前後の接触抵抗に大きな差異は見られないが、浸漬前の抵抗値が既に20mΩを超えており、成膜層の一部がより薄くなることで接触抵抗が増大した。
Comparative Example No. 5, the degree of rolling after forming Pt on the titanium base material is 0.05%, which is less than the lower limit of the claims, and the adhesion between the base material and the film forming layer is insufficient. Therefore, the contact resistance after 30 days of sulfuric acid immersion is increased, and Pt peeling is observed.
Comparative Example No. No. 6, the rolling degree after film formation of Pt on the titanium base material is 42%, which exceeds the upper limit of the claim, and there is no significant difference in contact resistance before and after sulfuric acid immersion for 30 days. The resistance value has already exceeded 20 mΩ, and the contact resistance has increased as a part of the film formation layer has become thinner.

(4)実施例4
板厚60μmのチタン基材を実施例1と同様の方法でPtを20nm成膜した後、真空焼鈍炉にて熱処理をした。これを実施例1と同じ硫酸浸漬試験を30日間実施後に純水で洗浄、乾燥して接触抵抗を測定した。なお、基材の表面粗さRaは0.11μmとしたものを用いた。
(4) Example 4
A Pt film having a thickness of 20 nm was formed on a titanium substrate having a thickness of 60 μm in the same manner as in Example 1, and then heat-treated in a vacuum annealing furnace. This was subjected to the same sulfuric acid immersion test as in Example 1 for 30 days, then washed with pure water and dried to measure contact resistance. In addition, the surface roughness Ra of the substrate was 0.11 μm.

Figure 2006278172
Figure 2006278172

発明例No.1〜6では、チタン基材上にPtを成膜後の熱処理温度が800〜1000℃、熱処理時間が5分以上と請求項の範囲であり、30日間硫酸浸漬前後の接触抵抗に変化は見られず、Ptの剥離は見られない。
一方、比較例No.7では、チタン基材上にPtを成膜後の熱処理時間は請求項の範囲であるが、熱処理温度が請求項の下限値未満であり、基材と成膜層の合金化が十分進んでおらず、30日間硫酸浸漬後の接触抵抗は大きくなっており、Ptの剥離が見られる。
比較例No.8、9では、チタン基材上にPtを成膜後の熱処理温度は請求項の範囲であるが、熱処理時間が請求項の下限値未満であり、基材と成膜層の合金化が十分進んでおらず、30日間硫酸浸漬後の接触抵抗は大きくなっており、Ptの剥離が見られる。
Invention Example No. 1 to 6, the heat treatment temperature after film formation of Pt on the titanium substrate is 800 to 1000 ° C., and the heat treatment time is 5 minutes or more, and the contact resistance before and after 30 days of sulfuric acid immersion changes. No peeling of Pt is observed.
On the other hand, Comparative Example No. In No. 7, the heat treatment time after depositing Pt on the titanium substrate is within the range of the claims, but the heat treatment temperature is less than the lower limit value of the claims, and the alloying of the substrate and the film formation layer has progressed sufficiently. In addition, the contact resistance after 30 days of sulfuric acid immersion is increased, and Pt peeling is observed.
Comparative Example No. In Nos. 8 and 9, the heat treatment temperature after depositing Pt on the titanium substrate is in the range of the claims, but the heat treatment time is less than the lower limit of the claims, and the alloying of the substrate and the film formation layer is sufficient The contact resistance after immersion in sulfuric acid for 30 days has increased, and Pt has been peeled off.

Claims (7)

組成がPt、Pd、Rh、Ruのうち1種もしくは2種以上よりなり、厚みが10nm以上で、チタン基材上に成膜したことを特徴とする燃料電池のセパレータ用材料。 A material for a separator for a fuel cell, characterized in that the composition is one or more of Pt, Pd, Rh, and Ru, the thickness is 10 nm or more, and the film is formed on a titanium substrate. 組成がPt、Pd、Rh、Ruのうち1種もしくは2種以上よりなり、厚みが10nm以上で、厚みが90μm以下のチタン基材上に成膜したことを特徴とする燃料電池のセパレータ用材料。 A material for a separator of a fuel cell, characterized in that it is formed on a titanium substrate having a composition of one or more of Pt, Pd, Rh, and Ru, a thickness of 10 nm or more, and a thickness of 90 μm or less. . 組成がPt、Pd、Rh、Ruのうち1種もしくは2種以上よりなり、厚みが10nm以上で、表面粗さRaが0.2〜2.0μmであり、チタン基材上に成膜したことを特徴とする燃料電池のセパレータ用材料。 The composition is one or more of Pt, Pd, Rh, and Ru, the thickness is 10 nm or more, the surface roughness Ra is 0.2 to 2.0 μm, and the film is formed on the titanium substrate. A fuel cell separator material. 蒸着、スパッタなどの乾式工程で成膜したことを特徴とする、請求項1〜3に記載の燃料電池のセパレータ用材料。 The fuel cell separator material according to claim 1, wherein the film is formed by a dry process such as vapor deposition or sputtering. 請求項1〜4に記載の複合材を圧延加工度0.1〜40%で圧延加工することを特徴とする燃料電池のセパレータ用材料。 5. A fuel cell separator material, wherein the composite material according to claim 1 is rolled at a rolling degree of 0.1 to 40%. 請求項1〜5に記載の複合材を温度800〜1000℃、熱処理時間5分以上で熱処理することを特徴とする燃料電池のセパレータ用材料。 A fuel cell separator material, wherein the composite material according to claim 1 is heat-treated at a temperature of 800 to 1000 ° C and a heat treatment time of 5 minutes or more. チタン基材上の成膜層がPt、Pd、Rh、Ruのうち1種又は2種以上とチタン基材との合金層であり、その厚みが10nm以上であることを特徴とする燃料電池のセパレータ用材料。
A fuel cell characterized in that the film-forming layer on the titanium substrate is an alloy layer of one or more of Pt, Pd, Rh, and Ru and the titanium substrate, and the thickness thereof is 10 nm or more. Separator material.
JP2005096469A 2005-03-29 2005-03-29 Separator material for fuel sell Pending JP2006278172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005096469A JP2006278172A (en) 2005-03-29 2005-03-29 Separator material for fuel sell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005096469A JP2006278172A (en) 2005-03-29 2005-03-29 Separator material for fuel sell

Publications (1)

Publication Number Publication Date
JP2006278172A true JP2006278172A (en) 2006-10-12

Family

ID=37212715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005096469A Pending JP2006278172A (en) 2005-03-29 2005-03-29 Separator material for fuel sell

Country Status (1)

Country Link
JP (1) JP2006278172A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045038A (en) * 2006-09-29 2010-02-25 Kobe Steel Ltd Fuel cell and separator therefor
EP2068389A4 (en) * 2006-09-29 2011-08-10 Kobe Steel Ltd Method for producing separator for fuel cell, separator for fuel cell, and fuel cell
WO2012011200A1 (en) * 2010-07-20 2012-01-26 株式会社神戸製鋼所 Titanium fuel cell separator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164228A (en) * 1998-11-25 2000-06-16 Toshiba Corp Separator for solid high molecular electrolyte fuel cell and manufacture thereof
JP2002254180A (en) * 2001-02-28 2002-09-10 Daido Steel Co Ltd High corrosion resistivity material and manufacturing method therefor
JP2002260681A (en) * 2001-02-28 2002-09-13 Daido Steel Co Ltd Metallic separator for solid high polymer fuel cell, and method of manufacturing the same
JP2002367434A (en) * 2001-06-08 2002-12-20 Daido Steel Co Ltd Corrosion resistant metal member and metal separator for fuel cell using the member
JP2003036867A (en) * 2001-07-24 2003-02-07 Daiki Engineering Kk Water electrolysis cell or fuel cell separator using polymer electrolyte membrane
JP2003234109A (en) * 2002-02-08 2003-08-22 Daido Steel Co Ltd Metal separator for fuel cell and its manufacturing method
WO2004019437A1 (en) * 2002-08-20 2004-03-04 Daido Tokushuko Kabushiki Kaisha Metal member for fuel cell and its manufacturing method, austenitic stainless steel for solid polymer fuel cell and metal member for fuel cell using same, material for solid polymer fuel cell and its manufacturing method, corrosion-resistance conductive member and its manufacturing method, and fuel cell
JP2004134276A (en) * 2002-10-11 2004-04-30 Daido Steel Co Ltd Material for polymer electrolyte fuel cell and method for producing the same
JP2005078981A (en) * 2003-09-01 2005-03-24 Nissan Motor Co Ltd Fuel cell separator and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164228A (en) * 1998-11-25 2000-06-16 Toshiba Corp Separator for solid high molecular electrolyte fuel cell and manufacture thereof
JP2002254180A (en) * 2001-02-28 2002-09-10 Daido Steel Co Ltd High corrosion resistivity material and manufacturing method therefor
JP2002260681A (en) * 2001-02-28 2002-09-13 Daido Steel Co Ltd Metallic separator for solid high polymer fuel cell, and method of manufacturing the same
JP2002367434A (en) * 2001-06-08 2002-12-20 Daido Steel Co Ltd Corrosion resistant metal member and metal separator for fuel cell using the member
JP2003036867A (en) * 2001-07-24 2003-02-07 Daiki Engineering Kk Water electrolysis cell or fuel cell separator using polymer electrolyte membrane
JP2003234109A (en) * 2002-02-08 2003-08-22 Daido Steel Co Ltd Metal separator for fuel cell and its manufacturing method
WO2004019437A1 (en) * 2002-08-20 2004-03-04 Daido Tokushuko Kabushiki Kaisha Metal member for fuel cell and its manufacturing method, austenitic stainless steel for solid polymer fuel cell and metal member for fuel cell using same, material for solid polymer fuel cell and its manufacturing method, corrosion-resistance conductive member and its manufacturing method, and fuel cell
JP2004134276A (en) * 2002-10-11 2004-04-30 Daido Steel Co Ltd Material for polymer electrolyte fuel cell and method for producing the same
JP2005078981A (en) * 2003-09-01 2005-03-24 Nissan Motor Co Ltd Fuel cell separator and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045038A (en) * 2006-09-29 2010-02-25 Kobe Steel Ltd Fuel cell and separator therefor
EP2068389A4 (en) * 2006-09-29 2011-08-10 Kobe Steel Ltd Method for producing separator for fuel cell, separator for fuel cell, and fuel cell
WO2012011200A1 (en) * 2010-07-20 2012-01-26 株式会社神戸製鋼所 Titanium fuel cell separator
JP2012028045A (en) * 2010-07-20 2012-02-09 Kobe Steel Ltd Titanium fuel cell separator and method for manufacturing the same
US9178222B2 (en) 2010-07-20 2015-11-03 Kobe Steel, Ltd. Titanium fuel cell separator

Similar Documents

Publication Publication Date Title
EP2157645B1 (en) Metallic separator for fuel cell and process for producing the metallic separator
KR101117417B1 (en) Corrosion resistant film for fuel cell separator and fuel cell separator
JP5325235B2 (en) FUEL CELL SEPARATOR MATERIAL, FUEL CELL SEPARATOR USING THE SAME, FUEL CELL STACK, AND METHOD FOR PRODUCING FUEL CELL SEPARATOR MATERIAL
JP5831670B1 (en) Titanium material or titanium alloy material having surface conductivity, manufacturing method thereof, and fuel cell separator and fuel cell using the same
Li et al. Investigation of single-layer and multilayer coatings for aluminum bipolar plate in polymer electrolyte membrane fuel cell
CA2373344A1 (en) Corrosion-resistant metallic member, metallic separator for fuel cell comprising the same, and process for production thereof
JP5192908B2 (en) Titanium substrate for fuel cell separator, fuel cell separator, and fuel cell separator manufacturing method
JP2010248572A (en) Titanium-based material, method for producing the same, and fuel cell separator
JP2008153082A (en) Material for fuel cell separator
WO2008075591A1 (en) Alloy coating film for metal separator of fuel cell, method for producing the same, sputtering target material, metal separator and fuel cell
Fan et al. Solution acidity and temperature induced anodic dissolution and degradation of through-plane electrical conductivity of Au/TiN coated metal bipolar plates used in PEMFC
Du et al. Doping and stress induced failure of Ti (Al/Pt) N films on Ti6Al4V plate in a simulated PEMFC environment
US20120308917A1 (en) Surface alloying of stainless steel
Kim et al. Niobium sputter coated stainless steel as a bipolar plate material for polymer electrolyte membrane fuel cell stacks
US20060003174A1 (en) Titanium material and method for manufacturing the same
JP4516628B2 (en) Metal separator for fuel cell and manufacturing method thereof
TW200843180A (en) Alloy coating film for metal separator of fuel cell, method for producing the same, sputtering target material, metal separator and fuel cell
JP2008277287A (en) Manufacturing method of metallic separator for fuel cell
JP2006278172A (en) Separator material for fuel sell
JP2002260681A (en) Metallic separator for solid high polymer fuel cell, and method of manufacturing the same
JP2021026839A (en) Manufacturing method of separator for fuel cell
JP2008251296A (en) Separator material for fuel cell and separator for fuel cell
JP3991701B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP2002254180A (en) High corrosion resistivity material and manufacturing method therefor
JP5291368B2 (en) Fuel cell separator material, fuel cell separator using the same, fuel cell stack, and method for producing fuel cell separator material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207