JP2006257508A - Alloy for nonferrous molten metal - Google Patents
Alloy for nonferrous molten metal Download PDFInfo
- Publication number
- JP2006257508A JP2006257508A JP2005077474A JP2005077474A JP2006257508A JP 2006257508 A JP2006257508 A JP 2006257508A JP 2005077474 A JP2005077474 A JP 2005077474A JP 2005077474 A JP2005077474 A JP 2005077474A JP 2006257508 A JP2006257508 A JP 2006257508A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- molten metal
- resistance
- test
- nonferrous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 17
- 239000002184 metal Substances 0.000 title claims abstract description 17
- 239000000956 alloy Substances 0.000 title claims abstract description 13
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 12
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 4
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 4
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 14
- 230000003647 oxidation Effects 0.000 abstract description 12
- 238000007254 oxidation reaction Methods 0.000 abstract description 12
- 230000003628 erosive effect Effects 0.000 abstract description 5
- 229910052721 tungsten Inorganic materials 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 description 28
- 239000000463 material Substances 0.000 description 19
- 229910001092 metal group alloy Inorganic materials 0.000 description 8
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229910000838 Al alloy Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005299 abrasion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 229910000861 Mg alloy Inorganic materials 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- -1 die-cast sleeves Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 244000274847 Betula papyrifera Species 0.000 description 1
- 235000009113 Betula papyrifera Nutrition 0.000 description 1
- 235000009109 Betula pendula Nutrition 0.000 description 1
- 235000010928 Betula populifolia Nutrition 0.000 description 1
- 235000002992 Betula pubescens Nutrition 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009750 centrifugal casting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910021652 non-ferrous alloy Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
Description
本発明は、アルミニウム合金、亜鉛合金、マグネシウム合金等の非鉄溶融金属と接触して使用される耐溶損性、耐摩耗性、耐酸化性および保温性に優れた合金に関する。 The present invention relates to an alloy excellent in melt resistance, wear resistance, oxidation resistance and heat retention used in contact with a non-ferrous molten metal such as an aluminum alloy, a zinc alloy or a magnesium alloy.
近年、アルミニウム合金、マグネシウム合金などの非鉄合金は、自動車製品、家電製品などの各種構成部材の製造に広く利用されている。これらの製品を製造する際、非鉄溶融金属溶湯と接触して用いられる部材、例えば、ダイカストスリーブ、ガス吹込み管、中子、ストーク、湯口部材、ラドル等は耐溶損性、耐摩耗性、耐酸化性および保温性が要求される。 In recent years, non-ferrous alloys such as aluminum alloys and magnesium alloys have been widely used for manufacturing various components such as automobile products and home appliances. When manufacturing these products, members used in contact with molten non-ferrous metal, such as die-cast sleeves, gas blowing pipes, cores, stalks, gate members, ladles, etc. are resistant to melting, abrasion and acid. The heat resistance and heat retention are required.
この種の部材としては、SKD61に代表される熱間金型用合金鋼からなるものが一般的に用いられる。近年、生産性の向上や品質向上の観点から、さらなる耐溶損性、耐摩耗性、耐酸化性および保温性が要求されている。 As this type of member, a member made of alloy steel for hot mold typified by SKD61 is generally used. In recent years, from the viewpoint of improving productivity and quality, further resistance to melting damage, wear resistance, oxidation resistance, and heat retention have been demanded.
例えば、特許文献1には、化学成分が重量比でC:2.4〜3.8%、Si:0.2〜2.6%、Mn:0.1〜2.0%、P:0.05〜0.5%、S:0.005〜0.2%、残部Fe及び不純物元素を含み、炭化物と基地の金属組織を有する白銑系材料を用いて形成されてなることを特徴とする非鉄金属溶湯用部材が記載されている。前記白銑系材料は、さらに化学成分が重量比でNi:0.1〜4.0%、Cr:0.1〜2.5%、Mo:0.1〜2.0%、V:0.1〜2.0%の中の1種又は2種以上を含むことが記載されている。 For example, in Patent Document 1, the chemical components are in a weight ratio of C: 2.4 to 3.8%, Si: 0.2 to 2.6%, Mn: 0.1 to 2.0%, P: 0 0.05 to 0.5%, S: 0.005 to 0.2%, the balance Fe and impurity elements are included, and formed using a birch-based material having carbide and a base metal structure, A non-ferrous metal melt member is described. The white birch-based material further has chemical components in a weight ratio of Ni: 0.1 to 4.0%, Cr: 0.1 to 2.5%, Mo: 0.1 to 2.0%, V: 0 It is described that 1 type or 2 types or more in 1-2.0% are included.
しかしながら、特許文献1のような従来の非鉄金属溶湯用部材は、未だ耐溶損性、耐摩耗性、耐酸化性および保温性が十分とはいえなかった。また、特に機械加工で形状出しすることは加工代が多く、加工に長時間を要して原価高となる問題がある。 However, conventional non-ferrous metal melt members such as Patent Document 1 have not yet been sufficient in resistance to melting, abrasion resistance, oxidation resistance and heat retention. Further, in particular, there is a problem in that the shape is formed by machining, which requires a large machining cost, which requires a long time for machining and increases the cost.
そこで、本発明の目的は、非鉄溶融金属と接触して使用される各種の耐溶損性合金に適用できるものについて、耐溶損性、耐摩耗性、耐酸化性および保温性に優れるとともに被削性に優れる非鉄溶融金属用合金を提供することである。 Therefore, the object of the present invention is to be applied to various corrosion resistant alloys used in contact with non-ferrous molten metal, and has excellent resistance to melting, wear resistance, oxidation resistance and heat retention and machinability. It is to provide an alloy for non-ferrous molten metal which is excellent in the above.
本発明の非鉄溶融金属用合金は、質量%で、C:1.0〜4.0%、Si:0.2〜4.0%、Mn:0.1〜0.5%、Ni:4.0〜10.0%、Cr:10.0〜25.0%、Mo≦9.0%、V:4.0〜15.0%、S:0.1〜0.4%を含有し残部Feおよび不可避的不純物元素からなることを特徴とする。 The non-ferrous molten metal alloy of the present invention is, by mass, C: 1.0 to 4.0%, Si: 0.2 to 4.0%, Mn: 0.1 to 0.5%, Ni: 4 0.0 to 10.0%, Cr: 10.0 to 25.0%, Mo ≦ 9.0%, V: 4.0 to 15.0%, S: 0.1 to 0.4% It consists of the remainder Fe and inevitable impurity elements.
また、前記非鉄溶融金属用合金に質量%でW<0.2%、Co≦5.0%、Nb≦10.0%、Al≦3.0%のうちいずれか一種以上を含有することを特徴とする。 Further, the non-ferrous molten metal alloy may contain at least one of W <0.2%, Co ≦ 5.0%, Nb ≦ 10.0%, and Al ≦ 3.0% by mass%. Features.
本発明の非鉄溶融金属用合金の化学成分(質量%)は以下の範囲が望ましい。 The chemical component (mass%) of the nonferrous molten metal alloy of the present invention is preferably in the following range.
C:1.0〜4.0%
Cは、耐摩耗性向上のための炭化物の形成と、基地への固溶による焼入れ・焼戻し時の基地硬さの向上に必要である。Cは、耐摩耗性の向上に寄与する硬質炭化物を生成する。Cが1.0%未満では耐摩耗性を向上させるために有効な硬質炭化物の晶出が少なく、また基地に固溶するCが不足し、焼入れによっても十分な基地硬さが得られなくなる。一方、4.0%を超えると硬質炭化物が粗大化しその晶出量も過大となり、靭性が劣化しやすい。
C: 1.0-4.0%
C is necessary for the formation of carbide for improving the wear resistance and the improvement of the hardness of the base during quenching and tempering by solid solution in the base. C produces a hard carbide that contributes to an improvement in wear resistance. If C is less than 1.0%, there is little crystallization of hard carbide effective for improving the wear resistance, and there is a shortage of C dissolved in the matrix, so that sufficient matrix hardness cannot be obtained even by quenching. On the other hand, if it exceeds 4.0%, the hard carbide becomes coarse and the amount of crystallization becomes excessive, and the toughness tends to deteriorate.
Si:0.2〜4.0%
Siの含有量は0.2〜4.0%が好ましい。Siは、脱酸剤として作用し、また硬質炭化物中に固溶してW、Moなどの元素を置換して含有されるため、W、Moなどの高価な元素の節減を図るために有効である。Siが0.2%未満では脱酸効果が不足して鋳造欠陥を生じやすい。また、4.0%を超えると脆化が生じやすい。よって、Siの含有量は0.2〜4.0%とする。ただし、Siが2.0%を超えると、被削性の効果が飽和する傾向にあるために、より好ましくは0.2〜2.0%である。
Si: 0.2-4.0%
The content of Si is preferably 0.2 to 4.0%. Si acts as a deoxidizer and is contained in a hard carbide by replacing it with elements such as W and Mo. Therefore, it is effective for saving expensive elements such as W and Mo. is there. If Si is less than 0.2%, the deoxidation effect is insufficient and casting defects are likely to occur. If it exceeds 4.0%, embrittlement tends to occur. Therefore, the content of Si is set to 0.2 to 4.0%. However, if Si exceeds 2.0%, the machinability effect tends to saturate, so 0.2 to 2.0% is more preferable.
Mn:0.1〜0.5%
Mnの含有量は0.1〜0.5%が好ましい。Mnは、Siと同様に脱酸作用がある。Mnが0.1%未満であるとこの脱酸作用が劣化する。Mnが0.5%を超えると、耐溶損性および耐酸化性が劣る。また、炭化物の偏析を起こして強度が劣化する。また、MnはSとの化合物(硫化系介在物)を形成させ、被削性を改善するためにも必要であり、0.1〜0.5%とした。なお、Mnの含有量は0.15〜0.5%が好ましく、さらに0.2〜0.5%がより望ましい。
Mn: 0.1 to 0.5%
The Mn content is preferably 0.1 to 0.5%. Mn has a deoxidizing action like Si. When the Mn is less than 0.1%, this deoxidation action is deteriorated. When Mn exceeds 0.5%, the melt resistance and oxidation resistance are inferior. Further, segregation of carbides occurs and the strength deteriorates. Further, Mn is necessary for forming a compound with S (sulfurized inclusions) and improving machinability, and is set to 0.1 to 0.5%. The Mn content is preferably 0.15 to 0.5%, more preferably 0.2 to 0.5%.
Ni:4.0〜10.0%
Niの含有量は4.0〜10.0%が好ましい。これは含有量が4.0%未満では金属組織のマルテンサイト化が起こりやすくなり、一方10%を越えると偏析を起こし、しかも基地が軟らかくなるため、いずれの場合も好ましくない。また、4.0%以上配合することにより、耐食性も改善される。
Ni: 4.0 to 10.0%
The content of Ni is preferably 4.0 to 10.0%. If the content is less than 4.0%, the martensite of the metal structure is likely to occur. On the other hand, if the content exceeds 10%, segregation occurs and the base becomes soft. Moreover, corrosion resistance is also improved by mix | blending 4.0% or more.
Cr:10.0〜25.0%
Cr含有量は10.0〜25.0%が好ましい。これは、含有量10.0%未満では、安定したオーステナイトを晶出させることができず、耐食性を低下させてしまい、一方、25.0%を超えると偏析を起こして強度を劣化させる原因となる。
Cr: 10.0-25.0%
The Cr content is preferably 10.0 to 25.0%. This is because if the content is less than 10.0%, stable austenite cannot be crystallized and the corrosion resistance is lowered. On the other hand, if it exceeds 25.0%, segregation occurs and the strength is deteriorated. Become.
Mo≦9.0%
Mo含有量は9.0%以下が好ましい。Moは基地を安定させるのに有効であり、Moを含有させる場合、その含有量が9.0%を超えると、硬質炭化物の晶出を不
安定とさせ、しかも耐食性が劣化してしまう。
Mo ≦ 9.0%
The Mo content is preferably 9.0% or less. Mo is effective for stabilizing the base, and when Mo is contained, if its content exceeds 9.0%, the crystallization of the hard carbide is made unstable and the corrosion resistance is deteriorated.
V:4.0〜15.0%
Vは、耐摩耗性の向上に最も寄与する硬質なMC系炭化物、M4C3系炭化物を形成する。Vが4.0%未満では炭化物の生成が少なく耐摩耗性が不足する。Vが15.0%を超えると、MC、M4C3系炭化物が凝固中に凝集偏析して脆性の劣化を引き起こすので好ましくない。より好ましいVの含有量は、8.0〜12.0%である。
V: 4.0 to 15.0%
V forms a hard MC-based carbide, M 4 C 3 -based carbide, which contributes most to the improvement of wear resistance. When V is less than 4.0%, the generation of carbide is small and the wear resistance is insufficient. If V exceeds 15.0%, MC and M 4 C 3 carbides are agglomerated and segregated during solidification to cause brittle deterioration, which is not preferable. A more preferable V content is 8.0 to 12.0%.
S:0.1〜0.4%
SはMnS等の硫化物系介在物となって材料の被削性を向上させる。本発明の最も特徴とするのは、S添加により被削性が改善されることである。Sが多すぎると機械的性質が劣化するので、0.1〜0.4%が好ましい。
S: 0.1 to 0.4%
S becomes sulfide inclusions such as MnS and improves the machinability of the material. The most characteristic feature of the present invention is that machinability is improved by the addition of S. If the amount of S is too much, the mechanical properties deteriorate, so 0.1 to 0.4% is preferable.
W <0.2%
Co≦5.0%
Nb≦10.0%
Al≦3.0%
W、Co、Nb、Alについては、耐溶損性、耐摩耗性、耐酸化性等の目的に応じて適宜配合すればよい。これらは単独で配合しても効果はあるが、複数組み合わせて配合することにより、より優れた効果を得ることができる。
W <0.2%
Co ≦ 5.0%
Nb ≦ 10.0%
Al ≦ 3.0%
About W, Co, Nb, and Al, what is necessary is just to mix | blend suitably according to the objectives, such as fusing resistance, abrasion resistance, and oxidation resistance. Even if these are blended singly, there is an effect, but a more excellent effect can be obtained by blending them in combination.
また、本発明の非鉄溶融金属用合金は、その熱伝導率が従来のSKD61鋼と比べ11〜12W/m・Kと小さいため、例えば本発明の合金を保温性が要求されるダイカストスリーブのライナ材に適用した場合、ライナ材からダイカストスリーブの外筒への熱の移動がほとんど無く、保温性が良好なものとなる。 In addition, the non-ferrous molten metal alloy of the present invention has a thermal conductivity as small as 11-12 W / m · K as compared to the conventional SKD61 steel, so that the alloy of the present invention is a die-cast sleeve liner that requires heat retention, for example. When applied to the material, there is almost no heat transfer from the liner material to the outer cylinder of the die-cast sleeve, and the heat retention is good.
本発明の非鉄溶融金属用合金は、アルミニウム合金、亜鉛合金、マグネシウム合金等の非鉄溶融金属と接触して使用される部材に好適であり、具体的にはダイカストスリーブ、ガス吹込み管、中子、ストーク、湯口部材、ラドル、プランジャチップ、ヒーターチューブ、熱電対保護管、脱ガス用ロータ、鋳型、堰入れ子、ランスパイプ等の各種部材が挙げられる。 The non-ferrous molten metal alloy of the present invention is suitable for a member used in contact with a non-ferrous molten metal such as an aluminum alloy, a zinc alloy, and a magnesium alloy. Specifically, a die-cast sleeve, a gas blowing pipe, a core , Stalk, gate member, ladle, plunger tip, heater tube, thermocouple protection tube, degassing rotor, mold, weir insert, lance pipe, and other various members.
また、本発明の非鉄溶融金属用合金を用いた部材は、静置鋳造法、遠心鋳造法、肉盛法、焼結法など、公知の方法で製造できる。さらに、本発明の非鉄溶融金属用合金は、単体で用いるのみならず鋼等の基材の表面に被覆して用いても良い。 Moreover, the member using the alloy for nonferrous molten metal of this invention can be manufactured by well-known methods, such as a stationary casting method, the centrifugal casting method, the overlaying method, and the sintering method. Furthermore, the nonferrous molten metal alloy of the present invention may be used not only by itself but also by coating the surface of a substrate such as steel.
供試材として、表1に示すものを用意した。供試材No.1〜No.3は本発明の非鉄溶融金属用合金材、供試材No.4は比較材、供試材No.5はSKD61鋼相当材である。 The test materials shown in Table 1 were prepared. Specimen No. 1-No. 3 is an alloy material for non-ferrous molten metal of the present invention, specimen No. No. 4 is a comparative material, sample material No. 5 is a SKD61 steel equivalent material.
これらの供試材No.1〜5より、それぞれ直径10mm、長さ100mmの丸棒形状の試験片を採取し、耐溶損性試験用の試験片とした。これらの試験片を用いて、アルミニウム合金溶湯に対する回転溶損試験を行い、耐溶損性を調べた。回転溶損実験は各試験片を先端から50mm、720℃に保持したアルミニウム合金(ADC12)溶湯へ浸漬させ、前記試験片を100rpmで回転させて、5時間経過後に溶損で減少した溶損率(重量減%)を測定した。 These test materials No. From 1 to 5, round bar-shaped test pieces each having a diameter of 10 mm and a length of 100 mm were collected and used as test pieces for a resistance test against melting damage. Using these test pieces, a rotational erosion test for molten aluminum alloy was performed to examine the erosion resistance. In the rotational melting experiment, each test piece was immersed in a molten aluminum alloy (ADC12) held at 720 ° C. 50 mm from the tip, and the test piece was rotated at 100 rpm. (% Weight loss) was measured.
前記供試材No.1〜5より、直径10×長さ15mmの試験片を採取し、耐摩耗試験に供した。耐摩耗試験はアブレイシブ摩耗試験を適用し摩耗減量を測定した。アブレイシブ摩耗試験は、前記各試験片を150rpmで回転するSiC砥粒サンドペーパー(#400)に90Nの圧力で3分間押圧することで行った。評価は試験後の重量減を測定して行った。 The test material No. From 1 to 5, test pieces having a diameter of 10 × length of 15 mm were collected and subjected to an abrasion resistance test. In the wear resistance test, an abrasive wear test was applied to measure wear loss. The abrasive wear test was performed by pressing each test piece against a SiC abrasive sandpaper (# 400) rotating at 150 rpm at a pressure of 90 N for 3 minutes. Evaluation was performed by measuring weight loss after the test.
また、前記供試材No.1〜5より、直径10×長さ10mmの試験片を採取し、耐酸化試験に供した。耐酸化試験は800℃大気雰囲気炉中にて48時間保持後の酸化増量を測定した。 In addition, the test material No. From 1 to 5, test pieces having a diameter of 10 × length of 10 mm were collected and subjected to an oxidation resistance test. In the oxidation resistance test, the increase in oxidation after being held in an air atmosphere furnace at 800 ° C. for 48 hours was measured.
さらに、前記供試材No.1〜5から、直径10mm×厚さ3mmの試験片を採取し、の熱伝導率測定試験に供した。熱伝導率はレーザーフラッシュ法JIS R1611に準拠して常温での比熱および熱拡散率を測定し熱伝導率を算出した。 Further, the test material No. From 1 to 5, test pieces having a diameter of 10 mm and a thickness of 3 mm were collected and subjected to a thermal conductivity measurement test. The thermal conductivity was calculated by measuring the specific heat and thermal diffusivity at room temperature in accordance with the laser flash method JIS R1611.
次に、本発明材および比較材の試験片を加工し、100mm×200mm×100mmHの大きさとし、被削性試験に供した。被削性試験はハイス製の直径10mmの二枚刃エンドミルを使用し、回転数800rpm、送り100mm/min、切込み1.5mmW×10mmH、切削距離10mの条件で試料を加工し、切削工具の摩耗量を測定した。 Next, the test piece of the present invention material and the comparative material were processed to a size of 100 mm × 200 mm × 100 mmH, and subjected to a machinability test. The machinability test uses a high-speed 10 mm diameter two-flute end mill, samples are processed under the conditions of a rotation speed of 800 rpm, a feed of 100 mm / min, a cutting depth of 1.5 mmW × 10 mmH, and a cutting distance of 10 m, and wear of the cutting tool. The amount was measured.
前記の試験結果を表2に示す。表2より本発明材であるNo.1〜3は、従来材であるNo.5に比べ、耐溶損性、耐摩耗性、耐酸化性、保温性の各性能に関して格段に優れることが判った。また、Sの効果により、本発明材は比較材No.4に比べ被削性が2倍以上向上し、従来材No.5と同等の被削性を達成できた。 The test results are shown in Table 2. From Table 2, No. which is the material of the present invention. 1-3 are No. which is a conventional material. Compared to 5, it was found that the melt resistance, wear resistance, oxidation resistance, and heat retention performances were significantly superior. Further, due to the effect of S, the material of the present invention is comparative material No. Compared with conventional material No. 4, machinability improved more than twice. A machinability equivalent to 5 was achieved.
本発明の非鉄溶融金属用合金によれば、耐溶損性、耐摩耗性、耐酸化性および保温性に優れるので、ダイカストスリーブ、ガス吹込み管、中子、ストーク、湯口部材、ラドル等をはじめ、非鉄溶融金属と接触して使用される各種の非鉄溶融金属用合金に用いる部材が長期間安定して使用でき、生産効率を高めることができる。さらに、被削性にも優れるため、安価に製造およびメンテナンスができる。 According to the non-ferrous molten metal alloy of the present invention, since it is excellent in resistance to erosion, wear resistance, oxidation resistance and heat retention, die casting sleeve, gas blowing pipe, core, stalk, gate member, ladle, etc. The members used for various nonferrous molten metal alloys used in contact with the nonferrous molten metal can be used stably for a long period of time, and the production efficiency can be increased. Furthermore, since it is excellent in machinability, it can be manufactured and maintained at low cost.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005077474A JP2006257508A (en) | 2005-03-17 | 2005-03-17 | Alloy for nonferrous molten metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005077474A JP2006257508A (en) | 2005-03-17 | 2005-03-17 | Alloy for nonferrous molten metal |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006257508A true JP2006257508A (en) | 2006-09-28 |
Family
ID=37097087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005077474A Pending JP2006257508A (en) | 2005-03-17 | 2005-03-17 | Alloy for nonferrous molten metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006257508A (en) |
-
2005
- 2005-03-17 JP JP2005077474A patent/JP2006257508A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3918787B2 (en) | Low carbon free cutting steel | |
JP2007197784A (en) | Alloy steel | |
CN109773368B (en) | Repair welding material for mold | |
CN101688274B (en) | Low carbon sulfur free cutting steel | |
JP4424503B2 (en) | Steel bar and wire rod | |
CN101400814A (en) | Low-carbon resulfurized free-cutting steel material | |
JP3581028B2 (en) | Hot work tool steel and high temperature members made of the hot work tool steel | |
JP4561527B2 (en) | Castings with excellent seizure resistance and wear resistance | |
KR20210134010A (en) | Composite roll for centrifugal casting and its manufacturing method | |
JP2005336553A (en) | Hot tool steel | |
JP2007063576A (en) | Alloy for nonferrous molten metal | |
JP6702266B2 (en) | Method for manufacturing composite roll for hot rolling | |
JP6292362B1 (en) | Roll outer layer material for hot rolling and composite roll for hot rolling | |
JP2006257507A (en) | Alloy for nonferrous molten metal | |
JP5516545B2 (en) | Centrifugal cast roll outer layer material for hot rolling with excellent fatigue resistance and composite roll made of centrifugal cast for hot rolling | |
JP2006291285A (en) | Erosion-resistant member for nonferrous molten metal | |
JP2006257508A (en) | Alloy for nonferrous molten metal | |
JP5779749B2 (en) | Cast iron material manufacturing method, cast iron material and die casting machine sleeve | |
JP2006291331A (en) | Erosion-resistant member for nonferrous molten metal | |
JP2006097053A (en) | Alloy for nonferrous molten metal | |
JPS5842743A (en) | Cast ni alloy for guide shoe of inclined hot rolling mill for manufacturing seamless steel pipe | |
JP2006097052A (en) | Alloy for nonferrous molten metal | |
JP2004291079A (en) | Erosion resistant member for non-ferrous molten metal | |
JP2006131941A (en) | Alloy member for nonferrous molten metal | |
JP2006131940A (en) | Alloy member for nonferrous molten metal |