[go: up one dir, main page]

JP2006273703A - Dielectric ceramic composition - Google Patents

Dielectric ceramic composition Download PDF

Info

Publication number
JP2006273703A
JP2006273703A JP2005100124A JP2005100124A JP2006273703A JP 2006273703 A JP2006273703 A JP 2006273703A JP 2005100124 A JP2005100124 A JP 2005100124A JP 2005100124 A JP2005100124 A JP 2005100124A JP 2006273703 A JP2006273703 A JP 2006273703A
Authority
JP
Japan
Prior art keywords
ceramic composition
dielectric ceramic
dielectric constant
dielectric
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005100124A
Other languages
Japanese (ja)
Other versions
JP4465663B2 (en
Inventor
Seirai Kuruma
声雷 車
Norimasa Sakamoto
典正 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005100124A priority Critical patent/JP4465663B2/en
Publication of JP2006273703A publication Critical patent/JP2006273703A/en
Application granted granted Critical
Publication of JP4465663B2 publication Critical patent/JP4465663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a dielectric ceramic composition which is ≥200 in specific dielectric constant εr, is ≤200 ppm/K in temperature characteristic τε of dielectric constant and is excellent in Q characteristics as well. <P>SOLUTION: The dielectric ceramic composition has the basic composition components expressed by aCaO-bLiO<SB>1/2</SB>-cBiO<SB>3/2</SB>-dREO<SB>3/2</SB>-eTiO<SB>2</SB>[where, RE represents at least one kind selected from La, Ce, Pr, Nd, Sm, Yb, Dy, Y, and a+b+c+d+e=100 (mol%)]. The compositions of the respective components are 10≤a≤25, 10≤b≤20, 8≤c≤15, 2≤d≤10, 50≤e≤60, and are 0.65≤b/(c+d)<1.0, and more preferably 1≤c/d≤5. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、誘電体磁器組成物に関するものであり、CaO、LiO、Bi、RE(REは希土類元素である。)、TiO等を含む誘電体磁器組成物に関する。 The present invention relates to a dielectric ceramic composition, and relates to a dielectric ceramic composition containing CaO, Li 2 O, Bi 2 O 3 , RE 2 O 3 (RE is a rare earth element), TiO 2 and the like. .

例えば、情報通信分野においては、使用周波数帯域が高周波数に移行する傾向にあり、衛星放送や衛星通信、携帯電話や自動車電話等の移動体通信では、ギガヘルツ(GHz)帯の高周波が使用されている。   For example, in the information communication field, the use frequency band tends to shift to a high frequency, and high frequency in the gigahertz (GHz) band is used in mobile communication such as satellite broadcasting, satellite communication, mobile phone and car phone. Yes.

前述のような高周波帯域で使用される機器に搭載される回路基板や電子部品等では、使用する誘電体材料は、回路基板や電子部品の高性能化や小型化を図るためには、使用周波数帯域において高比誘電率εrを有する誘電体材料が必要である。これは、誘電体材料中の電磁波の波長が1/√εrによって短縮されるという原理に基づくものであり、比誘電率εrの大きい誘電体材料ほど回路基板や電子部品の小型化が可能である。さらに、Qが高く高周波領域での損失が低い材料であることが必要である。ここでQは誘電正接tanδの逆数であり、Qが高いほど損失が少ない。また、周波数によりQの値が変わるので,本明細書ではQと共振周波数fの積、すなわちQfを用いて材料の損失特性を表す。Qfは高周波誘電体の品質係数とも呼ばれ、Qfが高いほど損失が低い。   In circuit boards and electronic components mounted on equipment used in the high frequency band as described above, the dielectric material used is the frequency used to improve the performance and miniaturization of circuit boards and electronic components. A dielectric material having a high dielectric constant εr in the band is required. This is based on the principle that the wavelength of the electromagnetic wave in the dielectric material is shortened by 1 / √εr. A dielectric material having a higher relative dielectric constant εr can reduce the size of the circuit board or electronic component. . Furthermore, it is necessary that the material has a high Q and a low loss in the high frequency region. Here, Q is the reciprocal of the dielectric loss tangent tan δ, and the higher the Q, the smaller the loss. Since the value of Q varies depending on the frequency, in this specification, the product of Q and the resonance frequency f, that is, Qf is used to represent the loss characteristic of the material. Qf is also called a high-frequency dielectric quality factor, and the higher the Qf, the lower the loss.

ただし、一般的に、高周波誘電体は、比誘電率εrが高いものほど比誘電率εrの温度特性τεが悪くなる傾向にあり、Qf値が小さくなる傾向にある。したがって、比誘電率εrが高く、比誘電率εrの温度係数τεが小さく、しかもある程度のQf値を有する誘電体磁器組成物を実現することは難しく、各方面でこれら特性を満たす誘電体磁器組成物の開発が進められている。   However, in general, the higher the dielectric constant εr, the higher the dielectric constant εr, the worse the temperature characteristic τε of the relative dielectric constant εr and the smaller the Qf value. Therefore, it is difficult to realize a dielectric ceramic composition having a high relative dielectric constant εr, a small temperature coefficient τε of the relative dielectric constant εr, and a certain Qf value, and the dielectric ceramic composition satisfying these characteristics in various directions. Things are being developed.

温度特性τεの小さな誘電体磁器組成物としては、例えばBa−希土類(RE)−Ti−O系誘電体磁器組成物、さらにはこれにBiやPb等を含ませた誘電体磁器組成物が開発されている。ただし、これらの誘電体磁器組成物は、平坦な温度特性と比較的高いQ値を持つものの、比誘電率εrが80〜100程度と小さい。   For example, Ba-rare earth (RE) -Ti-O-based dielectric porcelain compositions, and dielectric porcelain compositions containing Bi, Pb, etc., have been developed as dielectric ceramic compositions having a small temperature characteristic τε. Has been. However, although these dielectric ceramic compositions have a flat temperature characteristic and a relatively high Q value, the relative dielectric constant εr is as small as about 80 to 100.

そこで、比誘電率εrを改善する目的で、aLiO−bBi−cTiO(但し、14.2≦a≦19.2モル%、14.2≦b≦19.2モル%、61.6≦c≦71.6モル%、a+b+c=100モル%)で表される組成物を20wt%以上含む誘電体磁器組成物も提案されている(例えば、特許文献1等を参照)。特許文献1記載の誘電体磁器組成物は、高い比誘電率εr、高いQ×f値、及び低い温度係数τfを有し、1000℃程度の温度で焼成可能である。
特開2000−335964号公報
Therefore, in order to improve the relative dielectric constant εr, aLi 2 O—bBi 2 O 3 —cTiO 2 (where 14.2 ≦ a ≦ 19.2 mol%, 14.2 ≦ b ≦ 19.2 mol%, A dielectric ceramic composition containing 20 wt% or more of a composition represented by 61.6 ≦ c ≦ 71.6 mol% and a + b + c = 100 mol% has also been proposed (see, for example, Patent Document 1). The dielectric ceramic composition described in Patent Document 1 has a high relative dielectric constant εr, a high Q × f value, and a low temperature coefficient τf, and can be fired at a temperature of about 1000 ° C.
JP 2000-335964 A

しかしながら、前記特許文献1記載の誘電体磁器組成物においては、個々の誘電特性、例えば比誘電率εrがある程度高い誘電体磁器組成物や、温度係数τεの低い誘電体磁器組成物は散見されるものの、全ての特性においてバランス良く高い値を発揮する誘電体磁器組成物は実現されていない。前記特許文献1記載の誘電体材料に限らず、比誘電率εrが200を越え、誘電率の温度係数τεが±200ppm/K未満であり、しかも、ある程度高い無負荷品質係数Qf(例えば1000GHz以上)を持つ誘電体磁器組成物は、現状では見あたらないのが実情である。   However, in the dielectric ceramic composition described in Patent Document 1, individual dielectric characteristics, for example, a dielectric ceramic composition having a relatively high relative dielectric constant εr and a dielectric ceramic composition having a low temperature coefficient τε are sometimes found. However, a dielectric ceramic composition that exhibits high values in a balanced manner in all characteristics has not been realized. The dielectric material is not limited to the dielectric material described in Patent Document 1, and the relative dielectric constant εr exceeds 200, the temperature coefficient τε of the dielectric constant is less than ± 200 ppm / K, and the unloaded quality factor Qf (for example, 1000 GHz or more) is high to some extent. In reality, the dielectric ceramic composition having a) is not found at present.

本発明は、前述の実情に鑑みて提案されたものである。すなわち、本発明は、比誘電率εrが高く、誘電率の温度特性τεが小さく、しかもある程度のQf値を有する誘電体磁器組成物を提供することを目的とする。   The present invention has been proposed in view of the above circumstances. That is, an object of the present invention is to provide a dielectric ceramic composition having a high relative dielectric constant εr, a low temperature characteristic τε of dielectric constant, and a certain Qf value.

本発明者らは、前述の課題を解決するために長期に亘り鋭意研究を行ってきた。そして、チタン酸塩において、いわゆるAサイトにLiと希土類を同時に含有させることで正の温度特性τεを持たせることができることに着目し、BaTiO、SrTiO、CaTiO、Li1/21/2TiO、Li1/2Nd1/2TiO(RはLa、Ce、Prの内の一つまたは2つ以上の希土類元素)等のチタン酸塩を適正な割合で固溶させることで、基本的に単相のペロブスカイト構造を持つ酸化物誘電体からなる誘電体磁器組成物を開発した。また、本発明者らは、前記希土類元素Rにイオン半径の最も大きいLaを使った場合に最も特性が良いが、Laの替りにイオン半径がLaに近いBiを用いることで、さらに高い比誘電率εとQ特性、温度特性を実現することに着目し、BaTiO、SrTiO、CaTiO、Li1/2Bi1/2TiO、Li1/2RE1/2TiO(REはLa,Ce,Pr,Nd,Sm,Yb,Dy,Yから選択される少なくとも1種)等を特定の割合で含有する誘電体磁器組成物を開発した。しかしながら、このような材料では多数の元素を固溶させているので、異相が生成し易く、特性の向上には限度がある。 The present inventors have conducted intensive research for a long time in order to solve the above-mentioned problems. Then, in the titanate, focusing on the fact that the so-called A site can have a positive temperature characteristic τε by simultaneously containing Li and rare earth, BaTiO 3 , SrTiO 3 , CaTiO 3 , Li 1/2 R 1 / 2 TiO 3 , Li 1/2 Nd 1/2 TiO 3 (R is one or more rare earth elements of La, Ce, Pr), etc. So, we have developed a dielectric porcelain composition consisting essentially of an oxide dielectric with a single-phase perovskite structure. Further, the present inventors have the best characteristics when La having the largest ionic radius is used for the rare earth element R, but by using Bi having an ionic radius close to La instead of La, the dielectric constant is further increased. Focusing on realizing the rate ε, Q characteristic, and temperature characteristic, BaTiO 3 , SrTiO 3 , CaTiO 3 , Li 1/2 Bi 1/2 TiO 3 , Li 1/2 RE 1/2 TiO 3 (RE is La , Ce, Pr, Nd, Sm, Yb, Dy, Y) and the like have been developed in a specific ratio. However, in such a material, a large number of elements are dissolved, so that a heterogeneous phase is easily generated, and there is a limit to the improvement of characteristics.

そこで本発明者らがさらに研究を進めた結果、この系において、Aサイトの1価元素であるLiのモル量を、3価元素であるBiのモル量と希土類元素REのモル量との総和より少なくすることで、ほぼ単相のペロブスカイト構造を持つ酸化物誘電体が実現され、より高い比誘電率εとQ特性、フラットな温度特性を持つ材料が実現されるとの知見が得られ、本発明を完成するに至った。   As a result of further research by the present inventors, in this system, the molar amount of Li, which is a monovalent element at the A site, is the sum of the molar amount of Bi, which is a trivalent element, and the molar amount of rare earth element RE. By reducing the number, an oxide dielectric having a substantially single-phase perovskite structure is realized, and knowledge that a material having a higher relative dielectric constant ε, Q characteristic, and flat temperature characteristic is realized is obtained. The present invention has been completed.

本発明は、このような知見に基づいて完成されたものであり、基本組成成分が、aCaO−bLiO1/2−cBiO3/2−dREO3/2−eTiO[ただし、REはLa,Ce,Pr,Nd,Sm,Yb,Dy,Yから選択される少なくとも1種を表し、a+b+c+d+e=100(モル%)である。]で表され、
10≦a≦25
10≦b≦20
8≦c≦15
2≦d≦10
50≦e≦60
であり、かつ
0.65≦b/(c+d)<1.0
であることを特徴とする。
The present invention has been completed based on such knowledge, and the basic composition component is aCaO-bLiO 1/2 -cBiO 3/2 -dREO 3/2 -eTiO 2 [where RE is La, Ce , Pr, Nd, Sm, Yb, Dy, Y represents at least one selected from a + b + c + d + e = 100 (mol%). ],
10 ≦ a ≦ 25
10 ≦ b ≦ 20
8 ≦ c ≦ 15
2 ≦ d ≦ 10
50 ≦ e ≦ 60
And 0.65 ≦ b / (c + d) <1.0
It is characterized by being.

前記Biを用いた組成では、CaTiO、Li1/2Bi1/2TiO、Li1/2RE1/2TiO等のチタン酸塩を固溶させているため、本来であれば、1価元素であるLiのモル量と3価元素であるBiのモル量及び希土類元素REのモル量の総和とを等しくすることで、Li、Bi及び希土類元素RE全体でAサイトの平均価数を2にしなければならない。しかしながら、このように1価元素と3価元素とを等モル量配合すると、誘電体磁器組成物の一部においてLiTi等の異相の発生が避けられない。構造解析の結果から、前記誘電体磁器組成物においては、一部のBiや希土類元素REがRE2/3TiOのような形で固溶しているため、Liが余り、結果としてLiTi等の異相が形成されると考えられる。 In the composition using Bi, since titanates such as CaTiO 3 , Li 1/2 Bi 1/2 TiO 3 , Li 1/2 RE 1/2 TiO 3 and the like are dissolved, By making the molar amount of Li as a monovalent element equal to the sum of the molar amount of Bi as a trivalent element and the molar amount of a rare earth element RE, the average valence of the A site in Li, Bi and the rare earth element RE as a whole Must be set to 2. However, when equimolar amounts of monovalent element and trivalent element are blended in this way, the generation of a heterogeneous phase such as Li 4 Ti 5 O 7 is inevitable in a part of the dielectric ceramic composition. From the results of structural analysis, in the dielectric ceramic composition, some Bi and rare earth elements RE are solid-solved in a form such as RE 2/3 TiO 3 , so that Li remains, and as a result, Li 4 It is considered that a heterogeneous phase such as Ti 5 O 7 is formed.

そこで、本発明においては、Liのモル量を3価元素であるBiのモル量及び希土類元素REのモル量の和より少なくする。組成中のLiを少なくすることで、異相の生成を抑制し、ほぼ単相のペロブスカイト構造を持つ酸化物誘電体が得られる。ただし、Liを少なくしすぎると、固溶体中のイオンのバランスが崩れ、逆にBiTi等の異相が発生し、特性の低下を招くおそれがある。 Therefore, in the present invention, the molar amount of Li is made smaller than the sum of the molar amount of Bi, which is a trivalent element, and the molar amount of the rare earth element RE. By reducing Li in the composition, the generation of heterogeneous phases can be suppressed, and an oxide dielectric having a substantially single-phase perovskite structure can be obtained. However, if Li is reduced too much, the balance of ions in the solid solution is lost, and on the contrary, a heterogeneous phase such as Bi 2 Ti 2 O 7 is generated, which may lead to deterioration of characteristics.

したがって、これらの元素の割合を本発明で規定する範囲内で調整することで、ペロブスカイト構造を持つ単相の固溶体が得られ、その結果、比誘電率εrやQf値が高く、比誘電率εrの温度特性τεの絶対値が小さな誘電体磁器組成物が実現される。   Therefore, by adjusting the ratio of these elements within the range specified in the present invention, a single-phase solid solution having a perovskite structure can be obtained. As a result, the relative dielectric constant εr and the Qf value are high, and the relative dielectric constant εr A dielectric ceramic composition having a small absolute value of the temperature characteristic τε is realized.

なお、本発明の誘電体磁器組成物における各元素の組成は、焼成後の誘電体磁器組成物(焼結体)を誘導結合プラズマ発光分光分析及び蛍光X線回折により分析した分析値として表している。   The composition of each element in the dielectric ceramic composition of the present invention is expressed as an analysis value obtained by analyzing the sintered dielectric ceramic composition (sintered body) by inductively coupled plasma emission spectroscopy and fluorescent X-ray diffraction. Yes.

本発明によれば、200を越える高い比誘電率εrを安定に得ることができ、高Qf値を有するとともに、誘電率の温度特性τεも±200ppm/K未満と小さな誘電体磁器組成物を提供することが可能である。したがって、本発明の誘電体磁器組成物を用いることで、低温焼成セラミックス基板やデバイス部品の高性能化を図ることが可能である。   According to the present invention, a dielectric ceramic composition that can stably obtain a high relative dielectric constant εr exceeding 200, has a high Qf value, and a small dielectric constant temperature characteristic τε of less than ± 200 ppm / K is provided. Is possible. Therefore, by using the dielectric ceramic composition of the present invention, it is possible to improve the performance of low-temperature fired ceramic substrates and device parts.

以下、本発明に係る誘電体磁器組成物について詳細に説明する。   Hereinafter, the dielectric ceramic composition according to the present invention will be described in detail.

本発明の誘電体磁器組成物は、CaTiO、Li1/2Bi1/2TiO、Li1/2RE1/2TiO(REは希土類元素)等のチタン酸塩を所定の割合で固溶させたペロブスカイト構造を持つ酸化物誘電体である。そして、その基本組成成分は、aCaO−bLiO1/2−cBiO3/2−dREO3/2−eTiO[ただし、REはLa,Ce,Pr,Nd,Sm,Yb,Dy,Yから選択される少なくとも1種を表し、a+b+c+d+e=100(モル%)である。]で表すことができ、各成分の組成は、
10≦a≦25
10≦b≦20
8≦c≦15
2≦d≦10
50≦e≦60
であり、かつ
0.65≦b/(c+d)<1.0
なる範囲に設定される。
The dielectric ceramic composition of the present invention comprises titanates such as CaTiO 3 , Li 1/2 Bi 1/2 TiO 3 , Li 1/2 RE 1/2 TiO 3 (RE is a rare earth element) at a predetermined ratio. It is an oxide dielectric with a perovskite structure in solid solution. Then, the basic composition components, aCaO-bLiO 1/2 -cBiO 3/2 -dREO 3/2 -eTiO 2 [ however, RE is selected La, Ce, Pr, Nd, Sm, Yb, Dy, from Y A + b + c + d + e = 100 (mol%). The composition of each component is
10 ≦ a ≦ 25
10 ≦ b ≦ 20
8 ≦ c ≦ 15
2 ≦ d ≦ 10
50 ≦ e ≦ 60
And 0.65 ≦ b / (c + d) <1.0
Is set to a range.

前記組成範囲を図示したものが図1である。この図1は、ペロブスカイト構造におけるいわゆるAサイトの元素の配合比を表した3元組成図である。図1において、六角形状の斜線領域として表されているのが、本発明の組成範囲である。   FIG. 1 illustrates the composition range. FIG. 1 is a ternary composition diagram showing the compounding ratio of so-called A-site elements in the perovskite structure. In FIG. 1, the composition range of the present invention is represented as a hexagonal shaded region.

前記基本組成成分における、各成分の組成の限定理由について説明すると、Caは、高いQf値(13000GHz)と比較的に高い比誘電率εr(170)を持っているため、Q特性(Qf値)の向上に効果があり、比誘電率εrについても、ある程度高い値をもたらす効果を有する。ただし、Caが多すぎると、誘電率の温度特性τεが悪くなるおそれがある。したがって、これらの観点から、CaのCaO換算による含有量aは、10モル%以上、25モル%以下とする。前記aが25モル%を越えると、温度特性τεはマイナス方向での絶対値が大きくなる。前記aが10モル%未満であると、比誘電率εrやQf値が低下するおそれがある。また、温度特性τεはプラス方向での絶対値が大きくなる。   The reason for limitation of the composition of each component in the basic composition component will be described. Ca has a high Qf value (13000 GHz) and a relatively high relative dielectric constant εr (170), and therefore has a Q characteristic (Qf value). And the relative dielectric constant εr has an effect of giving a high value to some extent. However, if there is too much Ca, the temperature characteristic τε of the dielectric constant may be deteriorated. Therefore, from these viewpoints, the content a of Ca in terms of CaO is 10 mol% or more and 25 mol% or less. When a exceeds 25 mol%, the temperature characteristic τε has an absolute value in the negative direction. If the a is less than 10 mol%, the relative dielectric constant εr and the Qf value may decrease. Further, the absolute value of the temperature characteristic τε in the positive direction increases.

前記基本組成成分のうちCaOにおいて、Caの一部がアルカリ土類金属元素(Sr,Ba,Mgから選択される1種又は2種以上)により置換されてもよい。Caの一部をSr、Ba等のイオン半径がCaより大きな元素で置換することで、比誘電率εrを高めることができる。また、Caの一部をMg等のイオン半径がCaより大きな元素で置換すると、Q特性を高めることができる。   Among the basic composition components, in CaO, a part of Ca may be replaced by an alkaline earth metal element (one or more selected from Sr, Ba, and Mg). By substituting a part of Ca with an element having an ionic radius larger than that of Ca such as Sr or Ba, the relative dielectric constant εr can be increased. Further, when a part of Ca is replaced with an element having an ion radius larger than that of Ca, such as Mg, the Q characteristic can be improved.

前記基本組成成分において、Liが多すぎると、比誘電率εrが低下する。逆にLiが少なすぎると、温度特性τεはプラス方向での絶対値が大きくなり、また、比誘電率εrやQ特性も低下する。したがって、LiのLiO1/2換算による含有量bは、10モル%以上、20モル%以下とする。 If the basic composition component contains too much Li, the relative dielectric constant εr decreases. On the other hand, if the Li content is too small, the absolute value of the temperature characteristic τε increases in the positive direction, and the relative dielectric constant εr and Q characteristic also decrease. Therefore, the content b of Li in terms of LiO 1/2 is 10 mol% or more and 20 mol% or less.

一方、Biは、希土類元素REよりも温度特性τεを制御する機能が強いが、Q特性の低下もREよりは激しい。したがって、Bi量は、誘電体磁器組成物の温度特性τεを考慮して設定すればよいが、あまり多すぎるとQ特性が悪くなる。逆に、Biが少なすぎると、誘電率εが低下するほか、温度特性τεはマイナス方向での絶対値が大きくなり、ゼロに調整することが難しくなる。したがって、BiのBiO3/2換算による含有量cは8モル以上、15モル%以下とする。 On the other hand, Bi has a stronger function of controlling the temperature characteristic τε than the rare earth element RE, but the deterioration of the Q characteristic is more severe than that of the RE. Accordingly, the Bi amount may be set in consideration of the temperature characteristic τε of the dielectric ceramic composition, but if it is too much, the Q characteristic is deteriorated. Conversely, if Bi is too small, the dielectric constant ε decreases, and the temperature characteristic τε has a large absolute value in the negative direction, making it difficult to adjust to zero. Therefore, the content c of Bi in terms of BiO 3/2 is 8 mol or more and 15 mol% or less.

希土類元素REは、主に誘電体磁器組成物の温度特性τεの制御に寄与する。REが多すぎると、温度特性τεはプラス方向での絶対値が大きくなる。また、比誘電率εrやQ特性も低下する。逆にREが少なすぎると、温度特性τεはマイナス方向での絶対値が大きくなる。したがって、REのREO3/2換算による含有量dは、2モル%以上、10モル%以下とする。 The rare earth element RE mainly contributes to the control of the temperature characteristic τε of the dielectric ceramic composition. If there is too much RE, the absolute value of the temperature characteristic τε in the positive direction increases. Further, the relative dielectric constant εr and the Q characteristic are also lowered. Conversely, if the RE is too small, the absolute value of the temperature characteristic τε in the minus direction increases. Accordingly, the content d of RE in terms of REO 3/2 is 2 mol% or more and 10 mol% or less.

また、前記基本組成成分のうち、REO3/2において、REとしてはNdであることが好ましく、さらにはその一部がランタニド族元素(La,Ce,Pr,Sm,Y,Yb,Dyから選択される1種又は2種以上)によって置換されていてもよい。REをNdとすることで、比誘電率ε、Q特性と温度特性の各特性のバランスが良いうえ、特性と材料コストのバランスも良好なものとなる。また、Ndの一部を、La,Ce,Pr等、イオン半径がNdより大きな元素で置換することで、比誘電率εrをより一層高くすることができる。Ndの一部を、Sm,Y,Yb,Dy等、イオン半径がNdよりも小さな元素で置換することで、Qf値を高くすることができる。 Of the basic composition components, in REO 3/2 , RE is preferably Nd, and a part thereof is selected from lanthanide group elements (La, Ce, Pr, Sm, Y, Yb, Dy). 1 type or 2 types or more). By setting RE to Nd, the dielectric constant ε, the Q characteristic and the temperature characteristic are well balanced, and the balance between the characteristic and the material cost is also good. Further, by substituting a part of Nd with an element having an ionic radius larger than Nd, such as La, Ce, or Pr, the relative dielectric constant εr can be further increased. By replacing a part of Nd with an element having an ion radius smaller than Nd, such as Sm, Y, Yb, or Dy, the Qf value can be increased.

本発明においては、前記基本組成成分中、1価元素Liと3価元素であるBi及び希土類元素REの総和とのモル比b/(c+d)を、適正範囲に制御する必要がある。b/(c+d)<1とすることで、ほぼ単相のペロブスカイト構造を持つ酸化物誘電体が得られる。b/(c+d)≧1であると、LiO・TiOからなる異相の生成により比誘電率εrが低下する。逆に、Liが少なくなりすぎる、すなわちb/(c+d)<0.65であると、BiTiやBiTi等の異相が生成し、これにより比誘電率εr及びQ特性が低下し、温度特性τεはマイナス方向での絶対値が大きくなる。したがって、0.65≦b/(c+d)<1、さらに望ましくは0.70≦b/(c+d)≦0.90とすることで、高特性の誘電体磁器組成物が実現される。 In the present invention, it is necessary to control the molar ratio b / (c + d) between the monovalent element Li, the trivalent element Bi and the sum of the rare earth elements RE in the basic composition component within an appropriate range. By setting b / (c + d) <1, an oxide dielectric having a substantially single-phase perovskite structure can be obtained. When b / (c + d) ≧ 1, the relative dielectric constant εr decreases due to the generation of a heterogeneous phase composed of Li 2 O.TiO 2 . On the other hand, when Li becomes too small, that is, b / (c + d) <0.65, a heterogeneous phase such as Bi 2 Ti 2 O 7 or Bi 4 Ti 3 O 7 is generated, and thereby the relative dielectric constant εr and The Q characteristic decreases, and the absolute value of the temperature characteristic τε in the negative direction increases. Therefore, by setting 0.65 ≦ b / (c + d) <1, more preferably 0.70 ≦ b / (c + d) ≦ 0.90, a high-performance dielectric ceramic composition is realized.

Tiが多すぎると、ペロブスカイト結晶相の形成に必要以上の過剰なTiにより、TiOなどのTiを多く含む異相が生成しやすい。逆にTiが少なすぎると、ペロブスカイトのAサイトに入るはずの他の金属元素を多く含む異相が発生しやすい。何れの場合にも、異相の発生により特性が大幅に低下するおそれがあるので、TiのTiO換算による含有量eは50モル%以上、60モル%以下とする。 When there is too much Ti, a different phase containing a large amount of Ti such as TiO 2 is likely to be generated due to excessive Ti more than necessary for the formation of the perovskite crystal phase. On the other hand, if the Ti content is too small, a heterogeneous phase containing a large amount of other metal elements that should enter the A site of the perovskite tends to be generated. In any case, since the characteristics may be greatly deteriorated due to the occurrence of a heterogeneous phase, the content e of Ti in terms of TiO 2 is set to 50 mol% or more and 60 mol% or less.

本発明においては、異相の析出量を低減し、特性を高める観点で、ペロブスカイト構造におけるAサイトの原子とBサイトの原子とのモル比A/B、すなわち、(a+b+c+d)/eを適正範囲内にすることが好ましい。本発明の組成物において、Aサイトに一部空孔ができると考えられるため、A/Bが1より小さいことが異相の低減や特性の向上に必要である。つまり、(a+b+c+d)/e≧1であると、異相が生成し、比誘電率εrやQ特性の悪化を招くおそれがある。また、Bサイトの原子のモル量Bに比べAサイトの原子のモル量Aが少なすぎる場合にも異相の発生により、比誘電率εrやQfの悪化を招くおそれがある。本発明者らが各元素の配合を様々に変化させ、得られた誘電体についての特性評価及び構造分析の結果を詳細に解析した結果、(a+b+c+d)/eの望ましい範囲は、0.93≦(a+b+c+d)/e<1であり、さらに望ましくは0.95≦(a+b+c+d)/e<0.99であることが確認されている。   In the present invention, the molar ratio A / B of the A site atom to the B site atom in the perovskite structure, that is, (a + b + c + d) / e is within an appropriate range from the viewpoint of reducing the amount of heterogeneous precipitation and enhancing the characteristics. It is preferable to make it. In the composition of the present invention, since it is considered that some vacancies are formed at the A site, it is necessary for A / B to be smaller than 1 in order to reduce foreign phases and improve characteristics. That is, if (a + b + c + d) / e ≧ 1, a heterogeneous phase is generated, which may lead to deterioration in relative dielectric constant εr and Q characteristics. In addition, even when the molar amount A of atoms at the A site is too small compared with the molar amount B of atoms at the B site, the generation of a different phase may cause deterioration of the relative dielectric constant εr and Qf. As a result of detailed analysis of the results of characteristic evaluation and structural analysis of the obtained dielectric by the inventors changing the composition of each element in various ways, a desirable range of (a + b + c + d) / e is 0.93 ≦ It is confirmed that (a + b + c + d) / e <1, more preferably 0.95 ≦ (a + b + c + d) / e <0.99.

以上が本発明の誘電体磁器組成物を構成する各成分の組成についての限定理由であるが、本発明の誘電体磁器組成物においては、さらに、BiとREとのモル比を適正範囲内に制御することがより好ましい。REのモル量がBiのモル量より多いと、すなわちc/d<1であると、比誘電率εrを向上する効果が少なくなり、温度特性τεがマイナス側に大きくなるおそれがある。逆に、c/d>5であると、比誘電率εr向上効果を得られるものの、Q特性が著しく低下し、温度特性τεはプラス方向での絶対値が大きくなるおそれがある。したがって、前記c/dを1〜5とすることが好ましい。   The above is the reason for limiting the composition of each component constituting the dielectric ceramic composition of the present invention. In the dielectric ceramic composition of the present invention, the molar ratio of Bi and RE is further within an appropriate range. It is more preferable to control. When the molar amount of RE is larger than the molar amount of Bi, that is, when c / d <1, the effect of improving the relative dielectric constant εr is reduced, and the temperature characteristic τε may increase to the negative side. Conversely, if c / d> 5, the effect of improving the relative dielectric constant εr can be obtained, but the Q characteristic is remarkably lowered, and the absolute value of the temperature characteristic τε may increase in the positive direction. Therefore, the c / d is preferably 1 to 5.

前述の本発明の誘電体磁器組成物は、例えば図2に示す製造プロセスにしたがって作製することができる。図2に示す製造プロセスは、混合工程1、仮焼成工程2、粉砕工程3、造粒工程4、成形工程5、及び焼成工程6とから構成されるものである。   The above-mentioned dielectric ceramic composition of the present invention can be produced, for example, according to the production process shown in FIG. The manufacturing process shown in FIG. 2 includes a mixing step 1, a pre-baking step 2, a pulverizing step 3, a granulating step 4, a forming step 5, and a baking step 6.

誘電体磁器組成物の製造に際しては、先ず、主成分の原料粉末を所定量秤量し、これらを混合する(混合工程1)。主成分の原料粉末としては、酸化物粉末の他、加熱により酸化物となる化合物、例えば炭酸塩、水酸化物、蓚酸塩、硝酸塩等の粉末を用いることができる。この場合、1種類の金属の酸化物(化合物)に限らず、例えば2種類以上の金属を含む複合酸化物の粉末を原料粉末としてもよい。各原料粉末の平均粒径は、例えば0.1μm〜3.0μmの範囲内で適宜選択すればよい。   In the production of the dielectric ceramic composition, first, a predetermined amount of the raw material powder is weighed and mixed (mixing step 1). As the raw material powder of the main component, oxide powders and compounds that become oxides upon heating, such as carbonates, hydroxides, oxalates, nitrates, and the like can be used. In this case, not only one kind of metal oxide (compound) but also a composite oxide powder containing two or more kinds of metals may be used as the raw material powder. What is necessary is just to select the average particle diameter of each raw material powder suitably in the range of 0.1 micrometer-3.0 micrometers, for example.

混合方法としては、例えばボールミルによる湿式混合等を採用することができ、混合の後、乾燥、粉砕、篩いかけをし、仮焼成工程2を行う。仮焼成工程2では、例えば電気炉等を用い、900℃〜1300℃の温度範囲で所定時間保持し、仮焼を行う。このときの雰囲気は、O、Nまたは大気等の非還元性雰囲気とすればよい。また、仮焼における前記保持時間は、例えば0.5〜5.0時間の範囲で適宜選択すればよい。 As the mixing method, for example, wet mixing using a ball mill or the like can be employed. After mixing, drying, pulverization, and sieving are performed, and the pre-baking step 2 is performed. In the calcination step 2, for example, an electric furnace or the like is used, and the calcination is performed by maintaining the temperature in a temperature range of 900 ° C. to 1300 ° C. for a predetermined time. The atmosphere at this time may be a non-reducing atmosphere such as O 2 , N 2 or air. Moreover, what is necessary is just to select the said holding time in calcination suitably in the range of 0.5 to 5.0 hours, for example.

仮焼後、粉砕工程3において、仮焼体を例えば平均粒径0.5μm〜2.0μm程度になるまで粉砕する。粉砕手段としては、例えばボールミル等を用いることができる。   After the calcination, in the pulverizing step 3, the calcined body is pulverized until the average particle size becomes about 0.5 μm to 2.0 μm, for example. As the pulverizing means, for example, a ball mill or the like can be used.

なお、各成分の原料粉末を添加するタイミングは、前記混合工程1のみに限定されるものではない。例えば、必要な原料粉末のうちの一部の成分の原料粉末のみを秤量、混合し、仮焼する。これを粉砕した後、他の成分の原料粉末を所定量添加し、混合するようにしてもよい。   In addition, the timing which adds the raw material powder of each component is not limited only to the said mixing process 1. For example, only raw material powders of some of the necessary raw material powders are weighed, mixed, and calcined. After pulverizing this, a predetermined amount of raw material powders of other components may be added and mixed.

粉砕工程3において粉砕した粉末は、後の成形工程5を円滑に実行するために、造粒工程4において、顆粒に造粒される。この際、粉砕粉末に適当なバインダ、例えばポリビニルアルコール(PVA)を少量添加することが望ましい。また、得られる顆粒の粒径は、80μm〜200μm程度とすることが望ましい。   The powder pulverized in the pulverization step 3 is granulated into granules in the granulation step 4 in order to smoothly execute the subsequent molding step 5. At this time, it is desirable to add a small amount of an appropriate binder such as polyvinyl alcohol (PVA) to the pulverized powder. In addition, the particle size of the obtained granule is desirably about 80 μm to 200 μm.

造粒した顆粒は、成形工程4において、例えば200MPa〜300MPaの圧力で加圧成形し、所望の形状の成形体を得る。次いで、成形時に添加したバインダを除去した後、焼成工程6において、1000℃〜1400℃の範囲内で所定時間成形体を加熱保持し、焼結体を得る。焼成工程6における焼成雰囲気は、例えばO、Nまたは大気等の非還元性雰囲気とすればよい。加熱保持時間は、例えば2〜6時間の範囲で適宜選択すればよい。 In the molding step 4, the granulated granule is pressure-molded at a pressure of, for example, 200 MPa to 300 MPa to obtain a molded body having a desired shape. Subsequently, after removing the binder added at the time of shaping | molding, in the baking process 6, a molded object is heat-held for a predetermined time within the range of 1000 to 1400 degreeC, and a sintered compact is obtained. The firing atmosphere in the firing step 6 may be a non-reducing atmosphere such as O 2 , N 2 or air. The heating and holding time may be appropriately selected within a range of 2 to 6 hours, for example.

焼成後、必要に応じて研磨等により表面仕上げを行い、焼結体(誘電体磁器組成物)を得る。この誘電体磁器組成物は、例えば3GHzにおける比誘電率εrが150〜300、Qfが300〜10000GHz、誘電率の温度特性τε(−40℃〜85℃)が絶対値で200ppm/K以下であり、優れた誘電特性を備える。したがって、本発明の誘電体磁器組成物は、高周波、特にマイクロ波用の共振器、フィルタ、積層コンデンサ等のデバイス部品や、低温焼成セラミックス基板の材料として好適である。   After firing, surface finishing is performed by polishing or the like as necessary to obtain a sintered body (dielectric ceramic composition). This dielectric ceramic composition has, for example, a relative dielectric constant εr at 3 GHz of 150 to 300, a Qf of 300 to 10000 GHz, and a temperature characteristic τε of dielectric constant (−40 ° C. to 85 ° C.) of 200 ppm / K or less in absolute value. With excellent dielectric properties. Therefore, the dielectric ceramic composition of the present invention is suitable as a material for device parts such as resonators, filters and multilayer capacitors for high frequencies, particularly microwaves, and low-temperature fired ceramic substrates.

以下、本発明を適用した具体的な実施例について、実験結果に基づいて説明する。   Hereinafter, specific examples to which the present invention is applied will be described based on experimental results.

誘電体磁器組成物の作製
原料粉末として、LiCO、CaCO、SrCO、BaCO、Bi、Nd、TiO等を用意した。各原料粉末の平均粒径は、0.1μm〜1.0μmである。
LiCO 3 , CaCO 3 , SrCO 3 , BaCO 3 , Bi 2 O 3 , Nd 2 O 3 , TiO 2, etc. were prepared as raw material powders for the dielectric ceramic composition . The average particle diameter of each raw material powder is 0.1 μm to 1.0 μm.

これら原料粉末を所定のモル比で所定の値となるように秤量し、ボールミルを用いて湿式混合を16時間行った。得られたスラリーを十分に乾燥させた後、大気中、1200℃で2時間保持する仮焼を行い、仮焼体を得た。仮焼体が平均粒径1.0μmになるまでボールミルにより微粉砕した後、微粉砕粉末を乾燥させた。次いで、バインダとしてPVA(ポリビニルアルコール)を適量加えて造粒し、成形を行った後、1100℃〜1400℃の温度範囲で4時間焼成を行い、焼結体を得た。この焼結体をバーティカル研磨後、ラップで鏡面に仕上げ、直径10mm、厚さ5mmのサンプルを得た。   These raw material powders were weighed so as to have a predetermined value at a predetermined molar ratio, and wet mixed using a ball mill for 16 hours. After sufficiently drying the obtained slurry, calcining was performed in the atmosphere at 1200 ° C. for 2 hours to obtain a calcined body. After finely pulverizing with a ball mill until the calcined body had an average particle size of 1.0 μm, the finely pulverized powder was dried. Next, an appropriate amount of PVA (polyvinyl alcohol) was added as a binder, granulated and molded, and then fired at a temperature range of 1100 ° C. to 1400 ° C. for 4 hours to obtain a sintered body. This sintered body was vertically polished and finished to a mirror surface with a lapping to obtain a sample having a diameter of 10 mm and a thickness of 5 mm.

以上の手順に従い、誘電体磁器組成物(実施例1〜実施例26、比較例1〜比較例5)を作製した。これら実施例、比較例の誘電体磁器組成物の組成について、誘導結合プラズマ発光分光分析装置によりLiを分析し、蛍光X線回折装置により残りの元素を分析した。結果を表1及び表2に示す。表中、a,b,c,d,eの単位はモル%である。   According to the above procedure, dielectric ceramic compositions (Example 1 to Example 26, Comparative Example 1 to Comparative Example 5) were produced. Regarding the compositions of the dielectric ceramic compositions of these examples and comparative examples, Li was analyzed by an inductively coupled plasma emission spectroscopic analyzer, and the remaining elements were analyzed by a fluorescent X-ray diffractometer. The results are shown in Tables 1 and 2. In the table, the unit of a, b, c, d, e is mol%.

評価
作製した各誘電体磁器組成物について、誘電特性(比誘電率εr、Qf値、温度特性τε)を測定した。なお、比誘電率εr、Qf値、共振周波数は、Hakki−Coleman法により測定した。また、比誘電率εrの測定の際には、ネットワークアナライザ(ヒューレットパッカード社製、8510C)の一方のプローブより高周波を発振して周波数特性を測定し、得られたTE01δモードの共振周波数ピークと試料の寸法より比誘電率εrを求めた。温度特性τεは、共振法により、−40℃〜85℃の温度領域において測定し、測定時の共振周波数f0は2.5GHz〜3.5GHzとした。結果を表1及び表2に示す。なお、組成の違いにより、各サンプルの緻密化温度が若干違うため,同一作製条件での特性比較ができない。ここでは各サンプルにおいて最も高い焼成密度および電気特性が得られた条件でのデータを示す。
Evaluation Each dielectric ceramic composition was produced, dielectric properties (relative permittivity .epsilon.r, Qf value, temperature characteristics Tauipushiron) was measured. The relative dielectric constant εr, Qf value, and resonance frequency were measured by the Hakki-Coleman method. Further, when measuring the relative dielectric constant εr, a frequency characteristic is measured by oscillating a high frequency from one probe of a network analyzer (manufactured by Hewlett Packard, 8510C), and the obtained TE01δ mode resonance frequency peak and sample are measured. The relative dielectric constant εr was determined from the dimensions of. The temperature characteristic τε was measured by a resonance method in a temperature range of −40 ° C. to 85 ° C., and the resonance frequency f0 at the measurement was 2.5 GHz to 3.5 GHz. The results are shown in Tables 1 and 2. In addition, since the densification temperature of each sample is slightly different due to the difference in composition, the characteristics cannot be compared under the same production conditions. Here, data is shown under conditions where the highest firing density and electrical characteristics were obtained for each sample.

Figure 2006273703
Figure 2006273703

Figure 2006273703
Figure 2006273703

表1から、本発明の組成範囲内にある誘電体磁器組成物では、多くの実施例において、比誘電率εr200以上と高い値を示している。Qf値については大部分で1000GHz以上の高い値を示し、特に、Aサイトの原子とBサイトの原子とのモル比A/B、すなわち、(a+b+c+d)/eを適正範囲内(0.93以上1未満)にした実施例においては、全て1000GHz以上を達成している。温度特性τεは、全ての実施例において絶対値で150ppm/K以下である。中でも、b/(c+d)を0.70以上0.90以下とするとすることで、比誘電率εr、Qf及び温度特性τεの各特性のバランスがさらに良好なものとなり、特に実施例2〜実施例4及び実施例11の誘電体磁器組成物は、比誘電率εr、Qf及び温度特性τεの全てにおいて非常に優れた値を示している。このように、本発明を適用することで、優れた誘電特性が達成されることがわかる。   From Table 1, the dielectric ceramic composition in the composition range of the present invention shows a high value of a relative dielectric constant εr200 or more in many examples. Most of the Qf values are high values of 1000 GHz or more, and in particular, the molar ratio A / B between the A-site atoms and the B-site atoms, that is, (a + b + c + d) / e is within an appropriate range (0.93 or more). In all of the examples, less than 1), 1000 GHz or more is achieved. The temperature characteristic τε is an absolute value of 150 ppm / K or less in all examples. In particular, by setting b / (c + d) to be 0.70 or more and 0.90 or less, the balance between the specific dielectric constants εr, Qf and the temperature characteristic τε is further improved. The dielectric ceramic compositions of Example 4 and Example 11 show very excellent values in all of the relative dielectric constants εr, Qf and temperature characteristics τε. Thus, it can be seen that excellent dielectric properties can be achieved by applying the present invention.

これに対して、表2に示す比較例のうち、1価元素Liと3価元素であるBi及び希土類元素REの総和とのモル比b/(c+d)が1を超える比較例2では、比誘電率εrの低下が認められる。Liが少なくなりすぎる結果、b/(c+d)が0.65を下回る比較例1では、Qfが1000GHzを大きく下回り、比誘電率εrも低下するばかりか、温度特性τεも絶対値で150ppm/Kを超えている。また、Ti量が50モル%を下回る比較例3〜比較例5では、Qfが1000GHzを下回り、比誘電率εrも低下する傾向にある。   On the other hand, among the comparative examples shown in Table 2, in the comparative example 2 in which the molar ratio b / (c + d) between the monovalent element Li and the sum of the trivalent element Bi and the rare earth element RE exceeds 1, A decrease in dielectric constant εr is observed. As a result of Li being reduced too much, in Comparative Example 1 where b / (c + d) is less than 0.65, Qf is significantly lower than 1000 GHz, the relative dielectric constant εr is also lowered, and the temperature characteristic τε is also an absolute value of 150 ppm / K. Is over. Further, in Comparative Examples 3 to 5 in which the Ti amount is less than 50 mol%, Qf is less than 1000 GHz, and the relative dielectric constant εr tends to decrease.

本発明の誘電体磁器組成物中、Aサイトを構成する元素の好ましい組成範囲を示す3元組成図である。FIG. 3 is a ternary composition diagram showing a preferred composition range of elements constituting the A site in the dielectric ceramic composition of the present invention. 誘電体磁器組成物の製造プロセスの一例を示す図である。It is a figure which shows an example of the manufacturing process of a dielectric material ceramic composition.

1 混合工程、2 仮焼成工程、3 粉砕工程、4 造粒工程、5 成形工程、6 焼成工程 1 mixing process, 2 pre-baking process, 3 grinding process, 4 granulation process, 5 molding process, 6 firing process

Claims (7)

基本組成成分が、aCaO−bLiO1/2−cBiO3/2−dREO3/2−eTiO[ただし、REはLa,Ce,Pr,Nd,Sm,Yb,Dy,Yから選択される少なくとも1種を表し、a+b+c+d+e=100(モル%)である。]で表され、
10≦a≦25
10≦b≦20
8≦c≦15
2≦d≦10
50≦e≦60
であり、かつ
0.65≦b/(c+d)<1.0
であることを特徴とする誘電体磁器組成物。
Basic composition ingredients, aCaO-bLiO 1/2 -cBiO 3/2 -dREO 3/2 -eTiO 2 [ provided that at least RE is selected La, Ce, Pr, Nd, Sm, Yb, Dy, from Y 1 It represents a seed, a + b + c + d + e = 100 (mol%). ],
10 ≦ a ≦ 25
10 ≦ b ≦ 20
8 ≦ c ≦ 15
2 ≦ d ≦ 10
50 ≦ e ≦ 60
And 0.65 ≦ b / (c + d) <1.0
A dielectric porcelain composition comprising:
0.70≦b/(c+d)≦0.90
であることを特徴とする請求項1記載の誘電体磁器組成物。
0.70 ≦ b / (c + d) ≦ 0.90
The dielectric ceramic composition according to claim 1, wherein:
1≦c/d≦5であることを特徴とする請求項1又は2記載の誘電体磁器組成物。   The dielectric ceramic composition according to claim 1, wherein 1 ≦ c / d ≦ 5. 0.93≦(a+b+c+d)/e<1であることを特徴とする請求項1〜3のいずれか1項記載の誘電体磁器組成物。   The dielectric ceramic composition according to claim 1, wherein 0.93 ≦ (a + b + c + d) / e <1. 前記基本組成成分のうち、REO3/2において、REがNdであることを特徴とする請求項1〜4のいずれか1項記載の誘電体磁器組成物。 5. The dielectric ceramic composition according to claim 1, wherein among the basic composition components, RE is Nd in REO 3/2 . 前記Ndの一部がLa,Ce,Pr,Sm,Y,Yb,Dyから選択される1種又は2種以上により置換されていることを特徴とする請求項5記載の誘電体磁器組成物。   6. The dielectric ceramic composition according to claim 5, wherein a part of the Nd is substituted with one or more selected from La, Ce, Pr, Sm, Y, Yb, and Dy. 前記基本組成成分のうち、CaOにおいて、Caの一部がSr,Ba,Mgから選択される1種又は2種以上により置換されていることを特徴とする請求項1〜6のいずれか1項記載の誘電体磁器組成物。   Among the basic composition components, in CaO, a part of Ca is substituted with one or more selected from Sr, Ba, and Mg. The dielectric ceramic composition as described.
JP2005100124A 2005-03-30 2005-03-30 Dielectric porcelain composition Expired - Fee Related JP4465663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100124A JP4465663B2 (en) 2005-03-30 2005-03-30 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100124A JP4465663B2 (en) 2005-03-30 2005-03-30 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JP2006273703A true JP2006273703A (en) 2006-10-12
JP4465663B2 JP4465663B2 (en) 2010-05-19

Family

ID=37208799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100124A Expired - Fee Related JP4465663B2 (en) 2005-03-30 2005-03-30 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP4465663B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145661A (en) * 2000-11-08 2002-05-22 Sumitomo Special Metals Co Ltd Dielectric porcelain composition for microwave
JP2009161410A (en) * 2008-01-09 2009-07-23 Tdk Corp Dielectric ceramic composition
JP2009161411A (en) * 2008-01-09 2009-07-23 Tdk Corp Dielectric ceramic composition and dielectric ceramic
CN116023129A (en) * 2022-12-15 2023-04-28 无锡鑫圣慧龙纳米陶瓷技术有限公司 A kind of microwave dielectric ceramic material with high dielectric constant and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145661A (en) * 2000-11-08 2002-05-22 Sumitomo Special Metals Co Ltd Dielectric porcelain composition for microwave
JP2009161410A (en) * 2008-01-09 2009-07-23 Tdk Corp Dielectric ceramic composition
JP2009161411A (en) * 2008-01-09 2009-07-23 Tdk Corp Dielectric ceramic composition and dielectric ceramic
CN116023129A (en) * 2022-12-15 2023-04-28 无锡鑫圣慧龙纳米陶瓷技术有限公司 A kind of microwave dielectric ceramic material with high dielectric constant and preparation method thereof

Also Published As

Publication number Publication date
JP4465663B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
US8420560B2 (en) Dielectric ceramic, method for producing dielectric ceramic, and method for producing powder for producing dielectric ceramic
JP4506802B2 (en) Dielectric porcelain composition
CN105837213B (en) Add ReAlO3Microwave dielectric ceramic materials and preparation method thereof
KR102762006B1 (en) Dielectric ceramics composition for high frequency device and manufacturing method of the same
JP5041206B2 (en) Method for producing dielectric ceramic composition
JP2005200232A (en) Dielectric ceramic composition
KR20010109472A (en) Dielectric porcelain, dielectric porcelain composition, method of manufacturing the same and dielectric resonator using the same
JP4465663B2 (en) Dielectric porcelain composition
JP4419889B2 (en) Dielectric porcelain composition
JP4849325B2 (en) Dielectric porcelain composition
JPH0840768A (en) Dielectric material for high frequency
JP2007063076A (en) Dielectric ceramic composition
JP2005225735A (en) Production method for dielectric porcelain composition
KR0173185B1 (en) Dielectric ceramic composition for high frequency
JP2003146752A (en) Dielectric ceramic composition
KR101282194B1 (en) Y-type ferrite and molded article manufactured with the same
JP2007045690A (en) Dielectric porcelain composition
JP2007063077A (en) Method of manufacturing dielectric ceramic composition
JPWO2006013981A1 (en) Dielectric ceramic composition and dielectric ceramic
JPH0840769A (en) Dielectric material for high frequency
JP4911072B2 (en) Dielectric porcelain composition
JP4765367B2 (en) Dielectric porcelain composition
JP2006256931A (en) Dielectric porcelain composition
KR100763284B1 (en) Microwave Dielectric Ceramics and Manufacturing Method Thereof
JP4946875B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100211

R150 Certificate of patent or registration of utility model

Ref document number: 4465663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees