[go: up one dir, main page]

JP2006272420A - Metal foil diffusion bonding method - Google Patents

Metal foil diffusion bonding method Download PDF

Info

Publication number
JP2006272420A
JP2006272420A JP2005097422A JP2005097422A JP2006272420A JP 2006272420 A JP2006272420 A JP 2006272420A JP 2005097422 A JP2005097422 A JP 2005097422A JP 2005097422 A JP2005097422 A JP 2005097422A JP 2006272420 A JP2006272420 A JP 2006272420A
Authority
JP
Japan
Prior art keywords
metal foil
diffusion bonding
foil body
metal
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005097422A
Other languages
Japanese (ja)
Inventor
Masatoshi Inatani
正敏 稲谷
Masaaki Tanaka
正昭 田中
Hitoshi Ozaki
仁 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005097422A priority Critical patent/JP2006272420A/en
Publication of JP2006272420A publication Critical patent/JP2006272420A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

【課題】被接合体に細かな凹凸があっても、安定した拡散接合が可能で密着力が強い金属箔体の拡散接合方法を提供する。
【解決手段】一対の加圧用平板治具33a,33bの間に、被接合体52となる金属板(Ta板)53と接合体50a,50bとなる金属箔体(Pd箔)51a,51bとを、お互いの接合界面が対面するように配置し、かつ、金属箔体51a,51bの接合界面とは反対側の背面と加圧用平板治具33a,33bとの間に、熱によるガスの発生がなく、加圧により弾性変形し、金属箔体51a,51bと加圧用平板治具33a,33bとの剥離性が良い剥離性シート54a,54bを介在させた後、一対の加圧用平板治具33a,33bにより、金属板53の接合界面と金属箔体51a,51bの接合界面とを所定の圧力で加圧しながら加熱することにより拡散接合する。
【選択図】図2
Disclosed is a method for diffusion bonding of a metal foil body that is capable of stable diffusion bonding and has high adhesion even if the object to be bonded has fine irregularities.
A metal plate (Ta plate) 53 to be joined 52 and metal foil bodies (Pd foil) 51a and 51b to be joined 50a and 50b are provided between a pair of pressing flat jigs 33a and 33b. Between the metal foil bodies 51a and 51b and the pressing plate jigs 33a and 33b to generate gas due to heat. And a pair of pressurizing flat jigs after interposing the peelable sheets 54a and 54b which are elastically deformed by pressurization and have good peelability between the metal foil bodies 51a and 51b and the pressurizing flat jigs 33a and 33b. 33a and 33b are diffusion bonded by heating the bonding interface of the metal plate 53 and the bonding interface of the metal foil bodies 51a and 51b while applying a predetermined pressure.
[Selection] Figure 2

Description

本発明は、金属箔体の拡散接合方法に関するものであり、例えば、メタンガスなどの炭化水素と水蒸気とを混合し、高温にて改質処理した後、生成した混合ガスの中から水素ガスのみを透過分離して、高純度の水素ガスを生成する水素透過分離膜の製法として使用される金属箔体の拡散接合方法に関するものである。   The present invention relates to a diffusion bonding method of a metal foil body. For example, after mixing a hydrocarbon such as methane gas with water vapor and reforming at a high temperature, only hydrogen gas is generated from the generated mixed gas. The present invention relates to a diffusion bonding method of a metal foil body used as a method for producing a hydrogen permeable separation membrane that produces a high purity hydrogen gas by permeation separation.

従来、この種の水素透過分離膜は、選択的に水素のみを透過させるPd(パラジウム)又はPdを含有する合金を使用した単一層のものが知られている。   Conventionally, this type of hydrogen permeation separation membrane is known as a single layer using Pd (palladium) or an alloy containing Pd that selectively permeates only hydrogen.

また、セラミック多孔質支持体表面にPd合金膜をメッキ法により形成しているものもある(特許文献1参照)。   In some cases, a Pd alloy film is formed on the surface of the ceramic porous support by a plating method (see Patent Document 1).

また、サンドウィッチ構造を有する水素透過分離膜として、水素透過性能の高い金属膜の両面にPd膜又はPd合金膜を配してなるものもある(特許文献2参照)。   Further, as a hydrogen permeation separation membrane having a sandwich structure, there is also one in which a Pd film or a Pd alloy film is disposed on both surfaces of a metal film having high hydrogen permeation performance (see Patent Document 2).

さらに、サンドウィッチ構造となるクラッド材を均一に作る拡散接合方法としては、ステンレス金属薄板の袋の中にクラッド素材を重ねて置き、袋の中を真空にすることで大気圧を加え、焼成炉で加熱する方法が紹介されている(特許文献3参照)。   Furthermore, as a diffusion bonding method for uniformly creating a clad material having a sandwich structure, the clad material is placed in a stainless steel sheet bag, and the bag is evacuated to apply atmospheric pressure. A method of heating has been introduced (see Patent Document 3).

まず、Pd又はPd合金を水素透過分離膜として使用されている水素分離法について、簡単に述べる。   First, a hydrogen separation method in which Pd or Pd alloy is used as a hydrogen permeable separation membrane will be briefly described.

通常、水素透過分離膜は、Pd又はPd合金を薄膜状に圧延加工して使用する。例えばPd膜又はPd合金膜で円筒状のチューブを作り、その一端を密封溶接してチューブの外側に加圧された原料水素ガスを供給し、一定温度まで加熱すると、チューブ表面に接触している水素分子は、原子状に解離し、Pdと固溶体を形成してPd膜内に取り込まれる。   Usually, a hydrogen permeation separation membrane is used by rolling Pd or a Pd alloy into a thin film. For example, a cylindrical tube is made of a Pd film or a Pd alloy film, and one end of the tube is sealed and welded, and a pressurized raw material hydrogen gas is supplied to the outside of the tube. Hydrogen molecules dissociate in an atomic form, form a solid solution with Pd, and are taken into the Pd film.

取り込まれた水素原子は、チューブ内外の水素分圧差により、圧力が高いチューブの外側から低い内側へ拡散し、その内側表面で再度水素分子となる。メタンやメタノールから水蒸気改質により作り出される改質ガスに含有されている水素以外の不純物は、Pdと反応しないためチューブの外側に残存し、これにより水素が精製される。   The taken-in hydrogen atoms diffuse from the outside of the high pressure tube to the low inside due to the hydrogen partial pressure difference inside and outside the tube, and become hydrogen molecules again on the inner surface. Impurities other than hydrogen contained in the reformed gas produced by steam reforming from methane or methanol do not react with Pd and remain outside the tube, thereby purifying the hydrogen.

Pdのみの水素透過分離膜では、水素脆性による劣化が課題であり、合金化して使用される。すでに、23%銀や40%銅とのPd合金が良く知られており、Pd合金膜だけの単一管を用いた水素精製装置は、実用化されているが、用いられている管の膜厚は強度を保つために80μm以上と厚くなり、水素透過量が少なく、且つ高価であるとの問題点を有していた。   In the hydrogen permeable separation membrane of only Pd, deterioration due to hydrogen embrittlement is a problem, and it is used after being alloyed. Already, Pd alloys with 23% silver and 40% copper are well known, and hydrogen purifiers using only a single tube of Pd alloy film have been put into practical use. The thickness is as thick as 80 μm or more in order to maintain the strength, and there is a problem that the hydrogen permeation amount is small and expensive.

図6は、特許文献1に記載された従来の水素透過分離膜の一例を示すものである。図6に示すように、水素分離体1は、円筒状のセラミックで出来た多孔質基体2と、その外側で被処理面となる多孔質基体の表面2aにPdおよびPd等の水素分離能を有する金属3を無電解メッキにより形成した水素分離膜4とで構成され、多孔質基体2の小孔5の径が水素分離膜4の厚み以下で、かつ1μm以上である。   FIG. 6 shows an example of a conventional hydrogen permeation separation membrane described in Patent Document 1. As shown in FIG. 6, the hydrogen separator 1 has a porous substrate 2 made of a cylindrical ceramic and a surface 2a of the porous substrate that becomes a surface to be treated outside thereof, and has hydrogen separation ability such as Pd and Pd. And a hydrogen separation membrane 4 formed by electroless plating, and the diameter of the small holes 5 of the porous substrate 2 is not more than the thickness of the hydrogen separation membrane 4 and not less than 1 μm.

ここで、水素分離膜4が外面部を形成する円筒状の水素分離体1について、その動作を説明する。まず、円筒状の水素分離体1の外側に加圧された原料水素ガスを供給し、そして一定温度まで加熱すると、多孔質体2表面の水素分離膜4に接触している水素分子は、原子状に解離し、Pdと固溶体を形成して、Pd膜内、すなわち水素分離膜4に取り込まれる。   Here, the operation | movement is demonstrated about the cylindrical hydrogen separator 1 in which the hydrogen separation membrane 4 forms an outer surface part. First, when pressurized hydrogen gas is supplied to the outside of the cylindrical hydrogen separator 1 and heated to a certain temperature, the hydrogen molecules in contact with the hydrogen separation membrane 4 on the surface of the porous body 2 become atoms. Dissociate to form a solid solution with Pd and are taken into the Pd membrane, that is, into the hydrogen separation membrane 4.

取り込まれた水素原子は、水素分離膜4内外の水素分圧差により、圧力が高い水素分離膜4の外側から低い内側へ拡散し、その内側表面で再度水素分子となる。その後、多孔質体の表面2aから円筒状の多孔質基体2の小孔5内を流れる。改質水素ガスに含有されている多くの不純物は、Pdと反応しないため、水素分離体1の外側に残存し、これにより水素が精製される。   The taken-in hydrogen atoms diffuse from the outside of the high-pressure hydrogen separation membrane 4 to the low inside due to the difference in hydrogen partial pressure inside and outside the hydrogen separation membrane 4, and become hydrogen molecules again on the inside surface. After that, it flows in the small holes 5 of the cylindrical porous substrate 2 from the surface 2a of the porous body. Since many impurities contained in the reformed hydrogen gas do not react with Pd, they remain outside the hydrogen separator 1, thereby purifying the hydrogen.

しかしながら、従来のセラミックから成る多孔質基体外表面にPd膜或いはPd合金膜をメッキ法により形成する方法では、構造体としての機械的強度を高めることが出来、1〜5μm程度の薄膜であり、一定量の水素分離能を確保できるが、多孔質支持体の孔径を透過量に影響を及ぼさない程度に小さなものを選定しても、メッキ処理においてメッキ厚みのばらつきが生じ、Pd合金膜が薄くなる部分にはピンホールが残り、漏れを解消することは困難である。   However, in the conventional method of forming a Pd film or a Pd alloy film on the outer surface of a porous substrate made of ceramic by a plating method, the mechanical strength as a structure can be increased, and it is a thin film of about 1 to 5 μm. A certain amount of hydrogen separation ability can be secured, but even if the pore diameter of the porous support is selected so as not to affect the amount of permeation, the plating thickness varies in the plating process, and the Pd alloy film is thin. Pinholes remain in the part, and it is difficult to eliminate the leakage.

よって、水蒸気改質の結果生成する改質水素ガスの純度が低いと、膜を透過し分離して得られる水素ガスの純度も比例して悪くなり、例えばPd合金膜の厚さ5μmでは、純度99.9%程度で、50ppm以上の一酸化炭素が混入するため、透過したガスを固体高分子膜の燃料電池に供給して使用することはできなかった。また、長時間使用すると、水素脆性によって強度が低下し、特にピンホール部の劣化が促進され破壊が生じやすいといった問題が残る。   Therefore, when the purity of the reformed hydrogen gas generated as a result of steam reforming is low, the purity of the hydrogen gas obtained by permeating through the membrane is also proportionally deteriorated. For example, when the thickness of the Pd alloy film is 5 μm, the purity At about 99.9%, 50 ppm or more of carbon monoxide was mixed in, so that the permeated gas could not be supplied to a solid polymer membrane fuel cell. In addition, when used for a long time, the strength is lowered due to hydrogen embrittlement, and in particular, there is a problem that deterioration of the pinhole portion is accelerated and breakage is likely to occur.

図7は特許文献2に記載された従来の水素透過膜を示している。図7に示すように、水素透過膜6は、水素透過性能の高い金属膜7と、その両側に配置されたPd膜又はPd合金膜8とから構成されている。   FIG. 7 shows a conventional hydrogen permeable membrane described in Patent Document 2. As shown in FIG. 7, the hydrogen permeable film 6 is composed of a metal film 7 having high hydrogen permeable performance and a Pd film or a Pd alloy film 8 disposed on both sides thereof.

このサンドウィッチ構造を有する水素透過膜6は、以下に示す(1)と(2)のような形態で作製される。   The hydrogen permeable membrane 6 having the sandwich structure is produced in the following forms (1) and (2).

(1)水素透過性能の高い金属膜7とPd膜又はPd合金膜8を、真空中でドライエッチングして表面の不純物及び酸化物層を除去する。エッチングには不活性ガスイオンによるイオン衝撃等により行うことができる。その後、真空を保持したまま水素透過性能の高い金属膜の両面にPd膜又はPd膜を配置して真空中で圧延する。   (1) The metal film 7 having high hydrogen permeation performance and the Pd film or the Pd alloy film 8 are dry-etched in vacuum to remove impurities and oxide layers on the surface. Etching can be performed by ion bombardment with inert gas ions. Thereafter, a Pd film or a Pd film is disposed on both surfaces of a metal film having a high hydrogen permeation performance while maintaining a vacuum, and is rolled in a vacuum.

(2)水素透過性能の高い金属膜7の両面にPd膜又はPd合金膜8を配置して、真空中で加熱することにより、不純物及び酸化物層を除去する。真空中での加熱にはホットプレス等の手法が適用できる。その後圧延する。   (2) The Pd film or the Pd alloy film 8 is disposed on both surfaces of the metal film 7 having high hydrogen permeation performance, and is heated in vacuum to remove impurities and oxide layers. A technique such as hot pressing can be applied to heating in vacuum. Then roll.

このようにして作成されたサンドウィッチ構造の水素透過膜の取り付け方法と作用を説明する。   An attachment method and operation of the hydrogen permeable membrane having the sandwich structure thus prepared will be described.

図8で示すように、通常、円筒状の多孔質体9の外層10に水素透過膜6を巻きつけて、合わせ部11を銅ろう12で溶接することにより、円筒状のチューブを作る。つぎに、その一端を密封溶接して、チューブの外側に加圧された原料水素ガスを供給する。   As shown in FIG. 8, a cylindrical tube is usually formed by winding a hydrogen permeable membrane 6 around an outer layer 10 of a cylindrical porous body 9 and welding a mating portion 11 with a copper braze 12. Next, one end of the tube is hermetically welded, and pressurized raw material hydrogen gas is supplied to the outside of the tube.

一定温度まで加熱すると、チューブ表面に接触している水素分子は、原子状に解離し、Pdと固溶体を形成してPd膜内に取り込まれる。   When heated to a certain temperature, hydrogen molecules in contact with the tube surface dissociate into atoms, form a solid solution with Pd, and are taken into the Pd film.

取り込まれた水素原子は、チューブ内外の水素分圧差により、水素分圧が高いチューブの外側から水素透過性能の高い金属膜を抜け水素分圧の低い内側へ、すばやく拡散し、その内側のPd膜表面で再度水素分子となる。   Due to the difference in hydrogen partial pressure inside and outside the tube, the taken-in hydrogen atoms quickly diffuse from the outside of the tube with high hydrogen partial pressure through the metal film with high hydrogen permeability to the inside with low hydrogen partial pressure, and the Pd film inside It becomes hydrogen molecule again on the surface.

改質水素ガスに含有されている多くの不純物は、Pdと反応しないため、チューブの外側に残存し、これにより水素が精製される。   Many impurities contained in the reformed hydrogen gas do not react with Pd, and therefore remain outside the tube, thereby purifying the hydrogen.

このように作成されたサンドウィッチ構造を有する水素透過膜6は、芯材に水素の拡散係数が大きく、水素透過性能が高い金属7が使用されているので、Pd合金単一管を用いたものより、水素透過性能が高いものが得られる。   Since the hydrogen permeable membrane 6 having the sandwich structure made in this way uses a metal 7 having a high hydrogen diffusion coefficient and a high hydrogen permeation performance as the core material, it is more than that using a single Pd alloy tube. High hydrogen permeation performance can be obtained.

また、水素透過性能の高い金属膜の両面にPd膜又は合金膜を配してなるので、表面に酸化被膜層が生成することも無く、且つ積層構造であるのでピンホールのない緻密な水素透過膜が得られ、さらに、水素脆性に弱いとされる水素透過性の高い金属膜の両側にPd膜又はPd合金膜を均一に配してなるので、水素脆性による物性の低下は少なくなる。   In addition, the Pd film or alloy film is arranged on both sides of the metal film with high hydrogen permeation performance, so that no oxide film layer is formed on the surface, and since it has a laminated structure, it has a dense hydrogen permeation without pinholes. A film is obtained, and furthermore, a Pd film or a Pd alloy film is uniformly disposed on both sides of a metal film having high hydrogen permeability, which is considered to be weak against hydrogen embrittlement. Therefore, deterioration in physical properties due to hydrogen embrittlement is reduced.

また、図9は特許文献3に記載された従来の拡散接合方法を示している。図9において、タンタル板21、銅板22、ステンレス鋼(SUS316L)板23の組合わせにおいて、タンタル板21と銅板22の間に銀または、Ag−Cu等の銀ろう薄層24(箔または粉末)を挿入し、これらの両外側に剥離材25を置いた積層物をステンレス鋼等の金属箔または薄い金属板の袋26に入れ、袋内をパイプ部27より真空にした後シーム熔接28で封じ、大気圧を掛けたまま、800〜1050℃に加熱することによるクラッドの製造方法がある。   FIG. 9 shows a conventional diffusion bonding method described in Patent Document 3. In FIG. 9, in a combination of a tantalum plate 21, a copper plate 22, and a stainless steel (SUS316L) plate 23, a silver brazing thin layer 24 (foil or powder) such as silver or Ag-Cu is provided between the tantalum plate 21 and the copper plate 22. Are inserted into a bag 26 made of a metal foil such as stainless steel or a thin metal plate, the inside of the bag is evacuated from a pipe portion 27, and sealed with a seam weld 28. There is a method for producing a clad by heating to 800 to 1050 ° C. while applying atmospheric pressure.

このような圧力の加え方であれば、袋の外から大気圧の均一な圧力が加えられる為に、油圧プレスを併用した大型の拡散接合装置が必要でなく、拡散接合が安定して可能であり、均一な強度のクラッド材が得られる。
特開2000−317282号公報 特開平11−276866号公報 特開平5−169281号公報
With this method of pressure application, a uniform pressure of atmospheric pressure is applied from the outside of the bag, so there is no need for a large diffusion bonding device combined with a hydraulic press, and diffusion bonding is possible stably. Yes, a clad material with uniform strength can be obtained.
JP 2000-317282 A JP-A-11-276866 JP-A-5-169281

上記従来の、水素透過性能の高い金属膜7の両面にPd膜又はPd合金膜8を配置して、真空中で加熱とプレス、または圧延する方法は、不純物及び酸化物層を除去する工程とサンドウイッチ構造を形成する拡散接合工程とを共有するもので、金属膜7を均一に密着させる為には高圧を必要とし、装置が大型で非常に複雑化し高価となり、また、水素透過膜に使用されるPdやPd合金のような10μm程度の薄い金属箔の場合には、被接合面となる水素透過性能の高い金属面の凹凸細部には均一に力が加わらず、全面均一な密着強度を有する貼り合わせは困難である。   The conventional method of placing the Pd film or the Pd alloy film 8 on both surfaces of the metal film 7 having high hydrogen permeation performance and heating and pressing or rolling in vacuum is a process of removing impurities and oxide layers. It shares the diffusion bonding process that forms the sandwich structure, and requires a high pressure to make the metal film 7 adhere uniformly, making the device large, very complex and expensive, and used for hydrogen permeable membranes. In the case of a thin metal foil of about 10 μm, such as Pd or Pd alloy, the unevenness of the metal surface with high hydrogen permeation performance to be bonded is not uniformly applied, and the entire surface has a uniform adhesion strength. Bonding is difficult.

また、特許文献3に示されるような、クラッド積層素材の両外側に剥離材を置き、ステンレス鋼等の金属箔または薄い金属板の袋に入れ、袋内を真空に封じ、大気圧を掛けたまま加熱する拡散接合方法であっても、テンパーカラーを形成させた18Cr−3Al鋼のような固い剥離材を使用するのであれば、治具やクラッド材へのくっ付きはなくなるが、水素透過膜に使用されるPdやPd合金のような10μm程度の薄い金属箔の場合には、被接合面となる水素透過性能の高い金属面の凹凸細部には均一に力が加わらず、全面均一な密着強度を有する貼り合わせは困難である。   Also, as shown in Patent Document 3, a release material is placed on both outer sides of the clad laminate material, put into a metal foil or thin metal plate bag such as stainless steel, the bag is sealed in vacuum, and atmospheric pressure is applied. Even if it is a diffusion bonding method in which heating is performed as it is, if a hard release material such as 18Cr-3Al steel with a temper collar is used, it will not stick to a jig or a clad material. In the case of a thin metal foil of about 10 μm, such as Pd or Pd alloy used for the metal, the surface of the metal surface with high hydrogen permeability that becomes the bonded surface is not evenly applied to the uneven details, and the entire surface is uniformly adhered. Bonding with strength is difficult.

本発明は、上記従来の課題に鑑み、被接合体に細かな凹凸があっても、安定した拡散接合が可能で密着力が強い金属箔体の拡散接合方法を提供することを目的とする。   In view of the above-described conventional problems, an object of the present invention is to provide a diffusion bonding method for a metal foil body that is capable of stable diffusion bonding and has strong adhesion even if the objects to be bonded have fine irregularities.

上記目的を達成するために、本発明の金属箔体の拡散接合方法は、一対の加圧用平板治具の間に、被接合体となる金属板と接合体となる金属箔体とを、お互いの接合界面が対面するように配置し、かつ、前記金属箔体の接合界面とは反対側の背面と前記加圧用平板治具との間に、熱によるガスの発生がなく、加圧により弾性変形し、前記金属箔体と前記加圧用平板治具との剥離性が良い剥離性シートを介在させた後、一対の前記加圧用平板治具により、前記金属板の接合界面と前記金属箔体の接合界面とを所定の圧力で加圧しながら加熱することにより拡散接合するのである。   In order to achieve the above object, the metal foil body diffusion bonding method of the present invention includes a metal plate to be bonded and a metal foil body to be bonded to each other between a pair of pressing flat jigs. Between the back surface of the metal foil body opposite to the bonding interface of the metal foil body and the pressurizing flat plate jig, there is no generation of gas due to heat, and it is elastic by pressurization. After being deformed and interposing a peelable sheet having good releasability between the metal foil body and the flat plate jig for pressurization, a pair of the flat plate jigs for pressurization are used to connect the joining interface of the metal plate and the metal foil body. Thus, diffusion bonding is performed by heating the bonding interface with a predetermined pressure.

本発明によれば、加圧により弾性変形する剥離性シートを用いることで、被接合体の細かな凹凸に対しても金属薄体は追随して均一に圧力が加わるので、非常に安定した拡散接合が可能となり密着力が向上させることができる。   According to the present invention, by using a peelable sheet that is elastically deformed by pressurization, the metal thin body follows the uniform unevenness of the joined body, and the pressure is applied uniformly, so a very stable diffusion Bonding is possible and adhesion can be improved.

本発明において、上記の剥離性シートとして、還元性を有する高純度化処理した炭素繊維のフェルトを使用すると、真空引きによる酸化防止にプラスして、高温における黒鉛の還元性雰囲気を創出することにより、接合界面の酸化皮膜を積極的に除去する働きを有する。   In the present invention, when using a felt of highly purified carbon fiber having reducibility as the above-described peelable sheet, in addition to preventing oxidation by vacuuming, by creating a reducing atmosphere of graphite at high temperature It has the function of positively removing the oxide film at the bonding interface.

これによって、装置が非常に簡素化し、水素透過膜に使用されるパラジウムPdやPd合金のような10μm程度の薄い金属箔の場合にも、被接合面となる水素透過性能の高い金属面の凹凸細部に均一に力が加わわり、全面均一な密着強度を有する貼り合わせが可能となる。また、水素透過分離膜として使用した場合、積層膜としての剥離強度が高くなるだけでなく、水素透過性能を向上させることができる。   This greatly simplifies the apparatus, and even in the case of a thin metal foil of about 10 μm such as palladium Pd or Pd alloy used for the hydrogen permeable membrane, the unevenness of the metal surface with high hydrogen permeability that becomes the bonded surface A uniform force is applied to the details, and bonding with uniform adhesion strength over the entire surface becomes possible. Further, when used as a hydrogen permeable separation membrane, not only the peel strength as a laminated membrane is increased, but also the hydrogen permeation performance can be improved.

本発明の金属箔体の拡散接合方法は、接合体が比較的薄い金属箔体を拡散接合する場合において、背面より弾性変形する剥離性シートを介在させることで、被接合体の細かな凹凸に対しても金属薄体は追随して均一に圧力が加わるので、非常に安定した拡散接合が可能となり、密着力が向上することで、その後の圧延工程においても剥離しない強固な拡散接合体を提供することが出来る。   In the diffusion bonding method of the metal foil body of the present invention, in the case where the bonded body is a diffusion bonding of a relatively thin metal foil body, a release sheet that elastically deforms from the back surface is interposed, so that the fine unevenness of the bonded body is obtained. On the other hand, since the metal thin body follows the pressure uniformly, extremely stable diffusion bonding is possible, and the adhesion is improved, providing a strong diffusion bonded body that does not peel off in the subsequent rolling process. I can do it.

また、高純度化処理した炭素繊維のフェルトを剥離性シートとして使用すれば、拡散接合工程での真空引きによる接合面の酸化防止に留まらず、高温において黒鉛が還元性雰囲気を創出することで、接合界面の酸化皮膜を除去する働きを有し、接合界面のエッチング工程がなくすことができると共に、装置が非常に簡素化し、水素透過膜に使用されるPdやPd合金のような10μm程度の薄い金属箔の場合も、被接合面となる水素透過性能の高い金属面の凹凸細部にも均一に力が加わわり、全面均一な密着強度を有する貼り合わせが可能となる。よって、水素透過分離膜として使用した場合、積層膜としての剥離強度が高くなるだけでなく、水素透過性能を向上も図ることが出来る。   In addition, if the carbon fiber felt subjected to high purity treatment is used as a peelable sheet, not only the oxidation of the joint surface by evacuation in the diffusion bonding process, but also graphite creates a reducing atmosphere at high temperature, It functions to remove the oxide film at the bonding interface, eliminates the etching process at the bonding interface, and greatly simplifies the apparatus, and is as thin as 10 μm like Pd and Pd alloys used for hydrogen permeable membranes. Even in the case of a metal foil, a force is evenly applied to uneven portions of a metal surface having high hydrogen permeation performance as a bonded surface, and bonding with uniform adhesion strength on the entire surface becomes possible. Therefore, when used as a hydrogen permeation separation membrane, not only the peel strength as a laminated membrane is increased, but also the hydrogen permeation performance can be improved.

請求項1に記載の金属箔体の拡散接合方法の発明は、一対の加圧用平板治具の間に、被接合体となる金属板と接合体となる金属箔体とを、お互いの接合界面が対面するように配置し、かつ、前記金属箔体の接合界面とは反対側の背面と前記加圧用平板治具との間に、熱によるガスの発生がなく、加圧により弾性変形し、前記金属箔体と前記加圧用平板治具との剥離性が良い剥離性シートを介在させた後、一対の前記加圧用平板治具により、前記金属板の接合界面と前記金属箔体の接合界面とを所定の圧力で加圧しながら加熱することにより拡散接合するものであり、接合体となる金属箔体の接合界面とは反対側の背面と加圧用平板治具との間に、熱によるガスの発生がなく、加圧により弾性変形し、金属箔体と加圧用平板治具との剥離性が良い剥離性シートを介在させることにより、被接合体の細かな凹凸に対しても金属薄体は追随して均一に圧力が加わるので、非常に安定した拡散接合が可能となり、密着力が向上する。   The invention of the metal foil body diffusion bonding method according to claim 1 is characterized in that a metal plate to be joined and a metal foil body to be joined are bonded to each other between a pair of pressing flat jigs. Are arranged so as to face each other, and there is no generation of gas due to heat between the back surface opposite to the bonding interface of the metal foil body and the pressing plate jig, and elastically deforms by pressing, After interposing a releasable sheet having good releasability between the metal foil body and the pressing flat plate jig, a pair of the flat plate jigs for pressing causes the bonding interface of the metal plate and the bonding interface of the metal foil body. Is heated by pressurizing at a predetermined pressure to perform diffusion bonding, and gas generated by heat between the back surface opposite to the bonding interface of the metal foil body to be a bonded body and the pressing plate jig. Is not deformed and elastically deformed by pressurization, and the peelability between the metal foil and the flat plate jig for pressurization is good. By interposing the release sheet, since the uniformly pressure to follow the metal thin body against fine unevenness of the object to be bonded join enables very stable diffusion bonding, adhesion is improved.

請求項2に記載の金属箔体の拡散接合方法の発明は、請求項1に記載の発明における前記金属箔体の厚みを1μm以上で100μm以下としたものであり、1μm以下の薄膜では拡散接合作業の取り扱いも困難であり、100μm以上であれば金属板としての剛性を有し背面に弾性変形する剥離性シートを介在させても、被接合体の細かな凹凸に対して金属薄体は追随しない。よって、1μm以上で100μm以下の金属箔体で非常に安定した拡散接合が可能となり、密着力が向上するものである。   The invention of the metal foil body diffusion bonding method according to claim 2 is a method in which the thickness of the metal foil body according to the invention of claim 1 is set to 1 μm or more and 100 μm or less, and diffusion bonding is performed for a thin film of 1 μm or less. The handling of the work is also difficult, and if it is 100 μm or more, the metal thin body follows the fine irregularities of the joined objects even if a peelable sheet that has rigidity as a metal plate and elastically deforms on the back is interposed. do not do. Therefore, very stable diffusion bonding is possible with a metal foil of 1 μm or more and 100 μm or less, and the adhesion is improved.

請求項3に記載の金属箔体の拡散接合方法の発明は、請求項1または2に記載の発明における前記剥離性シートとして、高純度化処理したシリカ繊維の不織布を使用したものであり、1000℃以上での焼成により高純度化処理したシリカ繊維の不織布は、真空高温での拡散接合時において、ガスの発生も無く、圧力により細かな凹凸に対しても追随が可能で、適度な弾性を残し、非常に安定した拡散接合が可能となり、密着力が向上する。   Invention of the metal foil body diffusion bonding method according to claim 3 uses a silica fiber non-woven fabric subjected to high purity treatment as the peelable sheet in the invention according to claim 1 or 2, and 1000 Silica fiber nonwoven fabric that has been highly purified by firing at a temperature of ℃ or higher does not generate gas during diffusion bonding at high temperatures in the vacuum, and can follow even fine irregularities by pressure, providing moderate elasticity. In addition, very stable diffusion bonding is possible, and the adhesion is improved.

請求項4に記載の金属箔体の拡散接合方法の発明は、請求項1または2に記載の発明における前記剥離性シートとして、高純度化処理した黒鉛を使用したものであり、高純度化処理した黒鉛を剥離性シートとして使用することにより、カーボンとしての還元作用が働き、接合界面の酸化皮膜を除去することが可能となり、接合界面のエッチング工程が簡素化できる。   The invention of the metal foil body diffusion bonding method according to claim 4 uses a highly purified graphite as the releasable sheet in the invention according to claim 1 or 2, and the high purity treatment. By using the obtained graphite as a peelable sheet, the reducing action as carbon works, it becomes possible to remove the oxide film at the bonding interface, and the etching process at the bonding interface can be simplified.

請求項5に記載の金属箔体の拡散接合方法の発明は、請求項1または2に記載の発明における前記剥離性シートとして、高純度化処理した炭素繊維のフェルトを使用したものであり、2000℃付近で焼成により高純度化処理した炭素繊維のフェルトは、真空高温での拡散接合時において、ガスの発生も無く、圧力により細かな凹凸に対しても追随が可能で、適度な弾性を残し、非常に安定した拡散接合が可能となり、接合面の密着力が向上する。   The invention of the diffusion bonding method of the metal foil according to claim 5 uses a felt of carbon fiber subjected to high purity treatment as the peelable sheet in the invention according to claim 1 or 2, 2000 The carbon fiber felt, which has been highly purified by firing at around ℃, does not generate gas during diffusion bonding at high temperatures in the vacuum, and can follow fine irregularities with pressure, leaving moderate elasticity. Very stable diffusion bonding is possible, and the adhesion of the bonding surface is improved.

さらに、高温・真空下において黒鉛が還元性雰囲気を創出することで接合界面の酸化皮膜を除去する働きも有し、水素透過膜に使用されるPdやPd合金のような10μm程度の薄い金属箔体の場合には、被接合面となる水素透過性能の高い金属面の凹凸細部にも均一に力が加わわり、全面均一な密着強度を有する貼り合わせが可能となる。   Furthermore, graphite has the function of removing the oxide film at the bonding interface by creating a reducing atmosphere at high temperature and under vacuum, and is a thin metal foil of about 10 μm, such as Pd and Pd alloys used for hydrogen permeable films. In the case of a body, a force is evenly applied to uneven portions of a metal surface having a high hydrogen permeation performance as a bonded surface, and bonding with uniform adhesion strength over the entire surface becomes possible.

請求項6に記載の金属箔体の拡散接合方法の発明は、請求項1から5のいずれか一項に記載の発明において、前記被接合体には水素透過係数の高い金属板を用い、前記被接合体である金属板の両面接合界面には接合体の金属箔体としてパラジウムまたはパラジウム合金の箔を用いたものであり、接合界面の酸化皮膜が水素透過性能に大きく影響する積層型の水素透過分離膜に活用することで、水素透過膜に使用されるPdやPd合金のような10μm程度の薄い金属箔の場合にも、被接合面となる水素透過性能の高い金属面の凹凸細部にも均一に力が加わわり、高圧を加えずとも全面均一な密着強度を有する貼り合わせが可能で、その後の圧延工程も円滑にでき、水素透過性能も向上する。   The invention of the diffusion bonding method of a metal foil body according to claim 6 is the invention according to any one of claims 1 to 5, wherein a metal plate having a high hydrogen permeability coefficient is used for the object to be bonded, At the double-sided bonding interface of the metal plate to be bonded, a foil of palladium or palladium alloy is used as the metal foil body of the bonded body, and the laminated type hydrogen whose oxide film on the bonded interface greatly affects the hydrogen permeation performance. By utilizing it as a permeation separation membrane, even in the case of a thin metal foil of about 10 μm such as Pd or Pd alloy used for a hydrogen permeation membrane, it is possible to reduce the unevenness of the metal surface with high hydrogen permeation performance to be a bonded surface. In addition, a force is applied evenly, and bonding with uniform adhesion strength is possible without applying a high pressure, the subsequent rolling process can be smoothed, and the hydrogen permeation performance is improved.

請求項7に記載の金属箔体の拡散接合方法の発明は、請求項6に記載の発明における前記水素透過性の高い金属板が、Ta、Nb、V、Ta合金、Nb合金、V合金のいずれかであることを特徴とするものであり、酸化皮膜を作り易いこれらの金属には、密着力を高め、酸化皮膜を除去できる本発明の金属箔体の拡散接合方法は非常に効果的に働く。   The metal foil body diffusion bonding method according to a seventh aspect of the invention is characterized in that the metal plate having high hydrogen permeability in the invention of the sixth aspect is made of Ta, Nb, V, Ta alloy, Nb alloy, or V alloy. The metal foil body diffusion bonding method of the present invention, which can increase the adhesion and remove the oxide film, is very effective for these metals that are easy to make an oxide film. work.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1による金属箔体の拡散接合方法に使用する拡散接合装置30を示す概略断面構成図である。図2は同実施の形態1における拡散接合装置30のプレス部材31を示す拡大断面図である。図3は同実施の形態1の金属箔体の拡散接合方法で得た積層型水素透過分離膜32の斜視図である。図4は同実施の形態1の金属箔体の拡散接合方法による加圧前のプレス部材31を示す拡大断面図である。図5は同実施の形態1の金属箔体の拡散接合方法による加圧後のプレス部材31を示す拡大断面図である。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional configuration diagram showing a diffusion bonding apparatus 30 used in a metal foil body diffusion bonding method according to Embodiment 1 of the present invention. FIG. 2 is an enlarged cross-sectional view showing the press member 31 of the diffusion bonding apparatus 30 according to the first embodiment. FIG. 3 is a perspective view of the laminated hydrogen permeable separation membrane 32 obtained by the metal foil diffusion bonding method of the first embodiment. FIG. 4 is an enlarged cross-sectional view showing the press member 31 before being pressed by the metal foil body diffusion bonding method of the first embodiment. FIG. 5 is an enlarged cross-sectional view showing the press member 31 after being pressed by the metal foil body diffusion bonding method of the first embodiment.

図1において、拡散接合装置30は、真空チャンバー34と高温拡散炉35と油圧プレス36で構成されている。   In FIG. 1, the diffusion bonding apparatus 30 includes a vacuum chamber 34, a high temperature diffusion furnace 35, and a hydraulic press 36.

真空チャンバー34は、ステンレス製の上チャンバー37と下チャンバー38と油回転ポンプと油拡散ポンプとを真空排気方式として用いた真空ポンプ39から構成され、連結部40のピン41の脱着により上チャンバー37と下チャンバー38とは上下に開閉可能となる。   The vacuum chamber 34 includes a stainless steel upper chamber 37, a lower chamber 38, a vacuum pump 39 using an oil rotary pump and an oil diffusion pump as a vacuum exhaust system, and the upper chamber 37 is removed by detaching the pin 41 of the connecting portion 40. The lower chamber 38 can be opened and closed up and down.

高温拡散炉35は、前面で開放可能な構造(図示せず)のセラミック製の断熱壁42で囲まれた中に、耐熱性の高いカンタル製のヒータ43が埋め込まれてあり、電源及び制御装置44により高温拡散炉35内の温度をコントロールできる。   The high-temperature diffusion furnace 35 is surrounded by a ceramic heat insulating wall 42 having a structure (not shown) that can be opened at the front surface, and a heater 43 made of Kanthal having high heat resistance is embedded therein. 44 can control the temperature in the high-temperature diffusion furnace 35.

高温拡散炉35内には下ステージ45があり、下ステージ45上にプレス部材31を設置することで、上ステージ46を油圧プレス36により下降させ、プレス部材31に圧力を加えることができる。   There is a lower stage 45 in the high-temperature diffusion furnace 35, and by installing the press member 31 on the lower stage 45, the upper stage 46 can be lowered by the hydraulic press 36 and pressure can be applied to the press member 31.

上ステージ46の駆動軸47は、断熱壁42と上チャンバー37を貫通し、油圧プレス36に連結されており、駆動軸47と上チャンバー37との交差部48は、ベローズ等を応用した駆動可能気密機構により、真空チャンバー34内と外部との間を完全シールしている。   The drive shaft 47 of the upper stage 46 passes through the heat insulating wall 42 and the upper chamber 37 and is connected to the hydraulic press 36. An intersection 48 between the drive shaft 47 and the upper chamber 37 can be driven by applying a bellows or the like. The inside of the vacuum chamber 34 and the outside are completely sealed by an airtight mechanism.

図2において、プレス部材46は、SUS316Lのステンレス鋼材の平板を一定寸法に切断した一対の加圧用平板治具33a,33bと、一対の加圧用平板治具33a,33bを定置に固定する2本のボルト49で構成されている。   In FIG. 2, the press member 46 includes a pair of pressing plate jigs 33 a and 33 b obtained by cutting a SUS316L stainless steel plate to a certain size, and a pair of pressing plate jigs 33 a and 33 b that are fixed. Bolt 49.

加圧用平板治具33a,33bの間には、2枚の接合体50a,50bとしてパラジウムPd又はパラジウム合金の金属箔体51a,51bと、2枚の金属箔体51a,51bに挟まれた状態で被接合体52となる水素透過係数の高いタンタル金属板53とが、積み重ねて置かれ、金属箔体51a,51bと金属板53との接合界面が対面して近接してセットされている。   Between the pressing plate jigs 33a and 33b, the two joined bodies 50a and 50b are sandwiched between the metal foil bodies 51a and 51b of palladium Pd or palladium alloy and the two metal foil bodies 51a and 51b. The tantalum metal plates 53 having a high hydrogen permeation coefficient, which are to be joined 52, are stacked and set so that the joining interfaces between the metal foil bodies 51a and 51b and the metal plate 53 face each other.

さらに、接合体50a,50bは、比較的薄い金属箔体51a,51bからなるものであり、その金属箔体51a,51bの接合界面とは反対側の背面と加圧用平板治具33a,33bとの間に、熱によるガスの発生がなく、加圧により弾性変形し、接合体50a,50bの金属箔体51a,51bと加圧用平板治具33a,33bとの拡散接合処理後の離型性が良い剥離性シート54a,54bを介在させた状態で構成されている。   Furthermore, the joined bodies 50a and 50b are made of relatively thin metal foil bodies 51a and 51b. The back surface opposite to the joining interface of the metal foil bodies 51a and 51b and the pressing plate jigs 33a and 33b There is no generation of gas due to heat, elastic deformation is caused by pressurization, and the releasability after the diffusion bonding process between the metal foil bodies 51a and 51b of the joined bodies 50a and 50b and the pressing plate jigs 33a and 33b. Is formed in a state in which releasable sheets 54a and 54b are interposed.

この剥離性シート54a,54bの材質としては、1000℃以上で高純度化処理したシリカ繊維の不織布(アドバンテック東洋社、シリカ繊維ろ紙、QR−100)や、約2000℃で高純度化処理した黒鉛(日本カーボン社、ニカフィルム、FL−300SH)や、同じく約2000℃で高純度化処理した炭素繊維のフェルト(日本カーボン社、カーボロン、GF−20−2F)が使用できる。   As the material of the peelable sheets 54a and 54b, silica fiber non-woven fabric (Advantech Toyo Co., Ltd., silica fiber filter paper, QR-100) purified at a temperature of 1000 ° C. or higher, or graphite purified at about 2000 ° C. (Nippon Carbon Co., Ltd., Nika Film, FL-300SH) and carbon fiber felt (Nihon Carbon Co., Carboron, GF-20-2F) that has been highly purified at about 2000 ° C. can be used.

図3に示す積層型水素透過分離膜32は、金属箔体51a,51bとしてパラジウムまたはパラジウム合金の接合体50a,50bをタンタル金属板53に拡散接合により接合したものである。   The laminated hydrogen permeable separation membrane 32 shown in FIG. 3 is obtained by joining palladium or palladium alloy joined bodies 50a and 50b to the tantalum metal plate 53 as diffusion foils as the metal foil bodies 51a and 51b.

次に、本実施の形態の金属箔体の拡散接合方法により、接合体50a,50bの金属箔体51a,51bを被接合体52の金属板53に拡散接合で貼り付けた水素透過分離膜32の製造方法と、拡散接合工程時の作用について、図4、図5を参照して説明する。   Next, the hydrogen permeable separation membrane 32 in which the metal foil bodies 51a and 51b of the joined bodies 50a and 50b are attached to the metal plate 53 of the joined body 52 by diffusion bonding by the metal foil body diffusion bonding method of the present embodiment. The manufacturing method and the action during the diffusion bonding step will be described with reference to FIGS.

水素透過分離膜32には、接合体50a,50bの金属箔体51a,51bとして、所定の大きさに切断した厚さ10μmの2枚のPd箔と、被接合体52の金属板53に、所定の大きさに切断した厚さ500μmのTa板とを用いた。   The hydrogen permeable separation membrane 32 includes two Pd foils having a thickness of 10 μm cut into a predetermined size as metal foil bodies 51 a and 51 b of the joined bodies 50 a and 50 b, and a metal plate 53 of the joined body 52. A Ta plate having a thickness of 500 μm cut into a predetermined size was used.

まず、水素透過係数の高い金属板53となるTa板の表面を脱脂した後、約0.1mol濃度のフッ酸で20分間浸漬エッチング処理し、充分な水洗とアルコールによる共沸乾燥を行い、事前に脱脂して洗浄しておいた2枚のPd箔の間に重ね合わせてセットする。   First, after degreasing the surface of the Ta plate, which becomes the metal plate 53 having a high hydrogen permeability coefficient, immersion etching treatment is performed for 20 minutes with hydrofluoric acid having a concentration of about 0.1 mol, and sufficient rinsing and azeotropic drying with alcohol are performed. The two Pd foils that have been degreased and cleaned are overlapped and set.

次に、下側の加圧用平板治具33bに剥離性シート54bとして高純度化処理したカーボン繊維のフェルトを置き、その上に先の金属板53と金属箔体51a,51bとをセットしたもの(金属板53を金属箔体51a,51bで挟んだもの)を置き、さらに、その上から、同じ剥離性シート54aと上側の加圧用平板治具33aとを順次置き、ボルト49で軽く締め付け、プレス部材31として準備する。   Next, a high-purity carbon fiber felt as a peelable sheet 54b is placed on the lower pressing flat plate jig 33b, and the metal plate 53 and the metal foil bodies 51a and 51b are set thereon. (The metal plate 53 sandwiched between the metal foil bodies 51a and 51b) is placed, and then the same peelable sheet 54a and the upper pressing plate jig 33a are sequentially placed thereon, and lightly tightened with the bolts 49, Prepare as a press member 31.

次に、拡散接合装置30の真空チャンバー34を連結部40のピン41を外し、上チャンバー37を上方に移動させ、真空チャンバー34を開放する。   Next, the pin 41 of the connecting portion 40 is removed from the vacuum chamber 34 of the diffusion bonding apparatus 30, the upper chamber 37 is moved upward, and the vacuum chamber 34 is opened.

次に、高温拡散炉35の断熱壁42を開放し、中の油圧プレス36の下ステージ45の上に、準備したプレス部材31を定位置にセットし、断熱壁42を閉じ、真空チャンバー34を定位置に戻し、連結部40をピン41により固定することで真空チャンバー34を密閉する。   Next, the heat insulating wall 42 of the high temperature diffusion furnace 35 is opened, the prepared press member 31 is set at a fixed position on the lower stage 45 of the hydraulic press 36 therein, the heat insulating wall 42 is closed, and the vacuum chamber 34 is opened. The vacuum chamber 34 is sealed by returning to a fixed position and fixing the connecting portion 40 with the pin 41.

次に、真空ポンプ39を稼動させ、真空チャンバー34内の真空度を10-5Pa以下に下げ、ヒータ43電源を入れ、制御装置44で900℃に上昇させる。上昇を確認した上で、油圧プレス36を駆動し上ステージ45を下降させ、プレス部材31に約0.1MPaの圧力が加わるように加圧し、900℃で2時間放置する。 Next, the vacuum pump 39 is operated, the degree of vacuum in the vacuum chamber 34 is lowered to 10 −5 Pa or less, the heater 43 is turned on, and the controller 44 raises the temperature to 900 ° C. After confirming the rise, the hydraulic press 36 is driven to lower the upper stage 45, pressurize the press member 31 so that a pressure of about 0.1 MPa is applied, and leave it at 900 ° C. for 2 hours.

その後、ヒータ43電源を切り、炉冷にて50℃まで冷却することにより拡散接合工程は終了とする。   Thereafter, the heater 43 is turned off and cooled to 50 ° C. by furnace cooling to complete the diffusion bonding process.

図4、図5に示す様に、プレス部材31が加圧されると、加圧により弾性変形する高純度化処理した炭素繊維のフェルトからなる剥離性シート54は、変形しながらも金属箔体を押し付け、金属板53表面の凹凸に沿って変形させる。   As shown in FIGS. 4 and 5, when the press member 31 is pressed, the peelable sheet 54 made of a highly purified carbon fiber felt that is elastically deformed by the pressurization is deformed but is a metal foil body. Is deformed along the irregularities on the surface of the metal plate 53.

よって、加圧していないときに生じていた金属箔体51と金属板53との間にあった隙間55をなくすこととなり、金属箔体51と金属板53との接合界面が全面にて密着することにより拡散接合が円滑に行われることとなる。   Accordingly, the gap 55 between the metal foil body 51 and the metal plate 53 that has been generated when no pressure is applied is eliminated, and the bonding interface between the metal foil body 51 and the metal plate 53 is adhered to the entire surface. Diffusion bonding is performed smoothly.

特許文献3での実施例の様に、剥離材25としてテンパーカラーを形成させた18Cr−3Al鋼のような固いものであれば、隙間55は保持される為に、凸部分での拡散接合だけが進み、凹部分の接合は不十分となる為に密着力が極端に低下してしまう。   As in the embodiment of Patent Document 3, if the material is hard such as 18Cr-3Al steel with a temper collar formed as the release material 25, the gap 55 is retained, so only diffusion bonding at the convex portion is possible. , And the adhesion of the concave portion becomes insufficient, so that the adhesion is extremely reduced.

また、剥離性シート54として、約2000℃で高純度化処理したカーボン繊維のフェルトを適用することで、炭素は(数1)の様に、タンタル表面に形成した酸化皮膜の酸化タンタルに対して還元剤として働き、高温拡散炉35が高温になるにつれ、タンタル金属箔体51表面に形成していた酸化皮膜の酸素が除去される方向に働き、密着力がさらに増し、水素透過量に大きく影響を与えるとされる酸化被膜の減少は水素透過量の低下を抑制する。   In addition, by applying a felt of carbon fiber purified at about 2000 ° C. as the peelable sheet 54, the carbon is equivalent to the tantalum oxide of the oxide film formed on the tantalum surface as shown in (Equation 1). As a reducing agent, as the high temperature diffusion furnace 35 becomes high temperature, it works in the direction in which oxygen of the oxide film formed on the surface of the tantalum metal foil body 51 is removed, further increasing the adhesion and greatly affecting the hydrogen permeation amount. The decrease in the oxide film, which is supposed to give, suppresses the decrease in hydrogen permeation.

Figure 2006272420
次に、50℃にまで冷却した後、二段式圧延機で拡散接合させ作成した520μmの試料を50μmにまでロール圧延して水素透過分離膜32として完成させる。
Figure 2006272420
Next, after cooling to 50 ° C., a 520 μm sample prepared by diffusion bonding with a two-stage rolling mill is rolled to 50 μm to complete the hydrogen permeable separation membrane 32.

剥離性シート54を使用しなかった場合には、圧延時において、タンタル表面い形成されたパラジウム金属箔体は非常に剥がれ易くなり、水素透過分離膜32として良品が取れなかったが、本発明の実施の形態1で作成した試料は良好な密着力を有し歩留まりも非常に良好なものとなった。   When the peelable sheet 54 was not used, the palladium metal foil formed on the tantalum surface was very easily peeled off during rolling, and a good product could not be obtained as the hydrogen permeable separation membrane 32. The sample prepared in Embodiment 1 had a good adhesion and a very good yield.

以上のように本実施の形態の金属箔体の拡散接合方法は、一対の加圧用平板治具33a,33bの間に、被接合体52となる金属板(Ta板)53と接合体50a,50bとなる金属箔体(Pd箔)51a,51bとを、お互いの接合界面が対面するように配置し、かつ、金属箔体51a,51bの接合界面とは反対側の背面と加圧用平板治具33a,33bとの間に、熱によるガスの発生がなく、加圧により弾性変形し、金属箔体51a,51bと加圧用平板治具33a,33bとの剥離性が良い剥離性シート54a,54bを介在させた後、一対の加圧用平板治具33a,33bにより、金属板53の接合界面と金属箔体51a,51bの接合界面とを所定の圧力で加圧しながら加熱することにより拡散接合するものであり、被接合体52の細かな凹凸に対しても金属薄体51a,51bは追随して均一に圧力が加わるので、非常に安定した拡散接合が可能となり、密着力が向上する。   As described above, in the metal foil body diffusion bonding method of the present embodiment, the metal plate (Ta plate) 53 to be joined 52 and the joined body 50a, between the pair of pressing flat plate jigs 33a and 33b. The metal foil bodies (Pd foils) 51a and 51b to be 50b are arranged so that their joint interfaces face each other, and the back surface opposite to the joint interface of the metal foil bodies 51a and 51b and the flat plate for pressurization There is no gas generation due to heat between the tools 33a and 33b, elastic deformation is caused by pressurization, and a peelable sheet 54a, which has good peelability between the metal foil bodies 51a and 51b and the pressurizing flat jigs 33a and 33b, After interposing 54b, diffusion bonding is performed by heating the bonding interface of the metal plate 53 and the bonding interface of the metal foil bodies 51a and 51b with a pair of pressure by a pair of pressing plate jigs 33a and 33b. To be joined 5 Since the metal thin bodies 51a, 51b with respect to fine unevenness of applied uniformly pressure to follow, it is possible to very stable diffusion bonding, adhesion is improved.

本発明の実施の形態1ではタンタル金属板52を採用したが、水素透過係数の高い金属板であれば適用できるものであり、特に遷移金属であるタンタル(Ta)、ニオブ(Nb)、バナジウム(V)、とそれらの合金が効果的であり、タンタル金属板に限定するものではない。   In the first embodiment of the present invention, the tantalum metal plate 52 is employed, but any metal plate having a high hydrogen permeation coefficient can be applied, and in particular, transition metals such as tantalum (Ta), niobium (Nb), and vanadium ( V), and their alloys are effective and are not limited to tantalum metal plates.

また、剥離性シート54の材質としては、本発明の実施の形態1では、約2000℃で高純度化処理した炭素繊維のフェルト(日本カーボン社、カーボロン、GF−20−2F)を使用したが、1000℃以上で高純度化処理したシリカ繊維の不織布(アドバンテック東洋社、シリカ繊維ろ紙、QR−100)では表面の緻密性の面で適切な接合界面への圧力を加え良好であり、また約2000℃で高純度化処理した黒鉛(日本カーボン社、ニカフィルム、FL−300SH)も同じ効果を有し、熱によるガスの発生が無く、加圧により弾性変形し、金属箔体及び加熱用平板治具との剥離性が良好な素材であれば可能であり、炭素繊維のフェルトに限定するものではない。   Further, as the material of the peelable sheet 54, in the first embodiment of the present invention, a carbon fiber felt (Nihon Carbon Co., Carbon, GF-20-2F) purified at about 2000 ° C. was used. In addition, the silica fiber nonwoven fabric (Advantech Toyo Co., Ltd., silica fiber filter paper, QR-100) that has been highly purified at 1000 ° C. or higher is good because it applies pressure to the appropriate bonding interface in terms of surface denseness, Graphite (Nihon Carbon Co., Nika Film, FL-300SH) purified at 2000 ° C has the same effect, does not generate gas due to heat, is elastically deformed by pressurization, metal foil and heating flat plate Any material can be used as long as it has good releasability from the jig, and the material is not limited to felt of carbon fiber.

また、金属箔体51としての厚みを1μm以下となると、非常に取り扱いが困難であり、また、金属箔体51の金属質が金属板53に完全に拡散吸収され、表面の触媒効果が規程できなくなる。   Further, when the thickness of the metal foil body 51 is 1 μm or less, it is very difficult to handle, and the metallic material of the metal foil body 51 is completely diffused and absorbed by the metal plate 53, so that the catalytic effect on the surface can be regulated. Disappear.

また、金属箔体51としての厚みが100μm以上であれば、金属箔体51としての剛性を有し背面より弾性変形する剥離性シート54を介在させても、被接合体52の細かな凹凸に対して金属箔体51は追随しないため効果は低下する。   Further, if the thickness of the metal foil body 51 is 100 μm or more, even if the peelable sheet 54 having rigidity as the metal foil body 51 and elastically deforming from the back surface is interposed, the fine unevenness of the bonded body 52 is formed. On the other hand, since the metal foil body 51 does not follow, the effect is reduced.

よって、1μm以上で100μm以下の金属箔体51で非常に安定した拡散接合が可能となり、密着力が向上するものである。   Therefore, very stable diffusion bonding is possible with the metal foil body 51 of 1 μm or more and 100 μm or less, and the adhesion is improved.

以上のように、本発明にかかる金属箔体の拡散接合方法は、積層型水素透過分離膜を使用する燃料電池分野だけでなく、クラッド材の製法にも効果を発揮するので、機能性を有する高価な金属を安価な鋼材に貼り付けて合理化するにも効果的に利用できる。   As described above, the metal foil body diffusion bonding method according to the present invention is effective not only in the field of fuel cells using a laminated hydrogen permeable separation membrane but also in the production method of a clad material, and thus has functionality. It can also be used effectively to streamline by attaching an expensive metal to an inexpensive steel material.

本発明の実施の形態1による金属箔体の拡散接合方法に使用する拡散接合装置を示す概略断面構成図1 is a schematic cross-sectional configuration diagram showing a diffusion bonding apparatus used in a metal foil body diffusion bonding method according to Embodiment 1 of the present invention. 同実施の形態1における拡散接合装置のプレス部材を示す拡大断面図The expanded sectional view which shows the press member of the diffusion bonding apparatus in Embodiment 1 同実施の形態1の金属箔体の拡散接合方法で得た積層型水素透過分離膜の斜視図The perspective view of the lamination-type hydrogen permeable separation membrane obtained with the diffusion bonding method of the metal foil body of Embodiment 1 同実施の形態1の金属箔体の拡散接合方法による加圧前のプレス部材を示す拡大断面図The expanded sectional view which shows the press member before the pressurization by the diffusion bonding method of the metal foil body of Embodiment 1 同実施の形態1の金属箔体の拡散接合方法による加圧後のプレス部材を示す拡大断面図The expanded sectional view which shows the press member after the pressurization by the diffusion bonding method of the metal foil body of Embodiment 1 特許文献1に記載された従来の水素透過分離膜の断面図Sectional view of a conventional hydrogen permeation separation membrane described in Patent Document 1 特許文献2に記載された従来の水素透過分離膜の斜視図A perspective view of a conventional hydrogen permeation separation membrane described in Patent Document 2 特許文献2に記載された従来の水素透過分離膜を使用したチューブの斜視図A perspective view of a tube using a conventional hydrogen permeable separation membrane described in Patent Document 2 特許文献3に記載された従来の拡散接合方法を示す断面図Sectional drawing which shows the conventional diffusion bonding method described in patent document 3

符号の説明Explanation of symbols

33a,33b 加圧用平板治具
50a,50b 接合体
51a,51b 金属箔体
52 被接合体
53 金属板
54a,54b 剥離性シート
33a, 33b Pressurizing flat plate jig 50a, 50b Bonded body 51a, 51b Metal foil body 52 Bonded body 53 Metal plate 54a, 54b Release sheet

Claims (7)

一対の加圧用平板治具の間に、被接合体となる金属板と接合体となる金属箔体とを、お互いの接合界面が対面するように配置し、かつ、前記金属箔体の接合界面とは反対側の背面と前記加圧用平板治具との間に、熱によるガスの発生がなく、加圧により弾性変形し、前記金属箔体と前記加圧用平板治具との剥離性が良い剥離性シートを介在させた後、一対の前記加圧用平板治具により、前記金属板の接合界面と前記金属箔体の接合界面とを所定の圧力で加圧しながら加熱することにより拡散接合することを特徴とする金属箔体の拡散接合方法。   Between a pair of pressurizing flat plate jigs, a metal plate to be joined and a metal foil body to be joined are arranged so that their joint interfaces face each other, and the joint interface of the metal foil bodies There is no generation of gas due to heat between the back side opposite to the pressing plate jig and elastic deformation due to pressing, and the metal foil body and the pressing plate jig have good peelability. After interposing the peelable sheet, diffusion bonding is performed by heating while pressing the bonding interface of the metal plate and the bonding interface of the metal foil body at a predetermined pressure with a pair of pressing flat jigs. A diffusion bonding method of a metal foil body characterized by the above. 前記金属箔体の厚みを1μm以上で100μm以下としたことを特徴とする請求項1に記載の金属箔体の拡散接合方法。   The metal foil body diffusion bonding method according to claim 1, wherein the thickness of the metal foil body is 1 μm or more and 100 μm or less. 前記剥離性シートとして、高純度化処理したシリカ繊維の不織布を使用したことを特徴とする請求項1または2に記載の金属箔体の拡散接合方法。   The metal foil body diffusion bonding method according to claim 1 or 2, wherein a high-purity treated silica fiber nonwoven fabric is used as the peelable sheet. 前記剥離性シートとして、高純度化処理した黒鉛を使用したことを特徴とする請求項1または2に記載の金属箔体の拡散接合方法。   The metal foil body diffusion bonding method according to claim 1, wherein graphite having a high purity treatment is used as the peelable sheet. 前記剥離性シートとして、高純度化処理した炭素繊維のフェルトを使用したことを特徴とする請求項1または2に記載の金属箔体の拡散接合方法。   The metal foil body diffusion bonding method according to claim 1 or 2, wherein a highly purified carbon fiber felt is used as the peelable sheet. 前記被接合体には水素透過係数の高い金属板を用い、前記被接合体である金属板の両面接合界面には接合体の金属箔体としてパラジウムまたはパラジウム合金の箔を用いたことを特徴とする請求項1から5のいずれか一項に記載の金属箔体の拡散接合方法。   A metal plate having a high hydrogen permeability coefficient is used for the object to be bonded, and a palladium or palladium alloy foil is used as a metal foil body of the bonded object at the double-sided bonding interface of the metal plate that is the object to be bonded. The metal foil body diffusion bonding method according to any one of claims 1 to 5. 前記水素透過性の高い金属板が、Ta、Nb、V、Ta合金、Nb合金、V合金のいずれかであることを特徴とする請求項6に記載の金属箔体の拡散接合方法。   The metal foil body diffusion bonding method according to claim 6, wherein the metal plate having high hydrogen permeability is Ta, Nb, V, Ta alloy, Nb alloy, or V alloy.
JP2005097422A 2005-03-30 2005-03-30 Metal foil diffusion bonding method Pending JP2006272420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097422A JP2006272420A (en) 2005-03-30 2005-03-30 Metal foil diffusion bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097422A JP2006272420A (en) 2005-03-30 2005-03-30 Metal foil diffusion bonding method

Publications (1)

Publication Number Publication Date
JP2006272420A true JP2006272420A (en) 2006-10-12

Family

ID=37207655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097422A Pending JP2006272420A (en) 2005-03-30 2005-03-30 Metal foil diffusion bonding method

Country Status (1)

Country Link
JP (1) JP2006272420A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100924077B1 (en) 2007-12-26 2009-11-02 한국항공우주연구원 Device for Diffusion Bonding of Dissimilar Materials Using Inert Gas
WO2010073964A1 (en) * 2008-12-26 2010-07-01 Tanakaホールディングス株式会社 Process for producing regenerated target
CN102049601A (en) * 2010-10-30 2011-05-11 上海交通大学 Current-assisted fuel cell ultra-thin metal bipolar plate pressure welding device and method
JP2012061519A (en) * 2010-09-17 2012-03-29 Akane:Kk Joining method of metal material
CN102699593A (en) * 2012-05-16 2012-10-03 安徽华东光电技术研究所 Welding fixture for diffusion welding of dissimilar metal and welding method thereof
CN102756205A (en) * 2012-07-13 2012-10-31 安徽华东光电技术研究所 Clamp for diffusion welding and using method thereof
CN103028828A (en) * 2012-11-09 2013-04-10 江苏科技大学 Diffusion welding device and method based on independent control of local weldment environment temperature
CN103111701A (en) * 2013-03-19 2013-05-22 上海华尔德电站阀门有限公司 Making method of labyrinth core bag in labyrinth regulating valve
CN103406726A (en) * 2013-08-05 2013-11-27 南通市电站阀门有限公司 Adjusting valve multistage maze type core package manufacturing method and special milling and welding clamp for method
JP2014128815A (en) * 2012-12-28 2014-07-10 Mitsubishi Electric Corp Diffused junction jig and diffused junction method
JP2016190256A (en) * 2015-03-31 2016-11-10 日新製鋼株式会社 Lever type jig for diffusion bonding in furnace
US9911986B2 (en) 2013-05-16 2018-03-06 Nissan Motor Co., Ltd. Apparatus and method for producing fuel cell separator assembly
CN118268721A (en) * 2024-06-04 2024-07-02 南昌大学 Oscillation laser welding method of tantalum and steel based on adding interlayer
WO2024181418A1 (en) * 2023-02-28 2024-09-06 株式会社Uacj Cladding slab for rolling, method for manufacturing cladding slab for rolling, and method for manufacturing cladding material

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100924077B1 (en) 2007-12-26 2009-11-02 한국항공우주연구원 Device for Diffusion Bonding of Dissimilar Materials Using Inert Gas
WO2010073964A1 (en) * 2008-12-26 2010-07-01 Tanakaホールディングス株式会社 Process for producing regenerated target
US8999227B2 (en) 2008-12-26 2015-04-07 Tanaka Holdings Co., Ltd Method for producing regenerated target
US8460602B2 (en) 2008-12-26 2013-06-11 Tanaka Holdings Co., Ltd Method for producing regenerated target
JP2012061519A (en) * 2010-09-17 2012-03-29 Akane:Kk Joining method of metal material
CN102049601B (en) * 2010-10-30 2014-07-02 上海交通大学 Current-assisted fuel cell ultra-thin metal bipolar plate pressure welding device and method
CN102049601A (en) * 2010-10-30 2011-05-11 上海交通大学 Current-assisted fuel cell ultra-thin metal bipolar plate pressure welding device and method
CN102699593A (en) * 2012-05-16 2012-10-03 安徽华东光电技术研究所 Welding fixture for diffusion welding of dissimilar metal and welding method thereof
CN102699593B (en) * 2012-05-16 2015-04-22 安徽华东光电技术研究所 Welding fixture for diffusion welding of dissimilar metal and welding method thereof
CN102756205A (en) * 2012-07-13 2012-10-31 安徽华东光电技术研究所 Clamp for diffusion welding and using method thereof
CN103028828A (en) * 2012-11-09 2013-04-10 江苏科技大学 Diffusion welding device and method based on independent control of local weldment environment temperature
JP2014128815A (en) * 2012-12-28 2014-07-10 Mitsubishi Electric Corp Diffused junction jig and diffused junction method
CN103111701B (en) * 2013-03-19 2015-04-01 上海华尔德电站阀门有限公司 Making method of labyrinth core bag in labyrinth regulating valve
CN103111701A (en) * 2013-03-19 2013-05-22 上海华尔德电站阀门有限公司 Making method of labyrinth core bag in labyrinth regulating valve
US9911986B2 (en) 2013-05-16 2018-03-06 Nissan Motor Co., Ltd. Apparatus and method for producing fuel cell separator assembly
EP2999040B1 (en) * 2013-05-16 2018-06-06 Nissan Motor Co., Ltd Apparatus and method for producing fuel cell separator assembly
CN103406726A (en) * 2013-08-05 2013-11-27 南通市电站阀门有限公司 Adjusting valve multistage maze type core package manufacturing method and special milling and welding clamp for method
CN103406726B (en) * 2013-08-05 2016-08-24 南通市电站阀门有限公司 Regulation valve multi-layer labyrinth core packs the method for making and special milling, weld jig
JP2016190256A (en) * 2015-03-31 2016-11-10 日新製鋼株式会社 Lever type jig for diffusion bonding in furnace
WO2024181418A1 (en) * 2023-02-28 2024-09-06 株式会社Uacj Cladding slab for rolling, method for manufacturing cladding slab for rolling, and method for manufacturing cladding material
CN118268721A (en) * 2024-06-04 2024-07-02 南昌大学 Oscillation laser welding method of tantalum and steel based on adding interlayer

Similar Documents

Publication Publication Date Title
JP2006272420A (en) Metal foil diffusion bonding method
US6267801B1 (en) Method for producing a tubular hydrogen permeation membrane
Tosti et al. Diffusion bonding of Pd-Ag rolled membranes
JP2004502622A5 (en)
JPH11276866A (en) Hydrogen permeable membrane and method for producing the same
US20020028345A1 (en) Process for preparing a composite metal membrane, the composite metal membrane prepared therewith and its use
JP2007007565A (en) Hydrogen permeable membrane reinforcing structure and manufacturing method thereof
JP4944656B2 (en) Membrane support for hydrogen separation and module for hydrogen separation using this support
JP2000005580A (en) Composite hydrogen permeable membrane having pressure resistance, method of manufacturing and repairing the same
JP5007951B2 (en) Diffusion bonding method
JP2008155118A (en) Composite membrane for separating hydrogen and module for separating hydrogen using this hydrogen permeable membrane
JP5541556B2 (en) Hydrogen separator and method for producing the same
JP4908821B2 (en) HYDROGEN SEPARATION MEMBRANE WITH SUPPORT, FUEL CELL HAVING THE SAME, HYDROGEN SEPARATION DEVICE, AND METHOD FOR PRODUCING THEM
JP2008080234A (en) Composite multilayer structure hydrogen permeable membrane and method for producing the same
JPH11276867A (en) Bonding method of hydrogen permeable membrane
JP4512863B2 (en) Hydrogen separation permeable membrane, its production method and hydrogen generation and separation device
JP4792598B2 (en) Hydrogen permeation module and method of use thereof
JP5101182B2 (en) Hydrogen permeable membrane module
JP4661102B2 (en) Manufacturing method of electrolyte membrane for fuel cell and fuel cell
JP3174668B2 (en) Hydrogen separation membrane
JP2007245122A (en) Composite multilayer structure hydrogen permeable membrane and method for producing the same
JP2007245123A (en) Composite multilayer structure hydrogen permeable membrane and method for producing the same
JP2007029910A (en) Hydrogen permeable membrane and manufacturing method thereof
JP2003034506A (en) Hydrogen extraction device
JP2000296316A (en) Pressure-resistant hydrogen permeable membrane and its manufacturing method