[go: up one dir, main page]

JP2006268499A - 走行機および自走式掃除機。 - Google Patents

走行機および自走式掃除機。 Download PDF

Info

Publication number
JP2006268499A
JP2006268499A JP2005086330A JP2005086330A JP2006268499A JP 2006268499 A JP2006268499 A JP 2006268499A JP 2005086330 A JP2005086330 A JP 2005086330A JP 2005086330 A JP2005086330 A JP 2005086330A JP 2006268499 A JP2006268499 A JP 2006268499A
Authority
JP
Japan
Prior art keywords
main body
wall
sensor
traveling
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005086330A
Other languages
English (en)
Inventor
Hiroyuki Takenaka
博幸 竹中
Takao Tani
太加雄 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Funai Electric Co Ltd
Original Assignee
Funai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Funai Electric Co Ltd filed Critical Funai Electric Co Ltd
Priority to JP2005086330A priority Critical patent/JP2006268499A/ja
Priority to US11/386,411 priority patent/US20060217854A1/en
Publication of JP2006268499A publication Critical patent/JP2006268499A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Electric Suction Cleaners (AREA)
  • Electric Vacuum Cleaner (AREA)

Abstract

【課題】 簡易な方法で側方の壁からの角度ずれを検知することができるとともに、その角度ずれを補正することが可能な走行機の提供を課題とする。
【解決手段】 側方の壁Wと一定間隔(a)をあけつつ平行に走行する壁際走行を行う場合に、所定距離(L)だけ走行したときの本体BDの壁Wからのずれ幅を(H)としたときに、tanθ=H/Lの式を用いて、壁Wからの角度ずれ(θ)を算出し、この角度ずれ(θ)に基づいて本体BDの向いている方向を、ジャイロセンサ37を用いて補正するように構成されている。
【選択図】 図7

Description

本発明は、操舵および駆動を実現する駆動機構を具備する走行機に関し、特に、掃除機構を具備し、予め設定されたル−トに沿って自動走行を行いつつ清掃を行う自走式掃除機に関するものである。
従来、操舵とよび駆動を実現する駆動機構と掃除機構とを具備する自走式掃除機において、予め設定されたル−トに沿って自動走行を行いいつつ清掃を行うに際して、本体の側方に設置されたフォトリフレクタ等からなる横壁センサを用い、本体の側方から一定距離離間させつつ、側方の壁と平行に走行するように走行方向を制御する自走式掃除機が知られている(例えば、特許文献1、2参照)。
特開平07−295636号公報 特開平11−025398号公報
しかしながら、上記横壁センサとして、赤外線を壁に反射させて同壁との距離を計測するフォトリフレクタを用いる場合において、壁の材質や色によって、同センサの出力値に誤差が発生してしまうため、側方の壁との距離を正確に測定することができず、結果、同壁との平行走行を達成することができないという問題がある。
本発明は、上記課題にかんがみてなされたものであり、簡易な方法で側方の壁からの角度ずれを検知することができるとともに、その角度ずれを補正することが可能な走行機を提供することを目的とする。
上記目的を達成するため、請求項2にかかる発明は、操舵および駆動を実現する駆動機構と、本体の向いている方向角を検出するジャイロセンサとを、走行距離を計測する走行距離計測手段と、側方の障害物を検知する横壁センサとを具備し、
上記横壁センサを用いて側方の壁と一定間隔をあけつつ平行に走行する壁際走行を行うことが可能な走行機において、
所定距離(L)だけ走行したときの本体の上記側方の壁からのずれ幅を(H)としたときに、下記(1)式を用いて上記側方の壁からの角度ずれ(θ)を算出する算出手段と、
上記算出手段により算出された角度ずれ(θ)に基づいて、本体の向いている方向を補正する角度補正手段を具備する構成としてある。
tanθ=H/L…(1)
上記のように構成した請求項2にかかる発明において、走行機は、操舵および駆動を実現する駆動機構と、本体の向いている方向角を検出するジャイロセンサと、走行距離を計測する走行距離計測手段と、側方の障害物を検知する横壁センサとを具備しており、上記横壁センサを用いて側方の壁と一定間隔をあけつつ同側方の壁と平行に走行する壁際走行を行うことが可能なように構成されている。上記壁際走行を行う際には、横壁センサのセンサ出力を見ながら、そのセンサ出力値が所定の値を維持するように本体の向いている方向を制御しつつ走行するのである。
そして、走行機は、上記壁際走行中に、所定距離(L)だけ走行したときの本体の上記側方の壁からのずれ幅を(H)としたときに、tanθ=H/Lという式を用いて上記側方の壁からの角度ずれ(θ)を算出する算出手段と、上記算出手段により算出された角度ずれ(θ)に基づいて、本体の向いている方向を補正する角度補正手段とを具備している。すなわち、壁際に沿って所定距離(L)だけ走行したときに、側方の壁からずれた幅を(H)とし、このLとHとを用いて、本体が向いている方向のずれ(側方の壁に対して平行であるときの本体の向きに対するずれ)を示す角度ずれ(θ)を算出し、この角度ずれ(θ)に基づいて、本体の向いている方向角を補正するのである。このようにすることにより、簡易な方法で側方の壁からの角度ずれを検知することができるとともに、その角度ずれを補正し、本体の壁際走行を正確に行わせることが可能となる。また、横壁センサおよび走行距離計測手段以外に特別なセンサを必要とせず、製造コストの高騰を抑制することができる。
ところで、上記(1)式を用いて角度ずれ(θ)を算出するにあたり、上記所定距離(L)に対して上記ずれ幅(H)が非常に小さく、角度ずれ(θ)が0に近い値となる場合には、近似的にθ=H/Lとすることができる。従って、本発明においては、上記(1)式に代えてθ=H/Lの式を用いるようにしてもよい。
すなわち、請求項3にかかる発明のように、操舵および駆動を実現する駆動機構と、本体の向いている方向角を検出するジャイロセンサと、走行距離を計測する走行距離計測手段と、側方の障害物を検知する横壁センサとを具備し、
上記横壁センサを用いて側方の壁と一定間隔をあけつつ平行に走行する壁際走行を行うことが可能な走行機において、
所定距離(L)だけ走行したときの本体の上記側方の壁からのずれ幅を(H)としたときに、下記(2)式を用いて上記側方の壁からの角度ずれ(θ)を算出する算出手段と、
上記算出手段により算出された角度ずれ(θ)に基づいて、本体の向いている方向を補正する角度補正手段と
を具備する構成としてもよい。
θ=H/L…(2)
また、請求項4にかかる発明は、上記ずれ幅は(H)は、上記横壁センサのセンサ出力値から算出する構成としてある。
上記のように構成した請求項4にかかる発明において、例えば、所定距離(L)計測開始時の横壁センサの出力値と、計測終了時の横壁センサのセンサ出力値の差とから、ずれ幅(H)を算出することが可能となる。
また、請求項5にかかる発明は、上記走行距離計測手段が、車輪の回転数により走行距離を計測するロ−タリ−エンコ−ダである構成としてある。
上記のように構成した請求項5にかかる発明において、車輪の回転数から本体の走行距離を計測することが可能となる。
また、請求項6にかかる発明は、掃除機構を具備する自走式掃除機である構成としてある。
上記のように構成した請求項6にかかる発明において、自動走行を行いつつ清掃動作を行うことが可能となる。
以上説明したように請求項2にかかる発明によれば、簡易な方法で側方の壁からの角度ずれを検知することができるとともに、その角度ずれを補正する本体の壁際走行を正確に行わせることが可能となる。
また、請求項3にかかる発明によれば、簡易な方法で側方の壁からの角度ずれを検知することができるとともに、その角度ずれを補正する本体の壁際走行を正確に行わせることが可能となる。
さらに、請求項4にかかる発明によれば、所定距離(L)計測開始時の横壁センサの出力値と、計測終了時の横壁センサのセンサ出力値の差とから、ずれ幅(H)を算出することが可能となる。
さらに、請求項5にかかる発明によれば、車輪の回転数から本体の走行距離を計測することが可能となる。
さらに、請求項6にかかる発明によれば、自動走行を行いつつ清掃動作を行うことが可能となる。
以下、下記の順序に従って本発明の実施形態を説明する。
(1)自走式掃除機の外観:
(2)自走式掃除機の内部構成:
(3)自走式掃除機の動作:
(4)各種変形例:
(5)まとめ:
(1)自走式掃除機の外観:
図1は、本発明にかかる自走式掃除機の外観斜視図であり、図2は、図1に示した自走式掃除機の裏面図である。なお、図1において、白抜きの矢印により示した方向が自走式掃除機の前進時の進行方向である。図1に示すように、本発明にかかる自走式掃除機10は、略円柱形状の本体BDを備えており、本体BDの裏側に設けられた2つの駆動輪12R、12L(図2参照)が個別に駆動されることにより、直進、後退および所定の回転軸を中心とした旋回を行うことが可能となっている。また、本体BDの前面側中央部分には、撮像センサとしての赤外線CCDセンサ73が設けられている。
また、赤外線CCDセンサ73の下側には、前方障害物センサとしての7つの超音波センサ31(31a〜31g)が設けられている。超音波センサ31は、超音波を発生する発信部と、同発信部から発せられ、前方の壁に反射して戻ってくる超音波を受信する受信部とを備え、発信部から発せられた超音波が受信部により受信されるまでの時間から、壁までの距離を算出することができるようになっている。これら7つの超音波センサ31のうち、本体BDの前面側中央に超音波センサ31dが設けられており、超音波センサ31aおよび超音波センサ31g、超音波センサ31bおよび超音波センサ31f、超音波センサ31cおよび超音波センサ31eは、それぞれ左右対称に設けられている。本体BDの進行方向が前方の壁に対して垂直であるときには、左右対称に設けられた超音波センサ31のによりそれぞれ計測された距離が同一となる。
また、本体BDの前面側の左右両側には、人体センサとしての焦電センサ35(35a、35b)がそれぞれ設けられている。焦電センサ35a、35bは、人体から発生する赤外線を検出することにより、本体BDの近傍に存在する人物を検知することが可能である。なお、図1には示していないが、本体BDの裏側の左右両側にも、焦電センサ35(35c、35d)がそれぞれ設けられており、本体BDの周囲360°が検出範囲となるように構成されている。
また、図1には示していないが、本体BDの背面側の左右両側には、後述するフォトリフレクタからなる横壁センサ36(36R、36L)が設けられている。このフォトリフレクタは、側方の壁を検出し、走行時に同壁と所定間隔を維持するためのものであり、なお、この横壁センサ36が設置される位置については、後に図面を用いて詳述する。
図2において、本体BDの裏側中央の左右両端部には、2つの駆動輪12R、12Lがそれぞれ設けられている。また、本体BDの裏側の前側(進行方向側)には、3つの補助輪13がそれぞれ設けられている。さらに、本体BDの裏側の右上、右下、左上、左下には、路面の凹凸や段差を検知する段差センサ14がそれぞれ設けられている。また、本体BDの裏側中央より下側には、メインブラシ15が設けられている。このメインブラシ15は、メインブラシモ−タ52(図示せず)により回転駆動され、路面上の塵埃を掻き出すことができる。また、メインブラシ15が取り付けられている部分の開口は、吸引口であり、メインブラシ15により塵埃を掻き出しながら、同掻き出された塵埃が吸引口に吸引されるようになっている。また、本体BDの裏側の右上および左上側には、サイドブラシ16がそれぞれ設けられている。
なお、本発明にかかる自走式掃除機10は、図1および図2に示した超音波センサ31、焦電センサ35、段差センサ14、横壁センサ36の他にも各種のセンサを備えているが、それらについては、後に図面(図3)を用いて説明する。
(2)自走式掃除機の内部構成:
図3は、図1、図2に示した自走式掃除機の構成を示すブロック図である。同図において、本体BDには、制御部としてCPU21と、ROM23と、RAM22がバス24を介して接続されている。CPU21は、ROM23に記憶されている制御プログラムおよび各種パラメ−タテ−ブルに従い、RAM22をワ−クエリアとして使用して各種の制御を実行する。
本体BDは、バッテリ−27を有しており、CPU21は、バッテリ−監視回路26を介してバッテリ−27の残量をモニタ−可能となっている。また、バッテリ−27は、上述した充電装置100から充電を行うための充電端子27aを備えている。この充電端子27aには、充電装置100の給電端子102aが接続されて充電が行われる。バッテリー監視回路26は主にバッテリー27の電圧を監視して残量を検知する。また、本体BDはバス24と接続する音声回路29aを有しており、同音声回路29aにて生成した音声信号に応じてスピーカ29bが音声を発する。
また、本体BDは、前方障害物センサとしての超音波センサ31(31a〜31g)と、人体センサとしての焦電センサ35(35a〜35d)と、段差センサ14とをそれぞれ備えている(図1、図2参照)。また、本体BDは、図1、図2に示していない他のセンサとして、側方の壁を検出する横壁センサ36R、36Lを備えている。この横壁センサ36R、36Lは、赤外線を発する出光部と壁により反射した赤外線を受光する受光部とを具備するフォトリフレクタからなるものであるが、本発明に適用される横壁センサとしては、他に超音波センサ等を用いることが可能である。さらに、本体BDは、上記他のセンサとして、ジャイロセンサ37を備えている。ジャイロセンサ37は、本体BDの進行方向の変化に起因する角速度の変化を検出する角速度センサ37aを備え、角速度センサ37aにより検出されたセンサ出力値を積算することにより本体BDの向いている方向角を検出することが可能である。
本発明にかかる自走式掃除機10は、駆動機構として、モ−タドライバ41R、41L
、駆動輪モ−タ42R、42L、および、駆動輪モ−タ42R、42Lと上述した駆動輪12R、12Lとの間に介装される図示しないギアユニットとを備えている。駆動輪モ−タ42R、42Lは、旋回走行を行う際に回転方向と回転角度とが、モ−タドライバ41R、41Lによって詳細に駆動制御される。各モータドライバ41R,41Lは、CPU21からの制御指示に応じて対応する駆動信号を出力する。なお、ギアユニットや駆動輪12R、12Lは各種のものを採用可能であり、円形のゴム製タイヤを駆動させるようにしたり、無端ベルトを駆動させるようにして実現しても良い。
また、本体BDは、上記走行距離計測手段としてのロ−タリ−エンコ−ダ38を具備している。このロ−タリ−エンコ−ダ3は、駆動輪モ−タ42R、42Lと一体的に取り付けられており、駆動輪12R、12Lの回転数から、本体BDの走行距離を算出することができるようになっている。
なお、ロータリーエンコーダは駆動輪と直結させず、駆動輪の近傍に自由回転可能な従動輪を取り付け、同従動輪の回転量をフィードバックさせることによって駆動輪にスリップが生じているような場合でも現実の回転量を検知できるようにしても良い。また、加速度センサ44はXYZ三軸方向における加速度を検知し、検知結果を出力する。ギアユニットや駆動輪は各種のものを採用可能であり、円形のゴム製タイヤを駆動させるようにしたり、無端ベルトを駆動させるようにして実現しても良い。
実施形態にかかる自走式掃除機10における掃除機構は、本体BDの裏面側に設けられた2のサイドブラシ16(図2参照)と、本体BDの裏面中央部分に設けられたメインブラシ15(図2参照)と、同メインブラシ15により掻き出される塵埃を吸引してダストボックス内に格納する吸引ファン(図示せず)とから構成されている。メインブラシ15は、メインブラシモ−タ52により駆動され、また、上記吸引ファンは、吸引モ−タ55により駆動される。メインブラシモ−タ52、吸引モ−タ55には、それぞれモ−タドライバ54、56から駆動電力が供給される。メインブラシ15を使用した清掃は、床面の状況やバッテリ−の状況やユ−ザ−の指示等に応じてCPU21が適宜判断して制御するようにしている。
本体BDは、無線LANモジュ−ル61を有しており、CPU21は、所定のプロトコルに従って外部LANと無線によって通信可能となっている。無線LANモジュ−ル61は、図示しないアクセスポイントの存在を前提として、同アクセスポイントは、ル−タ等を介して外部の広域ネットワ−ク(例えば、インタ−ネット)に接続可能な環境となっていることとする。従って、インタ−ネットを介した通常のメ−ルの送受信やWEBサイトの閲覧といったことが可能である。なお、無線LANモジュ−ル61は、規格化されたカ−ドスロットと、同スロットに接続された規格化された無線LANカ−ド等から構成されている。むろん、カ−ドスロットは、他の規格化されたカ−ドを接続することも可能である。
また、本体BDは、赤外線CCDセンサ73と、赤外線光源72とを備えている。赤外線CCDセンサ73にて生成された撮像信号は、バス24を介してCPU21に送出され、CPU21にて同撮像信号を対象とした各種処理が行われる。赤外線CCDセンサ73は、正面を撮像可能な光学系を有しており、同光学系にて実現される視野から入力される赤外線に応じて電気信号を生成する。具体的には、上記光学系による結像位置における各画素に対応して配列された多数のフォトダイオードが備えられ、各フォトダイオードが入力された赤外線の電気エネルギ−に応じた電気信号を生成する。そして、CCD素子は、画素毎に生成した電気信号を一時的に記憶し、各画素について電気信号が連続する撮像信号を生成する。そして、同生成された撮像信号を適宜、CPU21に対して出力する。
(3)自走式掃除機の動作:
次に、本発明にかかる自走式掃除機10の動作について説明する。
本発明にかかる自走式掃除機10は、ROM23等に予め記憶された制御プログラムに従って自動走行しながら掃除を行うことが可能なように構成されている。自動走行しながらの清掃中に、壁や床面の凹凸がセンサにより検知されたときには、上述した制御プログラムに基づいて、走行制御が行われる。
以下、実施形態にかかる自走式掃除機10により実行される自動掃除実行処理を、図4に示すフロ−チャ−トに基づいて説明する。図4は、自動掃除実行処理の流れを示すフロ−チャ−トであり、図5は、同自動掃除実行処理が行われているときに自走式掃除機10が走行する走行順路の一例を模式的に示す図である。まず、ステップS200において、清掃走行を行う。このステップS200の処理において、駆動輪モ−タ42R、42Lを駆動させて本体BDの直進走行を行わせながら自走式掃除機10が備える各種のセンサの検知結果を入力して同検知結果に基づく駆動制御を行い、さらに、メインブラシモ−タ52、吸引モ−タ55を駆動させて清掃作業を行わせる。
ステップS200の処理を実行すると、次に、ステップS210において、前方の壁を検知したか否かを判断する。すなわち、超音波センサ31により本体BDの進行方向に位置する壁が検知されたか否かを判断する。ステップS210において前方の壁が検知されたと判断した場合、次に、ステップS230において、本体BDを90度回転させる。この処理が行われると、本体BDの進行方向が壁に対して略平行になる。例えば、図5に示す本体BDの清掃開始位置から清掃走行を開始して、図中、上側の壁を検知したときには、本体BDを右に90度回転させる。ステップS230の処理を実行すると、次に、ステップS240において壁際走行処理を行う。この処理は、後で図面(図6)を用いて詳述するが、メインブラシモ−タ52、吸引モ−タ55等を駆動させて清掃作業を行わせつつ、壁に対して平行となるように進行方向を制御しながら清掃走行を行う。このとき、横壁センサ36とロ−タリ−エンコ−ダ38とを用いて、所定距離(L)だけ走行する毎に、本体BDの向きが側方の壁と平行となるように進行方向を補正しながら走行する。
そして、ステップS240により壁際走行が所定距離行われると、次に、ステップS250において、再度、本体BDを90度回転させる処理を行う。図5において、本体BDが上側の壁際に沿って所定距離走行した後、再度、本体BDを右に90度回転させることにより、壁に対して垂直であり、且つ、壁から離れる向きに本体BDが走行することとなる。
ステップS250の処理を実行するか、または、ステップS210において壁を検知しなかったと判断した場合、次に、ステップS260において、バッテリ−27の残量が減少したか否かを判断する。この処理において、バッテリ−監視回路26により検知されたバッテリ−27の残量が所定の基準値を下回っているか否かを判断する。ステップS260においてバッテリ−27の残量が減少したと判断した場合には、ステップS270において自動充電処理を実行する。この処理は、掃除を行う部屋における所定の壁に設置された充電装置100まで本体BDを自動走行させ、本体BDの充電端子27aを充電装置100の給電端子102aに接続し、充電を行う処理である。
ステップS270の処理を実行するか、または、ステップS260においてバッテリ−の残量が減少していないと判断した場合、次に、ステップS280において、清掃作業を終了する旨の指示があったか否かを判断し、指示がなかったと判断した場合には処理をステップS200に戻す一方、指示があったと判断した場合には自動掃除実行処理を終了させる。
次に、図4に示したフロ−チャ−トのステップS240において呼び出されて実行される壁際走行処理について説明する。図6は、図4に示した壁際走行処理の流れを示すフロ−チャ−トである。まず、ステップS300において、壁までの距離(a)を計測する。この処理において、横壁センサ36を用いて、側方の壁までの距離を計測する。具体的には、例えば、横壁センサ36の受光部が受光した赤外線の強度に基づいて、同強度と壁までの距離との対応関係を示すテ−ブル等を用いて壁までの距離を算出する。なお、この距離(a)は、図4に示したフロ−チャ−トのステップS230において本体BDを90度回転させたときにおける本体BDから側方の壁までの距離であり、後述する壁際走行においては、この距離(a)を維持するように本体BDを走行させる。すなわち、本体BDが側方の壁と距離が常に(a)となるように、本体BDの方向を修正しつつ壁際走行を行うのである。
次に、ステップS310において、本体BDの走行を開始させる。すなわち、駆動輪モ−タ42R、42Lを駆動させて本体BDの直進走行を行わせつつ、メインブラシモ−タ52や吸引モ−タ55等を駆動させて清掃作業を行わせる。ステップS310の処理を実行すると、次に、ステップS320において距離計測を開始させる。この処理において、上記距離計測手段としてのロ−タリ−エンコ−ダ38を用いて、駆動輪12R、12Lの回転数から本体BDの走行距離を算出する処理を開始させる。
ステップS320の処理を実行すると、次に、ステップS310において所定距離(L)だけ走行したか否かを判定する。この処理において、上述しステップS310の処理により本体BDの走行が開始されてから、所定距離(L)だけ走行したか否かをロ−タリ−エンコ−ダ38の出力値から判定する。なお、上記所定距離(L)は、予め任意の値で設定しておくことが可能である。ステップS330において所定距離(L)だけ走行していないと判定した場合には、処理をステップS330に戻す一方、所定距離(L)だけ走行したと判定した場合には、次に、ステップS340において、壁までの距離(b)を計測する処理を行う。この処理において、横壁センサ36を用いて、側方の壁までの距離(b)を計測する。
ステップS340の処理を実行すると、次に、ステップS350において、H=b−aの式を用いて、所定距離(L)だけ走行したときの本体BDの側方の壁からのずれ幅(H)を算出する処理を行う。この処理において、ステップS300において計測された壁までの距離(a)と、ステップS350において計測された壁までの距離(b)とに基づいて、H=b−aの式を用いて、本体BDのずれ幅(H)を算出する処理を行う。なお、(H)が正数となる場合は、本体BDと側方の壁との距離が、基準値(a)よりも大きくなっている場合であり、(H)が負数となる場合は、本体BDと側方の壁との距離が、基準値(a)よりも小さくなっている場合である。
ステップS350の処理を実行すると次に、ステップS360において、(1)式すなわちtanθ=H/Lの式を用いて、上記側方の壁からの角度ずれ(θ)を算出する処理を行う。そして、次のステップS370の処理において、算出された角度ずれ(θ)を補正するように本体BDの向いている方向を補正する処理を行う。具体的には、角度ずれ(θ)を補正するように(−θ)だけ本体BDを回転させる。なお、この回転は、ジャイロセンサ37を用いて行われる。
ステップS370の処理を実行すると、次に、ステップS380において、前方の壁が検知されたか否かを判定する。すなわち、超音波センサ31により本体BDの進行方向に位置する壁が検知されたか否かを判定する。ステップS380において前方の壁が検知されていないと判定した場合には、処理をステップS310に戻す一方、前方の壁が検知されたと判定した場合には壁際走行処理を終了させる。
以下、図6に示した壁際走行処理が実行されているときの具体例を図7を用いて説明する。図4に示したフロ−チャ−トのステップS230において本体BDを90度回転させた後、例えば、ジャイロセンサ37の出力誤差等に起因して、本体BDの向いている方向が、側方の壁Wに対して平行よりも若干ずれた場合を想定する。まず、壁Wまでの距離(a)を、横壁センサ36Lを用いて測定する(ステップS300)。その後、本体BDの走行を開始させるとともに(ステップS310)、ロ−タリ−エンコ−ダ37を用いて走行距離の計測を開始する(ステップS320)。
そして、所定距離(L)だけ走行すると(ステップS330:YES)、本体BDの走行を停止させ、壁Wまでの距離(b)を横壁センサ36Lを用いて測定する(ステップS340)。その後、H=b−aの式を用いて、壁Wからのずれ幅(H)を算出し(ステップS350)。tanθ=H/Lの式を用いて本体BDの角度ずれ(θ)を算出する(ステップS360)。図7に示すように、角度ずれ(θ)は、壁Wからの角度ずれとして算出される。すなわち、θ=0であるときには、本体BDは壁Wと平行に走行していることになり、θ>0であるときには、本体BDは壁Wから離れる方向に走行していることにより、θ<0であるときには、本体BDは壁Wに近づく方向に走行していることになる。
そして、算出された(θ)に基づいて、本体BDの向いている方向を補正し(ステップS370)する。具体的には、ジャイロセンサ37を用いて(−θ)だけ本体BDを回転させることにより、本体BDの向いている方向が壁Wと平行になるようにする。図6に示したフロ−チャ−トのステップS310〜S370の処理を繰り返し実行することにより、本体BDが所定距離(L)だけ走行する毎に、壁Wまでの距離(b)と距離(a)との差に基づいて、壁Wからのずれ幅(H)を算出するとともに角度ずれ(θ)を算出し、本体BDの角度補正を行うのである。このようにすることにより、壁Wとの間隔を距離(a)に略維持しながら壁際走行を行うことができるようになるのである。
(4)各種変形例:
上述した実施形態においては、角度ずれ(θ)を求める際に、上記(1)式、すなわち、tanθ=H/Lを用いる場合について説明したが、角度ずれ(θ)が非常に小さな値となることが予め想定することができる場合に、上記(1)式に代えて、θ=H/L…(2)の式を用いるようにしてもよい。この場合、図8に示すように、図6のフロ−チャ−トのステップS360に代えて、ステップS460とし、上記(2)式を採用して角度ずれ(θ)を算出するようにしてもよい。
(5)まとめ:
以上、説明したように、実施形態にかかる自走式掃除機10は、側方の壁Wと一定間隔(a)をあけつつ平行に走行する壁際走行を行う場合に、所定距離(L)だけ走行したときの本体BDの壁Wからのずれ幅を(H)としたときに、tanθ=H/Lの式を用いて、壁Wからの角度ずれ(θ)を算出し、この角度ずれ(θ)に基づいて本体BDの向いている方向をジャイロセンサ37を用いて補正するように構成されているため、簡易な方法で側方の壁からの角度ずれを算出することができるとともに、その角度ずれを補正し、本体BDの壁際走行を正確に行わせることが可能となる。
本発明にかかる自走式掃除機の外観斜視図である。 図1に示した自走式掃除機の裏面図である。 図1、図2に示した自走式掃除機の構成を示すブロック図である。 自走式掃除機において実行される自動掃除実行処理の流れを示すフロ−チャ−トである。 図4に示した自動掃除実行処理が行われているときに自走式掃除機が走行する走行順路の一例を示す図である。 図4に示したフロ−チャ−トのステップS240において呼び出されて実行される壁際走行処理の流れを示すフロ−チャ−トである。 図6に示した自動充電処理を説明するための説明図である。 図6に示した壁際走行処理の他の一例を示すフロ−チャ−トである。
符号の説明
10…自走式掃除機
12R、12L…駆動輪
14…段差センサ
21…CPU
22…RAM
23…ROM
26…バッテリ−監視回路
27…バッテリ−
27a…充電端子
31(31a〜31g)…超音波センサ
35(35a〜35d)…焦電センサ
36R、36L…横壁センサ
37…ジャイロセンサ
37a…角速度センサ
38…ロ−タリ−エンコ−ダ
100…充電装置

Claims (6)

  1. 操舵および駆動を実現する駆動機構と、掃除機構と、本体の向いている方向角を検出するジャイロセンサと、車輪の回転数により走行距離を計測するロ−タリ−エンコ−ダと、側方の障害物を検知する横壁センサとを具備し、
    上記横壁センサを用いて側方の壁と一定間隔をあけつつ平行に走行する壁際走行を行うことが可能な自走式掃除機において、
    上記壁際走行中に、所定距離(L)だけ走行したときの本体の上記側方の壁からのずれ幅(H)を横壁センサのセンサ出力値から算出し、上記所定距離(L)およびずれ幅(H)から下記(1)式または(2)式を用いて上記側方の壁からの角度ずれ(θ)を算出する算出手段と、
    上記算出手段により算出された角度ずれ(θ)に基づいて、本体の向いている方向を補正する角度補正手段と
    を具備することを特徴とする自走式掃除機。
    tanθ=H/L…(1)
    θ=H/L…(2)
  2. 操舵および駆動を実現する駆動機構と、本体の向いている方向角を検出するジャイロセンサと、走行距離を計測する走行距離計測手段と、側方の障害物を検知する横壁センサとを具備し、
    上記横壁センサを用いて側方の壁と一定間隔をあけつつ平行に走行する壁際走行を行うことが可能な走行機において、
    上記壁際走行中に、所定距離(L)だけ走行したときの本体の上記側方の壁からのずれ幅を(H)としたときに、下記(1)式を用いて上記側方の壁からの角度ずれ(θ)を算出する算出手段と、
    上記算出手段により算出された角度ずれ(θ)に基づいて、本体の向いている方向を補正する角度補正手段と
    を具備することを特徴とする走行機。
    tanθ=H/L…(1)
  3. 操舵および駆動を実現する駆動機構と、本体の向いている方向角を検出するジャイロセンサと、走行距離を計測する走行距離計測手段と、側方の障害物を検知する横壁センサとを具備し、
    上記横壁センサを用いて側方の壁と一定間隔をあけつつ平行に走行する壁際走行を行うことが可能な走行機において、
    所定距離(L)だけ走行したときの本体の上記側方の壁からのずれ幅を(H)としたときに、下記(2)式を用いて上記側方の壁からの角度ずれ(θ)を算出する算出手段と、
    上記算出手段により算出された角度ずれ(θ)に基づいて、本体の向いている方向を補正する角度補正手段と
    を具備することを特徴とする走行機。
    θ=H/L…(2)
  4. 上記ずれ幅(H)は、上記横壁センサのセンサ出力値から算出することを特徴とする請求項2または3に記載の走行機。
  5. 上記走行距離計測手段は、車輪の回転数により走行距離を計測するロ−タリ−エンコ−ダであることを特徴とする請求項2〜4のいずれかに記載の走行機。
  6. 掃除機構を具備する自走式掃除機であることを特徴とする請求項2〜5のいずれかに記載の走行機。
JP2005086330A 2005-03-24 2005-03-24 走行機および自走式掃除機。 Withdrawn JP2006268499A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005086330A JP2006268499A (ja) 2005-03-24 2005-03-24 走行機および自走式掃除機。
US11/386,411 US20060217854A1 (en) 2005-03-24 2006-03-22 Travel device and self-propelled cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005086330A JP2006268499A (ja) 2005-03-24 2005-03-24 走行機および自走式掃除機。

Publications (1)

Publication Number Publication Date
JP2006268499A true JP2006268499A (ja) 2006-10-05

Family

ID=37036224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005086330A Withdrawn JP2006268499A (ja) 2005-03-24 2005-03-24 走行機および自走式掃除機。

Country Status (2)

Country Link
US (1) US20060217854A1 (ja)
JP (1) JP2006268499A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013260A (ja) * 2008-07-04 2010-01-21 Murata Mach Ltd 搬送システム、走行車
JP2022090251A (ja) * 2020-12-07 2022-06-17 株式会社ユアテック 自走式装置、測定方法、及び、プログラム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2045624A1 (en) * 2007-10-01 2009-04-08 Samsung Electronics Co., Ltd. Ultrasonic distance sensor and robot cleaner using the same
CN109154817B (zh) * 2016-05-30 2021-09-24 株式会社久保田 自动行驶作业车辆
EP3469442A4 (en) 2016-06-30 2020-09-16 TTI (Macao Commercial Offshore) Limited SELF-CONTAINED LAWN MOWER AND ASSOCIATED NAVIGATION SYSTEM
US11172608B2 (en) 2016-06-30 2021-11-16 Tti (Macao Commercial Offshore) Limited Autonomous lawn mower and a system for navigating thereof
TWI634403B (zh) * 2017-01-26 2018-09-01 好樣科技有限公司 自動清潔機及其控制方法
CN106959695B (zh) * 2017-04-24 2019-08-02 广东宝乐机器人股份有限公司 移动机器人在工作区域内的角度修正方法及移动机器人
US11320828B1 (en) * 2018-03-08 2022-05-03 AI Incorporated Robotic cleaner
CN109365462B (zh) * 2018-12-06 2021-06-22 合肥仁洁智能科技有限公司 光伏板清扫机器人及其控制方法
CN113440049B (zh) * 2020-03-25 2023-06-09 尚科宁家(中国)科技有限公司 一种清洁机器人及其控制方法
US12296694B2 (en) 2021-03-10 2025-05-13 Techtronic Cordless Gp Lawnmowers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013260A (ja) * 2008-07-04 2010-01-21 Murata Mach Ltd 搬送システム、走行車
TWI450060B (zh) * 2008-07-04 2014-08-21 Murata Machinery Ltd Handling system, walking car
JP2022090251A (ja) * 2020-12-07 2022-06-17 株式会社ユアテック 自走式装置、測定方法、及び、プログラム

Also Published As

Publication number Publication date
US20060217854A1 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP2006113952A (ja) 充電式走行システム
JP4173144B2 (ja) ロボット掃除機のジャイロセンサーの補正方法
US20060217854A1 (en) Travel device and self-propelled cleaner
US20060212191A1 (en) Rechargeable traveling system
JP2005230032A (ja) 自律走行ロボットクリーナー
JP4142021B2 (ja) ロボット掃除機の座標補正方法及びこれを用いたロボット掃除機システム
JPH078271B2 (ja) 自走式掃除機
US20060217844A1 (en) Self-propelled cleaner
JP2005222226A (ja) 自律走行ロボットクリーナー
JP2006061439A (ja) 自走式掃除機
US20060069465A1 (en) Self-propelled cleaner
US20060132318A1 (en) Self-propelled cleaner and self-propelled traveling apparatus
JP2006095006A (ja) 自走式掃除機
CN115426930A (zh) 扫地机器人及扫地机器人的控制方法
US20060217840A1 (en) Automatic cleaning system
JP2010172441A (ja) 自走式掃除機
JP2006172108A (ja) 自走式掃除機
JP2006268497A (ja) 充電式走行システム
US20230255435A1 (en) Robot cleaner and method of controlling the same
JP2006251883A (ja) 充電式走行システム
JP2007148591A (ja) 自走式掃除機
JP3928116B2 (ja) セキュリティ機能付走行機
TWI832067B (zh) 清掃機器人及其控制方法
JP2004318721A (ja) 自律走行車
JP2006099327A (ja) 自走式掃除機および発光装置

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060915