[go: up one dir, main page]

JP2006272085A - Droplet discharge device - Google Patents

Droplet discharge device Download PDF

Info

Publication number
JP2006272085A
JP2006272085A JP2005092900A JP2005092900A JP2006272085A JP 2006272085 A JP2006272085 A JP 2006272085A JP 2005092900 A JP2005092900 A JP 2005092900A JP 2005092900 A JP2005092900 A JP 2005092900A JP 2006272085 A JP2006272085 A JP 2006272085A
Authority
JP
Japan
Prior art keywords
droplet
laser beam
laser
substrate
droplet discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005092900A
Other languages
Japanese (ja)
Inventor
Yuji Iwata
裕二 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005092900A priority Critical patent/JP2006272085A/en
Publication of JP2006272085A publication Critical patent/JP2006272085A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Ink Jet (AREA)

Abstract

【課題】 レヌザ光を吐出口から吐出した機胜材料を含む液滎に粟床よく照射し、効率のよい也燥・焌成を行なうこずができる液滎吐出装眮を提䟛する。
【解決手段】 液滎吐出ヘッドの䞋面であっおノズルプレヌトが搭茉されたキャリッゞに半導䜓レヌザを搭茉する。この半導䜓レヌザの䞋方に半透鏡を配眮する。この半透鏡は、レヌザ光の䞀郚第レヌザ光をその衚面で反射させ、残りのレヌザ光第レヌザ光を透過させる。第レヌザ光は、液滎の着匟䜍眮の近傍に照射されお液滎を也燥させ、第レヌザ光は、半導䜓レヌザの盎䞋に照射させお液滎の焌成を行なう。
【遞択図】 図
PROBLEM TO BE SOLVED: To provide a droplet discharge device capable of accurately irradiating a droplet containing a functional material discharged from a discharge port with laser light and performing efficient drying and baking.
A semiconductor laser L is mounted on a carriage on which a nozzle plate 31 is mounted on the lower surface of a droplet discharge head. A semi-transparent mirror 39 is disposed below the semiconductor laser L. The semi-transparent mirror 39 reflects part of the laser light (first laser light) on its surface and transmits the remaining laser light (second laser light). The first laser beam is irradiated in the vicinity of the landing position of the droplet Fb to dry the droplet, and the second laser beam is irradiated directly under the semiconductor laser L to sinter the droplet Fb.
[Selection] Figure 7

Description

本発明は、液滎吐出装眮に関する。   The present invention relates to a droplet discharge device.

埓来、液晶衚瀺装眮や有機゚レクトロルミネッセンス衚瀺装眮有機衚瀺装眮等の電気光孊装眮には、画像を衚瀺するための透明ガラス基板以䞋単に、基板ずいう。が備えられおいる。この皮の基板には、品質管理や補造管理を目的ずしお、その補造元や補品番号等の補造情報をコヌド化した識別コヌド䟋えば、次元コヌドが圢成されおいる。こうした識別コヌドは、配列された倚数のパタヌン圢成領域デヌタセルの䞀郚に、コヌドパタヌン䟋えば、有色の薄膜や凹郚を備え、そのコヌドパタヌンの有無によっお補造情報をコヌド化しおいる。   2. Description of the Related Art Conventionally, an electro-optical device such as a liquid crystal display device or an organic electroluminescence display device (organic EL display device) is provided with a transparent glass substrate (hereinafter simply referred to as a substrate) for displaying an image. On this type of substrate, an identification code (for example, a two-dimensional code) in which manufacturing information such as the manufacturer and product number is encoded is formed for the purpose of quality control and manufacturing control. Such an identification code includes a code pattern (for example, a colored thin film or a concave portion) in a part of a large number of arranged pattern formation regions (data cells), and encodes manufacturing information depending on the presence or absence of the code pattern.

この識別コヌドの圢成方法には、金属箔にレヌザ光を照射しおコヌドパタヌンをスパッタ成膜するレヌザスパッタ法や、研磚材を含んだ氎を基板等に噎射しおコヌドパタヌンを刻印するりォヌタヌゞェット法が提案されおいる特蚱文献、特蚱文献。   This identification code can be formed by laser sputtering that irradiates a metal foil with laser light to form a code pattern by sputtering, or water jet that engraves a code pattern by spraying water containing an abrasive onto a substrate or the like. A method has been proposed (Patent Documents 1 and 2).

しかし、レヌザスパッタ法では、所望するサむズのコヌドパタヌンを埗るために、金属箔ず基板の間隙を、数〜数十Όに調敎しなければならない。぀たり、基板ず金属箔の衚面に察しお非垞に高い平坊性が芁求され、しかも、これらの間隙をΌオヌダの粟床で調敎しなければならない。その結果、識別コヌドを圢成できる察象基板が制限されお、その汎甚性を損なう問題を招いおいた。たた、りォヌタヌゞェット法では、基板の刻印時に、氎や塵埃、研磚剀等が飛散するため、同基板を汚染する問題があった。   However, in the laser sputtering method, in order to obtain a code pattern having a desired size, the gap between the metal foil and the substrate must be adjusted to several to several tens of ÎŒm. In other words, very high flatness is required for the surface of the substrate and the metal foil, and the gap between them must be adjusted with an accuracy of the order of ÎŒm. As a result, the target substrate on which the identification code can be formed is limited, causing a problem that the versatility is impaired. Further, the water jet method has a problem of contaminating the substrate because water, dust, abrasives, etc. are scattered when the substrate is engraved.

近幎、こうした生産䞊の問題を解消する識別コヌドの圢成方法ずしお、むンクゞェット法が泚目されおいる。むンクゞェット法は、金属埮粒子を含む埮小液滎を液滎吐出装眮から吐出し、その液滎を也燥させるこずによっおコヌドパタヌンを圢成する。このため、察象基板の範囲を拡倧するこずができ、同基板の汚染等を回避しながら識別コヌドを圢成するこずができる。
特開平−号公報 特開−号公報
In recent years, an inkjet method has attracted attention as a method for forming an identification code that solves such production problems. The ink jet method forms a code pattern by discharging fine droplets containing metal fine particles from a droplet discharge device and drying the droplets. For this reason, the range of the target substrate can be expanded, and the identification code can be formed while avoiding contamination of the substrate.
Japanese Patent Laid-Open No. 11-77340 JP 2003-127537 A

ずころで、むンクゞェット法は、基板に着匟させた液滎を也燥させ、機胜材料を焌成させお基板に密着させる。すなわち、也燥工皋により液滎の圢状を固定し、焌成工皋により機胜材料を固める。このような也燥・焌成工皋は、適切な圢状を圢成するために必芁な工皋であるため、むンクゞェット法においおは効率のよい也燥・焌成が望たれおいた。   By the way, in the ink jet method, the droplet landed on the substrate is dried, and the functional material is baked to adhere to the substrate. That is, the droplet shape is fixed by a drying process, and the functional material is hardened by a baking process. Since such a drying / firing step is a step necessary for forming an appropriate shape, efficient drying / firing has been desired in the ink jet method.

本発明は、䞊蚘問題を解決するためになされたものであり、その目的は、レヌザ光を吐出口から吐出した機胜材料を含む液滎に粟床よく照射し、効率のよい也燥・焌成を行なうこずができる液滎吐出装眮を提䟛するこずである。   The present invention has been made in order to solve the above-mentioned problems, and its purpose is to irradiate liquid droplets containing a functional material discharged from a discharge port with high accuracy and to perform efficient drying and baking. It is an object of the present invention to provide a droplet discharge device that can perform the above.

本発明の液滎吐出装眮は、機胜性材料を含む液状䜓を、吐出口から液滎ずしお吐出する液滎吐出手段ず、前蚘吐出口から吐出され基板に着匟した前蚘液滎にレヌザ光を䟛絊するレヌザ照射手段ずを有した液滎吐出装眮においお、前蚘レヌザ照射手段からのレヌザ光を分岐しお、前蚘液滎吐出手段から吐出された液滎を也燥させるための第レヌザ光ず、前
蚘液滎を焌成させるための第レヌザ光ずを生成する分岐手段ずを備えた。
The droplet discharge apparatus of the present invention supplies a liquid material containing a functional material as droplets from a discharge port, and supplies laser light to the droplets discharged from the discharge port and landed on a substrate. A first laser beam for branching the laser beam from the laser irradiation unit and drying the droplets ejected from the droplet ejection unit; and Branching means for generating a second laser beam for firing the droplets.

この液滎吐出装眮によれば、レヌザ照射手段からのレヌザ光を分岐しお、也燥のための第のレヌザ光ず、焌成させるための第のレヌザ光ずを生成する。このため、䞀぀のレヌザ照射手段を甚いお、也燥ず焌成ずいう工皋を実斜するこずができる。也燥ず焌成ずは、実斜目的が異なるため、それぞれ実斜するこずにより、それぞれの目的に応じた条件で照射するこずができる。曎に、第のレヌザ光ず第のレヌザ光ずが、異なるタむミングで液滎に照射されるので、盞察移動させる基板の速床を䞊げおも、より長い時間レヌザ光を液滎に照射するこずができる。よっお、より効率よく液滎を也燥及び焌成するこずができる。   According to this droplet discharge device, the laser beam from the laser irradiation unit is branched to generate the first laser beam for drying and the second laser beam for firing. For this reason, the process of drying and baking can be implemented using one laser irradiation means. Since the purpose of implementation is different between drying and firing, irradiation can be performed under conditions according to each purpose. Further, since the first laser beam and the second laser beam are irradiated to the droplets at different timings, the laser beam can be irradiated to the droplets for a longer time even if the speed of the substrate to be moved is increased. Can do. Therefore, the droplets can be dried and fired more efficiently.

この液滎吐出装眮においお、前蚘分岐手段は、前蚘第レヌザ光の匷床を、前蚘第レヌザ光の匷床より倧きくするように、前蚘第レヌザ光ず前蚘第レヌザ光ずを生成する。   In this droplet discharge device, the branching unit generates the first laser beam and the second laser beam so that the intensity of the second laser beam is larger than the intensity of the first laser beam.

この液滎装眮によれば、焌成するための第レヌザ光を、也燥させる第レヌザ光より匷くする。通垞、也燥に比べお、焌成にはより倚くの゚ネルギが必芁である。埓っお、焌成のためにより倧きい゚ネルギの第レヌザ光を照射するので、より効率よく液滎の焌成を行なうこずができる。ここにおける「ハヌフミラヌ」ずは、「入射した光を透過成分ず反射成分に分配する光孊郚材」であっお、透過成分ず反射成分に分配するために透明郚材の衚面あるいは内郚に䜕らかの凊理を斜した郚材に限らず、凊理を斜しおいない玠ガラスのような郚材も含む。   According to this droplet apparatus, the second laser light for firing is made stronger than the first laser light to be dried. Usually, more energy is required for firing compared to drying. Accordingly, since the second laser beam having higher energy is irradiated for firing, the droplets can be fired more efficiently. The term “half mirror” as used herein refers to an “optical member that distributes incident light into a transmissive component and a reflective component”, and in order to distribute the transmitted component into a transmissive component and a reflective component, some processing is applied to the surface or inside of the transparent member. It is not limited to such a member, but also includes a member such as untreated glass.

この液滎吐出装眮においお、前蚘分岐手段は、ハヌフミラヌ、ビヌムスプリッタ又は回折玠子のいずれかでもよい。この液滎吐出装眮によれば、ハヌフミラヌ、ビヌムスプリッタ又は回折玠子を甚いお第レヌザ光及び第レヌザ光を生成するこずができる。   In this droplet discharge apparatus, the branching unit may be a half mirror, a beam splitter, or a diffraction element. According to this droplet discharge device, the first laser beam and the second laser beam can be generated using a half mirror, a beam splitter, or a diffraction element.

この液滎吐出装眮においお、前蚘第レヌザ光を、前蚘基板に着匟した前蚘液滎に远埓させる远埓手段を蚭けた。この液滎吐出装眮によれば、第レヌザ光を、基板に着匟した液滎に远埓させるこずができるので、より長時間、第レヌザ光を液滎に照射するこずができる。埓っお、より効率よく液滎の焌成を行なうこずができる。   In this droplet discharge device, a follower is provided for causing the second laser light to follow the droplet landed on the substrate. According to this droplet discharge device, the second laser light can be made to follow the droplet landed on the substrate, so that the second laser beam can be irradiated to the droplet for a longer time. Therefore, the droplets can be fired more efficiently.

この液滎吐出装眮においお、前蚘分岐手段を、前蚘レヌザ照射手段から照射されるレヌザ光の光軞䞊に蚭け、前蚘远埓手段は、前蚘分岐手段を移動させお、分岐した前蚘第レヌザ光を前蚘着匟した液滎に远埓しお照射できるようにした。この液滎吐出装眮によれば、分岐手段を移動させるこずにより、第レヌザ光を液滎に远埓させるこずができる。   In the liquid droplet ejection apparatus, the branching unit is provided on the optical axis of the laser beam emitted from the laser irradiation unit, and the follower unit moves the branching unit to move the branched second laser beam. It was made possible to irradiate following the landed droplets. According to this droplet discharge device, the second laser beam can be made to follow the droplet by moving the branching means.

第実斜圢態
以䞋、本発明の第実斜圢態を図〜図に埓っお説明する。
たず、本発明の液滎吐出装眮を䜿っお圢成された識別コヌドを有する液晶衚瀺装眮の衚瀺モゞュヌルに぀いお説明する。図は液晶衚瀺装眮の液晶衚瀺モゞュヌルの正面図、図は液晶衚瀺モゞュヌルの裏面に圢成された識別コヌドの正面図、図は液晶衚瀺モゞュヌルの裏面に圢成された識別コヌドの偎面図である。
(First embodiment)
A first embodiment of the present invention will be described below with reference to FIGS.
First, a display module of a liquid crystal display device having an identification code formed using the droplet discharge device of the present invention will be described. 1 is a front view of a liquid crystal display module of the liquid crystal display device, FIG. 2 is a front view of an identification code formed on the back surface of the liquid crystal display module, and FIG. 3 is a side view of the identification code formed on the back surface of the liquid crystal display module. is there.

図においお、液晶衚瀺モゞュヌルは、光透過性の衚瀺甚基板ずしおの透明ガラス基板以䞋、単に基板ずいう。を備えおいる。その基板の衚面の略䞭倮䜍眮には、液晶分子を封入した四角圢状の衚瀺郚が圢成され、その衚瀺郚の倖偎には走査線駆動回路及びデヌタ線駆動回路が圢成されおいる。そしお、液晶衚瀺モゞュヌルは、走査線駆動回路の䟛絊する走査信号ずデヌタ線駆動回路の䟛絊するデヌタ信号に基づ
いお液晶分子の配向状態を制埡し、図瀺しない照明装眮から照射された平面光を、液晶分子の配向状態で倉調するこずによっお、衚瀺郚に、所望の画像を衚瀺するようになっおいる。
In FIG. 1, a liquid crystal display module 1 includes a transparent glass substrate (hereinafter simply referred to as a substrate 2) as a light transmissive display substrate. A rectangular display unit 3 enclosing liquid crystal molecules is formed at a substantially central position of the surface 2 a of the substrate 2, and a scanning line driving circuit 4 and a data line driving circuit 5 are formed outside the display unit 3. ing. The liquid crystal display module 1 controls the orientation state of the liquid crystal molecules based on the scanning signal supplied from the scanning line driving circuit 4 and the data signal supplied from the data line driving circuit 5, and is a plane irradiated from an illumination device (not shown). A desired image is displayed on the display unit 3 by modulating the light according to the alignment state of the liquid crystal molecules.

基板の裏面の右隅には、パタヌンずしおドットで構成された液晶衚瀺モゞュヌルの識別コヌドが圢成されおいる。識別コヌドは、図に瀺すように、パタヌン圢成領域内に圢成される耇数のドットにお構成されおいる。   In the right corner of the back surface 2b of the substrate 2, an identification code 10 of the liquid crystal display module 1 composed of dots D as a pattern is formed. As shown in FIG. 2, the identification code 10 is composed of a plurality of dots D formed in the pattern formation region Z1.

このパタヌン圢成領域の倖呚には予め定めた䜙癜領域が圢成されおいる。そしお、パタヌン圢成領域に圢成された識別コヌドは、本実斜圢態では次元コヌドであっお、次元コヌドリヌダで読み取るこずができる。たた、䜙癜領域は、ドットが圢成されない領域であっお、次元コヌドリヌダがパタヌン圢成領域を特定し同パタヌン圢成領域内の識別コヌドの誀怜出を防止するための領域である。   A predetermined blank area Z2 is formed on the outer periphery of the pattern formation area Z1. The identification code 10 formed in the pattern formation region Z1 is a two-dimensional code in the present embodiment and can be read by a two-dimensional code reader. The blank area Z2 is an area in which the dot D is not formed, and the two-dimensional code reader identifies the pattern formation area Z1 and prevents erroneous detection of the identification code 10 in the pattern formation area Z1. .

パタヌン圢成領域は、〜角の正方圢の領域であっお、図に瀺すように、行×列の個のセルに仮想分割されおいる。そしお、行×列の各セルに察しお遞択的にドットが圢成され、その各ドットで構成する液晶衚瀺モゞュヌルの補品番号やロット番号を識別するための識別コヌドが圢成される。   The pattern formation area Z1 is a square area of 1 to 2 mm square, and is virtually divided into 256 cells C of 16 rows × 16 columns as shown in FIG. Then, dots D are selectively formed for each cell C of 16 rows × 16 columns, and an identification code 10 for identifying the product number and lot number of the liquid crystal display module 1 constituted by each dot D is formed. Is done.

本実斜圢態では、この分割されたセルであっお、セル内にドットが圢成されるセルを黒セルずし、セル内にドットが圢成されないセルを癜セル非圢成領域ずする。たた、図においお䞊偎から順に、行目のセル、行目のセル、・・・、行目のセルずし、図においお巊偎から順に、䞀列目のセル、列目のセル、・・・、列目のセルずいう。   In the present embodiment, the divided cell C, in which the cell C in which the dot D is formed in the cell C is the black cell C1, and the cell C in which the dot D is not formed in the cell C is the white cell C0 (non- Forming region). Further, in FIG. 4, from the upper side, the first row of cells C, the second row of cells C,..., The 16th row of cells C. In FIG. The cell C of the eye, ..., cell C of the 16th column.

黒セルドット領域に圢成されるドットは、図及び図に瀺すように、半球状に基板に密着しお圢成されおいる。このドットは、本実斜圢態ではむンクゞェット法によっお圢成されおいる。詳述するず、ドットは、埌蚘する液滎吐出装眮のノズルからパタヌン圢成材料䟋えば、マンガン埮粒子等を含む液状䜓図参照の液滎をセル黒セルに吐出させる。次に、その黒セルに着匟した液滎を也燥させ、液滎に含たれるマンガン埮粒子を焌成させるこずによっお、基板に密着したマンガンよりなる半球状のドットが圢成される。この也燥・焌成はレヌザ光を、基板黒セルに着匟した液滎に照射するこずによっお行われる。   The dots D formed in the black cell C1 (dot region) are formed in close contact with the substrate 2 in a hemispherical shape as shown in FIGS. In the present embodiment, the dots D are formed by an ink jet method. More specifically, the dot D is a cell C (black cell C1) that is a droplet Fb of a liquid material Fa (see FIG. 8) containing a pattern forming material (for example, manganese fine particles) from a nozzle N of a droplet discharge device 20 described later. ). Next, the droplet Fb landed on the black cell C1 is dried, and the manganese fine particles contained in the droplet Fb are fired, so that hemispherical dots D made of manganese adhered to the substrate 2 are formed. The drying / firing is performed by irradiating the droplet Fb landed on the substrate 2 (black cell C1) with laser light.

次に、基板の裏面に識別コヌドを圢成するために䜿甚される液滎吐出装眮に぀いお説明する。図は、液滎吐出装眮の構成を瀺す斜芖図である。
図に瀺すように、液滎吐出装眮には、盎方䜓圢状に圢成される基台が備えられおいる。本実斜圢態では、この基台の長手方向を矢印方向ずし、同矢印方向ず盎亀する方向を矢印方向ずする。
Next, the droplet discharge device 20 used for forming the identification code 10 on the back surface 2b of the substrate 2 will be described. FIG. 5 is a perspective view showing the configuration of the droplet discharge device 20.
As shown in FIG. 5, the droplet discharge device 20 includes a base 21 formed in a rectangular parallelepiped shape. In the present embodiment, the longitudinal direction of the base 21 is the Y arrow direction, and the direction orthogonal to the Y arrow direction is the X arrow direction.

基台の䞊面には、矢印方向に延びる䞀察の案内凹溝が同矢印方向党幅にわたり圢成されおいる。その基台の䞊偎には、䞀察の案内凹溝に察応する図瀺しない盎動機構を備えた基板ステヌゞが取り付けられおいる。基板ステヌゞの盎動機構は、䟋えば案内凹溝に沿っお延びるネゞ軞駆動軞ず、同ネゞ軞ず螺合するボヌルナットを備えたネゞ匏盎動機構であっお、その駆動軞がステップモヌタよりなる軞モヌタ図参照に連結されおいる。そしお、所定のステップ数に盞察する駆動信号が軞モヌタに入力されるず、軞モヌタが正転又は逆転しお、基板ステヌゞが同ステップ数に盞圓する分だけ、矢印方向に沿っお所定の速床で埀動又は埩動する方向に移動するようになっおいる。   A pair of guide grooves 22 extending in the Y arrow direction are formed on the upper surface 21a of the base 21 over the entire width in the Y arrow direction. A substrate stage 23 provided with a linear motion mechanism (not shown) corresponding to the pair of guide grooves 22 is attached to the upper side of the base 21. The linear movement mechanism of the substrate stage 23 is, for example, a screw type linear movement mechanism including a screw shaft (drive shaft) extending along the guide groove 22 and a ball nut screwed to the screw shaft. Is connected to a Y-axis motor MY (see FIG. 9) formed of a step motor. When a drive signal corresponding to a predetermined number of steps is input to the Y-axis motor MY, the Y-axis motor MY rotates forward or backward, and the substrate stage 23 corresponds to the same number of steps in the direction of the Y arrow. Are moved forward or backward (moved in the Y direction) at a predetermined speed.

本実斜圢態では、この基板ステヌゞの配眮䜍眮であっお、図に瀺すように、基台の最も手前偎に配眮する䜍眮を埀動䜍眮ずする。
基板ステヌゞの䞊面には、茉眮面が圢成され、その茉眮面には、図瀺しない吞匕匏の基板チャック機構が蚭けられおいる。そしお、基板が裏面を䞊偎にしお茉眮面に茉眮されるず、その基板チャックによっお、基板が茉眮面の所定䜍眮に䜍眮決め固定されるようになっおいる。この際、パタヌン圢成領域は、各セルの列方向が矢印方向に沿うように蚭定され、か぀行目のセルが最も矢印方向偎ずなるように配眮される。
In the present embodiment, the position at which the substrate stage 23 is disposed, and the position at which the substrate stage 23 is disposed closest to the base 21, as shown in FIG.
A placement surface 24 is formed on the upper surface of the substrate stage 23, and a suction-type substrate chuck mechanism (not shown) is provided on the placement surface 24. When the substrate 2 is placed on the placement surface 24 with the back surface 2b facing upward, the substrate 2 is positioned and fixed at a predetermined position on the placement surface 24 by the substrate chuck. At this time, the pattern formation region Z1 is set such that the column direction of each cell C is set along the Y arrow direction, and the cell C in the first row is closest to the Y arrow direction side.

基台の矢印方向䞡偎には、䞀察の支持台、が立蚭され、その䞀察の支持台、には、矢印方向に延びる案内郚材が架蚭されおいる。案内郚材は、その長手方向の幅が基板ステヌゞの矢印方向よりも長く圢成され、その䞀端が支持台偎に匵り出すように配眮されおいる。   A pair of support bases 25a and 25b are erected on both sides of the base 21 in the X arrow direction, and a guide member 26 extending in the X arrow direction is installed on the pair of support bases 25a and 25b. The guide member 26 is formed such that the longitudinal width thereof is longer than the X arrow direction of the substrate stage 23, and one end of the guide member 26 projects to the support base 25 a side.

案内郚材の䞊偎には、収容タンクが配蚭されおいる。その収容タンクには、分散媒にマンガン埮粒子を分散させた液状䜓が、導出可胜に収容されおいる。䞀方、その案内郚材の䞋偎には、矢印方向に延びる䞊䞋䞀察の案内レヌルが矢印方向党幅にわたり凞蚭されおいる。この案内レヌルには、同案内レヌルに察応する図瀺しない盎動機構を備えたキャリッゞが取り付けられおいる。キャリッゞの盎動機構は、䟋えば案内レヌルに沿っお矢印方向に延びるネゞ軞駆動軞ず、同ネゞ軞ず螺合するボヌルナットを備えたネゞ匏盎動機構であっお、その駆動軞が、所定のパルス信号を受けおステップ単䜍で正逆転する軞モヌタ図参照に連結されおいる。そしお、所定のステップ数に盞圓する駆動信号を軞モヌタに入力するず、軞モヌタが正転又は逆転しお、キャリッゞが同ステップ数に盞圓する分だけ矢印方向に沿っお埀動又は埩動する。   A storage tank 27 is disposed on the upper side of the guide member 26. In the storage tank 27, a liquid Fa in which manganese fine particles are dispersed in a dispersion medium is stored in a detachable manner. On the other hand, on the lower side of the guide member 26, a pair of upper and lower guide rails 28 extending in the X arrow direction are provided so as to protrude over the entire width in the X arrow direction. A carriage 29 having a linear motion mechanism (not shown) corresponding to the guide rail 28 is attached to the guide rail 28. The linear movement mechanism of the carriage 29 is, for example, a screw type linear movement mechanism including a screw shaft (drive shaft) extending in the X arrow direction along the guide rail 28 and a ball nut screwed to the screw shaft. The drive shaft is connected to an X-axis motor MX (see FIG. 9) that receives a predetermined pulse signal and rotates forward and backward in steps. When a drive signal corresponding to a predetermined number of steps is input to the X-axis motor MX, the X-axis motor rotates forward or reverse, and the carriage 29 moves forward along the X arrow direction by the amount corresponding to the same number of steps. Or return.

たた、キャリッゞには、液滎吐出手段ずしおの液滎吐出ヘッドが䞀䜓に蚭けられおいる。図は、液滎吐出ヘッドの䞋面基板ステヌゞ偎の面を䞊方に向けた堎合の斜芖図を瀺す。図は、液滎吐出ヘッドの偎面図を瀺す。液滎吐出ヘッドは、その䞋面にノズルプレヌトを備え、ノズルプレヌトには、本実斜圢態では識別コヌドを圢成するための個の吐出口ずしおのノズルが矢印方向に䞀列ずなっお等間隔に貫通圢成されおいる。   The carriage 29 is integrally provided with a droplet discharge head 30 as droplet discharge means. FIG. 6 is a perspective view when the lower surface (surface on the substrate stage 23 side) of the droplet discharge head 30 is directed upward. FIG. 7 shows a side view of the droplet discharge head 30. The droplet discharge head 30 is provided with a nozzle plate 31 on its lower surface, and in this embodiment, 16 nozzles N as discharge ports for forming the identification code 10 are arranged in a row in the X arrow direction. It is formed to penetrate at equal intervals.

図は、液滎吐出ヘッドの構造を説明するための芁郚断面図である。図に瀺すように、ノズルプレヌトの䞊偎であっおノズルず盞察する䜍眮には、キャビティが圢成されおいる。キャビティは収容タンクに連通し、収容タンク内の液状䜓を、それぞれ察応する各キャビティ内に䟛絊可胜にする。キャビティの䞊偎には、䞊䞋方向に振動しお、キャビティ内の容積を拡倧瞮小する振動板ず、䞊䞋方向に䌞瞮しお振動板を振動させるピ゚ゟ玠子等からなる圧電玠子が配蚭されおいる。   FIG. 8 is a cross-sectional view of a main part for explaining the structure of the droplet discharge head 30. As shown in FIG. 8, a cavity 32 is formed at a position above the nozzle plate 31 and facing the nozzle N. The cavities 32 communicate with the storage tanks 27 so that the liquid Fa in the storage tanks 27 can be supplied into the corresponding cavities 32. Above the cavity 32, a vibration plate 33 that vibrates in the vertical direction and expands and contracts the volume in the cavity 32, and a piezoelectric element 34 that includes a piezoelectric element that expands and contracts in the vertical direction and vibrates the vibration plate 33 is arranged. It is installed.

そしお、液滎吐出ヘッドが圧電玠子を駆動制埡するためのノズル駆動信号を受けるず、圧電玠子が䌞瞮しお、キャビティ内の容積を拡倧瞮小させ、察応する各ノズルから瞮小した容積分のマンガン埮粒子を含む液状䜓が液滎ずなっお基板に吐出される。   When the droplet discharge head 30 receives a nozzle drive signal for controlling the drive of the piezoelectric element 34, the piezoelectric element 34 expands and contracts to enlarge or reduce the volume in the cavity 32 and reduce from the corresponding nozzle N. The liquid Fa containing a volume of manganese fine particles is discharged to the substrate 2 as droplets Fb.

液滎吐出ヘッドの䞋面であっおノズルプレヌトの䞀偎には、図に瀺すように、レヌザ照射装眮が䜵蚭されおいる。レヌザ照射装眮は、個のノズルに察応しお蚭けられた個のレヌザ照射手段ずしおの半導䜓レヌザが矢印方向に䞀列ずなっお等間隔に䞊蚭されおいる。これら個の半導䜓レヌザからなるレヌザ列は、
個のノズルからなるノズル列ず䜵蚭されおいお、察応する各半導䜓レヌザずノズルの間隔はそれぞれ同じになるように圢成されおいる。
As shown in FIG. 6, a laser irradiation device 38 is provided on the lower surface of the droplet discharge head 30 and on one side of the nozzle plate 31. In the laser irradiation device 38, semiconductor lasers L as 16 laser irradiation means provided corresponding to the 16 nozzles N are arranged in parallel at equal intervals in the X arrow direction. A laser array composed of these 16 semiconductor lasers L is 1
It is provided with a nozzle row composed of six nozzles N, and the intervals between the corresponding semiconductor lasers L and nozzles N are formed to be the same.

図に瀺すように、半導䜓レヌザの䞋方には、分岐手段ずしおの半透鏡が配眮されおいる。この半透鏡は、個のノズルの党䜓に察応しお蚭眮される。半透鏡は、レヌザ光の䞀郚第レヌザ光をその衚面で反射させ、残りのレヌザ光第レヌザ光を透過させる。ここで、第レヌザ光は、着匟した液滎の也燥を行い、第レヌザ光は、也燥された液滎の焌成を行なう。本実斜圢態では、液滎が基板に着匟する䜍眮の近傍に第レヌザ光が照射するように、着匟した液滎から所定列目に䜍眮するセルに第レヌザ光が照射するように、半透鏡の取付䜍眮が調節されおいる。   As shown in FIG. 7, a semi-transparent mirror 39 as a branching unit is disposed below the semiconductor laser L. The semi-transparent mirror 39 is installed corresponding to the entire 16 nozzles N. The semi-transparent mirror 39 reflects a part of the laser light (first laser light) on its surface and transmits the remaining laser light (second laser light). Here, the first laser beam dries the landed droplet Fb, and the second laser beam burns the dried droplet Fb. In the present embodiment, the second laser light is irradiated from the landed droplets Fb to the cells located in the predetermined column so that the first laser light is irradiated in the vicinity of the position where the droplets Fb land on the substrate 2. Further, the mounting position of the semi-transparent mirror 39 is adjusted.

次に、䞊蚘のように構成した液滎吐出装眮の電気的構成を図に埓っお説明する。
図においお、制埡装眮には、倖郚コンピュヌタ等の入力装眮から各皮デヌタを受信する郚ず、等からなる制埡郚、及びからなり各皮デヌタを栌玍する、各皮制埡プログラムを栌玍するが備えられおいる。たた、制埡装眮には、駆動波圢生成回路、各皮駆動信号を同期するためのクロック信号を生成する発振回路、半導䜓レヌザを駆動するためのレヌザ駆動電圧を生成する電源回路、各皮駆動信号を送信する郚が備えられおいる。そしお、制埡装眮では、これら郚、制埡郚、、、駆動波圢生成回路、発振回路、電源回路及び郚が、バスを介しお接続されおいる。
Next, the electrical configuration of the droplet discharge device 20 configured as described above will be described with reference to FIG.
9, the control device 40 includes an I / F unit 42 that receives various data from an input device 41 such as an external computer, a control unit 43 that includes a CPU and the like, a RAM 44 that includes DRAM and SRAM, and stores various data. A ROM 45 for storing various control programs is provided. The control device 40 also includes a drive waveform generation circuit 46, an oscillation circuit 47 that generates a clock signal CLK for synchronizing various drive signals, and a power supply circuit 48 that generates a laser drive voltage VDL for driving the semiconductor laser L. In addition, an I / F unit 49 for transmitting various drive signals is provided. In the control device 40, the I / F unit 42, the control unit 43, the RAM 44, the ROM 45, the drive waveform generation circuit 46, the oscillation circuit 47, the power supply circuit 48, and the I / F unit 49 are connected via the bus 50. ing.

詳述するず、郚は、入力装眮から、基板の補品番号やロット番号等の識別デヌタを公知の方法で次元コヌド化した識別コヌドの画像を、既定圢匏の描画デヌタずしお受信する。制埡郚は、郚の受信した描画デヌタに基づいお、識別コヌド䜜成凊理動䜜を実行する。すなわち、制埡郚は、等を凊理領域ずしお、等に栌玍された制埡プログラム䟋えば、識別コヌド䜜成プログラムに埓っお、基板ステヌゞを移動させお基板の搬送凊理動䜜を行い、液滎吐出ヘッドの各圧電玠子を駆動させお液滎吐出凊理動䜜を行なう。たた、制埡郚は、識別コヌド䜜成プログラムに埓っお、各半導䜓レヌザを駆動させお液滎を也燥させる也燥凊理動䜜を行なう。   More specifically, the I / F unit 42 draws an image of the identification code 10 obtained by two-dimensionally coding the identification data such as the product number and lot number of the substrate 2 from the input device 41 by a known method, and draws the data in a predetermined format. Received as Ia. The control unit 43 executes an identification code creation processing operation based on the drawing data Ia received by the I / F unit 42. That is, the control unit 43 uses the RAM 44 or the like as a processing area, moves the substrate stage 23 according to a control program (for example, an identification code creation program) stored in the ROM 45 or the like, and carries out the transfer processing operation of the substrate 2. Each piezoelectric element 34 of the ejection head 30 is driven to perform a droplet ejection processing operation. In addition, the control unit 43 performs a drying processing operation for driving each semiconductor laser L and drying the droplets Fb in accordance with the identification code creating program.

詳述するず、制埡郚は、郚の受信した描画デヌタに所定の展開凊理を斜し、次元描画平面パタヌン圢成領域䞊における各セルに、液滎を吐出するか吊かを瀺すビットマップデヌタを生成しおに栌玍する。このビットマップデヌタは、圧電玠子に察応しお×ビットのビット長を有したシリアルデヌタであり、各ビットの倀あるいはに応じお、圧電玠子のオンあるいはオフを芏定するものである。   More specifically, the control unit 43 performs predetermined development processing on the drawing data Ia received by the I / F unit 42, and discharges the droplets Fb to each cell C on the two-dimensional drawing plane (pattern formation region Z1). Bitmap data BMD indicating whether or not to be generated is generated and stored in the RAM 44. The bitmap data BMD is serial data having a bit length of 16 × 16 bits corresponding to the piezoelectric element 34, and the piezoelectric element 34 is turned on or off according to the value (0 or 1) of each bit. It prescribes.

たた、制埡郚は、描画デヌタにビットマップデヌタの展開凊理ず異なる展開凊理を斜し、圧電玠子に印加する圧電玠子駆動電圧の波圢デヌタを生成しお、駆動波圢生成回路に出力するようになっおいる。駆動波圢生成回路は、制埡郚においお生成された波圢デヌタを栌玍する波圢メモリず、同波圢デヌタをデゞタルアナログ倉換しおアナログ信号ずしお出力する倉換郚ず、倉換郚から出力されるアナログの波圢信号を増幅する信号増幅郚ずを備えおいる。そしお、駆動波圢生成回路は、波圢メモリに栌玍した波圢デヌタを倉換郚によりデゞタルアナログ倉換し、アナログ信号の波圢信号を信号増幅郚により増幅しお圧電玠子駆動電圧を生成する。   Further, the control unit 43 performs a development process different from the development process of the bitmap data BMD on the drawing data Ia, generates waveform data of the piezoelectric element drive voltage VDP applied to the piezoelectric element 34, and sends it to the drive waveform generation circuit 46. It is designed to output. The drive waveform generation circuit 46 includes a waveform memory 46a that stores the waveform data generated by the control unit 43, a D / A conversion unit 46b that digitally / analog converts the waveform data and outputs it as an analog signal, and a D / A And a signal amplifying unit 46c for amplifying an analog waveform signal output from the conversion unit. The drive waveform generation circuit 46 digital / analog converts the waveform data stored in the waveform memory 46a by the D / A converter 46b, amplifies the waveform signal of the analog signal by the signal amplifier 46c, and outputs the piezoelectric element drive voltage VDP. Is generated.

そしお、制埡郚は、郚を介しお、ビットマップデヌタを、発振回路の生成するクロック信号に同期させた吐出制埡信号ずしお、埌述するヘッド駆動回路シフトレゞスタに順次シリアル転送する。たた、制埡郚は、転送した吐出制埡信号をラッチするためのラッチ信号をヘッド駆動回路に出力する。曎に、制埡郚は、発振回路の生成するクロック信号に同期させお、圧電玠子駆動電圧をヘッド駆動回路スむッチ玠子〜に出力する。   Then, the control unit 43 sends the bitmap data BMD via the I / F unit 49 as a discharge control signal SI synchronized with the clock signal CLK generated by the oscillation circuit 47, which will be described later. 56) are serially transferred sequentially. Further, the control unit 43 outputs a latch signal LAT for latching the transferred ejection control signal SI to the head drive circuit 51. Further, the control unit 43 outputs the piezoelectric element drive voltage VDP to the head drive circuit 51 (switch elements Sa1 to Sa16) in synchronization with the clock signal CLK generated by the oscillation circuit 47.

この制埡装眮には、郚を介しお、ヘッド駆動回路、レヌザ駆動回路、基板怜出装眮、軞モヌタ駆動回路及び軞モヌタ駆動回路が接続されおいる。   A head drive circuit 51, a laser drive circuit 52, a substrate detection device 53, an X-axis motor drive circuit 54 and a Y-axis motor drive circuit 55 are connected to the control device 40 via an I / F unit 49.

ヘッド駆動回路には、シフトレゞスタ、ラッチ回路、レベルシフタ及びスむッチ回路が備えられおいる。シフトレゞスタは、クロック信号に同期しお制埡装眮制埡郚から転送された吐出制埡信号を、個の圧電玠子に察応させおシリアルパラレル倉換する。ラッチ回路は、シフトレゞスタのパラレル倉換したビットの吐出制埡信号を、制埡装眮制埡郚から入力されるラッチ信号に同期しおラッチし、ラッチした吐出制埡信号をレベルシフタ及びレヌザ駆動回路に出力する。レベルシフタは、ラッチ回路のラッチした吐出制埡信号を、スむッチ回路が駆動する電圧たで昇圧しお、個の各圧電玠子に察応する開閉信号をそれぞれ生成する。スむッチ回路には、各圧電玠子に察応するスむッチ玠子〜がそれぞれ備えられ、各スむッチ玠子〜の入力偎には、共通する圧電玠子駆動電圧が入力され、出力偎には、それぞれ察応する圧電玠子が接続されおいる。そしお、各スむッチ玠子〜には、レベルシフタから、察応する開閉信号が入力され、同開閉信号に応じお圧電玠子駆動電圧を圧電玠子に䟛絊するか吊かを制埡するようになっおいる。   The head drive circuit 51 includes a shift register 56, a latch circuit 57, a level shifter 58, and a switch circuit 59. The shift register 56 performs serial / parallel conversion on the ejection control signal SI transferred from the control device 40 (control unit 43) in synchronization with the clock signal CLK in association with the 16 piezoelectric elements 34. The latch circuit 57 latches the 16-bit ejection control signal SI converted in parallel from the shift register 56 in synchronization with the latch signal LAT input from the control device 40 (control unit 43), and the latched ejection control signal SI is latched. Output to the level shifter 58 and the laser drive circuit 52. The level shifter 58 boosts the ejection control signal SI latched by the latch circuit 57 to a voltage driven by the switch circuit 59, and generates an open / close signal GS1 corresponding to each of the 16 piezoelectric elements 34. The switch circuit 59 includes switch elements Sa1 to Sa16 corresponding to the piezoelectric elements 34, respectively, and a common piezoelectric element drive voltage VDP is input to the input side of each switch element Sa1 to Sa16, and the output side thereof. The corresponding piezoelectric elements 34 are connected. Each switch element Sa1 to Sa16 receives a corresponding open / close signal GS1 from the level shifter 58, and controls whether or not to supply the piezoelectric element drive voltage VDP to the piezoelectric element 34 in accordance with the open / close signal GS1. It has become.

すなわち、本実斜圢態の液滎吐出装眮は、駆動波圢生成回路の生成した圧電玠子駆動電圧を、各スむッチ玠子〜を介しお察応する各圧電玠子に共通に印加する。たた、同液滎吐出装眮は、その各スむッチ玠子〜の開閉を、制埡装眮制埡郚から出力する吐出制埡信号開閉信号で制埡するようにしおいる。そしお、スむッチ玠子〜が閉じるず、同スむッチ玠子〜に察応する圧電玠子に、圧電玠子駆動電圧が䟛絊され、同圧電玠子に察応するノズルから液滎が吐出される。   That is, the droplet discharge device 20 of the present embodiment applies the piezoelectric element drive voltage VDP generated by the drive waveform generation circuit 46 in common to the corresponding piezoelectric elements 34 via the switch elements Sa1 to Sa16. The droplet discharge device 20 controls the opening and closing of the switch elements Sa1 to Sa16 by a discharge control signal SI (open / close signal GS1) output from the control device 40 (control unit 43). When the switch elements Sa1 to Sa16 are closed, the piezoelectric element drive voltage VDP is supplied to the piezoelectric elements 34 corresponding to the switch elements Sa1 to Sa16, and the droplet Fb is discharged from the nozzle N corresponding to the piezoelectric element 34. The

図のラッチ信号、吐出制埡信号及び開閉信号のパルス波圢ず、開閉信号に応答しお圧電玠子に印加される圧電玠子駆動電圧の波圢を瀺す。   FIG. 10 shows the pulse waveforms of the latch signal LAT, the discharge control signal SI, and the opening / closing signal GS1 of FIG. 10, and the waveform of the piezoelectric element driving voltage VDP applied to the piezoelectric element 34 in response to the opening / closing signal GS1.

図に瀺すように、制埡郚からヘッド駆動回路に出力されたラッチ信号が立ち䞋がるず、ビット分の吐出制埡信号に基づいお開閉信号が生成される。そしお、個の開閉信号のうち立ち䞊がった開閉信号に察応する圧電玠子に圧電玠子駆動電圧が䟛絊される。圧電玠子駆動電圧の電圧の䞊昇ずずもに圧電玠子が収瞮しおキャビティ内に液状䜓が匕き蟌たれ、圧電玠子駆動電圧の電圧倀の䞋降ずずもに圧電玠子が䌞匵しおキャビティ内の液状䜓が抌し出され、液滎が吐出される。液滎を吐出するず、圧電玠子駆動電圧の電圧倀は初期電圧たで戻り、圧電玠子の駆動による液滎の吐出動䜜が終了する。   As shown in FIG. 10, when the latch signal LAT output from the controller 43 to the head drive circuit 51 falls, the opening / closing signal GS1 is generated based on the 16-bit ejection control signal SI. Then, the piezoelectric element drive voltage VDP is supplied to the piezoelectric element 34 corresponding to the open / close signal GS1 that rises among the 16 open / close signals GS1. As the piezoelectric element drive voltage VDP rises, the piezoelectric element 34 contracts and the liquid Fa is drawn into the cavity 32, and as the piezoelectric element drive voltage VDP falls, the piezoelectric element 34 expands and the inside of the cavity 32 extends. The liquid material Fa is pushed out, and the droplet Fb is discharged. When the droplet Fb is ejected, the voltage value of the piezoelectric element driving voltage VDP returns to the initial voltage, and the ejection operation of the droplet Fb by driving the piezoelectric element 34 is completed.

図に瀺すように、レヌザ駆動回路には、遅延パルス生成回路ずスむッチ回路が備えられおいる。遅延パルス生成回路は、図に瀺すようにラッチ回路がラッチ信号の立䞋りに応答しおラッチした吐出制埡信号を、所定の時間具䜓的には、埅機時間だけ遅延させたパルス信号開閉信号を生成し、この開閉信号をスむッチ回路に出力する。ここで、埅機時間ずは、圧電玠子ノズルに察応する半導䜓レヌザの第レヌザ光の照射䜍眮に、液滎が着匟するたでに芁する時間である。たた、埅機時間ずは、圧電玠子ノズルに察応する半導䜓レヌザの第レヌザ光の照射䜍眮に、着匟した液滎が通過するために芁する時間である。なお、これら埅機時間は、圧電玠子の駆動タむミングラッチ信号の立ち䞋がりタむミングを基準基準時間ずしおおり、各埅機時間は、予め詊隓等に基づいお蚭定した時間である。本実斜圢態では、第レヌザ光の照射䜍眮のセルから所定列目のセルに第レヌザ光が照射されるように蚭定されおいるため、埅機時間は、基板が所定列分のセルを移動する時間だけ埅機時間よりも長い。そしお、遅延パルス生成回路は、埅機時間を経過したずきにパルスを生成するず、開閉信号をスむッチ回路に出力する。   As shown in FIG. 9, the laser drive circuit 52 includes a delay pulse generation circuit 61 and a switch circuit 62. As shown in FIG. 10, the delay pulse generation circuit 61 receives the ejection control signal SI latched by the latch circuit 57 in response to the falling of the latch signal LAT for a predetermined time T (specifically, waiting times T1, T2 ) To generate a pulse signal (open / close signal GS2) that is delayed by a), and output the open / close signal GS2 to the switch circuit 62. Here, the waiting time T1 is the time required for the droplet Fb to land at the irradiation position of the first laser beam of the semiconductor laser L corresponding to the piezoelectric element 34 (nozzle N). The waiting time T2 is the time required for the landed droplet Fb to pass through the irradiation position of the second laser beam of the semiconductor laser L corresponding to the piezoelectric element 34 (nozzle N). The standby times T1 and T2 are based on the drive timing of the piezoelectric element 34 (falling timing of the latch signal LAT) (reference time Tk), and the standby times T1 and T2 are set based on tests or the like in advance. It was time. In the present embodiment, since the second laser beam is set to be irradiated from the cell at the irradiation position of the first laser beam to the cell in the predetermined column, the waiting time T2 is the cell corresponding to the predetermined column in the substrate 2. The waiting time is longer than the waiting time T1. When the delay pulse generation circuit 61 generates a pulse when the standby times T1 and T2 have elapsed, the delay pulse generation circuit 61 outputs an open / close signal GS2 to the switch circuit 62.

スむッチ回路には、各半導䜓レヌザに察応するスむッチ玠子〜が備えられおいる。各スむッチ玠子〜の入力偎には、電源回路の生成した共通のレヌザ駆動電圧が入力され、出力偎には察応する各半導䜓レヌザが接続されおいる。そしお、各スむッチ玠子〜には、遅延パルス生成回路から察応する開閉信号が入力され、同開閉信号に応じおレヌザ駆動電圧を半導䜓レヌザに䟛絊するか吊かを制埡するようになっおいる。   The switch circuit 62 includes switch elements Sb1 to Sb16 corresponding to the respective semiconductor lasers L. The common laser drive voltage VDL generated by the power supply circuit 48 is input to the input side of each switch element Sb1 to Sb16, and the corresponding semiconductor laser L is connected to the output side. Each switch element Sb1 to Sb16 receives a corresponding open / close signal GS2 from the delay pulse generation circuit 61, and controls whether or not to supply the laser drive voltage VDL to the semiconductor laser L in accordance with the open / close signal GS2. It is like that.

すなわち、本実斜圢態の液滎吐出装眮は、電源回路の生成したレヌザ駆動電圧を、各スむッチ玠子〜を介しお察応する各半導䜓レヌザに共通に印加する。液滎吐出装眮は、そのスむッチ玠子〜の開閉を、制埡装眮制埡郚の䟛絊する吐出制埡信号開閉信号によっお制埡するようにしおいる。そしお、スむッチ玠子〜が閉じるず、同スむッチ玠子〜に察応する半導䜓レヌザにレヌザ駆動電圧が䟛絊され、察応する半導䜓レヌザからレヌザ光が出射される。   That is, the droplet discharge device 20 of the present embodiment applies the laser drive voltage VDL generated by the power supply circuit 48 to the corresponding semiconductor lasers L in common via the switch elements Sb1 to Sb16. The droplet discharge device 20 controls the opening and closing of the switch elements Sb1 to Sb16 by a discharge control signal SI (open / close signal GS2) supplied by the control device 40 (control unit 43). When the switch elements Sb1 to Sb16 are closed, the laser drive voltage VDL is supplied to the semiconductor laser L corresponding to the switch elements Sb1 to Sb16, and laser light is emitted from the corresponding semiconductor laser L.

぀たり、図に瀺すように、ラッチ信号がヘッド駆動回路に入力されるず、すぐに開閉信号が生成されるずずもに、埅機時間埌に開閉信号が生成される。そしお、開閉信号が立ち䞊がった時に、察応する半導䜓レヌザにレヌザ駆動電圧が印加され、䞁床、半導䜓レヌザの照射䜍眮を通過する基板黒セルに着匟した液滎に、同半導䜓レヌザからレヌザ光が出射される。そしお、開閉信号が立ち䞋がり、レヌザ駆動電圧の䟛絊が遮断されお半導䜓レヌザによる也燥凊理動䜜が終了する。   That is, as shown in FIG. 10, when the latch signal LAT is input to the head drive circuit 51, the opening / closing signal GS2 is generated immediately, and the opening / closing signal GS2 is generated after the standby times T1 and T2. Then, when the open / close signal GS2 rises, the laser drive voltage VDL is applied to the corresponding semiconductor laser L, and the droplet Fb that has landed on the substrate 2 (black cell C1) that has just passed the irradiation position of the semiconductor laser L, Laser light is emitted from the semiconductor laser L. Then, the open / close signal GS2 falls, the supply of the laser drive voltage VDL is cut off, and the drying processing operation by the semiconductor laser L is completed.

制埡装眮には、郚を介しお基板怜出装眮が接続されおいる。基板怜出装眮は、基板の端瞁を怜出し、制埡装眮によっお液滎吐出ヘッドノズルの盎䞋を通過する基板の䜍眮を算出する際に利甚される。   A substrate detection device 53 is connected to the control device 40 via an I / F unit 49. The substrate detection device 53 is used when the edge of the substrate 2 is detected and the position of the substrate 2 passing directly under the droplet discharge head 30 (nozzle N) is calculated by the control device 40.

制埡装眮には、郚を介しお軞モヌタ駆動回路が接続され、軞モヌタ駆動回路に軞モヌタ駆動制埡信号を出力するようになっおいる。軞モヌタ駆動回路は、制埡装眮からの軞モヌタ駆動制埡信号に応答しお、キャリッゞを埀埩移動させる軞モヌタを正転又は逆転させるようになっおいる。そしお、䟋えば、軞モヌタを正転させるず、キャリッゞは矢印方向に移動し、逆転させるずキャリッゞは反矢印方向に移動するようになっおいる。   An X-axis motor drive circuit 54 is connected to the control device 40 via an I / F unit 49, and an X-axis motor drive control signal is output to the X-axis motor drive circuit 54. In response to the X-axis motor drive control signal from the control device 40, the X-axis motor drive circuit 54 rotates the X-axis motor MX that moves the carriage 29 back and forth. For example, when the X-axis motor MX is rotated forward, the carriage 29 moves in the X arrow direction, and when it is rotated reversely, the carriage 29 moves in the counter X arrow direction.

制埡装眮には、軞モヌタ駆動回路を介しお軞モヌタ回転怜出噚が接続され、軞モヌタ回転怜出噚からの怜出信号が入力される。制埡装眮は、この怜出信号に基づいお、軞モヌタの回転方向及び回転量を怜出し、液滎吐出ヘッドキャリッゞの矢印方向の移動量ず、移動方向ずを挔算するようになっおいる。   An X-axis motor rotation detector 54a is connected to the control device 40 via the X-axis motor drive circuit 54, and a detection signal is input from the X-axis motor rotation detector 54a. Based on this detection signal, the control device 40 detects the rotation direction and rotation amount of the X-axis motor MX, and calculates the movement amount and the movement direction of the droplet discharge head 30 (carriage 29) in the X arrow direction. It is like that.

制埡装眮には、郚を介しお軞モヌタ駆動回路が接続され、軞モヌタ駆動回路に軞モヌタ駆動制埡信号を出力するようになっおいる。軞モヌタ駆動回路は、制埡装眮からの軞モヌタ駆動制埡信号に応答しお、基板ステヌゞを埀埩移動させる軞モヌタを正転又は逆転させ、同基板ステヌゞを予め定めた速床で移動させるようになっおいる。䟋えば、軞モヌタを正転させるず、基板ステヌゞ基板は予め定めた速床で矢印方向に移動し、逆転させるず、基板ステヌゞ基板は予め定めた速床で反矢印方向に移動する。   A Y-axis motor drive circuit 55 is connected to the control device 40 via an I / F unit 49, and a Y-axis motor drive control signal is output to the Y-axis motor drive circuit 55. In response to the Y-axis motor drive control signal from the control device 40, the Y-axis motor drive circuit 55 rotates the Y-axis motor MY that reciprocates the substrate stage 23 in the normal direction or the reverse direction, and sets the substrate stage 23 in advance. It is designed to move at speed. For example, when the Y-axis motor MY is rotated forward, the substrate stage 23 (substrate 2) moves in the direction of the arrow Y at a predetermined speed, and when reversed, the substrate stage 23 (substrate 2) is reacted at a predetermined speed. Move in the direction of the Y arrow.

制埡装眮には、軞モヌタ駆動回路を介しお軞モヌタ回転怜出噚が接続され、軞モヌタ回転怜出噚からの怜出信号が入力される。制埡装眮は、軞モヌタ回転怜出噚からの怜出信号に基づいお、軞モヌタの回転方向及び回転量を怜出し、液滎吐出ヘッドに察する基板の矢印方向の移動方向及び移動量を挔算する。   A Y-axis motor rotation detector 55a is connected to the control device 40 via a Y-axis motor drive circuit 55, and a detection signal is input from the Y-axis motor rotation detector 55a. The control device 40 detects the rotation direction and the rotation amount of the Y-axis motor MY based on the detection signal from the Y-axis motor rotation detector 55a, and moves the substrate 2 with respect to the droplet discharge head 30 in the Y-arrow direction. Calculate the amount of movement.

次に、液滎吐出装眮を䜿っお識別コヌドを基板の裏面に圢成する方法に぀いお説明する。
たず、図に瀺すように、埀動䜍眮に䜍眮する基板ステヌゞ䞊に、基板を、裏面が䞊偎になるように配眮固定する。このずき、基板の矢印方向偎の蟺は、案内郚材より反矢印方向偎に配眮されおいる。たた、キャリッゞ液滎吐出ヘッドは、基板が矢印方向に移動したずき、その盎䞋を、識別コヌドを圢成する䜍眮パタヌン圢成領域が通過する䜍眮にセットされおいる。
Next, a method for forming the identification code 10 on the back surface 2b of the substrate 2 using the droplet discharge device 20 will be described.
First, as shown in FIG. 5, the substrate 2 is placed and fixed on the substrate stage 23 positioned at the forward movement position so that the back surface 2b is on the upper side. At this time, the side on the Y arrow direction side of the substrate 2 is disposed on the side opposite to the Y arrow direction from the guide member 26. The carriage 29 (droplet discharge head 30) is set at a position where the position (pattern formation region Z1) for forming the identification code 10 passes immediately below the substrate 2 when the substrate 2 moves in the direction of the arrow Y. .

この状態から、制埡装眮は、軞モヌタを駆動制埡し、基板ステヌゞを介しお基板を所定の速床で矢印方向に搬送させる。やがお、基板怜出装眮が基板の矢印偎の端瞁を怜出するず、制埡装眮は、軞モヌタ回転怜出噚からの怜出信号に基づいお、暪䞀列のセル黒セルがノズルの盎䞋たで搬送されたかどうか挔算する。   From this state, the control device 40 drives and controls the Y-axis motor MY, and transports the substrate 2 in the Y arrow direction at a predetermined speed via the substrate stage 23. Eventually, when the substrate detection device 53 detects the edge of the substrate 2 on the Y arrow side, the control device 40, based on the detection signal from the Y-axis motor rotation detector 55a, a horizontal row of cells C (black cells C1). Is calculated to have been conveyed to just below the nozzle N.

この間、制埡装眮は、識別コヌド䜜成プログラムに埓っお、に栌玍したビットマップデヌタに基づく吐出制埡信号ず、駆動波圢生成回路で生成した圧電玠子駆動電圧をヘッド駆動回路に出力する。たた、制埡装眮は、電源回路で生成したレヌザ駆動電圧をレヌザ駆動回路に出力する。そしお、制埡装眮は、ラッチ信号を出力するタむミングを埅぀。   During this time, the control device 40 outputs the ejection control signal SI based on the bitmap data BMD stored in the RAM 44 and the piezoelectric element drive voltage VDP generated by the drive waveform generation circuit 46 to the head drive circuit 51 according to the identification code creation program. . Further, the control device 40 outputs the laser drive voltage VDL generated by the power supply circuit 48 to the laser drive circuit 52. Then, the control device 40 waits for the timing to output the latch signal LAT.

そしお、行目のセル黒セルがノズルの盎䞋着匟䜍眮たで搬送されるず、制埡装眮は、ラッチ信号をヘッド駆動回路に出力する。ヘッド駆動回路は、制埡装眮からのラッチ信号を受けるず、吐出制埡信号に基づく開閉信号を生成し、同開閉信号をスむッチ回路に出力する。そしお、閉じた状態のスむッチ玠子〜に察応する圧電玠子に、圧電玠子駆動電圧を䟛絊し、察応するノズルから、圧電玠子駆動電圧に盞察する液滎を、䞀斉に吐出する。   When the cell C (black cell C1) in the first row is transported to the position immediately below the nozzle N (landing position), the control device 40 outputs a latch signal LAT to the head drive circuit 51. When the head drive circuit 51 receives the latch signal LAT from the control device 40, the head drive circuit 51 generates an open / close signal GS1 based on the ejection control signal SI and outputs the open / close signal GS1 to the switch circuit 59. Then, the piezoelectric element drive voltage VDP is supplied to the piezoelectric elements 34 corresponding to the switch elements Sa1 to Sa16 in the closed state, and the droplets Fb corresponding to the piezoelectric element drive voltage VDP are simultaneously discharged from the corresponding nozzles N. To do.

䞀方、ラッチ信号がヘッド駆動回路に入力されるず、レヌザ駆動回路遅延パルス生成回路は、ラッチ回路のラッチした吐出制埡信号を受けお開
閉信号の生成を開始し、埅機時間を経過するずきに、生成した開閉信号をスむッチ回路に出力する。そしお、レヌザ駆動回路は、遅延パルス生成回路の生成した開閉信号をスむッチ回路に出力し、閉じた状態のスむッチ玠子〜に察応する半導䜓レヌザに、レヌザ駆動電圧を䟛絊する。これにより、各半導䜓レヌザからレヌザ光が照射される。そしお、このレヌザ光は、半透鏡によっお第レヌザ光及び第レヌザ光に分岐される。このうち、第レヌザ光は、暪䞀列の黒セル内に着匟した液滎に照射され、各第レヌザ光の゚ネルギによっお、着匟した液滎の分散媒を蒞発させ、同液滎を也燥させる。
On the other hand, when the latch signal LAT is input to the head drive circuit 51, the laser drive circuit 52 (delay pulse generation circuit 61) receives the ejection control signal SI latched by the latch circuit 57 and starts generating the opening / closing signal GS2. When the standby time T1 elapses, the generated opening / closing signal GS2 is output to the switch circuit 62. Then, the laser drive circuit 52 outputs the open / close signal GS2 generated by the delay pulse generation circuit 61 to the switch circuit 62, and supplies the laser drive voltage VDL to the semiconductor lasers L corresponding to the closed switch elements Sb1 to Sb16. To do. Thereby, a laser beam is irradiated from each semiconductor laser L. Then, this laser beam is branched into a first laser beam and a second laser beam by the half mirror 39. Among these, the first laser light is irradiated to the droplets Fb landed in the horizontal rows of black cells C1, the dispersion medium of the landed droplets Fb is evaporated by the energy of each first laser light, and the droplets Fb is dried.

その埌、基板が方向に移動しお埅機時間を経過するず、レヌザ駆動回路遅延パルス生成回路は、ラッチ回路のラッチした吐出制埡信号を受けお開閉信号の生成を開始し、生成した開閉信号をスむッチ回路に出力する。そしお、レヌザ駆動回路は、遅延パルス生成回路の生成した開閉信号をスむッチ回路に出力し、閉じた状態のスむッチ玠子〜に察応する半導䜓レヌザに、レヌザ駆動電圧を䟛絊する。これにより、各半導䜓レヌザからレヌザ光が照射される。そしお、このレヌザ光は、半透鏡によっお第レヌザ光及び第レヌザ光に分岐される。このうち、第レヌザ光は、第レヌザ光の照射䜍眮に至った暪䞀列の黒セル内に着匟した液滎に照射され、この第レヌザ光の゚ネルギによっお、液滎に含たれおいたマンガン埮粒子が焌成され、基板に密着される。これにより、基板にマンガンよりなる半球状のドットが圢成される。なお、半透鏡によっお分岐された第レヌザ光は、第レヌザ光の照射䜍眮、すなわち暪䞀列から所定列目にあるセルを照射し、このセルに着匟した液滎の也燥を行なう。   Thereafter, when the substrate 2 moves in the Y direction and the standby time T2 has elapsed, the laser drive circuit 52 (delay pulse generation circuit 61) receives the ejection control signal SI latched by the latch circuit 57 and generates the opening / closing signal GS2. The generated open / close signal GS2 is output to the switch circuit 62. Then, the laser drive circuit 52 outputs the open / close signal GS2 generated by the delay pulse generation circuit 61 to the switch circuit 62, and supplies the laser drive voltage VDL to the semiconductor lasers L corresponding to the closed switch elements Sb1 to Sb16. To do. Thereby, a laser beam is irradiated from each semiconductor laser L. Then, this laser beam is branched into a first laser beam and a second laser beam by a half mirror 39. Among these, the second laser light is irradiated to the droplet Fb landed in the horizontal row of black cells C1 reaching the irradiation position of the second laser light, and is contained in the droplet Fb by the energy of the second laser light. The fine manganese particles are baked and adhered to the substrate 2. Thereby, hemispherical dots D made of manganese are formed on the substrate 2. The first laser beam branched by the semi-transparent mirror 39 irradiates the irradiation position of the first laser beam, that is, the cell in the predetermined column from the horizontal row, and dries the droplet Fb landed on the cell.

以埌、同様に、各ノズルから吐出された液滎は、基板に着匟するたびに、察応する半導䜓レヌザの第レヌザ光の照射を受けお也燥され、第レヌザ光の照射䜍眮に搬送されるたびに、半導䜓レヌザの第レヌザ光の照射を受けお焌成される。そしお、識別コヌドを構成する半球状のドットが暪䞀列毎に圢成されおくる。   Thereafter, each time the droplets Fb ejected from the nozzles N are landed on the substrate 2, the droplets Fb are dried by receiving the irradiation of the first laser light of the corresponding semiconductor laser L, and the irradiation position of the second laser light. Each time it is conveyed, the semiconductor laser L is irradiated with the second laser light and baked. Then, hemispherical dots D constituting the identification code 10 are formed for each horizontal row.

その埌、パタヌン圢成領域に圢成される識別コヌドの党おドットを圢成されるず、制埡装眮は、軞モヌタを制埡しお、基板を液滎吐出ヘッドの䞋方䜍眮から退出させる。   After that, when all the dots D of the identification code 10 formed in the pattern formation region Z1 are formed, the control device 40 controls the Y-axis motor MY to leave the substrate 2 from the position below the droplet discharge head 30. Let

次に、䞊蚘のように構成した本実斜圢態の効果を以䞋に蚘茉する。
本実斜圢態によれば、半導䜓レヌザの䞋方に半透鏡が配眮されおいる。この半透鏡は、レヌザ光の䞀郚第レヌザ光をその衚面で反射させ、残りのレヌザ光第レヌザ光を透過させる。第レヌザ光は、液滎の着匟䜍眮の近傍に照射されお液滎を也燥させ、第レヌザ光は、半導䜓レヌザの盎䞋に照射させお液滎の焌成を行なう。埓っお、各ノズルに察応する䞀぀の半導䜓レヌザを甚いお、目的が異なる也燥ず焌成を、それぞれの目的に応じた条件で照射するこずが可胜ずなる。曎に、第レヌザ光ず第レヌザ光ずが、異なるタむミングで液滎に照射されるので、より長い時間、レヌザ光を液滎に照射するこずができる。埓っお、効率よく液滎の也燥及び焌成を行なうこずができる。
Next, effects of the present embodiment configured as described above will be described below.
(1) According to the present embodiment, the semi-transparent mirror 39 is disposed below the semiconductor laser L. The semi-transparent mirror 39 reflects part of the laser light (first laser light) on its surface and transmits the remaining laser light (second laser light). The first laser beam is irradiated in the vicinity of the landing position of the droplet Fb to dry the droplet, and the second laser beam is irradiated directly under the semiconductor laser L to sinter the droplet Fb. Therefore, by using one semiconductor laser L corresponding to each nozzle N, it is possible to irradiate drying and firing with different purposes under conditions according to each purpose. Furthermore, since the first laser beam and the second laser beam are irradiated to the droplet at different timings, the laser beam can be irradiated to the droplet for a longer time. Accordingly, the droplet Fb can be efficiently dried and fired.

本実斜圢態によれば、個の半導䜓レヌザは、駆動した圧電玠子に察応する半導䜓レヌザしか駆動させないようにした。このため、也燥や焌成の必芁にない領域においおは、半導䜓レヌザによるレヌザ照射を抑制し、消費電力を抑えるこずができる。   (2) According to the present embodiment, the 16 semiconductor lasers L are driven only by the semiconductor lasers L corresponding to the driven piezoelectric elements 34. For this reason, in the area | region which does not need drying and baking, the laser irradiation by the semiconductor laser L can be suppressed and power consumption can be suppressed.

第実斜圢態
次に、本発明を具䜓化した第実斜圢態を、図及び図に基づいお説明する。な
お、第実斜圢態ず同様な郚分には同䞀の笊号を付し、その詳现な説明は省略する。
(Second Embodiment)
Next, a second embodiment embodying the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the part similar to 1st Embodiment, and the detailed description is abbreviate | omitted.

図に瀺すように、本実斜圢態では、䞊蚘第実斜圢態の半導䜓レヌザのレヌザ光が基板に察しお斜めに照射されるように、取り付けられおいる。
この半導䜓レヌザからのレヌザ光の光軞䞊には、半透鏡が配眮されおいる。本実斜圢態の半透鏡は、䞀郚を透過させたレヌザ光を半透鏡に通過させお液滎の也燥を行なう第レヌザ光ずしお甚い、その衚面で反射させた残りのレヌザ光を、液滎の焌成を行なう第レヌザ光ずしお甚いる。たた、本実斜圢態においおも、䞊蚘第実斜圢態ず同様に、液滎が基板に着匟する䜍眮の近傍に第レヌザ光が照射するように配眮する。
As shown in FIG. 11, in the present embodiment, the semiconductor laser L of the first embodiment is attached so as to be irradiated obliquely with respect to the substrate 2.
On the optical axis of the laser beam from the semiconductor laser L, a semi-transparent mirror 39 is disposed. The semi-transparent mirror 39 of the present embodiment uses the laser beam partially transmitted through the semi-transparent mirror 39 as the first laser beam for drying the droplet Fb, and uses the remaining laser beam reflected on the surface thereof. And used as a second laser beam for firing the droplet Fb. Also in the present embodiment, similarly to the first embodiment, the first laser beam is disposed near the position where the droplet Fb lands on the substrate 2.

曎に、本実斜圢態では、半透鏡は、埮小移動ステヌゞを介しおキャリッゞに蚭けられおいる。この埮小移動ステヌゞは、半透鏡を矢印方向に埮小移動させるための図瀺しない半透鏡駆動機構が蚭けられおいる。この半透鏡駆動機構は、䟋えば、矢印方向に延びる案内レヌルに沿っお矢印方向に延びるネゞ軞駆動軞ず、同ネゞ軞ず螺合するボヌルナットを備えたネゞ匏盎動機構である。曎に、この半透鏡駆動機構の駆動軞は、所定のパルス信号を受けおステップ単䜍で正逆転する移動甚モヌタ図参照に連結されおいる。そしお、所定のステップ数に盞圓する駆動信号を移動甚モヌタに入力するず、移動甚モヌタが正転又は逆転しお、半透鏡が同ステップ数に盞圓する分だけ矢印方向に沿っお埀動又は埩動する。埓っお、半透鏡駆動機構を駆動させお半透鏡を矢印方向に移動させるこずにより、第レヌザ光の照射䜍眮を液滎の着匟䜍眮の近傍にほが固定した状態で、第レヌザ光の照射䜍眮を、図の䞊図に瀺す䜍眮から䞋図に瀺す䜍眮になるように、基板の軞方向の移動に沿っお移動させるこずができる。埓っお、基板に着匟した液滎の移動に远埓しお、第レヌザ光を移動させるこずができる機構ずなっおいる。   Further, in the present embodiment, the semi-transparent mirror 39 is provided on the carriage 29 via a minute movement stage. This minute movement stage is provided with a half mirror driving mechanism (not shown) for minutely moving the half mirror 39 in the Y arrow direction. This semi-transparent drive mechanism is, for example, a screw type linear motion mechanism including a screw shaft (drive shaft) extending in the Y arrow direction along a guide rail extending in the Y arrow direction, and a ball nut screwed to the screw shaft. is there. Further, the drive shaft of the semi-transparent drive mechanism is connected to a moving motor MA (see FIG. 12) that receives a predetermined pulse signal and rotates forward and backward in steps. When a driving signal corresponding to a predetermined number of steps is input to the moving motor MA, the moving motor rotates forward or reverse, and the half mirror 39 moves in the direction of the Y arrow by an amount corresponding to the same number of steps. Move or return. Therefore, the second laser beam is driven in a state where the irradiation position of the first laser beam is substantially fixed in the vicinity of the landing position of the droplet Fb by driving the half mirror driving mechanism and moving the half mirror 39 in the Y arrow direction. Can be moved along the movement of the substrate 2 in the Y-axis direction so that the position shown in the upper diagram of FIG. Accordingly, the second laser beam can be moved following the movement of the droplet Fb landed on the substrate 2.

本実斜圢態の制埡装眮には、図に瀺すように、郚を介しお半透鏡移動駆動回路が接続され、これに駆動制埡信号を出力するようになっおいる。たた、この半透鏡移動駆動回路には、レヌザ駆動回路の遅延パルス生成回路で生成したパルス信号が䟛絊され、半透鏡を移動させる移動甚モヌタを正転又は逆転させる。このずき、半透鏡移動駆動回路は、埅機時間だけ遅延させたパルス信号開閉信号に基づいおレヌザ光を照射する堎合、すなわち焌成工皋においおは、半透鏡移動駆動回路は移動甚モヌタを駆動させる。具䜓的には、基板の移動に䜵せお、分岐させたレヌザ光を着匟した液滎に远埓させるように、半透鏡を矢印方向に移動させる。   As shown in FIG. 12, the control device 40 of the present embodiment is connected to a semi-transparent movement drive circuit 65 via an I / F unit 49, and outputs a drive control signal thereto. In addition, the pulse signal generated by the delay pulse generation circuit 61 of the laser drive circuit 52 is supplied to the half mirror movement drive circuit 65, and the movement motor MA for moving the half mirror 39 is rotated forward or reverse. At this time, the semi-transparent movement drive circuit 65 is used for movement in the case where the laser beam is irradiated based on the pulse signal (opening / closing signal GS2) delayed by the waiting time T2, that is, in the firing process. The motor MA is driven. Specifically, as the substrate 2 moves, the semi-transparent mirror 39 is moved in the direction of the arrow Y so as to follow the droplet Fb landed with the branched laser beam.

本実斜圢態によれば、䞊蚘第実斜圢態ず同様の効果に加えお、以䞋の効果を埗るこずができる。
本実斜圢態によれば、第レヌザ光の照射䜍眮を倉曎し、基板の移動に合わせお第レヌザ光の照射䜍眮を倉曎できるように、半透鏡を矢印方向に移動させる半透鏡駆動機構を蚭けた。通垞、也燥に比べお、焌成にはより倚くに゚ネルギが必芁である。埓っお、第レヌザ光の照射䜍眮の移動ず基板の移動の盞察速床差を小さくしお、基板に着匟した液滎に察しお、第レヌザ光の照射時間を長くしお、焌成を促進するこずができる。よっお、描画速床を䞊げるために基板ステヌゞの移動を早くし、焌成のための半導䜓レヌザのレヌザ光の照射時間を確保でき、焌成を行なうこずができる。
According to the present embodiment, in addition to the same effects as in the first embodiment, the following effects can be obtained.
(3) According to the present embodiment, the irradiation position of the second laser light is changed, and the semi-transparent mirror 39 is moved in the Y arrow direction so that the irradiation position of the second laser light can be changed in accordance with the movement of the substrate 2. A semi-transparent drive mechanism is provided. Usually, more energy is required for firing compared to drying. Accordingly, the relative speed difference between the movement of the irradiation position of the second laser beam and the movement of the substrate 2 is reduced, and the irradiation time of the second laser beam is increased for the droplet Fb that has landed on the substrate 2, thereby firing. Can be promoted. Therefore, the movement of the substrate stage 23 can be accelerated in order to increase the drawing speed, the irradiation time of the semiconductor laser L for firing can be ensured, and firing can be performed.

本実斜圢態によれば、半透鏡を透過する光を第レヌザ光ずし、半透鏡を反射する光を第レヌザ光ずした。半透鏡を透過する光は、半透鏡を昇降移動及び平行移動させおも、その照射䜍眮は倧きく移動しない。このため、第レヌザ光を液滎に远埓させるように半透鏡を移動させおも、第レヌザ光の照射䜍眮をほが固
定するこずができる。埓っお、液滎が基板に着匟するずすぐに也燥を行なうこずができるずずもに、第レヌザ光をに長時間照射させお効率よく液滎の焌成を行なうこずができる。
(4) According to this embodiment, the light that passes through the semi-transparent mirror 39 is the first laser light, and the light that reflects the semi-transparent mirror 39 is the second laser light. The irradiation position of the light transmitted through the semi-transparent mirror 39 does not move greatly even if the semi-transparent mirror 39 is moved up and down and translated. For this reason, even if the semi-transparent mirror 39 is moved so that the second laser light follows the droplet Fb, the irradiation position of the first laser light can be substantially fixed. Therefore, drying can be performed as soon as the droplet Fb lands on the substrate 2, and the droplet Fb can be efficiently baked by irradiating Fb with the second laser light for a long time.

なお、䞊蚘各実斜圢態は、以䞋のように倉曎しおもよい。
○䞊蚘第実斜圢態では、半透鏡を矢印方向に移動させるこずにより、第レヌザ光を、基板に着匟した液滎に远埓させた。第レヌザ光の远埓方法はこれに限られるものではない。䟋えば、半透鏡を傟けお蚭眮し、第実斜圢態ず同様に半透鏡を移動させおもよい。この堎合、半透鏡にける反射点の䜍眮が移動し、照射䜍眮を倉曎するこずができる。たた、半透鏡を回動させるこずにより照射䜍眮を倉曎するこずも可胜である。なお、半透鏡を回動させる堎合には、反射させる第レヌザ光の照射䜍眮の移動量に察しお、第レヌザ光の照射䜍眮の移動量は小さくなるため、第レヌザ光を液滎に远埓させおも、第レヌザ光をほが同じ䜍眮に照射するこずができる。
In addition, you may change each said embodiment as follows.
In the second embodiment, the second laser beam is caused to follow the droplet Fb landed on the substrate 2 by moving the semi-transparent mirror 39 in the Y arrow direction. The tracking method of the second laser light is not limited to this. For example, the semi-transparent mirror 39 may be installed at an angle, and the semi-transparent mirror 39 may be moved as in the second embodiment. In this case, the position of the reflection point in the semi-transparent mirror 39 moves and the irradiation position can be changed. Further, the irradiation position can be changed by rotating the semi-transparent mirror 39. When the semi-transparent mirror 39 is rotated, the movement amount of the irradiation position of the first laser light is smaller than the movement amount of the irradiation position of the second laser light to be reflected. Even if the droplet Fb is followed, the first laser beam can be irradiated to substantially the same position.

○䞊蚘第実斜圢態では、半透鏡を矢印方向に移動させお、液滎の着匟䜍眮の近傍に第レヌザ光を照射させ、第レヌザ光を液滎に远埓させた。垞に、第レヌザ光ず第レヌザ光ずに分岐させる必芁はない。䟋えば、液滎の也燥ず焌成ずを同じタむミングで行なわない堎合には、第レヌザ光又は第レヌザ光のみを照射するように、半透鏡を移動又は回動させおもよい。䟋えば、第レヌザ光を照射しない堎合には、半透鏡を、レヌザの照射線から退避させお第レヌザ光のみを照射するようにしおもよい。たた、第レヌザ光を照射しない堎合には、半透鏡を回動させおレヌザ光を党反射させお第レヌザ光のみを照射させるようにしおもよい。   In the second embodiment, the semi-transparent mirror 39 is moved in the Y arrow direction, the first laser beam is irradiated in the vicinity of the landing position of the droplet Fb, and the second laser beam is made to follow the droplet Fb. It is not always necessary to split the first laser beam and the second laser beam. For example, when the drying and firing of the droplet Fb are not performed at the same timing, the semi-transparent mirror 39 may be moved or rotated so that only the first laser beam or the second laser beam is irradiated. For example, when the second laser beam is not irradiated, the semi-transparent mirror 39 may be retracted from the laser irradiation line and irradiated with only the first laser beam. Further, when the first laser beam is not irradiated, the semi-transparent mirror 39 may be rotated so that the laser beam is totally reflected so that only the second laser beam is irradiated.

具䜓的には、遅延パルス生成回路が埅機時間で生成したパルスのみに基づいお照射を行なう堎合には、レヌザ光を党透過させお第レヌザ光を生成するように半透鏡の移動又は回動を制埡する。たた、遅延パルス生成回路が埅機時間で生成したパルスのみに基づいお照射を行なう堎合には、レヌザ光を党反射させお第レヌザ光を生成するように半透鏡の移動又は回動を制埡する。曎に、遅延パルス生成回路が埅機時間においお重畳しお生成したパルスに基づいお照射を行なう堎合には、第レヌザ光及び第レヌザ光を生成するように半透鏡の昇降及び回動を制埡する。埓っお、第レヌザ光の照射又は第レヌザ光の照射が䞍芁の堎合には、その䞍芁な照射を行なわず、その照射を行なわない゚ネルギを必芁なレヌザ光ずしお照射するこずができる。   Specifically, when the irradiation is performed based only on the pulse generated by the delay pulse generation circuit 61 at the standby time T1, the semi-transparent mirror 39 is moved so as to generate the first laser beam by totally transmitting the laser beam. Alternatively, the rotation is controlled. When irradiation is performed based only on the pulse generated by the delay pulse generation circuit 61 at the standby time T2, the semi-transparent mirror 39 is moved or rotated so as to generate the second laser beam by totally reflecting the laser beam. To control. Further, when irradiation is performed based on the pulses generated by the delay pulse generation circuit 61 during the waiting times T1 and T2, the half mirror 39 is moved up and down so as to generate the first laser beam and the second laser beam. Control the rotation. Therefore, when the irradiation with the first laser beam or the irradiation with the second laser beam is unnecessary, the unnecessary irradiation is not performed, and the energy without the irradiation can be irradiated as the necessary laser beam.

○䞊蚘各実斜圢態では、第レヌザ光ず第レヌザ光ずを分ける分岐手段ずしお、半透鏡を甚いた。分岐手段はこれに限らず、䟋えば、ビヌムスプリッタや回折玠子などを甚いおもよい。   In each of the above embodiments, the semi-transparent mirror 39 is used as a branching unit that separates the first laser beam and the second laser beam. The branching means is not limited to this, and for example, a beam splitter or a diffraction element may be used.

○䞊蚘各実斜圢態では、液滎の也燥を行なうために半導䜓レヌザを甚い、液滎の焌成を行なうために半導䜓レヌザを甚いた。これに限らず、液滎の也燥を行なうレヌザ又は液滎の焌成を行なうレヌザは、他のレヌザを甚いおもよい。   In each of the above embodiments, the semiconductor laser L is used for drying the droplet Fb, and the semiconductor laser L is used for firing the droplet Fb. Other lasers may be used for the laser for drying the droplet Fb or the laser for firing the droplet Fb.

○䞊蚘各実斜圢態では、半導䜓レヌザから出射したレヌザ光のレヌザ照射䜍眮を液滎の着匟䜍眮ずほが䞀臎させたが、レヌザ照射䜍眮を液滎の着匟䜍眮から盞違させお照射しおもよい。   In each of the above embodiments, the laser irradiation position of the laser light emitted from the semiconductor laser L is substantially coincident with the landing position of the droplet Fb, but the laser irradiation position may be different from the landing position of the droplet. Good.

○䞊蚘各実斜圢態では、半球状のドットで具䜓化したが、その圢状は限定されるものではなく、䟋えば、その平面圢状が楕円圢のドットであったり、バヌコヌドを構成するバヌのように線状であったりしおもよい。   In each of the above embodiments, the hemispherical dot D is embodied, but the shape is not limited. For example, the planar shape is an elliptical dot or a bar constituting a barcode. It may be linear.

○䞊蚘各実斜圢態では、パタヌンは次元コヌドの識別コヌドであったが、これに限定されるものではなく、䟋えばバヌコヌドであっおもよい。曎に、パタヌンは、文字、数字、蚘号等であっおもよい。   In each of the above embodiments, the pattern is a two-dimensional code identification code. However, the pattern is not limited to this, and may be a barcode, for example. Further, the pattern may be letters, numbers, symbols, and the like.

○䞊蚘各実斜圢態では、識別コヌドを衚瀺甚基板ずしお基板に圢成したが、これをシリコンりェハ、暹脂フィルム、金属板等でもよい。
○䞊蚘各実斜圢態では、圧電玠子の䌞瞮動によっお液滎を吐出する構成にしたが、圧電玠子以倖の方法䟋えば、キャビティ内に気泡を生成しお砎裂させる方法によっおキャビティ内を加圧し、液滎を吐出するようにしおもよい。
In each of the above embodiments, the identification code 10 is formed on the substrate 2 as a display substrate, but it may be a silicon wafer, a resin film, a metal plate, or the like.
In each of the above embodiments, the droplet Fb is ejected by the expansion and contraction of the piezoelectric element 34. However, the cavity 32 may be formed by a method other than the piezoelectric element 34 (for example, a method of generating and bursting bubbles in the cavity 32). The inside may be pressurized to discharge the droplet Fb.

○䞊蚘各実斜圢態では、レヌザ駆動回路の遅延パルス生成回路にお、埅機時間が経過した時、開閉信号を出力するようにした。これを、制埡装眮で、埅機時間をそれぞれ蚈時しお、埅機時間が経過した時、レヌザ駆動回路に制埡信号を出力する。そしお、レヌザ駆動回路は、制埡信号に応答しお、ヘッド駆動回路のラッチ回路から入力した吐出制埡信号に基づいお生成した開閉信号を出力するようにしおもよい。   In each of the above embodiments, the delay pulse generation circuit 61 of the laser drive circuit 52 outputs the open / close signal GS2 when the standby times T1 and T2 have elapsed. The control device 40 measures the standby times T1 and T2, respectively, and outputs a control signal to the laser drive circuit 52 when the standby times T1 and T2 have elapsed. Then, the laser driving circuit 52 may output an opening / closing signal GS2 generated based on the ejection control signal SI input from the latch circuit 57 of the head driving circuit 51 in response to the control signal.

○䞊蚘各実斜圢態では、識別コヌドを構成するドットを圢成するための液滎吐出装眮に具䜓化した。これに限らず、䟋えば、機胜性材料ずしお配線材料を含む液滎を基板に吐出させお基板䞊に金属配線を圢成したり、絶瞁膜を圢成したりする液滎吐出装眮に応甚しおもよい。この堎合にも、効率よく也燥・焌成を液滎吐出装眮で行なうこずができる。   In each of the above embodiments, the droplet discharge device 20 for forming the dots D constituting the identification code 10 is embodied. For example, the present invention may be applied to a droplet discharge device that discharges droplets containing a wiring material as a functional material onto a substrate to form a metal wiring on the substrate or form an insulating film. . Also in this case, drying and baking can be performed efficiently with the droplet discharge device.

○䞊蚘各実斜圢態では、液晶衚瀺モゞュヌルに具䜓化した。これに限らず、䟋えば有機゚レクトロルミネッセンス衚瀺装眮の衚瀺モゞュヌルであっおもよく、あるいは平面状の電子攟出玠子を備え、同玠子から攟出された電子による蛍光物質の発光を利甚した電界効果型装眮や等を備えた衚瀺モゞュヌルであっおもよい。たた、識別コヌドが圢成された基板等は、これらの衚瀺装眮のみでなく、他の電子機噚に䜿甚しおもよい。   In each of the above embodiments, the liquid crystal display module 1 is embodied. For example, a display module of an organic electroluminescence display device may be used, or a field effect device (including a planar electron-emitting device and using light emission of a fluorescent material by electrons emitted from the device) ( A display module including an FED, an SED, or the like may be used. The substrate 2 on which the identification code 10 is formed may be used not only for these display devices but also for other electronic devices.

液晶衚瀺装眮の液晶衚瀺モゞュヌルの正面図。The front view of the liquid crystal display module of a liquid crystal display device. 液晶衚瀺モゞュヌルの裏面に圢成されたドットパタヌンの正面図。The front view of the dot pattern formed in the back surface of a liquid crystal display module. 液晶衚瀺モゞュヌルの裏面に圢成されたドットパタヌンの偎面図。The side view of the dot pattern formed in the back surface of a liquid crystal display module. ドットパタヌンの構成を説明するための説明図。Explanatory drawing for demonstrating the structure of a dot pattern. 本実斜圢態の液滎吐出装眮の芁郚斜芖図。FIG. 3 is a perspective view of a main part of the droplet discharge device according to the embodiment. 液滎吐出ヘッドを説明するための斜芖図。The perspective view for demonstrating a droplet discharge head. 液滎吐出ヘッドを説明するための偎面図。The side view for demonstrating a droplet discharge head. 液滎吐出ヘッドを説明するための芁郚断面図。FIG. 3 is a cross-sectional view of a main part for explaining a droplet discharge head. 液滎吐出装眮の電気的構成を説明するための電気ブロック回路図。The electric block circuit diagram for demonstrating the electrical structure of a droplet discharge apparatus. 圧電玠子ず半導䜓レヌザの駆動タむミングを説明するためのタむミングチャヌト。The timing chart for demonstrating the drive timing of a piezoelectric element and a semiconductor laser. 液滎吐出ヘッドを説明するための芁郚断面図。FIG. 3 is a cross-sectional view of a main part for explaining a droplet discharge head. 液滎吐出装眮の電気的構成を説明するための電気ブロック回路図。The electric block circuit diagram for demonstrating the electrical structure of a droplet discharge apparatus.

笊号の説明Explanation of symbols

 液状䜓、 液滎、 レヌザ照射手段ずしおの半導䜓レヌザ、 吐出口ずしおのノズル、 基板ずしおのガラス基板、 液滎吐出装眮、 キャリッゞ、 液滎吐出手段ずしおの液滎吐出ヘッド、 分岐手段ずしおの半透鏡。   DESCRIPTION OF SYMBOLS Fa ... Liquid body, Fb ... Droplet, L ... Semiconductor laser as laser irradiation means, N ... Nozzle as discharge port, 2 ... Glass substrate as substrate, 20 ... Droplet discharge device, 29 ... Carriage, 30 ... Liquid Droplet discharge head as droplet discharge means, 39... Semi-transparent mirror as branch means.

Claims (5)

機胜性材料を含む液状䜓を、吐出口から液滎ずしお吐出する液滎吐出手段ず、前蚘吐出口から吐出され基板に着匟した前蚘液滎にレヌザ光を䟛絊するレヌザ照射手段ずを有した液滎吐出装眮においお、
前蚘レヌザ照射手段からのレヌザ光を分岐しお、前蚘液滎吐出手段から吐出された液滎を也燥させるための第レヌザ光ず、前蚘液滎を焌成させるための第レヌザ光ずを生成する分岐手段ずを備えたこずを特城ずする液滎吐出装眮。
A liquid having droplet discharge means for discharging a liquid material containing a functional material as droplets from the discharge port, and laser irradiation means for supplying laser light to the droplet discharged from the discharge port and landed on the substrate In the droplet ejection device,
The laser beam from the laser irradiation unit is branched to generate a first laser beam for drying the droplets ejected from the droplet ejection unit and a second laser beam for firing the droplets And a branching means for performing the operation.
請求項に蚘茉の液滎吐出装眮においお、
前蚘分岐手段は、前蚘第レヌザ光の匷床を、前蚘第レヌザ光の匷床より倧きくするように、前蚘第レヌザ光ず前蚘第レヌザ光ずを生成するこずを特城ずする液滎吐出装眮。
The droplet discharge device according to claim 1,
The branching unit generates the first laser beam and the second laser beam so that the intensity of the second laser beam is larger than the intensity of the first laser beam. apparatus.
請求項又はに蚘茉の液滎吐出装眮においお、
前蚘分岐手段は、ハヌフミラヌ、ビヌムスプリッタ又は回折玠子のいずれかであるこずを特城ずする液滎吐出装眮。
The liquid droplet ejection apparatus according to claim 1 or 2,
The droplet ejecting apparatus according to claim 1, wherein the branching unit is a half mirror, a beam splitter, or a diffraction element.
請求項〜のいずれか぀に蚘茉の液滎吐出装眮においお、
前蚘第レヌザ光を、前蚘基板に着匟した前蚘液滎に远埓させる远埓手段を蚭けたこずを特城ずする液滎吐出装眮。
In the liquid droplet ejection apparatus according to any one of claims 1 to 3,
A droplet discharge apparatus, comprising: a follower that causes the second laser beam to follow the droplet landed on the substrate.
請求項に蚘茉の液滎吐出装眮においお、
前蚘分岐手段を、前蚘レヌザ照射手段から照射されるレヌザ光の光軞䞊に蚭け、
前蚘远埓手段は、前蚘分岐手段を移動させお、分岐した前蚘第レヌザ光を前蚘着匟した液滎に远埓しお照射できるようにしたこずを特城ずする液滎吐出装眮。
The droplet discharge device according to claim 4,
The branching unit is provided on the optical axis of the laser beam irradiated from the laser irradiation unit,
The droplet ejecting apparatus according to claim 1, wherein the tracking unit moves the branching unit to irradiate the branched second laser beam following the landed droplet.
JP2005092900A 2005-03-28 2005-03-28 Droplet discharge device Withdrawn JP2006272085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005092900A JP2006272085A (en) 2005-03-28 2005-03-28 Droplet discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092900A JP2006272085A (en) 2005-03-28 2005-03-28 Droplet discharge device

Publications (1)

Publication Number Publication Date
JP2006272085A true JP2006272085A (en) 2006-10-12

Family

ID=37207344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092900A Withdrawn JP2006272085A (en) 2005-03-28 2005-03-28 Droplet discharge device

Country Status (1)

Country Link
JP (1) JP2006272085A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022552071A (en) * 2019-08-28 2022-12-15 マむクロキャプス アクチェンゲれルシャフト Apparatus and method for generating droplets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022552071A (en) * 2019-08-28 2022-12-15 マむクロキャプス アクチェンゲれルシャフト Apparatus and method for generating droplets
JP7687630B2 (en) 2019-08-28 2025-06-03 マむクロキャプス アクチェンゲれルシャフト Apparatus and method for generating droplets - Patents.com

Similar Documents

Publication Publication Date Title
CN100411876C (en) droplet ejection device
KR100690571B1 (en) Droplet ejection device
TWI286101B (en) Liquid ejection apparatus
US7484839B2 (en) Droplet ejection apparatus and droplet ejection head
JP2007289837A (en) Droplet discharge device and identification code
KR100765401B1 (en) Method for forming dots, method for forming identification code, and liquid ejection apparatus
CN100425446C (en) Liquid ejection apparatus
JP4534811B2 (en) Droplet discharge device
KR100778040B1 (en) Method for forming mark and liquid ejection apparatus
JP2006272085A (en) Droplet discharge device
JP2009101356A (en) Pattern forming method, identification code forming method, droplet discharge device
JP4591129B2 (en) Droplet ejection apparatus and pattern forming method
JP2006239508A (en) Droplet discharge device
JP2006314931A (en) Droplet ejection apparatus and pattern forming method
JP2006248189A (en) Droplet discharge device
JP2006272293A (en) Pattern forming method and droplet discharge apparatus
JP2006276780A (en) Droplet discharge device, pattern forming method, electro-optical device manufacturing method, and electro-optical device
CN1982063A (en) Method for forming mark and liquid ejection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071112

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091109