JP2006272307A - Method and system for purifying water of natural water area or water of water tank in which natural water is put using microbubbles - Google Patents
Method and system for purifying water of natural water area or water of water tank in which natural water is put using microbubbles Download PDFInfo
- Publication number
- JP2006272307A JP2006272307A JP2005125635A JP2005125635A JP2006272307A JP 2006272307 A JP2006272307 A JP 2006272307A JP 2005125635 A JP2005125635 A JP 2005125635A JP 2005125635 A JP2005125635 A JP 2005125635A JP 2006272307 A JP2006272307 A JP 2006272307A
- Authority
- JP
- Japan
- Prior art keywords
- water
- microbubbles
- natural
- microbubble
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 164
- 239000008239 natural water Substances 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 54
- 238000011282 treatment Methods 0.000 claims abstract description 43
- 244000005700 microbiome Species 0.000 claims abstract description 29
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 26
- 241001465754 Metazoa Species 0.000 claims abstract description 24
- 238000000746 purification Methods 0.000 claims abstract description 20
- 238000005273 aeration Methods 0.000 claims abstract description 8
- 229910002651 NO3 Inorganic materials 0.000 claims abstract description 5
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims abstract description 5
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims description 13
- 238000001914 filtration Methods 0.000 claims description 12
- 239000008213 purified water Substances 0.000 claims description 9
- 230000000813 microbial effect Effects 0.000 claims description 7
- 230000001546 nitrifying effect Effects 0.000 claims description 5
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims description 4
- 239000003643 water by type Substances 0.000 claims description 4
- 230000000802 nitrating effect Effects 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 abstract description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 32
- 238000007254 oxidation reaction Methods 0.000 description 19
- 238000006243 chemical reaction Methods 0.000 description 17
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 16
- 229910021529 ammonia Inorganic materials 0.000 description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 16
- 229910017604 nitric acid Inorganic materials 0.000 description 16
- 239000001301 oxygen Substances 0.000 description 16
- 229910052760 oxygen Inorganic materials 0.000 description 16
- 230000003647 oxidation Effects 0.000 description 14
- 241000894006 Bacteria Species 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 238000000354 decomposition reaction Methods 0.000 description 11
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 10
- 239000004094 surface-active agent Substances 0.000 description 10
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 230000007613 environmental effect Effects 0.000 description 7
- 238000006722 reduction reaction Methods 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- HFQQZARZPUDIFP-UHFFFAOYSA-M sodium;2-dodecylbenzenesulfonate Chemical compound [Na+].CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O HFQQZARZPUDIFP-UHFFFAOYSA-M 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000002351 wastewater Substances 0.000 description 5
- 241000251468 Actinopterygii Species 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000002957 persistent organic pollutant Substances 0.000 description 4
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 241001453382 Nitrosomonadales Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000006065 biodegradation reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 239000003337 fertilizer Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000033558 biomineral tissue development Effects 0.000 description 2
- 150000001722 carbon compounds Chemical class 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 239000013626 chemical specie Substances 0.000 description 2
- XTEGARKTQYYJKE-UHFFFAOYSA-N chloric acid Chemical compound OCl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-N 0.000 description 2
- 229940005991 chloric acid Drugs 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecanol group Chemical group C(CCCCCCCCCCC)O LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- JVICFMRAVNKDOE-UHFFFAOYSA-M ethyl violet Chemical compound [Cl-].C1=CC(N(CC)CC)=CC=C1C(C=1C=CC(=CC=1)N(CC)CC)=C1C=CC(=[N+](CC)CC)C=C1 JVICFMRAVNKDOE-UHFFFAOYSA-M 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000033116 oxidation-reduction process Effects 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000004323 potassium nitrate Substances 0.000 description 2
- 235000010333 potassium nitrate Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000002798 spectrophotometry method Methods 0.000 description 2
- 125000001174 sulfone group Chemical group 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241000605122 Nitrosomonas Species 0.000 description 1
- XQAXGZLFSSPBMK-UHFFFAOYSA-M [7-(dimethylamino)phenothiazin-3-ylidene]-dimethylazanium;chloride;trihydrate Chemical compound O.O.O.[Cl-].C1=CC(=[N+](C)C)C=C2SC3=CC(N(C)C)=CC=C3N=C21 XQAXGZLFSSPBMK-UHFFFAOYSA-M 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- HTKFORQRBXIQHD-UHFFFAOYSA-N allylthiourea Chemical compound NC(=S)NCC=C HTKFORQRBXIQHD-UHFFFAOYSA-N 0.000 description 1
- 229960001748 allylthiourea Drugs 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 238000003975 animal breeding Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000001651 autotrophic effect Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012668 chain scission Methods 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- RSAZYXZUJROYKR-UHFFFAOYSA-N indophenol Chemical compound C1=CC(O)=CC=C1N=C1C=CC(=O)C=C1 RSAZYXZUJROYKR-UHFFFAOYSA-N 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- -1 nitrate ions Chemical class 0.000 description 1
- 229940005654 nitrite ion Drugs 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 235000014102 seafood Nutrition 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000271 synthetic detergent Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Farming Of Fish And Shellfish (AREA)
- Activated Sludge Processes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
本発明は、マイクロバブルによる自然水域の浄化方法及び浄化システムに関するものである。 The present invention relates to a purification method and a purification system for natural water areas using microbubbles.
水は物を溶かす溶媒として基本的なものであり、一般に化学式H2Oで示される純粋な水は自然界には存在しない。例えば海水は多くの塩類を含み、陸水においても少量の塩類と有機物などが溶けている。
水中に溶解した酸素は溶存酸素(DO、Dissolved Oxygen)とよばれ、水中生物の生命維持には欠かせない。自然界では化学反応の多くは水溶液中でおこり、物質の溶存状態が反応に影響を与える。
マイクロバブルは、その発生時において気泡径が10〜数10マイクロメートル(μm)のサイズ効果を有する微細な気泡と定義される。(なお、この発生時のマイクロバブルは水中においてその後圧縮されて縮小する)。この気泡中には空気と同じく約20%の酸素と約80%の窒素、微量成分としてアルゴンや炭酸ガス等が含まれている。 そして、このマイクロバブルは普通の気泡(マクロバブル)とは異なった物理的、化学的性質を有している。Water is a basic solvent for dissolving a substance, and pure water represented by the chemical formula H 2 O generally does not exist in nature. For example, seawater contains many salts, and a small amount of salts and organic matter are dissolved in land water.
Oxygen dissolved in water is called dissolved oxygen (DO) and is indispensable for maintaining the life of aquatic organisms. In nature, many chemical reactions occur in aqueous solutions, and the dissolved state of substances affects the reaction.
A microbubble is defined as a fine bubble having a size effect of 10 to several tens of micrometers (μm) when the bubble is generated. (Note that the microbubbles at the time of occurrence are then compressed and reduced in water). Like the air, the bubbles contain about 20% oxygen, about 80% nitrogen, and argon, carbon dioxide, etc. as trace components. These microbubbles have physical and chemical properties different from ordinary bubbles (macrobubbles).
[マイクロバブルの性質]
水槽容器内で発生した気体のバブル(マクロバブル)は、空気と水の比重差により速やかに上昇し、上層において水圧が減じるにしたがい径が大きくなり水相の表面で破裂する。
一方、装置内で負圧下で生成されたマイクロバブルは水中に比較的長時間留まり、最後には水中で消滅する。マイクロバブルの気泡としての特性をストークス則、ラプラス圧、ヘンリー則から概観する。
気泡の上昇速度はストークスの式(1)
V=(ρs−ρF)gD2/18μ 式(1)
で表される。気泡の上昇速度(V)はρs(粒子密度)、ρF(液体密度)、g(重力加速度)、D(粒子径)、μ(液体の粘性係数)で表され1μmの気泡では数10cm/日と非常に遅い。
また、気泡は水中に存在するガス体であり普通は球状の気液界面をもち、マイクロバブルではその気体/液体界面で水の表面張力が作用して内部の気体の圧力が上昇する。気泡の外部と内部との圧力差ΔPはLaplaceの式(2)
ΔP=γ/R 式(2)
で表されγは水の表面張力、Rは気泡の大きさである。直径が1μmの気泡の内部のガス圧は3〜4気圧になる。
Henryの法則では気体の溶解度は圧力に比例して増し、常温での1気圧の大気(酸素の分圧;0.2気圧)の時、DOは約8ppmである。小さな径を持つマイクロバブルは大きな比表面積をもち酸素の溶解速度が速く、その近傍では酸素の局所濃度は増加していると考えられる。また、マイクロバブル表面は負(蒸留水で−35mV)に帯電しており、ゼータ電位は強アルカリ性で−100mV、pH3以下の酸性ではプラスの電位を示す。水中に溶存した酸素は酸化的に、逆にマイナスの帯電は還元的であり、マイクロバブル表面は酸化と還元両方の雰囲気をもつ可能性がある。
これらのマイクロバブルの効果は、反応速度が速く大きな自由エネルギー変化を伴う直接的な化学反応と、比較的穏やかな反応である生物学的反応に区別する必要がある。[Characteristics of microbubbles]
Bubbles of gas (macro bubbles) generated in the water tank vessel rise rapidly due to the difference in specific gravity of air and water, and the diameter increases as the water pressure decreases in the upper layer and bursts on the surface of the water phase.
On the other hand, microbubbles generated under negative pressure in the apparatus stay in water for a relatively long time, and finally disappear in water. The characteristics of microbubbles as bubbles are reviewed from Stokes law, Laplace pressure, and Henry law.
Bubble rising speed is expressed by Stokes' equation (1)
V = (ρs-ρF) gD 2 / 18μ formula (1)
It is represented by The bubble rising speed (V) is expressed by ρs (particle density), ρF (liquid density), g (gravity acceleration), D (particle diameter), and μ (viscosity coefficient of liquid). And very slow.
Bubbles are gas bodies existing in water and usually have a spherical gas-liquid interface. In microbubbles, the surface tension of water acts on the gas / liquid interface, and the pressure of the internal gas rises. The pressure difference ΔP between the outside and inside of the bubble is Laplace's formula (2)
ΔP = γ / R Formula (2)
Where γ is the surface tension of water and R is the size of the bubbles. The gas pressure inside the bubbles having a diameter of 1 μm is 3 to 4 atmospheres.
According to Henry's law, the solubility of a gas increases in proportion to the pressure, and DO is about 8 ppm at 1 atmosphere of atmospheric pressure (partial pressure of oxygen; 0.2 atmosphere) at room temperature. Microbubbles with a small diameter have a large specific surface area and a high oxygen dissolution rate, and the local concentration of oxygen is considered to increase in the vicinity. The microbubble surface is negatively charged (-35 mV with distilled water), and the zeta potential is strongly alkaline, -100 mV, and a pH of 3 or less shows a positive potential. Oxygen dissolved in water is oxidative, while negative charge is reductive, and the microbubble surface may have both oxidizing and reducing atmospheres.
The effects of these microbubbles must be distinguished between direct chemical reactions with fast reaction rates and large free energy changes, and biological reactions, which are relatively mild reactions.
従来のマクロバブルによる汚染自然水域又は自然水を入れた水槽水の浄化処理システムでは、長時間と大型の装置を必要とし、高コストとなっていた。 In the conventional purification system for contaminated natural water areas or aquarium water containing natural water due to macro bubbles, a long time and a large-scale device are required, which is expensive.
本願発明は前記課題を解決するもので、下記構成の発明である。
(1)汚染自然水域から水を連続的に取水してマイクロバブル接触処理槽に導入し、同処理槽内で取水された水にマイクロバブルを接触させて生物曝気処理した後、濾過層を通してから前記自然水域水へ連続的に返送・循環することを特徴とするマイクロバブルによる自然水域水又は自然水を入れた水槽水の浄化方法。
(2)自然水域に棲息している微生物にマイクロバブルを接触させることによって、微生物増殖速度を高め、活性化し、アンモニア性窒素を亜硝酸化又は硝酸化することを特徴とする前記(1)記載のマイクロバブルによる自然水域水の浄化方法。
(3)水棲動物が棲息する汚染自然水域から水を連続的に取水してマイクロバブル接触処理槽に導入し、同処理槽内で取水された水にマイクロバブルを接触させて微生物曝気処理した後、濾過層を通してから前記自然水域水へ連続的に返送すること又は自然水を入れた水槽水を循環することを特徴とするマイクロバブルによる水棲動物の育成方法。
(4)自然水域又は自然水を入れた水槽水に棲息している微生物にマイクロバブルを接触させることによって、微生物増殖速度を高め、活性化し、アンモニア性窒素を亜硝酸化又は硝酸化することを特徴とする前記(3)記載のマイクロバブルによる水棲動物の育成方法。
(5)水棲動物が棲息する汚染自然水域又は自然水を入れた水槽水の水を連続的に取水する取水手段と、同取水手段により取り出された水にマイクロバブルを接触させて微生物曝気処理するマイクロバブル接触処理槽と、同処理槽から導出された微生物曝気処理済水を濾過する濾過装置と、同濾過装置から導出された浄化水を前記自然水域水へ連続的に返送・循環する浄化水返送手段とからなることを特徴とするマイクロバブルによる自然水域水又は自然水を入れた水槽水の浄化システム。
(6)マイクロバブル接触処理槽において、自然水域に棲息している微生物にマイクロバブルを接触させることによって微生物増殖速度を高め、活性化し、アンモニア性窒素を亜硝酸化又は硝酸化するようにしたことを特徴とする前記(5)記載のマイクロバブルによる自然水域水又は自然水を入れた水槽水の浄化システム。This invention solves the said subject, and is invention of the following structure.
(1) After continuously taking water from a contaminated natural water area and introducing it into a microbubble contact treatment tank, the microbubbles are brought into contact with the water taken in the treatment tank and subjected to biological aeration treatment, and then passed through a filtration layer. A method for purifying natural aquatic water using microbubbles or aquarium water containing natural water, wherein the water is continuously returned to and circulated to the natural water.
(2) The description of (1) above, wherein microbubbles are brought into contact with microorganisms inhabiting natural water areas to increase and activate the microorganism growth rate, thereby nitrifying or nitrating ammoniacal nitrogen Water purification method using natural microbubbles.
(3) After continuously taking water from contaminated natural waters inhabited by aquatic animals, introducing it into a microbubble contact treatment tank, and contacting microbubbles with the water taken in the treatment tank, and then subjecting the microorganism to aeration A method for nurturing aquatic animals using microbubbles, wherein the water is continuously returned to the natural water area through the filtration layer, or aquarium water containing natural water is circulated.
(4) By bringing microbubbles into contact with microorganisms inhabiting natural water areas or aquarium water containing natural water, microbial growth rate is increased and activated, and ammonia nitrogen is nitritized or nitrated. A method for nurturing aquatic animals using microbubbles as described in (3) above.
(5) Contaminating natural waters inhabited by aquatic animals or water taking means for continuously taking water from aquariums containing natural water, and microbubbles are brought into contact with the water taken out by the water taking means for microbial aeration treatment. Microbubble contact treatment tank, filtration device for filtering microbial aeration-treated water derived from the treatment tank, and purified water continuously returning and circulating purified water derived from the filtration device to the natural water A purification system for natural aquatic water using microbubbles or aquarium water containing natural water, characterized by comprising return means.
(6) In the microbubble contact treatment tank, the microbubbles are brought into contact with microorganisms living in the natural water area to increase and activate the microbial growth rate to nitrite or nitrate the ammoniacal nitrogen. A purification system of natural aquatic water or aquarium water containing natural water by microbubbles as described in (5) above.
本願発明の方法によれば、簡易な構成で汚染自然水域又は水棲動物棲息汚染水域又は自然水を入れた水槽水を効率的に浄化することができる。
また、本願発明のシステムによれば、簡易・小型な装置構成で、汚染自然水域又は水棲動物棲息汚染水域を効率的に浄化することができる。
そして、本願発明システムを水棲動物育成用水槽に適用すれば、水の入れ替えなしで、かつ清掃不要で長期間水棲動物を育成することができる。According to the method of the present invention, it is possible to efficiently purify contaminated natural water areas, aquatic animal habitat contaminated water areas, or aquarium water containing natural water with a simple configuration.
Further, according to the system of the present invention, it is possible to efficiently purify contaminated natural water areas or aquatic animal habitat contaminated water areas with a simple and small device configuration.
If the invention system of the present application is applied to an aquatic animal breeding water tank, it is possible to grow an aquatic animal for a long time without replacing water and without cleaning.
次に、本願発明の実施の形態について説明する。
まず、マイクロバブルを使用して各種実験した結果について説明する。
[マイクロバブル実験と測定]
マイクロバブル処理(以下MB処理と略す)にはM2型バブル発生装置(商品名:株式会社ナノプラネット研究所製の平均気泡粒径10〜20ミクロンのマイクロバブルを発生する旋回式マイクロバブル発生装置)と30L、20Lあるいは5L(リットル)の水槽を用い、空気量は100〜1000mL/分とし、室温(20〜30℃)で行った。
池の水に塩化アンモニウム、亜硝酸ナトリウム、硝酸カリウム、あるいは市販の界面活性剤(SDS;ドデシル硫酸ナトリウム、SDBS;ドデシルベンゼンスルフォン酸ナトリウム)を添加したものを試料として用い、特に栄養塩類は加えなかった。 マイクロバブルの代わりに普通のマイクロバブルを通じた実験をB処理とする。対照実験として水道水をイオン交換、活性炭ろ過、フィルター処理をした水を用いた。
この水は塩類や菌類を含まないので便宜上蒸留水と表記する。アンモニアの測定はインドフェノール吸光光度法、硝酸と亜硝酸の測定はイオンクロマトグラフ法を用い、界面活性剤の定量はエチルバイオレットを用いるトルエン抽出−吸光光度法およびTOC測定を行った。Next, an embodiment of the present invention will be described.
First, the results of various experiments using microbubbles will be described.
[Microbubble experiment and measurement]
For microbubble treatment (hereinafter abbreviated as MB treatment), an M2 type bubble generator (trade name: swivel type microbubble generator that generates microbubbles with an average cell diameter of 10-20 microns manufactured by Nano Planet Research Laboratories) And 30 L, 20 L, or 5 L (liter) water tanks, and the air amount was 100 to 1000 mL / min, and was performed at room temperature (20 to 30 ° C.).
The sample was prepared by adding ammonium chloride, sodium nitrite, potassium nitrate, or a commercially available surfactant (SDS; sodium dodecyl sulfate, SDBS; sodium dodecylbenzenesulfonate) to the water of the pond, and no nutrient salts were added. . An experiment through normal microbubbles instead of microbubbles is defined as B treatment. As a control experiment, tap water was subjected to ion exchange, activated carbon filtration, and filter treatment.
Since this water does not contain salts or fungi, it is referred to as distilled water for convenience. Ammonia was measured by indophenol spectrophotometry, nitric acid and nitrous acid were measured by ion chromatography, and surfactant was quantified by toluene extraction-spectrophotometry using ethyl violet and TOC measurement.
[窒素の酸化]
1.窒素の酸化還元方法
酸化とは窒素に酸素がつく反応であり、還元では水素が反応する。この時酸素は−2価、水素は+1価として計算し窒素原子の酸化数を求める。
図1に示すように窒素分子(N2)の窒素の酸化数を0として、還元反応により酸化数−3のアンモニア(NH3)もしくはアンモニアイオン(NH4 +)になる。一方、酸化反応により酸化数+3の亜硝酸(HNO2、亜硝酸イオン;NO2 −)、+5の硝酸(HNO3、硝酸イオン;NO3 −)になる。
この酸化還元反応の電位はネルンストの式であらわされる。
E=E0−0.0591/nlog([還元体]/[酸化体])25℃ 式(3)
なお、Eは系の電位、E0は反応に関与する化学種に固有の標準酸化還元単位、nは反応に関与する電子数である。
系中で酸化反応により電位の高い酸化剤が消費されると電位が下がり、逆に還元反応では還元剤が消費されると電位が上がる。溶液のpHや存在状態により異なるが酸化還元電位はO2/H2O(1.23V)、亜硝酸/アンモニア/(0.86V)、硝酸/亜硝酸(0.94V)である。また、電位は反応の自由エネルギーと関係があり微生物が関与する反応も分子レベルでは化学反応である。[Nitrogen oxidation]
1. Oxidation-reduction method of nitrogen Oxidation is a reaction in which oxygen is added to nitrogen, and hydrogen reacts in reduction. At this time, oxygen is calculated as -2 and hydrogen is calculated as +1, and the oxidation number of the nitrogen atom is obtained.
As shown in FIG. 1, the oxidation number of nitrogen of the nitrogen molecule (N 2 ) is set to 0, and ammonia (NH 3 ) or ammonia ion (NH 4 + ) having an oxidation number of −3 is obtained by the reduction reaction. On the other hand, the oxidation reaction results in nitrite having an oxidation number of +3 (HNO 2 , nitrite ion; NO 2 − ) and +5 nitric acid (HNO 3 , nitrate ion; NO 3 − ).
The potential of this oxidation-reduction reaction is expressed by the Nernst equation.
E = E0−0.0591 / nlog ([reduced form] / [oxidized form]) 25 ° C. Formula (3)
E is the potential of the system, E 0 is a standard redox unit specific to the chemical species involved in the reaction, and n is the number of electrons involved in the reaction.
In the system, when an oxidant having a high potential is consumed due to an oxidation reaction, the potential decreases. Conversely, when a reducing agent is consumed in a reduction reaction, the potential increases. The oxidation-reduction potential is O 2 / H 2 O (1.23 V), nitrous acid / ammonia / (0.86 V), and nitric acid / nitrous acid (0.94 V), although it varies depending on the pH of the solution and the state of presence. In addition, the potential is related to the free energy of the reaction, and the reaction involving microorganisms is also a chemical reaction at the molecular level.
2.無機態窒素
窒素は生物にとって必須元素であり人間の体をつくるたんぱく質に多く含まれている。自然界では大気中の窒素ガスを微生物が窒素固定をおこない、食物連鎖をとおして動植物が利用している。
自然界では、窒素分子→「窒素固定」→アンモニア→「硝化」→亜硝酸→「硝化」→硝酸→「脱窒」→窒素分子、の循環がバランスされている。たんぱく質などが分解されて生じた無機態窒素の大部分(90%以上)はアンモニアであり、プラスの帯電を帯びた土壌粒子に吸着され、植物の肥料として利用される。好気性の条件では硝化菌によりアンモニアは亜硝酸、硝酸へと酸化される。
マイナスの電荷をもつ硝酸イオンは土壌から溶出して水に溶け、過剰の存在は河川、湖沼、地下水の汚染の原因となる。
近代ではボルン・ハーバー法により水素と窒素からアンモニアが工業的につくられているが、過剰の化学肥料の使用は富栄養化など環境問題の原因となる。
硝酸、亜硝酸はメトヘモグロビン症の原因となるため飲料水では10mg/L(地下水環境基準;1999年、水道法に基づく水質基準に関する省令;2003年)されており、水質汚染の観点から事業所等からの排水についても無機態窒素として100mg/Lの排水基準(水質汚濁防止法)が定められている。2. Inorganic nitrogen Nitrogen is an essential element for living organisms and is abundant in proteins that make up the human body. In nature, microorganisms fix nitrogen in the atmosphere and nitrogen is used by animals and plants through the food chain.
In the natural world, circulation of nitrogen molecule → “nitrogen fixation” → ammonia → “nitrification” → nitrite → “nitrification” → nitric acid → “denitrification” → nitrogen molecule is balanced. Most of the inorganic nitrogen (90% or more) generated by the decomposition of proteins and the like is ammonia, which is adsorbed by positively charged soil particles and used as plant fertilizer. Under aerobic conditions, ammonia is oxidized to nitrite and nitric acid by nitrifying bacteria.
Negatively charged nitrate ions elute from the soil and dissolve in water, and the presence of excess causes pollution of rivers, lakes and groundwater.
In modern times, ammonia is produced industrially from hydrogen and nitrogen by the Born Harbor method, but the use of excess chemical fertilizers causes environmental problems such as eutrophication.
Since nitric acid and nitrous acid cause methemoglobinosis, 10 mg / L for drinking water (groundwater environmental standards; 1999, ministerial ordinance on water quality standards based on the Water Supply Act; 2003). The wastewater standard (Water Pollution Control Law) of 100 mg / L is also established for the wastewater from the etc. as inorganic nitrogen.
3.マイクロバブルによる窒素の酸化
蒸留水にアンモニアおよび亜硝酸を加え、マイクロバブルおよび対照実験としてマクロバブル処理をおこなったが、90時間後において変化がなかった(図2)。
この結果はマイクロバブルによる無機態窒素の化学的酸化が起こっていないか、検出できるほどの還元形窒素の生成及び酸化形窒素の減少がないことを示すものである。
一方、池の水には2〜3ppmの硝酸、0.5ppmの亜硝酸、微量のアンモニア(冬季)が含まれていたが、この水に窒素の各塩を添加して試料水とし用いた。
図3に示すように池の水にMB処理をおこなうと、処理直後からアンモニアは減少し、20時間後に消失した。亜硝酸は減少→増加→減少→消失し、硝酸は増加後一定の値となった。独立栄養細菌である硝化菌は栄養として有機物を必要としないが、アンモニアの酸化速度は遅く、排水処理のプラントでは水温20〜30度、pH=6.8〜8.5で曝気処理することが多い。池の水についてはB処理によるアンモニアの減少速度はMB処理に比べて遅かった。
硝化菌は、その菌種に応じた特別な化学物質により酵素反応が阻害され活性を失う。この方法は菌の存在の間接的な証明に用いることができる。池の水をMB処理前にアリルチオ尿素を添加するとアンモニアの亜硝酸への酸化反応が阻害され、硝酸は生成しなかった。アンモニア酸化細菌の働きにより生成した亜硝酸は、亜硝酸酸化細菌により硝酸へと酸化される。この反応は塩素酸により阻害される。塩素酸ナトリウムを添加するとアンモニア酸化細菌によりアンモニアが亜硝酸に酸化されるため、最初アンモニアは減少して亜硝酸は増加する。しかし、塩素酸により亜硝酸酸化細菌による亜硝酸から硝酸への酸化が阻害されるため酸化は亜硝酸の段階でとまり、亜硝酸濃度は一定となった。
これらの結果はマイクロバブルによるアンモニア酸化細菌(nitrosomonas)と亜硝酸酸化細菌(nitrobactor)などの微生物によるアンモニアの硝酸への酸化反応の活性化を示唆し、従来の方法に比べてMB処理はアンモニアの硝酸への酸化速度を速める効果がある。3. Oxidation of nitrogen by microbubbles Ammonia and nitrous acid were added to distilled water, and a microbubble treatment was performed as a microbubble and control experiment, but there was no change after 90 hours (FIG. 2).
This result indicates that there is no chemical oxidation of inorganic nitrogen by microbubbles, or there is no detectable production of reduced nitrogen and no reduction of oxidized nitrogen.
On the other hand, the water in the pond contained 2-3 ppm nitric acid, 0.5 ppm nitrous acid, and a small amount of ammonia (in winter), and each salt of nitrogen was added to this water to use as sample water.
As shown in FIG. 3, when MB treatment was performed on pond water, ammonia decreased immediately after the treatment and disappeared after 20 hours. Nitrous acid decreased → increased → decreased → disappeared, and nitric acid became a constant value after increasing. Nitrifying bacteria, which are autotrophic bacteria, do not require organic substances as nutrients, but the oxidation rate of ammonia is slow, and a wastewater treatment plant can be aerated at a water temperature of 20-30 ° C. and pH = 6.8-8.5. Many. For pond water, the rate of ammonia reduction by B treatment was slower than MB treatment.
Nitrifying bacteria lose their activity due to the inhibition of the enzyme reaction by special chemical substances according to the bacterial species. This method can be used for indirect verification of the presence of bacteria. When allylthiourea was added to the pond water before MB treatment, the oxidation reaction of ammonia to nitrous acid was inhibited, and nitric acid was not produced. Nitrite produced by the action of ammonia oxidizing bacteria is oxidized into nitric acid by the nitrite oxidizing bacteria. This reaction is inhibited by chloric acid. When sodium chlorate is added, ammonia is oxidized to nitrous acid by ammonia oxidizing bacteria, so ammonia is initially reduced and nitrite is increased. However, because chloric acid inhibits the oxidation of nitrite to nitric acid by nitrite-oxidizing bacteria, oxidation stopped at the nitrite stage, and the nitrite concentration became constant.
These results suggest activation of the oxidation reaction of ammonia to nitric acid by microorganisms such as ammonia-oxidizing bacteria (nitrosomonas) and nitrite-oxidizing bacteria (nitrobactor) by microbubbles. It has the effect of increasing the rate of oxidation to nitric acid.
4.脱窒とマイクロバブル
硝酸および亜硝酸は脱窒細菌により窒素分子あるいは窒素酸化物のガスとして系から除かれる。この菌は従属栄養細菌であり、メタノールや糖などエネルギーと菌の骨格をつくる炭素を必要とし、好気的条件では酸素を利用、嫌気性雰囲気では硝酸を利用する。10ppmになるように硝酸カリウムを添加し、ブドウ糖を加えた池の水についてMB処理をおこなったが、硝酸の減少はなかった。従って空気−マイクロバブルは溶存酸素を利用する酸化反応には有効であるが、脱窒のような嫌気性雰囲気の還元反応への適用には限界がある。4). Denitrification and microbubbles Nitric acid and nitrous acid are removed from the system by denitrifying bacteria as nitrogen molecule or nitrogen oxide gas. This bacterium is a heterotrophic bacterium and requires energy such as methanol and sugar and carbon that forms the skeleton of the bacterium. It uses oxygen in an aerobic condition and uses nitric acid in an anaerobic atmosphere. Although potassium nitrate was added so that it might become 10 ppm and MB processing was performed about the water of the pond which added glucose, nitric acid was not decreased. Therefore, air-microbubbles are effective for an oxidation reaction using dissolved oxygen, but there are limits to application to an anaerobic atmosphere reduction reaction such as denitrification.
[界面活性剤]
1.界面活性剤の性質
水と油、水と空気など異なる2相が接するとき、どちらかの相に溶けていた物質が2相の接触面(界面)に吸着して2相界面の面積をできるだけ小さくする力である界面張力(相の一方が気体のときは表面張力ともいう)が働く。この界面張力を低下させる作用を界面活性と称し、少量で著しい効果を持つ物質を界面活性剤という。例えば界面活性剤を含む洗剤の水溶液が泡立つのは空気と水との間の界面張力が低下するからである。界面活性剤は分子内に性質の異なる2つの部分をもつ。水に溶け難く油になじみ易い部分は親油基と称され、主として長鎖の脂肪族炭化水素や芳香族炭化水素からなる。一方、水と結合する部分は親水基と称されカルボン酸、スルフォン酸、アンモニウムイオンなど水和しやすい基からなる。水に油を加えると互いに溶け合わないため2相に分離する。これに界面活性剤を添加すると親油基が油滴に溶け、親水基は油滴の表面を覆い結果として油滴は水に溶ける(可溶化)、あるいは分散(乳化)する。親水基がイオン性であれば油滴のひょうめんは電荷をおび、同じ荷電の粒子となるため凝集し難くなる。石鹸や洗剤など界面活性剤は日常生活において広く使われており、その使用目的に応じて種々のものが合成・販売されている。[Surfactant]
1. Surfactant properties When two different phases such as water and oil or water and air are in contact, the substance dissolved in either phase is adsorbed on the contact surface (interface) of the two phases and the area of the two-phase interface is minimized. Interfacial tension (also called surface tension when one of the phases is a gas) acts. This action of lowering the interfacial tension is referred to as surface activity, and a substance having a remarkable effect in a small amount is called a surfactant. For example, the reason why the aqueous solution of the detergent containing the surfactant is foamed is that the interfacial tension between air and water is lowered. Surfactants have two parts with different properties in the molecule. The portion that is not easily dissolved in water and easily adaptable to oil is called a lipophilic group, and is mainly composed of long-chain aliphatic hydrocarbons or aromatic hydrocarbons. On the other hand, the portion that binds to water is called a hydrophilic group and consists of a group that easily hydrates, such as carboxylic acid, sulfonic acid, and ammonium ion. When oil is added to water, it does not dissolve in each other, so it separates into two phases. When a surfactant is added thereto, the lipophilic group dissolves in the oil droplet, and the hydrophilic group covers the surface of the oil droplet. As a result, the oil droplet is dissolved (solubilized) or dispersed (emulsified) in water. If the hydrophilic group is ionic, the oil droplets are charged and become particles of the same charge, making it difficult to agglomerate. Surfactants such as soaps and detergents are widely used in daily life, and various types are synthesized and sold depending on the purpose of use.
2.分解のメカニズム
今回、分解試験に用いたSDSは式(4)(5)に示すように高級アルコールであるドデカノールと硫酸のエステルであり、アルカリ性や酸性の条件下では比較的速やかに加水分解して、原料のアルコールと硫酸になる。
C12H25OH+H2SO4 ⇔ C12H25OSO8H+H2O
式(4)
C12H25OSO8H+NaOH=C12H25OSO8Na(固体、SDS)+H2O
式(5)2. Degradation mechanism The SDS used in the degradation test this time is dodecanol, which is a higher alcohol, and an ester of sulfuric acid as shown in formulas (4) and (5). It hydrolyzes relatively quickly under alkaline and acidic conditions. , Raw material alcohol and sulfuric acid.
C 12 H 25 OH + H 2 SO 4 ⇔ C 12 H 25 OSO 8 H + H 2 O
Formula (4)
C 12 H 25 OSO 8 H + NaOH = C 12 H 25 OSO 8 Na (solid, SDS) + H 2 O
Formula (5)
池の水ほど顕著でないが、蒸留水に添加したSDSはMB処理をすると一次分解による濃度の減少があり、化学的に一部加水分解されていると考えられる。
一次分解 C12H25OSO8Na+H2O → C12H25OH+NaHSO4
式(6)
二次分解 C12H25OH+18O2 → 12CO2+13H2O
式(7)
しかし、洗濯用の合繊洗剤などに多く使われているベンゼン環に直接結合したスルフォン基を持つSDBSは安定であり化学的方法ではその分解は困難である。蒸留水中でのMB処理によるSDBSの分解は観測されなかった。
界面活性剤の疎水部分は炭化水素からできており、容易に微生物に分解される。 生分解とは有機炭素化合物が、微生物の作用によって細胞物質への転化やエネルギー源として利用されるときに二酸化炭素と水に分解される現象のことをいう。この過程は、
1)一次的な分解:物質の特性を変えるのに必要な最小限の分解作用、
2)環境が受け入れるまでの分解:環境上好ましくない性質を失うまでの分解作用、
3)最終的な分解:二酸化炭素、水、親水部分の塩など無機質にする分解作用、
に分けられる。
自然界の実際の反応は複雑であり、SDBSの生分解は微生物のつくる酵素による a.アルキル鎖の切断とカルボン酸への酸化、b.ベンゼン環の開裂、c.スルフォン基の脱離、d.小さくなった有機炭素化合物の水と二酸化炭素への無機化と微生物内への取り込み、からなるが詳細は不明である。
今回は、一般的な洗剤の生分解試験法(JIS K3363等)によらず、池の水をMB処理して、メチレンブルー活性(界面活性を失う一次分解に対応)に相当するエチル・バイオレットを対イオンとしたトルエン抽出−吸光光度による測定、およびTOC測定による二次分解(有機炭素の無機化)の経時変化を調べた。池の水のMB処理した時のSDSの一次分解の経時変化図5に示す。池の水のMB処理では18時間後、B処理では24時間後、放置では68時間後に一次分解が終了した。溶存酵素はMB処理、B処理ともに飽和値、放置では時間による変化があり容器内全体の好気性が維持され難い条件下にあった。
図6に全有機炭素(TOC)の測定結果を示す。池の水のもともと含まれているTOCは3.3ppm、蒸留水でほぼ0ppmである。池の水のTOCのベースラインを考慮するとSDSはMB処理では18時間後にほぼ無機化されており、B処理では一部有機炭素成分が残る。
SDBSについてはMB処理により約50時間後の一次処理された。しかしTOCについては気泡形成のために正確な測定はできなかった。Although not as noticeable as pond water, SDS added to distilled water has a decrease in concentration due to primary decomposition when MB treated, and is considered to be partially hydrolyzed chemically.
Primary decomposition C 12 H 25 OSO 8 Na + H 2 O → C 12 H 25 OH + NaHSO 4
Formula (6)
Secondary decomposition C 12 H 25 OH + 18O 2 → 12CO 2 + 13H 2 O
Formula (7)
However, SDBS having a sulfone group directly bonded to a benzene ring, which is often used in synthetic detergent for laundry, is stable and difficult to decompose by chemical methods. No degradation of SDBS by MB treatment in distilled water was observed.
The hydrophobic part of the surfactant is made of hydrocarbons and is easily broken down into microorganisms. Biodegradation refers to a phenomenon in which organic carbon compounds are decomposed into carbon dioxide and water when converted to cellular materials and used as an energy source by the action of microorganisms. This process is
1) Primary degradation: the minimum degradation required to change the properties of the substance,
2) Decomposition until the environment accepts: Decomposition action until it loses unfavorable environmental properties,
3) Final decomposition: carbon dioxide, water, decomposition action to make minerals such as hydrophilic part salts,
It is divided into.
The actual reaction in nature is complex, and the biodegradation of SDBS depends on the enzyme produced by the microorganism a. Alkyl chain scission and oxidation to carboxylic acid, b. Cleavage of the benzene ring, c. Elimination of the sulfone group, d. It consists of mineralization of reduced organic carbon compounds into water and carbon dioxide and incorporation into microorganisms, but details are unknown.
This time, regardless of the general biodegradation test method for detergents (JIS K3363, etc.), the pond water was treated with MB, and ethyl violet corresponding to methylene blue activity (corresponding to primary degradation that lost surface activity) was tested. Changes in the secondary decomposition (organic carbon mineralization) with time were examined by extraction with toluene as an ion-absorption spectrophotometry and by TOC measurement. FIG. 5 shows the change over time in the primary decomposition of SDS when the pond water is MB treated. The primary decomposition was completed after 18 hours in the pond water MB treatment, after 24 hours in the B treatment, and after 68 hours in the standing. The dissolved enzyme was saturated in both MB treatment and B treatment, and it changed under time when left standing, so that it was difficult to maintain the aerobic properties in the entire container.
FIG. 6 shows the measurement results of total organic carbon (TOC). The TOC originally contained in the pond water is 3.3 ppm, and distilled water is almost 0 ppm. Considering the TOC baseline of pond water, SDS is almost mineralized after 18 hours in the MB treatment, and part of the organic carbon component remains in the B treatment.
SDBS was subjected to primary treatment after about 50 hours by MB treatment. However, accurate measurement was not possible for TOC due to bubble formation.
次に本願発明の自然水域水の浄化処理システムをいくつかの実施例図面によって具体的に説明する。
実施例1:
図7は水棲動物(魚)の水槽水に本願発明を適用した例であり、
水槽2の有機性汚染水(池から取水した自然水域水)中に埋設されたマイクロバブル発生装置1からマイクロバブルを含んだ水が噴出され、有機性汚染水にマイクロバブルが接触し、水中溶存酸素量が増加する。
すると、水中に存在する微生物が増殖して有機性汚染物質が消費される結果、同汚染水が浄化される。
また、マイクロバブルに接触された水は仕切壁2’の上端を越えて(オーバーフロー)、濾過装置室3に入り、そこで濾過材6によって微生物の死骸等の固形物が捕捉・濾過され、管路5を経由し、途中のポンプ4を介して再びマイクロバブル発生装置1に導入される。
以上のようにして、有機性汚染水が浄化システム内に循環され、常に浄化水が水棲動物10環境水として供給される。Next, the purification system for natural water of the present invention will be described in detail with reference to several drawings.
Example 1:
FIG. 7 is an example in which the present invention is applied to aquarium water of aquatic animals (fish),
Water containing microbubbles is ejected from the
Then, as a result of the proliferation of microorganisms present in the water and consumption of organic pollutants, the contaminated water is purified.
Further, the water contacted with the microbubbles passes over the upper end of the
As described above, the organic contaminated water is circulated in the purification system, and the purified water is always supplied as the
実施例2:
図8は水棲動物(魚)の水槽水に本願発明を適用した他の例であり、
水槽2の有機性汚染水(池から取水した自然水域水)中に埋設されたマイクロバブル発生装置1からマイクロバブルを含んだ水が噴出され、有機性汚染水にマイクロバブルが接触し、水中溶存酸素量が増加する。
すると、水中に存在する微生物が増殖して有機性汚染物質が消費される結果、同汚染水が浄化される。
また、マイクロバブルに接触された水は埋設されたストレーナ7により濾過され、そこで微生物の死骸等の固形物が捕捉・濾過され、管路5を経由し、途中のポンプ4を介して再びマイクロバブル発生装置1に導入される。
以上のようにして、有機性汚染水が浄化システム内に循環され、常に浄化水が水棲動物10環境水として供給される。Example 2:
FIG. 8 is another example in which the present invention is applied to aquarium water of aquatic animals (fish).
Water containing microbubbles is ejected from the
Then, as a result of the proliferation of microorganisms present in the water and consumption of organic pollutants, the contaminated water is purified.
Further, the water contacted with the microbubbles is filtered by the embedded strainer 7, where solids such as microbial dead bodies are captured and filtered, and again via the
As described above, the organic contaminated water is circulated in the purification system, and the purified water is always supplied as the
実施例3:
図9は水棲動物(魚)の水槽水に本願発明を適用した他の例であり、
水槽2の有機性汚染水(池から取水した自然水域水)中に埋設されたマイクロバブル発生装置1からマイクロバブルを含んだ水が噴出され、有機性汚染水にマイクロバブルが接触し、水中溶存酸素量が増加する。
すると、水中に存在する微生物が増殖して有機性汚染物質が消費される結果、同汚染水が浄化される。
また、マイクロバブルに接触された水は濾材製仕切壁8により濾過され、そこで微生物の死骸等の固形物が捕捉・濾過され、貯留室に貯留された後、管路5を経由し、途中のポンプ4を介して再びマイクロバブル発生装置1に導入される。
以上のようにして、有機性汚染水が浄化システム内に循環され、常に浄化水が水棲動物10環境水として供給される。Example 3:
FIG. 9 is another example in which the present invention is applied to aquarium water of aquatic animals (fish).
Water containing microbubbles is ejected from the
Then, as a result of the proliferation of microorganisms present in the water and consumption of organic pollutants, the contaminated water is purified.
Further, the water contacted with the microbubbles is filtered by the partition wall 8 made of the filter medium, where solid matter such as dead bodies of microorganisms are captured and filtered, and stored in the storage chamber, and then via the
As described above, the organic contaminated water is circulated in the purification system, and the purified water is always supplied as the
実施例4:
図10は水棲動物(魚)の水槽水に本願発明を適用した他の例であり、
水槽2中に、水中溶存酸素量が増加した浄化水が供給されている。
水槽2の下底部から有機性汚染水(池から取水した自然水域水)が取水され、管路5を経て有機性汚水処理補助装置9に導入される。
有機性汚水処理補助装置9にはマイクロバブル発生装置1と濾過材6が取り付けられており、そこでマイクロバブルを含んだ水が噴出され、有機性汚染水にマイクロバブルが接触し、水中溶存酸素量が増加し、微生物が増殖して有機性汚染物質が消費される結果、同汚染水が浄化される。
そこでマイクロバブルに接触された水は濾濾過材6により濾過され、そこで微生物の死骸等の固形物が捕捉・濾過され、管路5を経由し水槽2へ導出される。
以上のようにして、有機性汚染水が浄化システム内に循環され、常に浄化水が水棲動物10環境水として供給される。Example 4:
FIG. 10 is another example in which the present invention is applied to aquarium water of aquatic animals (fish).
Purified water having an increased amount of dissolved oxygen in the water is supplied into the
Organic polluted water (natural water taken from the pond) is taken from the bottom of the
The organic sewage treatment auxiliary device 9 is equipped with a
Then, the water contacted with the microbubbles is filtered by the filter medium 6, where solids such as dead bodies of microorganisms are captured and filtered, and are led out to the
As described above, the organic contaminated water is circulated in the purification system, and the purified water is always supplied as the
以上の実施例によれば、アンモニア性窒素が急減して、硝化による水質改善がなされ、自然水域や水槽内の魚介類や水棲生物(海洋生物を含む)の長期生育が可能となった。
そして、水槽が汚れず、清掃も不要となり、水の入れ替えも必要としなくなった。According to the above examples, ammonia nitrogen was drastically reduced, water quality was improved by nitrification, and long-term growth of seafood and aquatic organisms (including marine organisms) in natural water areas and aquariums became possible.
And the water tank was not soiled, no cleaning was required, and no water replacement was required.
工場や事業所の生産活動に伴う排水など汚染源を特定できるPoint汚染と、肥料や農薬あるいは家庭排水などの汚染源の特定が困難で影響が広範囲にわたるNonpoint汚染では、取り扱う量と処理物の濃度に大きな違いがある。Point汚染では比較少量の高濃度排水を処理する必要がある。
一方、Nonpoint汚染は汚染物質の濃度は低いが広範囲にわたるため、膨大な量を処理する必要があり自然界の生物による浄化サイクルが重要となる。マイクロバブル技術の適応として、今回は比較的低濃度の化学種を扱った。マイクロバブルの反応に対する直接的な化学的効果は検出することができなかったが、微生物を利用した生物学的反応に対してマイクロバブルは有用である。自然の空気を利用したマイクロバブルは、開放系の自然環境中で好気性雰囲気での処理反応に有用であると考えられる。Point pollution that can identify pollution sources such as wastewater associated with production activities at factories and offices, and nonpoint pollution that has a wide range of effects due to difficulty in identifying pollution sources such as fertilizers, pesticides, and household wastewater. There is a difference. Point contamination requires a relatively small amount of high-concentration wastewater to be treated.
On the other hand, Nonpoint contamination has a low concentration of pollutants but is wide-ranging. Therefore, it is necessary to treat a huge amount, and a purification cycle by natural organisms becomes important. This time, we deal with relatively low concentrations of chemical species as an application of microbubble technology. Although direct chemical effects on the reaction of microbubbles could not be detected, microbubbles are useful for biological reactions utilizing microorganisms. Microbubbles using natural air are thought to be useful for treatment reactions in an aerobic atmosphere in an open natural environment.
1:マイクロバブル発生装置、 2:水槽、 3:濾過装置室、
4:ポンプ、 5:管路、 6:濾過材、
7:ストレーナ、 8:濾材製仕切壁、
9:有機性汚水処理補助装置、 10:水棲動物。1: microbubble generator, 2: water tank, 3: filtration device room,
4: Pump, 5: Pipe line, 6: Filter material,
7: Strainer, 8: Filter media partition wall,
9: Organic wastewater treatment auxiliary device, 10: Aquatic animal.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005125635A JP2006272307A (en) | 2005-03-28 | 2005-03-28 | Method and system for purifying water of natural water area or water of water tank in which natural water is put using microbubbles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005125635A JP2006272307A (en) | 2005-03-28 | 2005-03-28 | Method and system for purifying water of natural water area or water of water tank in which natural water is put using microbubbles |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006272307A true JP2006272307A (en) | 2006-10-12 |
Family
ID=37207552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005125635A Pending JP2006272307A (en) | 2005-03-28 | 2005-03-28 | Method and system for purifying water of natural water area or water of water tank in which natural water is put using microbubbles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006272307A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011161408A (en) * | 2010-02-15 | 2011-08-25 | Panasonic Environmental Systems & Engineering Co Ltd | Method and apparatus for suppressing propagation of bacteria |
JP2011200858A (en) * | 2010-03-02 | 2011-10-13 | Akita Univ | Device for washing rice by using microbubble |
JP2012095630A (en) * | 2010-10-29 | 2012-05-24 | Hiroki Hachiuma | Parallel cultivation system for aquatic animal and plant by using microorganism activated with micro-nanobubble |
WO2015002302A1 (en) * | 2013-07-05 | 2015-01-08 | 株式会社タカハタ電子 | Method for activating oxygenase-containing composition, and contaminant detoxification method and device based on same |
JP2017148007A (en) * | 2016-02-26 | 2017-08-31 | 沖縄県 | Cultivation system of fish seedling |
JP2018153159A (en) * | 2017-03-21 | 2018-10-04 | 吉川工業株式会社 | Aquarium fish growth system |
JP2021516067A (en) * | 2018-03-06 | 2021-07-01 | セアラス エーエスSearas As | Aquaculture cage with main room and surrounding ring room |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001087786A (en) * | 1999-09-27 | 2001-04-03 | Yoshimoto Pole Kk | Sewage treating apparatus |
JP2002370095A (en) * | 2001-06-14 | 2002-12-24 | Masao Ukisho | Liquid cleaning apparatus |
JP2003164890A (en) * | 2001-11-30 | 2003-06-10 | Fm Ecology Kenkyusho:Kk | Waste water treatment system and mixing equipment |
-
2005
- 2005-03-28 JP JP2005125635A patent/JP2006272307A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001087786A (en) * | 1999-09-27 | 2001-04-03 | Yoshimoto Pole Kk | Sewage treating apparatus |
JP2002370095A (en) * | 2001-06-14 | 2002-12-24 | Masao Ukisho | Liquid cleaning apparatus |
JP2003164890A (en) * | 2001-11-30 | 2003-06-10 | Fm Ecology Kenkyusho:Kk | Waste water treatment system and mixing equipment |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011161408A (en) * | 2010-02-15 | 2011-08-25 | Panasonic Environmental Systems & Engineering Co Ltd | Method and apparatus for suppressing propagation of bacteria |
JP2011200858A (en) * | 2010-03-02 | 2011-10-13 | Akita Univ | Device for washing rice by using microbubble |
JP2012095630A (en) * | 2010-10-29 | 2012-05-24 | Hiroki Hachiuma | Parallel cultivation system for aquatic animal and plant by using microorganism activated with micro-nanobubble |
WO2015002302A1 (en) * | 2013-07-05 | 2015-01-08 | 株式会社タカハタ電子 | Method for activating oxygenase-containing composition, and contaminant detoxification method and device based on same |
JP2015012830A (en) * | 2013-07-05 | 2015-01-22 | 株式会社タカハタ電子 | Method for activating oxygen-containing enzyme-containing composition and method and apparatus for detoxifying pollutants based thereon |
JP2017148007A (en) * | 2016-02-26 | 2017-08-31 | 沖縄県 | Cultivation system of fish seedling |
JP2018153159A (en) * | 2017-03-21 | 2018-10-04 | 吉川工業株式会社 | Aquarium fish growth system |
JP2021516067A (en) * | 2018-03-06 | 2021-07-01 | セアラス エーエスSearas As | Aquaculture cage with main room and surrounding ring room |
JP7270656B2 (en) | 2018-03-06 | 2023-05-10 | セアラス エーエス | Aquaculture cage with main chamber and peripheral annular chamber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tang et al. | Removal of nitrogen from wastewaters by anaerobic ammonium oxidation (ANAMMOX) using granules in upflow reactors | |
Ting et al. | Application of water hyacinth (Eichhornia crassipes) for phytoremediation of ammoniacal nitrogen: A review | |
Gerardi | Nitrification and denitrification in the activated sludge process | |
She et al. | Partial nitrification and denitrification in a sequencing batch reactor treating high-salinity wastewater | |
Feng et al. | An overview of the strategies for the deammonification process start-up and recovery after accidental operational failures | |
Hu et al. | Robust biological nitrogen removal by creating multiple tides in a single bed tidal flow constructed wetland | |
Aslan et al. | Influence of salinity on partial nitrification in a submerged biofilter | |
She et al. | Salinity effect on simultaneous nitrification and denitrification, microbial characteristics in a hybrid sequencing batch biofilm reactor | |
CN103803711A (en) | Method for treating ammonia-nitrogen wastewater by using immobilized microorganism | |
JP4835536B2 (en) | Removal of organic substances and nitrogen from liquid to be treated | |
JP2003047990A (en) | Biological denitrification equipment | |
JP2006272307A (en) | Method and system for purifying water of natural water area or water of water tank in which natural water is put using microbubbles | |
KR20140099772A (en) | Method and apparatus for continuous removal of perchlorate and nitrate by using halotolerant microorganisms | |
Mojiri et al. | Performance optimization of a chitosan/anammox reactor in nitrogen removal from synthetic wastewater | |
JP2006289311A (en) | Method for treating drainage | |
Cui et al. | Experimentation and mathematical models for partial nitrification in aerobic granular sludge process | |
RU2055982C1 (en) | Compound for stimulation of increased oil recovery from formation | |
Tsuneda et al. | Tailoring of highly efficient nitrifying biofilms in fluidized bed for ammonia-rich industrial wastewater treatment | |
JP2003024988A (en) | Biological denitrification method | |
Kliś et al. | Application of potassium ferrate (VI) for oxidation of selected pollutants in aquatic environment—Short review | |
US20100300964A1 (en) | Biological filter for oxidizing ammonia in drinking water treatment | |
JP2004305980A (en) | Biological denitrification treatment method | |
Homchoam et al. | Removal of ammonia from aquaculture wastewater by down-flow hanging sponge system | |
JP2000189995A (en) | Method and device for removing nitrogen in waste water | |
JP2011062656A (en) | Nitrogen-containing wastewater treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080321 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090731 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101117 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110420 |