[go: up one dir, main page]

JP2006271041A - Voltage-driven semiconductor device gate drive device - Google Patents

Voltage-driven semiconductor device gate drive device Download PDF

Info

Publication number
JP2006271041A
JP2006271041A JP2005082854A JP2005082854A JP2006271041A JP 2006271041 A JP2006271041 A JP 2006271041A JP 2005082854 A JP2005082854 A JP 2005082854A JP 2005082854 A JP2005082854 A JP 2005082854A JP 2006271041 A JP2006271041 A JP 2006271041A
Authority
JP
Japan
Prior art keywords
circuit
stage
power
isolation transformer
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005082854A
Other languages
Japanese (ja)
Inventor
Kunio Matsubara
邦夫 松原
Kiyoaki Sasagawa
清明 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2005082854A priority Critical patent/JP2006271041A/en
Publication of JP2006271041A publication Critical patent/JP2006271041A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)
  • Electronic Switches (AREA)

Abstract

【課題】絶縁トランスの体積を小さくし、光ファイバケーブル等の伝送回路を省略可能として装置の小型,低コスト化を図る。
【解決手段】直流/交流変換回路13で直流を高周波交流に変換した電力と、インターフェイス回路27からのゲート信号とを変調回路26にて重畳し、絶縁トランス21からn段目の絶縁トランス18を介して駆動回路25〜22へと順次伝送することで、絶縁トランスの耐圧を低くして体積を小さくし、光ファイバケーブル等を省略できるようにする。
【選択図】図1
To reduce the size and cost of an apparatus by reducing the volume of an insulating transformer and omitting a transmission circuit such as an optical fiber cable.
A modulation circuit 26 superimposes power obtained by converting direct current into high frequency alternating current in a direct current / alternating current circuit 13 and a gate signal from an interface circuit 27, and an insulation transformer 18 from the insulation transformer 21 is connected to the nth stage. By sequentially transmitting to the driving circuits 25 to 22 through the insulating transformer, the withstand voltage of the insulating transformer is lowered, the volume is reduced, and the optical fiber cable and the like can be omitted.
[Selection] Figure 1

Description

この発明は、IGBT(絶縁ゲート型バイポーラトランジスタ)のような電圧駆動型半導体素子を、アーム当たり複数個直列に接続した電力変換装置の、特にゲート駆動装置に関する。   The present invention relates to a power conversion device in which a plurality of voltage-driven semiconductor elements such as IGBTs (insulated gate bipolar transistors) are connected in series per arm, and more particularly to a gate drive device.

図5に、各アームにIGBT等の電圧駆動型半導体素子が複数個直列接続された一般的な電力変換装置(インバータ)の回路例を示す。
図5において、28は三相交流入力電源、29は整流回路、30は平滑用コンデンサ、31〜36は複数個直列接続された電圧駆動型半導体素子、37はモータ負荷である。各電圧駆動型半導体素子のゲート駆動回路GDUは、異なる基準電位で動作しているため、ゲート駆動回路GDUごとに絶縁を確保し、各ゲート駆動回路GDUにゲート信号と電力を供給する必要がある。
FIG. 5 shows a circuit example of a general power converter (inverter) in which a plurality of voltage-driven semiconductor elements such as IGBTs are connected in series to each arm.
In FIG. 5, 28 is a three-phase AC input power supply, 29 is a rectifier circuit, 30 is a smoothing capacitor, 31 to 36 are a plurality of voltage-driven semiconductor elements connected in series, and 37 is a motor load. Since the gate drive circuit GDU of each voltage-driven semiconductor element operates at a different reference potential, it is necessary to secure insulation for each gate drive circuit GDU and supply a gate signal and power to each gate drive circuit GDU. .

図6は例えば特許文献1に開示されたゲート駆動装置で、電圧駆動型半導体素子としてIGBTを4直列接続した例を示す。
図6において、1〜4はダイオードを逆並列に接続したIGBT、5〜8は駆動回路、9〜12は絶縁トランス、13はDC/AC(直流/交流)変換回路、14は直流電源である。すなわち、IGBT1〜4には駆動回路5〜8が接続され、ゲート信号を伝送するための光ファイバケーブルが、駆動回路5〜8の信号入力に接続されている。また、直流電源14がDC/AC変換回路13を介して絶縁トランス9〜12の一次側に接続され、絶縁トランス9〜12の二次側は駆動回路5〜8の各電源入力に接続されている。
FIG. 6 shows an example in which four IGBTs are connected in series as a voltage-driven semiconductor element in the gate driving device disclosed in Patent Document 1, for example.
In FIG. 6, 1 to 4 are IGBTs in which diodes are connected in antiparallel, 5 to 8 are drive circuits, 9 to 12 are insulation transformers, 13 is a DC / AC (DC / AC) conversion circuit, and 14 is a DC power supply. . That is, drive circuits 5 to 8 are connected to the IGBTs 1 to 4, and an optical fiber cable for transmitting a gate signal is connected to signal inputs of the drive circuits 5 to 8. A DC power source 14 is connected to the primary side of the insulating transformers 9 to 12 via the DC / AC conversion circuit 13, and the secondary side of the insulating transformers 9 to 12 is connected to each power input of the drive circuits 5 to 8. Yes.

図6の動作について説明する。
図示されない制御装置からのゲート信号(オン信号およびオフ信号)は、光ファイバケーブルによって各駆動回路5〜8にそれぞれ伝送されるため、ゲート信号は絶縁伝送されることになる。直流電源14から電力が供給されると、DC/AC変換回路13によって交流電力に変換され、絶縁トランス9〜12を介して各駆動回路5〜8に電力が供給される。このように、駆動回路ごとに絶縁を確保して電力を供給するようにしている。
特開平10−164843号公報
The operation of FIG. 6 will be described.
Since gate signals (ON signal and OFF signal) from a control device (not shown) are transmitted to the respective drive circuits 5 to 8 by optical fiber cables, the gate signals are transmitted in an insulated manner. When power is supplied from the DC power supply 14, it is converted into AC power by the DC / AC conversion circuit 13, and power is supplied to the drive circuits 5 to 8 through the insulating transformers 9 to 12. In this way, power is supplied while ensuring insulation for each drive circuit.
Japanese Patent Application Laid-Open No. 10-164843

上記のように、駆動回路ごとに絶縁を確保して各ゲート駆動回路に電力を供給することができる。しかし、例えば、絶縁トランス12の一次側の対地電位が0〔V〕、二次側の対地電位も0〔V〕になっていたとすると、IGBT1〜4のそれぞれのコレクタ−エミッタ間電圧をVCE〔V〕としたとき、絶縁トランス9の一次側の対地電位は3VCE〔V〕となる。このことから、絶縁トランス9に必要な絶縁耐圧が高くなるため、絶縁トランスの体積が大きくなる。   As described above, power can be supplied to each gate drive circuit while ensuring insulation for each drive circuit. However, for example, if the ground potential on the primary side of the insulating transformer 12 is 0 [V] and the ground potential on the secondary side is also 0 [V], the collector-emitter voltages of the IGBTs 1 to 4 are set to VCE [ V], the ground potential on the primary side of the insulating transformer 9 is 3 VCE [V]. For this reason, since the withstand voltage required for the insulating transformer 9 is increased, the volume of the insulating transformer is increased.

また、駆動回路ごとにゲート信号を伝送するので、各駆動回路に光信号を電気信号に変換する回路などが必要となって基板面積が大きくなり、さらには光ファイバケーブルが直列数分必要となるためコストアップとなる。以上のように、特に電圧駆動型半導体素子を複数個直列接続した高圧大容量電力変換装置では、装置の大型化,高コスト化するという問題がある。
したがって、この発明の課題は、絶縁トランスに必要な絶縁耐圧を低くして小型,低コスト化を図ることにある。
Further, since the gate signal is transmitted for each driving circuit, a circuit for converting the optical signal into an electric signal is required for each driving circuit, and the board area is increased, and furthermore, the number of optical fiber cables is required in series. Therefore, the cost increases. As described above, particularly in a high-voltage and large-capacity power conversion device in which a plurality of voltage-driven semiconductor elements are connected in series, there is a problem that the device is increased in size and cost.
Accordingly, an object of the present invention is to reduce the insulation withstand voltage required for the insulating transformer to reduce the size and cost.

このような課題を解決するため、請求項1の発明では、各アームにn(2以上の整数)個直列接続される電圧駆動型半導体素子の各々に対し、ゲート信号と電力とを同時に伝送可能な絶縁トランス回路と、この絶縁トランス回路から伝送されるゲート信号と電力とを分離する復調回路と、前記ゲート信号に基いて電圧駆動型半導体素子を駆動する駆動回路とを設けるとともに、1段目の絶縁トランス回路の一次側にゲート信号と電力とを合成する変調回路を接続し、この変調回路の信号入力に制御装置からの信号を受けるインターフェイス回路を接続し、前記変調回路の電源入力に直流/交流変換回路を介して直流電源を接続し、前記1段目の絶縁トランス回路の二次側に2段目の絶縁トランス回路の一次側を接続し、以下同様にしてn段目まで接続することを特徴とする。   In order to solve such a problem, the invention according to claim 1 can simultaneously transmit a gate signal and power to each of the voltage-driven semiconductor elements connected in series to each arm (an integer of 2 or more). An isolation transformer circuit, a demodulation circuit that separates the gate signal and power transmitted from the isolation transformer circuit, and a drive circuit that drives the voltage-driven semiconductor element based on the gate signal. A modulation circuit that combines a gate signal and power is connected to the primary side of the isolation transformer circuit, an interface circuit that receives a signal from the control device is connected to the signal input of the modulation circuit, and a DC is connected to the power input of the modulation circuit A DC power supply is connected via an AC conversion circuit, the primary side of the second-stage isolation transformer circuit is connected to the secondary side of the first-stage isolation transformer circuit, and so on. In wherein the connection.

請求項2の発明では、各アームにn(2以上の整数)個直列接続される電圧駆動型半導体素子の各々に対し、ゲート信号と電力とを同時に伝送可能な絶縁トランス回路と、この絶縁トランス回路から伝送されるゲート信号と電力とを分離する復調回路と、前記ゲート信号に基いて電圧駆動型半導体素子を駆動する駆動回路とを設けるとともに、n段目の絶縁トランス回路の一次側にゲート信号と電力とを合成する変調回路を接続し、この変調回路の信号入力に制御装置からの信号を受けるインターフェイス回路を接続し、前記変調回路の電源入力に直流/交流変換回路を介して直流電源を接続し、前記n段目の絶縁トランス回路の二次側にn−1段目の絶縁トランス回路の一次側を接続し、以下同様にして1段目まで接続することを特徴とする。   According to the second aspect of the present invention, an insulating transformer circuit capable of simultaneously transmitting a gate signal and power to each of n (an integer of 2 or more) voltage-driven semiconductor elements connected in series to each arm, and the insulating transformer A demodulating circuit for separating a gate signal and power transmitted from the circuit, and a driving circuit for driving a voltage-driven semiconductor element based on the gate signal, and a gate on the primary side of the n-th isolation transformer circuit A modulation circuit that synthesizes the signal and power is connected, an interface circuit that receives a signal from the control device is connected to a signal input of the modulation circuit, and a DC power supply is connected to the power supply input of the modulation circuit via a DC / AC conversion circuit And the primary side of the (n-1) th stage isolation transformer circuit is connected to the secondary side of the nth stage isolation transformer circuit, and so on up to the first stage. .

請求項3の発明では、各アームにn(2以上の整数)個直列接続される電圧駆動型半導体素子の各々に対し、ゲート信号と電力とを同時に伝送可能な絶縁トランス回路と、この絶縁トランス回路から伝送されるゲート信号と電力とを分離する復調回路と、前記ゲート信号に基いて電圧駆動型半導体素子を駆動する駆動回路とを設けるとともに、m(2〜n−1のいずれか)段目の絶縁トランス回路の一次側にゲート信号と電力とを合成する変調回路を接続し、この変調回路の信号入力に制御装置からの信号を受けるインターフェイス回路を接続し、前記変調回路の電源入力に直流/交流変換回路を介して直流電源を接続し、前記m段目の絶縁トランス回路の二次側にm+1段目の絶縁トランス回路の一次側を接続し、以下同様にしてn段目まで接続し、かつ、前記m段目の絶縁トランス回路の二次側にm−1段目の絶縁トランス回路の一次側を接続し、以下同様にして1段目まで接続することを特徴とする。
上記請求項1〜3のいずれかの発明においては、前記電圧駆動型半導体素子のそれぞれに、スイッチングタイミングを一致させるタイミング調整回路を付加することができる(請求項4の発明)
According to a third aspect of the present invention, there is provided an insulating transformer circuit capable of simultaneously transmitting a gate signal and power to each of n (an integer of 2 or more) voltage-driven semiconductor elements connected in series to each arm, and the insulating transformer. There are provided a demodulating circuit for separating a gate signal and power transmitted from the circuit, and a driving circuit for driving a voltage-driven semiconductor element based on the gate signal, and m (any one of 2 to n-1) stages A modulation circuit that combines the gate signal and power is connected to the primary side of the isolation transformer circuit of the eye, and an interface circuit that receives a signal from the control device is connected to the signal input of the modulation circuit, and the power input of the modulation circuit Connect a DC power supply via a DC / AC converter circuit, connect the primary side of the m + 1 stage isolation transformer circuit to the secondary side of the mth stage isolation transformer circuit, and so on until the nth stage. Connect, and the m secondary side of the step of the insulating transformer circuit connected to the primary side of the isolation transformer circuit m-1 stage, characterized by connecting to the first stop in the same manner.
In any one of the first to third aspects of the invention, a timing adjustment circuit for matching the switching timing can be added to each of the voltage-driven semiconductor elements (the invention of claim 4).

この発明によれば、電圧駆動型半導体素子n(2以上の整数)個直列接続した電力変換装置のゲート駆動装置において、高周波交流に変換したゲート電力にゲート信号を変調して重畳し、絶縁トランスを介して1段目の駆動回路からn段目の駆動回路、または、n段目の駆動回路から1段目の駆動回路、もしくは、m(2からn−1のいずれか)段目の駆動回路から1段目の駆動回路とn段目の駆動回路まで、順々にゲート信号と電力を同時に絶縁伝送することで、絶縁トランスの体積を小さくし、光ファイバケーブル等の信号伝送回路を省略可能として、特に高圧大容量電力変換装置の小型化,低コスト化を実現することができる。   According to the present invention, in a gate driving device of a power conversion device in which n (an integer greater than or equal to 2) voltage-driven semiconductor elements are connected in series, a gate signal is modulated and superimposed on the gate power converted into high-frequency alternating current, and an insulating transformer Through the first stage drive circuit to the nth stage drive circuit, or from the nth stage drive circuit to the first stage drive circuit, or m (any one of 2 to n-1) stage drive From the circuit to the first stage drive circuit and the nth stage drive circuit, the gate signal and power are simultaneously transmitted in isolation, reducing the volume of the isolation transformer and eliminating the signal transmission circuit such as the optical fiber cable. In particular, it is possible to achieve a reduction in size and cost of a high-voltage, large-capacity power converter.

図1はこの発明の実施の形態を示す回路構成図で、IGBTを4直列接続した例である。
これは、図6に示すものに対し、タイミング調整回路15〜17、復調回路22〜25、変調回路26およびインターフェイス回路27等を付加して構成される。なお、18〜21は絶縁トランスである。タイミング調整回路としては、磁気結合を利用してスイッチングタイミングを調整する方法を利用しているが、このような方法は例えば特開2002−204578号公報により公知である。
FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention, which is an example in which four IGBTs are connected in series.
This is configured by adding timing adjusting circuits 15 to 17, demodulating circuits 22 to 25, a modulating circuit 26, an interface circuit 27, and the like to the circuit shown in FIG. Reference numerals 18 to 21 are insulating transformers. As the timing adjustment circuit, a method of adjusting the switching timing using magnetic coupling is used. Such a method is known, for example, from Japanese Patent Application Laid-Open No. 2002-204578.

すなわち、各IGBT1〜4には、タイミング調整回路15〜17を介して駆動回路5〜8が接続され、駆動回路5〜8の信号入力と電源入力には、ゲート信号と電力とを分離する機能を備えた復調回路22〜25を介して、絶縁トランス18〜21の二次側がそれぞれ接続されている。   That is, the drive circuits 5 to 8 are connected to the IGBTs 1 to 4 via the timing adjustment circuits 15 to 17, respectively, and the gate signal and the power are separated into the signal input and the power input of the drive circuits 5 to 8, respectively. The secondary sides of the insulating transformers 18 to 21 are connected to each other through the demodulation circuits 22 to 25 having the above.

また、1段目の絶縁トランス21の一次側には、変調回路26の出力側が接続され、変調回路26の電源入力にはDC/AC変換回路13と直流電源14が順に接続され、変調回路26の信号入力には図示されない制御装置からの信号を受けるインターフェイス回路27が接続されている。そして、図1に示すように、1段目の絶縁トランス21の二次側には2段目の絶縁トランス20の一次側を接続し、2段目の絶縁トランス20の二次側には3段目の絶縁トランス19の一次側を接続し、3段目の絶縁トランス19の二次側には4段目の絶縁トランス18の一次側を接続する。   The output side of the modulation circuit 26 is connected to the primary side of the first-stage isolation transformer 21, and the DC / AC conversion circuit 13 and the DC power supply 14 are sequentially connected to the power supply input of the modulation circuit 26. An interface circuit 27 for receiving a signal from a control device (not shown) is connected to the signal input. As shown in FIG. 1, the primary side of the second-stage insulating transformer 20 is connected to the secondary side of the first-stage insulating transformer 21, and the secondary side of the second-stage insulating transformer 20 is connected to the secondary side. The primary side of the isolation transformer 19 in the stage is connected, and the primary side of the isolation transformer 18 in the fourth stage is connected to the secondary side of the isolation transformer 19 in the third stage.

図1の動作について、図2を参照して説明する。
図1において、直流電源14から図2(b)のような電力が供給されると、DC/AC変換回路13によって図2(c)のような高周波交流電力に変換され、変調回路26に入力される。また、図示されない制御装置から、図2(a)のようなゲート信号がインターフェイス回路27に入力されると、このインターフェイス回路27を介してゲート信号が変調回路26に入力され、ゲート信号は上記高周波交流電力に重畳されて変調回路26から、図2(d)のような信号として出力される。
The operation of FIG. 1 will be described with reference to FIG.
In FIG. 1, when power as shown in FIG. 2B is supplied from the DC power supply 14, the DC / AC conversion circuit 13 converts the power into high-frequency AC power as shown in FIG. Is done. When a gate signal as shown in FIG. 2A is input to the interface circuit 27 from a control device (not shown), the gate signal is input to the modulation circuit 26 via the interface circuit 27. The signal is superimposed on the AC power and output from the modulation circuit 26 as shown in FIG.

ゲート信号は電力と同時に絶縁トランス21の二次側に絶縁伝送され、復調回路25で図2(e)のような電力と図2(f)のようなゲート信号とに分離され、駆動回路8に伝送される。これと同時に2段目の絶縁トランス20の一次側にも、高周波交流電力に重畳されたゲート信号が伝送され、復調回路24および絶縁トランス20を介して、駆動回路7にゲート信号と電力が同時に絶縁伝送される。このように、1段目の駆動回路8から4段目の駆動回路5まで、順々にゲート信号と電力を同時に絶縁伝送することができる。このことにより、1段目〜4段目の駆動回路に個別にゲート信号を伝送する必要がなくなるため、光ファイバケーブルを省略できるだけでなく基板面積を小さくすることができる。さらに、高周波で伝送することにより、絶縁トランスの小型化も可能となる。   The gate signal is insulated and transmitted to the secondary side of the isolation transformer 21 simultaneously with the power, and is separated into the power as shown in FIG. 2E and the gate signal as shown in FIG. Is transmitted. At the same time, the gate signal superimposed on the high-frequency AC power is transmitted to the primary side of the second-stage isolation transformer 20, and the gate signal and power are simultaneously transmitted to the drive circuit 7 via the demodulation circuit 24 and the isolation transformer 20. Insulated transmission. In this way, the gate signal and the power can be simultaneously insulated and transmitted in sequence from the first stage drive circuit 8 to the fourth stage drive circuit 5. This eliminates the need to individually transmit gate signals to the first to fourth stage drive circuits, so that not only the optical fiber cable can be omitted, but also the substrate area can be reduced. Furthermore, the insulation transformer can be miniaturized by transmitting at a high frequency.

図1で、例えば絶縁トランス21の一次側の対地電位が0〔V〕、二次側の対地電位も0〔V〕になっていたとすると、IGBT1〜4のそれぞれのコレクタ−エミッタ間電圧をVCE〔V〕としたとき、絶縁トランス18の一次側の対地電位は2VCE〔V〕、二次側の対地電位は3VCE〔V〕となり、絶縁トランス18の一次側と二次側間に印加される電位はVCE〔V〕となる。   In FIG. 1, for example, when the ground potential on the primary side of the insulating transformer 21 is 0 [V] and the ground potential on the secondary side is also 0 [V], the respective collector-emitter voltages of the IGBTs 1 to 4 are expressed as VCE. [V], the ground potential on the primary side of the isolation transformer 18 is 2 VCE [V], and the ground potential on the secondary side is 3 VCE [V], which is applied between the primary side and the secondary side of the isolation transformer 18. The potential is VCE [V].

つまり、図6に示すものに対し、絶縁トランスに必要な絶縁耐圧を低くできるため、絶縁トランスをさらに小さくすることができる。
以上より、1段目の駆動回路から4段目の駆動回路まで、絶縁トランスによって順々にゲート信号と電力を同時に絶縁伝送することで、特に高圧大容量電力変換装置が大型化,高コスト化するという問題を解決することができる。
That is, as compared with the one shown in FIG. 6, the insulation withstand voltage required for the insulation transformer can be lowered, so that the insulation transformer can be further reduced.
From the above, the high-voltage, large-capacity power converter is especially large and high-cost by insulating and transmitting the gate signal and power simultaneously from the first-stage drive circuit to the fourth-stage drive circuit by the isolation transformer. Can solve the problem.

図3にこの発明の別の実施の形態を示す。
基本構成は図1と同じであるが、ここではゲート信号と電力が4段目の絶縁トランス18から供給され、この4段目の絶縁トランス18の二次側に3段目の絶縁トランス19の一次側を接続し、3段目の絶縁トランス19の二次側に2段目の絶縁トランス20の一次側を接続し、2段目の絶縁トランス20の二次側に1段目の絶縁トランス21の一次側を接続して構成した点で相違している。
FIG. 3 shows another embodiment of the present invention.
The basic configuration is the same as in FIG. 1, but here the gate signal and power are supplied from the fourth-stage insulating transformer 18, and the third-stage insulating transformer 19 is connected to the secondary side of the fourth-stage insulating transformer 18. The primary side is connected, the primary side of the second-stage insulating transformer 20 is connected to the secondary side of the third-stage insulating transformer 19, and the first-stage insulating transformer is connected to the secondary side of the second-stage insulating transformer 20. 21 is different in that the primary side is connected.

以上のように、図3の回路では4段目の駆動回路5から1段目の駆動回路8まで、順々にゲート信号と電力を同時に絶縁伝送する。その動作は図1と基本的に同じなので、詳細は省略する。
こうして、4段目の駆動回路から1段目の駆動回路まで、図1と同様に、絶縁トランスによって順々にゲート信号と電力を同時に絶縁伝送することで、特に高圧大容量電力変換装置が大型化,高コスト化するという問題を解決することができる。
As described above, in the circuit of FIG. 3, the gate signal and power are simultaneously insulated and transmitted sequentially from the fourth-stage drive circuit 5 to the first-stage drive circuit 8. The operation is basically the same as that in FIG.
In this manner, the gate signal and power are simultaneously insulated and transmitted one after another from the fourth stage drive circuit to the first stage drive circuit in the same manner as in FIG. Can solve the problem of increasing cost and cost.

図4にこの発明のさらに別の実施の形態を示す。
これも基本構成は図1と同じであるが、ここではゲート信号と電力が2段目の絶縁トランス20から供給され、この2段目の絶縁トランス20の二次側に、1段目の絶縁トランス21の一次側と3段目の絶縁トランス19の一次側を接続し、3段目の絶縁トランス19の二次側に4段目の絶縁トランス18の一次側を接続して構成した点で相違している。
このように、図4では2段目の駆動回路7から1段目の駆動回路8と4段目の駆動回路5まで、順々にゲート信号と電力を同時に絶縁伝送するが、その動作は図1と基本的に同様なので、詳細は省略する。
FIG. 4 shows still another embodiment of the present invention.
The basic configuration is the same as in FIG. 1 except that the gate signal and power are supplied from the second-stage isolation transformer 20 and the second-stage isolation transformer 20 has a first-stage isolation. The primary side of the transformer 21 and the primary side of the third-stage insulating transformer 19 are connected, and the primary side of the fourth-stage insulating transformer 18 is connected to the secondary side of the third-stage insulating transformer 19. It is different.
As described above, in FIG. 4, the gate signal and the power are simultaneously insulated and transmitted sequentially from the second-stage drive circuit 7 to the first-stage drive circuit 8 and the fourth-stage drive circuit 5 in sequence. Since it is basically the same as 1, the details are omitted.

こうして、2段目の駆動回路から1段目と4段目の駆動回路まで、図1と同様に、絶縁トランスによって順々にゲート信号と電力を同時に絶縁伝送することで、特に高圧大容量電力変換装置が大型化,高コスト化するという問題を解決することができる。
なお、以上では、最下段の電圧駆動型半導体素子を1段目、最上段の電圧駆動型半導体素子をn段目として説明したが、最上段の電圧駆動型半導体素子を1段目、最下段の電圧駆動型半導体素子をn段目としても、この発明は同様にして適用可能である。
In this way, the gate signal and the power are isolated and transmitted in sequence by the isolation transformer from the second stage drive circuit to the first and fourth stage drive circuits in the same manner as in FIG. It is possible to solve the problem that the conversion device is increased in size and cost.
In the above description, the lowermost voltage-driven semiconductor element is described as the first stage, and the uppermost voltage-driven semiconductor element is described as the nth stage. However, the uppermost voltage-driven semiconductor element is described as the first stage and the lowermost stage. The present invention can also be applied in the same manner even if the voltage-driven semiconductor element is n-th stage.

また、上記ではゲート信号を振幅変調する例について説明したが、周波数変調など他の変調方式を適用することができ、さらにはタイミング調整回路を用いない場合にも、同様にして適用することができる。   Further, the example in which the amplitude of the gate signal is modulated has been described above. However, other modulation schemes such as frequency modulation can be applied, and even when the timing adjustment circuit is not used, the same can be applied. .

この発明の実施の形態を示す回路構成図Circuit configuration diagram showing an embodiment of the present invention 図1の動作を説明するための各部波形図Waveform diagram of each part for explaining the operation of FIG. この発明の他の実施の形態を示す回路構成図Circuit configuration diagram showing another embodiment of the present invention この発明のさらに他の実施の形態を示す回路構成図The circuit block diagram which shows other embodiment of this invention 電力変換装置の一般的な例を示す回路図Circuit diagram showing a general example of a power converter ゲート駆動装置の従来例を示す回路構成図Circuit configuration diagram showing a conventional example of a gate driving device

符号の説明Explanation of symbols

1〜4(Q1〜Q4)…IGBT(絶縁ゲートバイポーラトランジスタ)、5〜8…ゲート駆動回路、13…DC/AC(直流/交流)変換回路、14…直流電源、16〜17…タイミング調整回路、18〜21…絶縁トランス、22〜25…復調回路、26…変調回路、27…インターフェイス回路。

DESCRIPTION OF SYMBOLS 1-4 (Q1-Q4) ... IGBT (insulated gate bipolar transistor), 5-8 ... Gate drive circuit, 13 ... DC / AC (direct current / alternating current) conversion circuit, 14 ... DC power supply, 16-17 ... Timing adjustment circuit , 18 to 21 ... insulating transformers, 22 to 25 ... demodulation circuits, 26 ... modulation circuits, 27 ... interface circuits.

Claims (4)

各アームにn(2以上の整数)個直列接続される電圧駆動型半導体素子の各々に対し、ゲート信号と電力とを同時に伝送可能な絶縁トランス回路と、この絶縁トランス回路から伝送されるゲート信号と電力とを分離する復調回路と、前記ゲート信号に基いて電圧駆動型半導体素子を駆動する駆動回路とを設けるとともに、1段目の絶縁トランス回路の一次側にゲート信号と電力とを合成する変調回路を接続し、この変調回路の信号入力に制御装置からの信号を受けるインターフェイス回路を接続し、前記変調回路の電源入力に直流/交流変換回路を介して直流電源を接続し、前記1段目の絶縁トランス回路の二次側に2段目の絶縁トランス回路の一次側を接続し、以下同様にしてn段目まで接続することを特徴とする電圧駆動型半導体素子のゲート駆動装置。   An isolation transformer circuit capable of transmitting a gate signal and power simultaneously to each of n (an integer of 2 or more) voltage-driven semiconductor elements connected in series to each arm, and a gate signal transmitted from the isolation transformer circuit And a demodulating circuit for separating the power and a driving circuit for driving the voltage-driven semiconductor element based on the gate signal, and the gate signal and the power are synthesized on the primary side of the first-stage insulating transformer circuit A modulation circuit is connected, an interface circuit that receives a signal from the control device is connected to a signal input of the modulation circuit, a DC power supply is connected to a power supply input of the modulation circuit via a DC / AC conversion circuit, and the one stage A voltage-driven semiconductor device comprising: a secondary side of a second isolation transformer circuit connected to a secondary side of the second isolation transformer circuit; Over door drive. 各アームにn(2以上の整数)個直列接続される電圧駆動型半導体素子の各々に対し、ゲート信号と電力とを同時に伝送可能な絶縁トランス回路と、この絶縁トランス回路から伝送されるゲート信号と電力とを分離する復調回路と、前記ゲート信号に基いて電圧駆動型半導体素子を駆動する駆動回路とを設けるとともに、n段目の絶縁トランス回路の一次側にゲート信号と電力とを合成する変調回路を接続し、この変調回路の信号入力に制御装置からの信号を受けるインターフェイス回路を接続し、前記変調回路の電源入力に直流/交流変換回路を介して直流電源を接続し、前記n段目の絶縁トランス回路の二次側にn−1段目の絶縁トランス回路の一次側を接続し、以下同様にして1段目まで接続することを特徴とする電圧駆動型半導体素子のゲート駆動装置。   An isolation transformer circuit capable of transmitting a gate signal and power simultaneously to each of n (an integer of 2 or more) voltage-driven semiconductor elements connected in series to each arm, and a gate signal transmitted from the isolation transformer circuit And a demodulating circuit for separating power and power and a driving circuit for driving a voltage-driven semiconductor element based on the gate signal, and the gate signal and power are synthesized on the primary side of the n-th isolation transformer circuit A modulation circuit is connected, an interface circuit that receives a signal from the control device is connected to a signal input of the modulation circuit, a DC power supply is connected to a power supply input of the modulation circuit via a DC / AC conversion circuit, and the n stages A voltage-driven semiconductor device comprising: a primary side of an n-1 stage isolation transformer circuit is connected to a secondary side of an eye isolation transformer circuit; Gate drive of. 各アームにn(2以上の整数)個直列接続される電圧駆動型半導体素子の各々に対し、ゲート信号と電力とを同時に伝送可能な絶縁トランス回路と、この絶縁トランス回路から伝送されるゲート信号と電力とを分離する復調回路と、前記ゲート信号に基いて電圧駆動型半導体素子を駆動する駆動回路とを設けるとともに、m(2〜n−1のいずれか)段目の絶縁トランス回路の一次側にゲート信号と電力とを合成する変調回路を接続し、この変調回路の信号入力に制御装置からの信号を受けるインターフェイス回路を接続し、前記変調回路の電源入力に直流/交流変換回路を介して直流電源を接続し、前記m段目の絶縁トランス回路の二次側にm+1段目の絶縁トランス回路の一次側を接続し、以下同様にしてn段目まで接続し、かつ、前記m段目の絶縁トランス回路の二次側にm−1段目の絶縁トランス回路の一次側を接続し、以下同様にして1段目まで接続することを特徴とする電圧駆動型半導体素子のゲート駆動装置。   An isolation transformer circuit capable of transmitting a gate signal and power simultaneously to each of n (an integer of 2 or more) voltage-driven semiconductor elements connected in series to each arm, and a gate signal transmitted from the isolation transformer circuit And a demodulating circuit for separating power and a driving circuit for driving a voltage-driven semiconductor element based on the gate signal, and a primary of an insulating transformer circuit in the m (any one of 2 to n-1) stage A modulation circuit that combines a gate signal and power is connected to the side, an interface circuit that receives a signal from the control device is connected to a signal input of the modulation circuit, and a DC / AC conversion circuit is connected to the power supply input of the modulation circuit A DC power supply, connect the primary side of the m + 1 stage isolation transformer circuit to the secondary side of the mth stage isolation transformer circuit, connect to the nth stage in the same manner, and A gate drive of a voltage-driven semiconductor device, characterized in that the primary side of the m-1 stage isolation transformer circuit is connected to the secondary side of the isolation transformer circuit of the stage, and so on up to the first stage. apparatus. 前記電圧駆動型半導体素子のそれぞれに、スイッチングタイミングを一致させるタイミング調整回路を付加することを特徴とする請求項1〜3のいずれかに記載の電圧駆動型半導体素子のゲート駆動装置。

4. The gate drive device for a voltage driven semiconductor element according to claim 1, wherein a timing adjustment circuit for matching a switching timing is added to each of the voltage driven semiconductor elements.

JP2005082854A 2005-03-23 2005-03-23 Voltage-driven semiconductor device gate drive device Pending JP2006271041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005082854A JP2006271041A (en) 2005-03-23 2005-03-23 Voltage-driven semiconductor device gate drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005082854A JP2006271041A (en) 2005-03-23 2005-03-23 Voltage-driven semiconductor device gate drive device

Publications (1)

Publication Number Publication Date
JP2006271041A true JP2006271041A (en) 2006-10-05

Family

ID=37206413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005082854A Pending JP2006271041A (en) 2005-03-23 2005-03-23 Voltage-driven semiconductor device gate drive device

Country Status (1)

Country Link
JP (1) JP2006271041A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280100A (en) * 2005-03-29 2006-10-12 Toyota Industries Corp Circuit and method for driving electrically insulated switching element
JP2010268680A (en) * 2010-07-08 2010-11-25 Hitachi Ltd Power converter
JP2012120304A (en) * 2010-11-30 2012-06-21 Fuji Electric Co Ltd Power supply device for gate driving and inverter control circuit
JP2012165341A (en) * 2011-02-09 2012-08-30 Toshiba Corp Switching device driving circuit
JP2014033552A (en) * 2012-08-03 2014-02-20 Mitsubishi Electric Corp Power circuit and power conditioner
JP2014176123A (en) * 2013-03-06 2014-09-22 Denso Corp Switching element drive device
CN104184311A (en) * 2013-05-21 2014-12-03 富士电机株式会社 Power supply circuit for gate driving circuit of a power converter
WO2015015709A1 (en) * 2013-07-30 2015-02-05 パナソニックIpマネジメント株式会社 High-frequency reception circuit and insulated signal-transmission device
CN104518650B (en) * 2014-12-18 2016-12-07 杭州华为数字技术有限公司 For driving the drive circuit of switching device, control circuit and device
JP2017046531A (en) * 2015-08-28 2017-03-02 パナソニックIpマネジメント株式会社 Power converter
CN112514221A (en) * 2019-03-06 2021-03-16 东芝三菱电机产业系统株式会社 Control device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162778A (en) * 1982-03-19 1983-09-27 Mitsubishi Heavy Ind Ltd Underwater pump
JPS62189813A (en) * 1986-02-17 1987-08-19 Mitsubishi Electric Corp Drive unit for three-terminal variable control electric valve
JPH0434701A (en) * 1990-05-30 1992-02-05 Victor Co Of Japan Ltd Magnetic recording and reproducing device
JPH08172772A (en) * 1994-12-19 1996-07-02 Fanuc Ltd Transistor driving floating power supply
JPH10164843A (en) * 1996-12-02 1998-06-19 Toshiba Corp Power conversion apparatus
JPH11206106A (en) * 1998-01-06 1999-07-30 Toshiba Corp Power converter
JP2002204578A (en) * 2001-01-09 2002-07-19 Fuji Electric Co Ltd Control device for voltage-driven semiconductor device connected in series
JP2003244935A (en) * 2002-02-15 2003-08-29 Denso Corp Electrically insulating switching element drive circuit
JP2003299344A (en) * 2002-04-04 2003-10-17 Yaskawa Electric Corp Gate drive circuit
JP2004274262A (en) * 2003-03-06 2004-09-30 Denso Corp Electrically insulated switch element driving circuit
JP2005012950A (en) * 2003-06-20 2005-01-13 Toshiba Mitsubishi-Electric Industrial System Corp Semiconductor ac switch

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162778A (en) * 1982-03-19 1983-09-27 Mitsubishi Heavy Ind Ltd Underwater pump
JPS62189813A (en) * 1986-02-17 1987-08-19 Mitsubishi Electric Corp Drive unit for three-terminal variable control electric valve
JPH0434701A (en) * 1990-05-30 1992-02-05 Victor Co Of Japan Ltd Magnetic recording and reproducing device
JPH08172772A (en) * 1994-12-19 1996-07-02 Fanuc Ltd Transistor driving floating power supply
JPH10164843A (en) * 1996-12-02 1998-06-19 Toshiba Corp Power conversion apparatus
JPH11206106A (en) * 1998-01-06 1999-07-30 Toshiba Corp Power converter
JP2002204578A (en) * 2001-01-09 2002-07-19 Fuji Electric Co Ltd Control device for voltage-driven semiconductor device connected in series
JP2003244935A (en) * 2002-02-15 2003-08-29 Denso Corp Electrically insulating switching element drive circuit
JP2003299344A (en) * 2002-04-04 2003-10-17 Yaskawa Electric Corp Gate drive circuit
JP2004274262A (en) * 2003-03-06 2004-09-30 Denso Corp Electrically insulated switch element driving circuit
JP2005012950A (en) * 2003-06-20 2005-01-13 Toshiba Mitsubishi-Electric Industrial System Corp Semiconductor ac switch

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280100A (en) * 2005-03-29 2006-10-12 Toyota Industries Corp Circuit and method for driving electrically insulated switching element
JP2010268680A (en) * 2010-07-08 2010-11-25 Hitachi Ltd Power converter
JP2012120304A (en) * 2010-11-30 2012-06-21 Fuji Electric Co Ltd Power supply device for gate driving and inverter control circuit
JP2012165341A (en) * 2011-02-09 2012-08-30 Toshiba Corp Switching device driving circuit
JP2014033552A (en) * 2012-08-03 2014-02-20 Mitsubishi Electric Corp Power circuit and power conditioner
JP2014176123A (en) * 2013-03-06 2014-09-22 Denso Corp Switching element drive device
CN104184311A (en) * 2013-05-21 2014-12-03 富士电机株式会社 Power supply circuit for gate driving circuit of a power converter
CN104184311B (en) * 2013-05-21 2018-12-07 富士电机株式会社 Supply the power supply circuit of the gate drive power of power conversion device
WO2015015709A1 (en) * 2013-07-30 2015-02-05 パナソニックIpマネジメント株式会社 High-frequency reception circuit and insulated signal-transmission device
CN104518650B (en) * 2014-12-18 2016-12-07 杭州华为数字技术有限公司 For driving the drive circuit of switching device, control circuit and device
JP2017046531A (en) * 2015-08-28 2017-03-02 パナソニックIpマネジメント株式会社 Power converter
WO2017038022A1 (en) * 2015-08-28 2017-03-09 パナソニックIpマネジメント株式会社 Power conversion device
CN112514221A (en) * 2019-03-06 2021-03-16 东芝三菱电机产业系统株式会社 Control device

Similar Documents

Publication Publication Date Title
JP4696554B2 (en) Signal transmission method to gate drive circuit
JP4258739B2 (en) Method of converting electrical AC voltage of DC voltage source, especially photovoltaic DC voltage source into AC voltage
US10135360B2 (en) Power converter
US10284092B1 (en) Power electronic building block using series-stacked gallium-nitride HEMTs
JP2006271041A (en) Voltage-driven semiconductor device gate drive device
US20210257927A1 (en) Inverter system
JP2006223009A (en) 5-level inverter and driving method thereof
US9143078B2 (en) Power inverter including SiC JFETs
US11070163B2 (en) Driving power supply device
JP2010148348A (en) System and method of providing power converter
JP2014135838A (en) Driving signal insulation circuit of electric power conversion system and electric power conversion system using the same
WO1997022174A1 (en) A converter device
JP4661139B2 (en) Power supply system to gate drive device
JP2012095409A (en) Inverter driver
JP2014033614A (en) Power conversion apparatus
US20240266969A1 (en) Power Conversion Device
US20230049948A1 (en) Bi-Directional Medium Voltage Converter
JP7254198B2 (en) Polyphase motor drive
JPH11113257A (en) Series type power system compensator using AC bidirectional switch type circuit
JP2021097495A (en) Electronic circuit
US20250211089A1 (en) Inverter circuit without high-side power switches
US12202358B2 (en) Power supply system and moving body
US20250007423A1 (en) Power converter, electrical machine unit and method for current conversion
JP2007267486A (en) Converter
WO2022215168A1 (en) Power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405