[go: up one dir, main page]

JP2006256517A - 車両用空力装置 - Google Patents

車両用空力装置 Download PDF

Info

Publication number
JP2006256517A
JP2006256517A JP2005078113A JP2005078113A JP2006256517A JP 2006256517 A JP2006256517 A JP 2006256517A JP 2005078113 A JP2005078113 A JP 2005078113A JP 2005078113 A JP2005078113 A JP 2005078113A JP 2006256517 A JP2006256517 A JP 2006256517A
Authority
JP
Japan
Prior art keywords
vehicle
aerodynamic
steering
wheel
cover member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005078113A
Other languages
English (en)
Inventor
Kazuhiro Maeda
和宏 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005078113A priority Critical patent/JP2006256517A/ja
Publication of JP2006256517A publication Critical patent/JP2006256517A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

【課題】 空気のホイールハウスに対する出入りをコントロールすることができる車両用空力装置を得る。
【解決手段】 車両用空力装置10は、ホイールハウスHに配設された車輪Wが、フロントサスペンション20によって車体Bに対し接離可能に支持された自動車S車両に適用される。この車両用空力装置10を構成するカバー部材としてのフェンダライナ34は、フロントサスペンション20における車輪W側に取り付けられて、ホイールハウスH内で車輪Wを上側から覆っており、車輪Wの車体Bに対する接離方向に沿って該車体Bに対し接離可能である。
【選択図】 図1

Description

本発明は、ホイールハウス内の空気流をコントロールするための車両用空力装置に関する。
車輪とホイールアーチとの間に進退可能とされた可動のホイールアーチフェアリングを設け、高速走行時にはホイールアーチフェアリングをホイールアーチ下方に突出した使用状態としてホイールアーチ内への空気の巻き込みを抑え、オフロード走行時にはホイールアーチフェアリングをホイールアーチ内に格納する格納状態として車輪の大きなストロークを許容する技術が知られている(例えば、特許文献1参照)。
特開平8−318876号公報 特開平3−67909号公報 実開昭64−34384号公報
しかしながら、上記の如き従来の技術では、ホイールアーチフェアリングは単にホイールハウス側方の空気出入口を開閉する構造であるため、ホイールアーチフェアリングの位置に拘わらず車輪の車体に対する接離に伴ってホイールハウス内の空間の体積変化が生じてしまうので、該ホイールハウスに出入りする空気流(の変化)を抑制することが困難である。このため、例えば車両走行に伴う空気流に乱れが生じて空気抵抗を増大する原因となる。
本発明は、上記事実を考慮して、空気のホイールハウスに対する出入りをコントロールすることができる車両用空力装置を得ることが目的である。
上記目的を達成するために請求項1記載の発明に係る車両用空力装置は、ホイールハウスに配設された車輪が、懸架装置によって車体に対し接離可能に支持された車両に適用される車両用空力装置であって、前記車輪の前記車体に対する接離方向に沿って該車体に対し接離可能に支持され、前記ホイールハウス内で前記車輪を上側から覆うカバー部材を備えている。
請求項1記載の車両用空力装置では、ホイールハウス内において、懸架装置によって車体に対し接離(上下方向に変位)可能に支持された車輪は、カバー部材によって上側から覆われている。カバー部材は、車体に対し接離(上下方向に変位)可能であるため、車輪と車体との距離に応じて車体に対し接離し、車輪上部との間隔(空間の大きさ)すなわちホイールハウスの空気流を適切に調節(コントロール)することが可能である。
このように、請求項1記載の車両用空力装置では、空気のホイールハウスに対する出入りをコントロールすることができる。
請求項2記載の発明に係る車両用空力装置は、請求項1記載の車両用空力装置において、前記カバー部材は、前記ホイールハウスを経由した車体への異物の侵入を抑制するためのフェンダライナを兼ねる。
請求項2記載の車両用空力装置では、カバー部材がフェンダライナを兼ねるため、部品点数や質量の増加が防止又は抑制される。
請求項3記載の発明に係る車両用空力装置は、請求項1又は請求項2記載の車両用空力装置において、前記カバー部材は、前記懸架装置における前記車輪と共に前記車体に対し接離する側に固定されている。
請求項3記載の車両用空力装置では、懸架装置の車輪取付側に固定されたカバー部材は、車輪と共に(一体的に)車体に対し接離する。このため、車輪上部とカバー部材との間は常に略一定の間隔に保持されており、ホイールハウスに出入する空気流の変化を抑制することができる。これにより、空気抵抗を低減することができる。
請求項4記載の発明に係る車両用空力装置は、請求項1又は請求項2記載の車両用空力装置において、前記カバー部材を前記車体に対し接離する方向に駆動するための駆動装置と、車両の走行状態に応じた信号を出力する走行状態検出装置と、前記走行状態検出装置の出力信号に基づいて前記駆動装置を駆動して、前記カバー部材を前記車体に対し接離させる制御装置と、をさらに備えている。
請求項4記載の車両用空力装置では、制御装置が走行状態検出装置の検出結果に基づいて駆動装置を駆動することで、カバー部材を車体に対し接離する。このため、車両の走行状態に応じた適切な位置にカバー部材を位置させることが可能になる。
請求項5記載の発明に係る車両用空力装置は、請求項4記載の車両用空力装置において、前記走行状態検出装置は、前記車輪の車体に対する接離量に応じた信号を出力する車高センサを含み、前記制御装置は、前記車高センサの出力信号に基づいて、前記カバー部材が前記車輪との間隔を所定範囲に保つように前記駆動装置を駆動する。
請求項5記載の車両用空力装置では、車高センサの出力信号に基づいて制御装置に制御された駆動装置は、車輪上部とカバー部材との間隔が常に所定範囲(例えば、略一定の間隔)に保持されるように、換言すればカバー部材が車輪に追従するように、カバー部材を駆動する。このため、車輪の車体に対する接離に伴ってホイールハウスへの空気の流入、ホイールハウスからの空気流出が抑制される。これにより、空気抵抗を低減することができる。
請求項6記載の発明に係る車両用空力装置は、請求項4又は請求項5記載の車両用空力装置において、前記走行状態検出装置は、車両の操舵状態に応じた信号を出力する操舵状態検出装置を含み、前記制御装置は、前記操舵状態検出装置の出力信号に基づいて、操舵により転舵される左右の車輪を覆う各カバー部材が独立して前記車体に対し接離するように前記駆動装置を制御する。
請求項6記載の車両用空力装置では、制御装置は、操舵状態検出装置の出力信号に基づいて、操舵によって転舵される左右の車輪を覆うカバー部材の車体に対する位置(駆動装置)を独立して制御する。すなわち、操舵時に内外輪のカバー部材を独立して制御する。このため、操舵時の車両状態(車体の姿勢等)に応じた空気力を生じさせることが可能になる。
請求項7記載の発明に係る車両用空力装置は、請求項6記載の車両用空力装置において、前記制御装置は、前記操舵状態検出装置の出力信号に基づいて操舵を検知した場合に、内輪が外輪よりも車体に対し離間する方向のローリングを生じさせる方向の空気力が車体に作用するように、前記駆動装置を制御する。
請求項7記載の車両用空力装置では、制御装置は、操舵を検知すると駆動装置を制御し、カバー部材の位置を変化させることで生じる空気力によって積極的にローリングを生じさせる。これにより、操舵から短時間で外輪に十分な荷重が作用する状態になり、操舵に対する旋回応答性が向上する。
請求項8記載の発明に係る車両用空力装置は、請求項6又は請求項7記載の車両用空力装置において、前記制御装置は、前記操舵状態検出装置の出力信号に基づいて操舵を検知した場合に、内輪側の前記カバー部材が基準位置に位置する状態よりも該内輪から離間する状況が生じるように前記駆動装置を制御する。
請求項8記載の車両用空力装置では、制御装置は、操舵を検知すると駆動装置を制御し、内輪のカバー部材を該内輪から離間させる。すると、この内輪とカバー部材との間(ホイールハウス)に流入、流出する空気が増えて、車体には内輪側を持ち上げる力すなわち車体を旋回方向に対応してローリングさせる力が作用する。また、内輪とカバー部材との間から流出する空気流が車体内輪側に負圧を生成し、車体には内輪側に引張られる力が作用する。以上により、車体の旋回性能が向上する。
請求項9記載の発明に係る車両用空力装置は、請求項6乃至請求項8の何れか1項記載の車両用空力装置において、前記制御装置は、前記操舵状態検出装置の出力信号に基づいて操舵を検知した場合に、外輪側の前記カバー部材が基準位置に位置する状態よりも該外輪に近接する状況が生じるように前記駆動装置を制御する。
請求項9記載の車両用空力装置では、制御装置は、操舵を検知すると駆動装置を制御し、外輪のカバー部材を該外輪に近接させる。すると、この外輪とカバー部材との間(ホイールハウス)に流入、流出する空気が減少し、車体に作用する外輪側を持ち上げる力すなわち車体を旋回方向に対応してローリングさせる力が相対的に減少する。また、外輪とカバー部材との間から入出する空気流が生成する車体外輪側の負圧が減少するため、車体に作用する外輪側に引張られる力が相対的に減少する。以上により、車体の旋回性能が向上する。特に、請求項8に従属する構成では、旋回性能が一層向上する。
請求項10記載の発明に係る車両用空力装置は、請求項6乃至請求項9の何れか1項記載の車両用空力装置において、前記操舵状態検出装置は、操舵角に応じた信号を出力する操舵角センサである。
請求項10記載の車両用空力装置では、制御装置は、操舵角センサの出力信号に基づいて駆動装置を制御する。このため、カバー部材を適切に車体に対し接離させることができる。
請求項11記載の発明に係る車両用空力装置は、請求項10記載の車両用空力装置において、前記制御装置は、前記操舵角センサの出力信号に基づいて車輪が中立位置に対する一方側に転舵されている状態を検知している場合に、内輪側の前記カバー部材が該内輪から離間するように前記駆動装置を制御する。
請求項11記載の車両用空力装置では、操舵角センサの出力信号に基づいて車輪が中立位置に対する一方側に転舵されている状態を検知している場合(期間)に、すなわち中立位置に対し一方側に操舵されている状態が維持されている期間には、制御装置は、駆動装置を制御して、内輪側のカバー部材を該内輪から離間した状態に維持する。これにより、中立位置に対し一方側への旋回期間中に内輪とカバー部材との間に流入、流出する空気が増え、旋回性能が向上する。
請求項12記載の発明に係る車両用空力装置は、請求項10又は請求項11記載の車両用空力装置において、前記制御装置は、前記操舵角センサの出力信号に基づいて車輪が中立位置に対する一方側に転舵されている状態を検知している場合に、外輪側の前記カバー部材が該外輪に近接するように前記駆動装置を制御する。
請求項12記載の車両用空力装置では、操舵角センサの出力信号に基づいて車輪が中立位置に対する一方側に転舵されている状態を検知している場合に、すなわち中立位置に対し一方側に操舵されている状態が維持されている期間中には、制御装置は、駆動装置を制御して、外輪側のカバー部材を該外輪に近接した状態に維持する。これにより、中立位置に対し一方側への旋回期間中に外輪とカバー部材との間に流入、流出する空気が減少し、旋回性能が向上する。特に、請求項11に従属する構成では、旋回性能が一層向上する。
請求項13記載の発明に係る車両用空力装置は、請求項6乃至請求項9の何れか1項記載の車両用空力装置において、前記操舵状態検出装置は、操舵トルクに応じた信号を出力するトルクセンサである。
請求項13記載の車両用空力装置では、操舵状態検出装置が操舵トルク検出するトルクセンサであるため、操舵に伴う信号の立ち上がりが早く、操舵角センサを用いる構成よりも操舵検知の応答性が向上する。このため、操舵検知後の制御を含む応答性も向上する。
請求項14記載の発明に係る車両用空力装置は、請求項13記載の車両用空力装置において、前記制御装置は、前記トルクセンサの出力信号に基づいて操舵トルク作用方向が中立位置に対する操舵方向に一致していることを検知している場合に、内輪側の前記カバー部材が該内輪から離間するように前記駆動装置を制御する。
請求項14記載の車両用空力装置では、操舵トルクの作用方向が転舵方向に一致している場合(期間)に、制御装置は、駆動装置を制御して、内輪側のカバー部材を該内輪から離間した状態に維持する。これにより、中立位置に対し一方側への旋回期間中に内輪とカバー部材との間に流入、流出する空気が増え、旋回性能が向上する。
請求項15記載の発明に係る車両用空力装置は、請求項14記載の車両用空力装置において、前記制御装置は、前記トルクセンサの出力信号に基づいて操舵トルク作用方向が中立位置に対する転舵方向とは逆であることを検知している場合に、内輪側の前記カバー部材が該内輪に近接するように前記駆動装置を制御する。
請求項15記載の車両用空力装置では、例えば中立位置に対する一方側への操舵状態から中立位置へ戻す場合、転舵方向は中立位置に対する一方側であるが操舵トルクは逆向きになる。この逆向きのトルクが作用している場合(期間)に、制御装置は、内輪側のカバー部材を該内輪に近接させる。これにより、中立位置に復帰した後のローリング(オーバーシュート)が抑制され、スムースな運転が可能になる。
請求項16記載の発明に係る車両用空力装置は、請求項13乃至請求項15の何れか1項記載の車両用空力装置において、前記制御装置は、前記トルクセンサの出力信号に基づいて操舵トルク作用方向が中立位置に対する転舵方向に一致していることを検知している場合に、外輪側の前記カバー部材が該外輪に近接するように前記駆動装置を制御する。
請求項16記載の車両用空力装置では、操舵トルクの作用方向が操舵方向に一致している場合(期間)に、制御装置は、駆動装置を制御して、外輪側のカバー部材を該外輪に近接した状態に維持する。これにより、中立位置に対し一方側への旋回期間中に亘り、外輪とカバー部材との間に流入、流出する空気が減少し、旋回性能が向上する。特に、請求項14、15に従属する構成では、旋回性能が一層向上する。
請求項17記載の発明に係る車両用空力装置は、請求項16記載の車両用空力装置において、前記制御装置は、前記トルクセンサの出力信号に基づいて操舵トルク作用方向が中立位置に対する転舵方向とは逆であることを検知している場合に、外輪側の前記カバー部材が該外輪から離間するように前記駆動装置を制御する。
請求項17記載の車両用空力装置では、例えば中立位置に対する一方側への操舵状態から中立位置へ戻す場合、転舵方向は中立位置に対する一方側であるが操舵トルクは逆向きになる。この逆向きのトルクが作用している場合(期間)に、制御装置は、外輪側のカバー部材を該外輪から離間させる。これにより、中立位置に復帰した後のローリング(オーバーシュート)が抑制され、スムースな運転が可能になる。
請求項18記載の発明に係る車両用空力装置は、請求項13記載の車両用空力装置において、前記制御装置は、前記トルクセンサの出力信号の時間変化率に基づいて操舵トルクの絶対値が増加していることを検知している場合に、内輪側の前記カバー部材が該内輪から離間するように前記駆動装置を制御する。
請求項18記載の車両用空力装置では、トルクセンサの出力信号の時間変化率に基づいて操舵トルクの絶対値が増加していることを検知している場合(期間)に、換言すれば、操舵(転舵)角が増加している期間中、制御装置は、駆動装置を制御して、内輪側のカバー部材を該内輪から離間した状態に維持する。これにより、中立位置に対し一方側への旋回期間中に内輪とカバー部材との間に流入、流出する空気が増え、旋回性能が向上する。
請求項19記載の発明に係る車両用空力装置は、請求項18記載の車両用空力装置において、前記制御装置は、前記トルクセンサの出力信号の時間変化率に基づいて操舵トルクの絶対値が減少していることを検知している場合に、内輪側の前記カバー部材が該内輪に近接するように前記駆動装置を制御する。
請求項19記載の車両用空力装置では、トルクセンサの出力信号の時間変化率に基づいて操舵トルクの絶対値が減少していることを検知している場合(期間)に、すなわち操舵角が減少している(操舵方向が中立位置側である)期間中、制御装置は、駆動装置を制御して、内輪側のカバー部材を該内輪に近接した状態に維持する。これにより、最大の操舵角に至った後や中立位置に復帰した後のローリング(オーバーシュート)が抑制され、スムースな運転が可能になる。
請求項20記載の発明に係る車両用空力装置は、請求項13、請求項18、又は請求項19記載の車両用空力装置において、前記制御装置は、前記トルクセンサの出力信号の時間変化率に基づいて操舵トルクの絶対値が増加していることを検知している場合に、外輪側の前記カバー部材が該外輪に近接するように前記駆動装置を制御する。
請求項20記載の車両用空力装置では、トルクセンサの出力信号の時間変化率に基づいて操舵トルクの絶対値が増加していることを検知している場合(期間)に、換言すれば、操舵(転舵)角が増加している期間中、制御装置は、駆動装置を制御して、外輪側のカバー部材を該外輪に近接した状態に維持する。これにより、中立位置に対し一方側への旋回期間中に外輪とカバー部材との間に流入、流出する空気が減少し、旋回性能が向上する。特に、請求項18、19に従属する構成では、旋回性能が一層向上する。
請求項21記載の発明に係る車両用空力装置は、請求項20記載の車両用空力装置において、前記制御装置は、前記トルクセンサの出力信号の時間変化率に基づいて操舵トルクの絶対値が減少していることを検知している場合に、外輪側の前記カバー部材が該外輪から離間するように前記駆動装置を制御する。
請求項21記載の車両用空力装置では、トルクセンサの出力信号の時間変化率に基づいて操舵トルクの絶対値が減少していることを検知している場合(期間)に、すなわち操舵角が減少している(操舵方向が中立位置側である)期間中、制御装置は、駆動装置を制御して、外輪側のカバー部材を該外輪から離間させる。これにより、最大の操舵角に至った後や中立位置に復帰した後のローリング(オーバーシュート)が抑制され、スムースな運転が可能になる。
請求項22記載の発明に係る車両用空力装置は、請求項6乃至請求項21の何れか1項記載の車両用空力装置において、前記走行状態検出装置は、車体のヨー運動に応じた信号又はヨー運動の時間変化に応じた信号を出力するヨー運動検出装置を含み、前記制御装置は、ヨー運動検出装置の出力信号に基づいてヨー運動の変化率が所定値よりも大である場合に、内輪が外輪よりも車体に対し離間する方向のローリングを抑制する方向の空気力が車体に作用するように、前記駆動装置を制御する。
請求項22記載の車両用空力装置では、ヨー運動検出装置の出力信号に基づいて検知した車体ヨー運動の変化率(ヨーレート)が所定値よりも大である場合、制御装置は、駆動装置を制御して、旋回に伴って生じるローリング(内輪が外輪よりも車体に対し離間する方向のローリング)を抑制する空気流を生じさせる。これにより、車体の姿勢が安定し、車体ヨー運動が抑制される。
請求項23記載の発明に係る車両用空力装置は、請求項22記載の車両用空力装置において、前記制御装置は、ヨー運動検出装置の出力信号に基づいてヨー運動の変化率が所定値よりも大である場合に、請求項7乃至請求項21の何れか1項記載の制御に優先して、内輪側の前記カバー部材が基準位置に位置する状態よりも該内輪に近接するように、又は外輪側の前記カバー部材が基準位置に位置する状態よりも該外輪から離間するように、前記駆動装置を制御する。
請求項23記載の車両用空力装置では、ヨーレートが所定値よりも大である場合には、操舵による旋回性を向上するための制御よりも車体を安定させるための制御を優先する。
すなわち、ヨーレートが所定値よりも大である場合に制御装置は、駆動装置を制御して、内輪側のカバー部材を車体から離間させるか、外輪側のカバー部材を車体に近接させるか、又は内輪側のカバー部材を車体から離間させると共に外輪側のカバー部材を車体に近接させる。これにより、例えば車輪の接地性能を超えた車体の姿勢変化が抑制される。
請求項24記載の発明に係る車両用空力装置は、請求項4乃至請求項23の何れか1項記載の車両用空力装置において、前記走行状態検出装置は、車両に作用する横風の方向に応じた信号を出力する横風検出装置を含み、前記制御装置は、前記横風検出装置の出力信号に基づいて、横風の風上側において前記カバー部材が基準位置に位置する状態よりも前記車輪から離間するように、又は横風の風下側において前記カバー部材が基準位置に位置する状態よりも前記車輪に近接するように、前記駆動装置を制御する。
請求項24記載の車両用空力装置では、例えば直進状態で、横風検出装置の出力信号に基づいて横風を検知すると、制御装置は、駆動装置を制御して、横風の風上側のカバー部材を車輪から離間させるか、横風の風下側のカバー部材を車輪に近接させるか、又は風上側のカバー部材を車輪から離間させると共に風下側のカバー部材を車輪に近接させる。これにより、車体には走行に伴って横風による横力に抗する力が作用する。また、この横力による車体のローリングに抗する力、すなわち風上側の持ち上げを抑え又は風下側の押し下げを抑える力が作用する。なお、横風が所定の閾値よりも強い場合にのみ上記制御を行うようにしても良い。また、請求項7乃至請求項23の何れか1項に従属する構成では、車両旋回時には、横風に抗するための制御よりも該請求項の旋回性能又は車対安定性の制御を優先させることが好ましい。
請求項25記載の発明に係る車両用空力装置は、請求項24記載の車両用空力装置において、前記横風検出装置は、車体前部において車幅方向中央部を挟んで互いに反対側に配置された一対の圧力センサを含み、前記制御装置は、前記一対の圧力センサの出力信号差に基づいて横風の作用方向を検知する。
請求項25記載の車両用空力装置では、一対の圧力センサの出力信号の差から横風の有無、強さを検知することができる。
以上説明したように本発明に係る車両用空力装置は、空気のホイールハウスに対する出入りをコントロールすることができるという優れた効果を有する。
本発明の第1の実施形態に係る車両用空力装置10について、図1乃至図5に基づいて説明する。なお、各図に適宜記す矢印FR、矢印RE、矢印UP、矢印LO、矢印IN、及び矢印OUTは、それぞれ車両用空力装置10が適用された自動車Sの前方向(進行方向)、後方向、上方向、下方向、車幅方向内側、及び車幅方向外側を示しており、以下単に上下前後及び車幅方向の内外を示す場合は上記各矢印方向に対応している。
図1には車両用空力装置10が適用された自動車Sの一部が車幅方向及び上下方向に沿う断面図にて示されている。また、図2(A)には車両用空力装置10の正面図が、図2(B)には車両用空力装置10の側面図が、図2(C)には車両用空力装置10の平面図がそれぞれ模式的に示されている。なお、この実施形態では、車両用空力装置10は、左右の前輪Wにぞれぞれ適用されるが、左右の車両用空力装置10は基本的に対称に構成されるので、図1及び図2では車幅方向一方側の車両用空力装置10のみを図示しており、以下の説明においても一方の車両用空力装置10について説明することとする。
図1及び図2に示される如く、自動車Sは、車体Bを構成するフロントフェンダパネル12を備えており、フロントフェンダパネル12には前輪Wの転舵を許容するために側面視円弧状のホイールアーチ12Aが形成されている。このフロントフェンダパネル12の内側にはホイールエプロン14が結合(図示省略)されており、ホイールエプロン14にはホイールハウスインナ16及びサスペンションタワー18が形成されている。ホイールハウスインナ16は、その外側に前輪Wが配設されるホイールハウスHを形成している。前輪Wは、サスペンションタワー18に支持された懸架装置としてのフロントサスペンション20によって、車体Bに対し上下方向の相対変位(接離)可能に支持されている。
具体的には、フロントサスペンション20は、上下方向に長手とされたロッド22Aの上端がサスペンションタワー18の頂部18Aに固定されると共にシリンダ22Bの下端がアーム部材24を介して前輪Wに連結されたショックアブソーバ22と、ロッド22Aの上端部に固定された上ばね受け26とシリンダ22Bの上端部に固定された下ばね受け28との間に圧縮状態で配設された圧縮コイルスプリング30とを有し、ストラット式のサスペンションとして構成とされている。
アーム部材24は、前輪Wの転舵を許容するようにシリンダ22Bと前輪Wとを連結している。また、前輪Wには、ステアリング装置を構成するタイロッド32が連結されており、このタイロッド32が図示しないステアリングホイールの操作(操舵)によって矢印OUT方向に移動すると前輪Wが外向きに転舵され、タイロッド32が矢印IN方向に移動すると前輪Wが内向きに転舵されるようになっている。
そして、車両用空力装置10は、カバー部材としてのフェンダライナ34を備えて構成されている。フェンダライナ34は、薄肉の樹脂材にて側面視で下方に開口する略コ字状に形成されており(図2(B)参照)、ホイールハウスHの上部に位置して前輪Wを上側から覆う構成とされている(図2(C)参照)。これにより、車体Bでは、泥や小石などがホイールエプロン14等に当たることが防止されるようになっている。
このフェンダライナ34は、その前後方向の略中央部の内側部分でフロントサスペンション20を貫通させた状態で、下ばね受け28に固定されている。したがって、フェンダライナ34は、フロントサスペンション20におけるシリンダ22B(所謂ばね下部)に固定されており、図2(A)及び図2(B)に示される如く、前輪Wと共に車体Bに対し上下方向に接離することができるようになっている。なお、図2(A)及び図2(B)では、前輪W、フェンダライナ34の基準位置(定常走行状態での位置)を実線にて示し、前輪W、フェンダライナ34が基準位置から車体B側に移動した状態を想像線にて示している。
この実施形態では、図2(B)に示される如く、フェンダライナ34の前後端は、ホイールハウスインナ16における前輪Wの前後に位置する立壁部16A、16Bの下部に結合されている。このため、フェンダライナ34は、前輪Wが車体Bに近接すると、図2(B)に想像線にて示される如く、前後方向中央部が車体Bに近接するように側面視略円弧状に変形する構成とされている。一方、フェンダライナ34は、前輪Wが車体Bから離間すると、全体として潰れるように変形して車体Bから離間するようになっている(図3(C)参照)。
以上説明したようにフェンダライナ34が前輪Wに追従して上下動するため、車両用空力装置10(自動車S)では、図2(A)に示す基準位置における前輪Wとフェンダライナ34(の前後方向中央部)との上下方向に沿う間隔dが、固定式のフェンダライナを備えた自動車における該フェンダライナと前輪Wとの間隔よりも小さく設定されている。
次に、第1の実施形態の作用を説明する。
上記構成の車両用空力装置10が適用された自動車Sでは、走行に伴って前輪Wが車体Bに対し接離すると、フェンダライナ34が前輪Wの動きに追従して車体Bに対し接離する。このため、ホイールハウスH内では、車体Bに対する前輪Wの位置(車体Bの路面Rに対する姿勢)に依らず、前輪Wとフェンダライナ34との間の空間体積(隙間の高さ)がほぼ一定に保たれ、走行に伴ってホイールハウスHに対し出入する空気量が増減することが抑制される。
以下、図27に示す第1比較例、図28に示す第2比較例と比較しつつ、より具体的に説明する。なお、各比較例における上記実施形態と同様の構成要素には同一の符号を付して説明を省略する。図27に示す如く、第1比較例は、固定式のフェンダライナ200を備えており、図27(A)に示す基準位置(定常走行状態)でのフェンダライナ200と前輪Wとの間隔d1は、フェンダライナ34と前輪Wとの基準位置での間隔dよりも大である。図28に示す如く、第2比較例は、第1比較例の構成に加えて、フロントフェンダパネル12に沿って可動するホイールアーチフェアリング202を備えている。ホイールアーチフェアリング202は、側面視で前輪Wの外縁との隙間を略一定にするように制御されている(図28(B)は、フロントフェンダパネル12内に格納された状態である)。
図27(A)に示す如く、第1比較例の定常走行状態では、フェンダライナ200と前輪Wとの間隔d1すなわちホイールハウスHの空間が比較的大きいため、ホイールハウスHへの空気流入量(矢印A参照)、ホイールハウスHからの空気吹出量が共に大きい。ホイールハウスHの空気は、主にホイールアーチ12Aを経由して車体側方に吹き出す(矢印B参照)。第1比較例では、これらの空気流によって走行する車体周りの空気流に乱れが生じ、空気抵抗が大きい。
また、第1比較例では、図27(B)に示す如く前輪Wが車体Bに近接すると、ホイールハウスHの空間が縮小し、該ホイールハウスHからの空気吹出量が増大する。矢印Cにて示す如く、定常走行状態ではホイールハウスHに流れ込んできた空気は、前輪Wの側方を通過する。一方、図27(B)に示す如く前輪Wが車体Bから離間すると、ホイールハウスHの空間が拡大し、該ホイールハウスHの空気流入量が増大する。矢印Dにて示す如く、ホイールアーチ12Aと前輪Wとの隙間からもホイールハウスHに空気が流入する。このように、第1比較例では、車体Bの路面Rに対する姿勢変化に伴ってホイールハウスHに出入りする空気流が変化するので、車体Bの路面Rに対する姿勢変化状態では、定常走行に合わせて設定された空力性能を発揮することができない。
図28(A)に示す如く、第2比較例の定常走行状態では、ホイールアーチフェアリング202が、ホイールアーチ12Aと前輪Wとの間を経由してホイールハウスHに空気が出入することを抑制する(矢印E参照)。このため、矢印Bにて示す車体側方への空気吹き出しが抑制される。この第2比較例では、図28(B)に示す如く前輪Wが車体Bに近接した場合、ホイールアーチフェアリング202はホイールアーチ12Aに沿って格納された状態で、該ホイールアーチ12Aを経由した空気吹出を抑制する。一方、図28(C)に示す如く前輪Wが車体Bから離間した場合にホイールアーチフェアリング202は、矢印Dにて示すホイールアーチ12Aと前輪Wとの隙間からホイールハウスHへの空気流入を抑制する。このため、ホイールハウスHへの空気流入量は全体として若干減少する。以上により、第2比較例では、第1比較例との比較では自動車Sの走行に伴う空気抵抗を低減することができるが、車体Bの路面Rに対する姿勢変化によってホイールハウスHの体積が増減して空気の出入り量が変化するため、第1比較例と同様に車体Bの路面Rに対する姿勢変化状態では、定常走行に合わせて設定された空力性能を発揮することができない。
図3(A)に示される如く、車両用空力装置10が適用された自動車Sでは、前輪Wとフェンダライナ34との上下方向に沿う間隔dすなわちホイールハウスHの空間が比較的小さいため、ホイールハウスHへの空気流入量、ホイールハウスHからの空気吹出量が共に小さい。これにより、定常走行時の空気抵抗が小さい。また、図3(B)に示される如く前輪Wが車体Bから離間すると、フェンダライナ34は潰れるように変形してホイールハウスH内の空間が拡大されることを抑制する。すなわち、ホイールハウスH内の空間が定常走行状態とほぼ同等に維持される。このため、ホイールハウスH内への空気流入量の増加が抑制される。一方、図3(C)に示す如く前輪Wが車体Bに近接すると、フェンダライナ34は、側面視円弧状に変形してホイールハウスH内の空間が縮小されることを抑制する。すなわち、ホイールハウスH内の空間が定常走行状態とほぼ同等に維持される。
より具体的には、1つの前輪Wが図4(A)に示すように前輪Wが基準位置から車体Bに対し変位する場合(凸形状の路面を左から右に通過する場合)、先ず前輪Wが車体Bに近接しその後車体Bから離間する。この場合、比較例1では図4(B)に破線にて示すようにホイールハウスHからの空気吹出量が大きく乱れるが、車両用空力装置10を備えた自動車Sでは、図4(B)に実線にて示すようにホイールハウスHからの空気吹出量の乱れが抑えられることが確かめられている。
以上により、車両用空力装置10が適用された自動車Sでは、車体Bの路面Rに対する姿勢変化に伴ってホイールハウスHに出入する空気流が変化することが抑制されるので、車体Bの路面Rに対する姿勢変化状態において、定常走行に合わせて設定された空力性能を発揮することが実現されている。すなわち、操舵時、低速走行時、高速走行時(揚力を受けている場合など)、悪路走行時等において前輪Wが車体Bに対し変位した状態でも、空気抵抗の低減効果を得ることができる。
また、ホイールハウスHを出入する空気流を車体Bの姿勢に依らずほぼ一定に保つため、換言すれば、車体周りの空気流の乱れを常に抑制することができるため、自動車Sの運動性能(操縦安定性、直進性)の改善効果を得ることもできる。
このように、第1の実施形態に係る車両用空力装置10では、空気のホイールハウスHに対する出入りをコントロールすることができ、その結果、適用された自動車のホイールハウスHに出入りする空気流を抑えて空気抵抗を低減することができた。
また、単にフェンダライナ34がフロントサスペンション20の下ばね受け28に固定されることで、該フェンダライナ34が車体Bに対し接離する構成であるため、駆動装置や制御装置を要しない簡単な構造でフェンダライナ34を前輪Wの動きに追従させて空気抵抗低減効果を得ることができる。さらに、泥除け部材であるフェンダライナ34が空力部材であるカバー部材として機能するため、部品点数や質量が増加することなく、上記の如き空力性能の向上を図ることができる。
次に本発明の他の実施形態を説明する。なお、上記第1の実施形態又は前出の構成と基本的に同一の部品・部分については上記第1の実施形態又は前出の構成と同一の符号を付してその説明(図示)を省略する。
(第2の実施形態)
図5には、本発明の第2の実施形態に係る車両用空力装置40が模式的な側面図にて示されている。この図に示される如く、車両用空力装置40は、フェンダライナ34に代えてフェンダライナ42を備えて構成されている。フェンダライナ42は、前輪Wを覆う略平板状のライナ本体42Aの前後端から波板状に形成された伸縮ばね部42Bが垂下されており、各伸縮ばね部42Bの下端はそれぞれホイールハウスインナ16の立壁部16Aの上端に連結されている。したがって、フェンダライナ42は、前後の伸縮ばね部42Bを伸縮させつつライナ本体42Aが前輪Wに追従して車体Bに接離する構成とされている。車両用空力装置40の他の構成は、車両用空力装置10の対応する構成と同じである。
したがって、以上説明した車両用空力装置40では、車両用空力装置10と全く同様の効果を得ることができる。
(第3の実施形態)
図6には、本発明の第3の実施形態に係る車両用空力装置45が模式的な側面図にて示されている。この図に示される如く、車両用空力装置45は、フェンダライナ34に代えてフェンダライナ46を備えて構成されている。フェンダライナ46は、フェンダライナ42のライナ本体42Aと同様に略平板状に形成されており、若干下方に垂下された前後端はそれぞれ自由端とされている。このフェンダライナ46の前後端は、それぞれホイールハウスインナ16の立壁部16Aに摺動(スライド)可能に接触している。したがって、フェンダライナ42は、その形状(姿勢)を維持したまま前後端を立壁部16Aに摺動させつつ、前輪Wに追従して車体Bに接離する構成とされている。車両用空力装置40の他の構成は、車両用空力装置10の対応する構成と同じである。
したがって、以上説明した車両用空力装置45では、車両用空力装置10と全く同様の効果を得ることができる。
なお、上記各実施形態では、フェンダライナ34、42、46における前輪Wを覆う部分が(基準位置で)略平板状に形成されている例を示したが、フェンダライナ34、42、46を前輪Wよりも大径の円弧状に形成しても良い。
(第4の実施形態)
図7には、本発明の第4の実施形態に係る車両用空力装置50が適用された自動車Sの一部が車幅方向及び上下方向に沿う断面図にて示されており、図8には、車両用空力装置50が適用された自動車Sの一部が模式的な平面図にて示されている。また、図9(A)には車両用空力装置50の正面図が、図9(B)には車両用空力装置50の側面図が、図9(C)には車両用空力装置50の平面図がそれぞれ模式的に示されている。
これらの図に示される如く、車両用空力装置45は、フロントサスペンション20のシリンダ22Bに固定されたフェンダライナ34に代えて、フロントサスペンション20すなわち前輪Wとは独立して車体Bに接離可能なフェンダライナ52を備えている。フェンダライナ52は、全体的な形状はフェンダライナ34と同様に形成されているが、下ばね受け28を貫通させる貫通孔52Aを有する点でフェンダライナ34とは異なる。また、このフェンダライナ52には、下ばね受け28を摺動可能に嵌入させたガイド筒54が固定されている。これにより、フェンダライナ52は、ホイールハウスH側から見て貫通孔52Aが下ばね受け28によって閉止されており、かつ下ばね受け28すなわち前輪Wとの相対変位が可能とされている。
また、車両用空力装置50は、フェンダライナ52を車体Bに対し上下方向に移動(接離)させるためのアクチュエータ56を備えている。アクチュエータ56は、車体Bに固定された本体56Aに対し上下方向に沿って伸縮(進退)するロッド56Bを有しており、ロッド56Bの下端がフェンダライナ52に固定されている。この実施形態では、車両用空力装置50は、前後一対のアクチュエータ56を備えている。アクチュエータ56は、本体56Aからのロッド56Bの突出量を減少する(短縮する)ことで、図9(A)、図9(B)に想像線にて示される如くフェンダライナ52を車体Bに近接させ、本体56Aからのロッド56Bの突出量を増大する(伸長する)ことでフェンダライナ52を車体Bから離間させさせる構成とされている(図10(C)参照)。
なお、フェンダライナ52は、前後端が立壁部16Aに結合されており、フェンダライナ34と同様に適宜変形して車体Bに対し接離するようになっている。この構成に代えて、第2又は第3実施形態のように伸縮ばね部42Bを介して立壁部16Aに連結したり、立壁部16Aにスライド可能に接触するフェンダライナを採用しても良い。
図8に示される如く、各アクチュエータ56は、制御装置としての空力ECU58に電気的に接続されており、該空力ECU58に制御されてフェンダライナ52を車体Bに対し接離するようになっている。この実施形態では、空力ECUは、左右の車両用空力装置50に共有されている。また、空力ECU58には、走行状態検出装置としての各種センサと電気的に接続されており、これらのセンサの出力情報に基づいて各アクチュエータ56を制御するようになっている。
具体的には、空力ECU58には、車高センサ60の出力信号が入力されるようになっている。車高センサ60は、それぞれ車体Bと各前輪Wとの間に設けられ、車体Bと各前輪Wとの上下方向(フロントサスペンション20のストローク方向)の相対変位(接離量)に応じた信号を空力ECU58に出力するようになっている。また、アクチュエータ56は、フェンダライナ52の上下位置情報すなわち本体56Aに対するロッド56Bの突出量に応じた信号を空力ECU58に出力するようになっている。
そして、空力ECU58は、フェンダライナ52と前輪Wとの間隔dが、前輪Wの車体Bに対する位置に依らず一定の範囲内に維持されるように、アクチュエータ56を作動してフェンダライナ52を車体Bに対し接離するようになっている。具体的には、空力ECU58は、車高センサ60の出力信号すなわち前輪Wの車体Bに対する上下方向の距離及びアクチュエータ56の出力信号すなわちフェンダライナ52の車体Bに対する上下方向の距離とに基づいて間隔dを算出し、この間隔dが設定下限値dlを下回る場合には、フェンダライナ52を車体Bに近接するようにアクチュエータ56を作動し、間隔dが設定上限値duを超える場合にはフェンダライナ52を車体Bから離間するようにアクチュエータ56を作動する構成とされている。
さらに、空力ECU58は、アクセルペダルの操作量(燃料噴射量)に応じた信号を出力するアクセルセンサ62、ブレーキぺダルの操作量(踏力)に応じた信号を出力するブレーキセンサ64、ステアリングホイール65の操舵量又は操舵力に応じた信号を出力する操舵センサ66、車体Bの上下軸廻りの旋回加速度に応じた信号を出力するヨーレートセンサ68、車体前部に左右に離間して配設された一対の圧力センサ92、車体Bの前後方向に作用する加速度に応じた信号を出力する前後Gセンサ(図示省略)、車体Bの車幅方向に作用する加速度に応じた信号を出力する横Gセンサ(図示省略)等が電気的に接続されており、各種センサの信号が車両走行情報として入力されるようになっている。
次に、第4の実施形態の作用を、図11に示すフローチャートを参照しつつ説明する。なお、以下の説明では左右何れか一方の車両用空力装置10の作用を説明する。
上記構成の車両用空力装置50が適用された自動車Sでは、空力ECU58は、ステップS10で、車高センサ60及びアクチュエータ56の出力信号に基づいて、前輪Wとフェンダライナ52との間隔dが上下限du、dlの範囲内であるか否かを判断する。間隔dが上下限du、dlの範囲内である場合には、ステップS10に戻り、間隔dが上下限du、dlの範囲外である場合には、ステップS12に進む。ステップS12で空力ECU58は、間隔dが下限値dlを下回るか否かを判断する。
間隔dが下限値dlを下回ると判断した場合、空力ECU58は、ステップS14に進んでフェンダライナ52が所定量だけ車体Bに近接するようにアクチュエータ56を作動する。例えば、1つの前輪Wが図12(A)に示すように前輪Wが基準位置から車体Bに対し変位する場合(凸形状の路面を左から右に通過する場合)、先ず車体Bへの近接に伴って前輪Wとフェンダライナ52との間隔dが下限値dlを下回ると、空力ECU58は、アクチュエータ56すなわちフェンダライナ52が図12(B)の期間P1の如く変位するように、図12(C)に示すように期間P1においてアクチュエータ56を短縮する。すると、図10(B)に示される如くフェンダライナ52が車体Bに近接して、間隔dが設定範囲内に復帰する。
一方、空力ECU58は、間隔dが下限値dlを下回らない、すなわち間隔dが上限値duを上回ると判断した場合、ステップS16に進んでフェンダライナ52が所定量だけ車体Bから離間するようにアクチュエータ56を作動する。例えば、図12(A)に示す凸部から乗り降りる場合、前輪Wは車体Bから離間する。この離間に伴って前輪Wとフェンダライナ52との間隔dが上限値duを上回ると、空力ECU58は、アクチュエータ56すなわちフェンダライナ52が図12(B)の期間P2の如く変位するように、図12(C)に示すように期間P2においてアクチュエータ56を伸長する。すると、図10(C)に示される如くフェンダライナ52が車体Bから離間して、間隔dが設定範囲内に復帰する。
以上により、車両用空力装置50では、第1の実施形態に係る車両用空力装置10と同様に、フェンダライナ52を前輪Wに追従させて該フェンダライナ52と前輪Wとの間隔(ホイールハウスHの空間体積)を略一定に保つことができる。すなわち、車両用空力装置50によっても、アクチュエータ56及び空力ECU58を備えないことによる効果を除いて、第1の実施形態と同様の効果を得ることができる。例えば図12(A)に示す路面を通過した場合、図12(D)に示される如く、ホイールハウスHから吹く出す空気流の乱れが小さく抑えられることが確認されている。
(第5の実施形態)
図13には、本発明の第5の実施形態に係る車両用空力装置70が適用された自動車Sが模式的な平面図にて示されている。また、図14(A)には車両用空力装置70の正面図が、図14(B)には車両用空力装置70の側面図が、図14(C)には車両用空力装置70の平面図がそれぞれ模式的に示されている。これらの図に示される如く、車両用空力装置70は、機械的には、フェンダライナ52に代えてフェンダライナ72を備える点を除いて、車両用空力装置50と同様に構成されている。この車両用空力装置70は、空力ECU74が、図11のフローチャートに示す制御に代えて又は該制御に加えて、操舵状態に対応してフェンダライナ72の車体Bに対する位置を変化させる制御を行う点で、車両用空力装置70とは異なる。
フェンダライナ72は、全体として第3の実施形態に係るフェンダライナ46と同様に形成されると共に、フェンダライナ52と同様に前輪Wとは独立して車体Bに接離可能に支持されており、貫通させたフロントサスペンション20の下ばね受け28を摺動可能に嵌入させるガイド筒54を有する。フェンダライナ72は、前後端を立壁部16Aと摺動しつつ形状を維持したまま車体Bに対し接離するようになっている。
空力ECU74は、操舵センサ66の出力信号に基づいて前輪Wの転舵方向を検知するようになっている。この実施形態では、操舵センサ66は、ステアリングホイール65の操舵角に応じた信号を出力する操舵角センサとされている。したがって、空力ECU74は、操舵センサ66の出力信号がステアリングホイール65の中立位置(操舵角0)から所定角(遊び範囲)を超えて一方側に角変位している(例えば、正の信号が出力されている)場合には、前輪Wが一方側に転舵されていることを検知することができる。
空力ECU74は、中立位置に対する転舵方向すなわち自動車Sの旋回方向を検知すると、内輪となる前輪Wi(図13参照)側の車両用空力装置70のフェンダライナ72を車体Bに近接させて前輪Wiから離間させ、外輪となる前輪Wo(図13参照)側の車両用空力装置70のフェンダライナ72を車体Bから離間させて前輪Woに近接させるようにアクチュエータ56の作動を制御する構成とされている。この実施形態では、ステアリングホイール65の中立位置の遊び範囲を超え操舵角が検出されている全期間に亘り、フェンダライナ72を前輪Wiから離間させると共に前輪Woに近接させるようになっている。
この実施形態では、各前輪Wの車両用空力装置70をそれぞれ本発明における車両用空力装置と把握することも可能であり、左右の車両用空力装置70で1つの車両用空力装置を構成していると把握することも可能である。
次に、第5の実施形態の作用を、図15に示すフローチャートを参照しつつ説明する。
上記構成の車両用空力装置70が左右の前輪Wにそれぞれ適用された自動車Sでは、空力ECU74は、ステップS20で、操舵センサ66の出力信号に基づいて、操舵の有無を判断する。操舵されていない、すなわち各前輪Wが転舵していないと判断した場合、空力ECU74は、ステップS22に進み、左右のフェンダライナ72を中立位置(基準位置)に位置させる。この状態は、図16に示すタイミングチャートにおける期間P3における状態に相当し、図16(A)に示す操舵角、図16(B)、図16(C)に示す左右のフェンダライナ72は、何れも中立位置に位置している。なお、この状態では図11のフローチャートに示す制御を行うようにしても良い。
ステップS20で操舵されている(遊び範囲を超える操舵角が検知された)、すなわち各前輪Wが転舵していると判断した場合、空力ECU74は、ステップS24に進み、操舵によって前輪Wが転舵している方向が右であるか否であるか(例えば、中立の操舵角0に対し操舵角が正であるか否か)を判断する。転舵方向が右であると判断した場合、空力ECU74は、ステップS26に進み、内輪となる右側の前輪Wi用のフェンダライナ72を車体Bに近接させる(上昇させる)と共に、外輪となる左側の前輪Wo用のフェンダライナ72を車体Bから離間させる(下降させる)。
この状態は図16に示すタイミングチャートにおける期間P4における状態に相当し、所定角を超える操舵角の検知すると、左右のフェンダライナ72を互いに逆方向に移動するようにアクチュエータ56の作動を制御している。この状態では、図13に示される如く、フェンダライナ72と前輪Wiとの間隔dが増加した右側のホイールハウスHからの空気吹出量(矢印F参照)が増加して車体Bの右側で気流が乱れ(矢印G参照)、この空気流の乱れに伴って生じる負圧によって車体Bを右側に引張る力Frが増加する。一方、車体Bの左側では、間隔dが減少したことでホイールハウスHからの空気吹出量が減少し、矢印Hにて示すように車体側方の空気流の乱れが小さいため、車体Bを左側に引張る力Flが減少する。したがって、車体Bには、全体として旋回方向である右側への空気力(Fr−Fl)が作用する。
さらに、この状態では、間隔dが増加した右側でホイールハウスHを通過する空気流が増加して揚力(リフト力)が増加し、間隔dが増加した左側でホイールハウスHを通過する空気流が減少して揚力が減少するため、車体Bは全体として内輪側である右側が上がり左側が下がる。換言すれば、空気力によってローリングが生じる。このローリングによって外輪である前輪Woには旋回初期に路面Rへの押付荷重が作用し、車体Bは速やかに旋回を開始する。すなわち、操舵に対する旋回応答性が向上する。図16(D)に実線にて示される如く操舵状態に応じた空力制御を行うことで、該制御を行わない構成(固定のフェンダライナを有する構成)と比較して、操舵角に対するロール応答、車体の横加速度(横運動)のゲインが向上することがわかる。これにより、車両用空力装置70が左右の前輪Wにそれぞれ適用された自動車Sでは、スムースな運転(旋回)が可能になる。
ステップS24で転舵方向が右ではない、すなわち左であると判断した場合、空力ECU74は、ステップS28に進み、内輪となる左側の前輪Wi用のフェンダライナ72を車体Bに近接させると共に、外輪となる右側の前輪Wo用のフェンダライナ72を車体Bから離間させる。詳細な説明は省略するが、上記した右への操舵時と同様に自動車Sの旋回応答性等が向上する。
空力ECU74は、ステップS22、S26、S28の後は、ステップS20に戻る。空力ECU74は、ステップS26、S28からステップS20に戻り、操舵なしと判断すると、左右のフェンダライナ72を中立位置に戻す。この状態は、図16の期間P5に相当する。
このように、第5の実施形態に係る車両用空力装置70では、空気のホイールハウスHに対する出入りをコントロールすることができ、その結果、自動車Sの運動性能を向上することができた。
(第6の実施形態)
第6の実施形態に係る車両用空力装置75(図13に括弧書きにて示す)は、機械的には、操舵センサ66として操舵角センサに代えて操舵トルクセンサを採用する点を除いて、第5の実施形態に係る車両用空力装置70と同様に構成されている。操舵トルクセンサである操舵センサ66は、転舵反力に釣り合う操舵トルク(前輪Wを転舵させ、又は転舵状態を維持するためのトルク)に応じた信号を出力する構成とされている。また、この車両用空力装置75の空力ECU74は、制御パラメータとして操舵角に代えて操舵トルクを用い、図15のフローチャートに示す制御に代えて、図17のフローチャートに示す制御を行う構成とされている。
この空力ECU74は、基本的には、操舵トルクの作用方向に応じて各フェンダライナ72の移動方向を切り換えるようになっている。この実施形態では、空力ECU74は、操舵トルクの作用方向(右方向か左方向か)と、前輪Wの中立位置に対する転舵方向(右側か左側か)とが一致している場合には、内輪側のフェンダライナ72を前輪Wiから離間させると共に外輪側のフェンダライナ72を前輪Woに近接させ、操舵トルクの作用方向と前輪Wの中立位置に対する転舵方向とが逆である場合(例えば中立位置への復帰操作の後期等)には、内輪側のフェンダライナ72を前輪Wiに近接させると共に外輪側のフェンダライナ72を前輪Woから離間させるように構成されている。
以下、第6の実施形態の作用について、図17に示すフローチャートを参照しつつ説明する。
上記構成の車両用空力装置75が左右の前輪Wにそれぞれ適用された自動車Sでは、空力ECU74は、ステップS30で、操舵センサ66の出力信号に基づいて、操舵が開始されたか否かを判断する。操舵が開始されていない、すなわち各前輪Wの転舵が生じないと判断した場合、空力ECU74は、ステップS32に進み、左右のフェンダライナ72を中立位置(基準位置)に位置させる。この状態は、図18に示すタイミングチャートにおける期間P6における状態に相当し、図18(A)に示す操舵角、図18(B)、図18(C)に示す左右のフェンダライナ72は、何れも中立位置に位置している。なお、この状態では図11のフローチャートに示す制御を行うようにしても良い。
ステップS30で操舵が開始された(所定値以上の操舵トルクが検知された)、すなわち各前輪Wが転舵すると判断した場合、空力ECU74は、ステップS34に進み、操舵トルクの作用方向が右方向であるか否であるかを判断する。操舵トルクの作用方向が右であると判断した場合、空力ECU74は、ステップS36に進み、内輪となる右側の前輪Wi用のフェンダライナ72を車体Bに近接させると共に、外輪となる左側の前輪Wo用のフェンダライナ72を車体Bから離間させる。
この状態は図18に示すタイミングチャートにおける期間P7における状態に相当し、所定トルクを超える操舵トルクを検知すると、左右のフェンダライナ72を互いに逆方向に移動するようにアクチュエータ56の作動を制御している。この状態では、上記第5の実施形態と同様に、フェンダライナ72と前輪Wiとの間隔dが増加した右側のホイールハウスHからの空気吹出量が増加して車体Bの右側で気流が乱れ、この空気流の乱れに伴って生じる負圧によって車体Bを右側に引張る力が増加Frする。一方、車体Bの左側では、間隔dが減少したことでホイールハウスHからの空気吹出量が減少し、車体側方の空気流の乱れが小さいため、車体Bを左側に引張る力Flが減少する。したがって、車体Bには、全体として旋回方向である右側への空気力(Fr−Fl)が作用する。
さらに、この状態では、間隔dが増加した右側でホイールハウスHを通過する空気流が増加して揚力(リフト力)が増加し、間隔dが増加した左側でホイールハウスHを通過する空気流が減少して揚力が減少するため、車体Bは全体として内輪側である右側が上がり左側が下がる。換言すれば、空気力によってローリングが生じる。このローリングによって外輪である前輪Woには旋回初期に路面Rへの押付荷重が作用し、車体Bは速やかに旋回を開始する。すなわち、操舵に対する旋回応答性が向上する。図18(D)に実線にて示される如く操舵状態に応じた空力制御を行うことで、該制御を行わない構成(固定のフェンダライナを有する構成)と比較して、操舵角に対するロール応答、車体の横加速度(横運動)のゲインが向上することがわかる。これにより、車両用空力装置75が左右の前輪Wにそれぞれ適用された自動車Sでは、スムースな運転(旋回)が可能になる。
なお、図18に示す操舵角(検出はしない)の変化は、図16に示す操舵角の変化と同じであり、操舵トルクの変化は上記操舵角の変化に対応している。
ステップS34で操舵トルクの作用方向が右側ではない、すなわち左側であると判断した場合、空力ECU74は、ステップS38に進み、内輪となる左側の前輪Wi用のフェンダライナ72を車体Bに近接させると共に、外輪となる右側の前輪Wo用のフェンダライナ72を車体Bから離間させる。詳細な説明は省略するが、上記した右への操舵時と同様に自動車Sの旋回応答性等が向上する。
空力ECU74は、ステップS32、S36、S38の後は、ステップS30に戻る。例えば、図18に示すタイミングチャートの期間P8のように、右側への操舵状態から中立位置に戻す場合、操舵角が0に戻る過程で操舵トルクは反転して、中立位置への復帰方向に作用する。すると、空力ECU74は、ステップS34で操舵トルクの作用方向が左側であると判断し、中立位置から左側への転舵時と同様に、ステップS38に進んで右側のフェンダライナ72を前輪Wiに近接させると共に左側のフェンダライナ72を前輪Woから離間させる。これにより、上記した操舵開始、転舵角維持状態でのロール力とは反対のロール力が車体Bに作用する。
空力ECU74は、例えばステップS36、S38からステップS30に戻り、操舵なしと判断すると、左右のフェンダライナ72を中立位置に戻す。この状態は、図18の期間P9に相当する。
ここで、車両用空力装置75では、操舵を検出するパラメータとして、操舵角よりも時間的に早く立ち上がる操舵トルクを用いるため、車両用空力装置70よりも早いタイミングで、内輪側のフェンダライナ72を前輪Wiから離間させると共に外輪側のフェンダライナ72を前輪Woに近接させることができる。このため、車両用空力装置75では、車両用空力装置70よりも早いタイミングで、全体として旋回方向に作用する空気力(Fr−Fl)、外輪に荷重を作用させるローリングを生じさせることができ、旋回応答性(ロール応答、横加速度のゲイン)が一層向上する。なお、図18(B)、図18(C)、図18(D)には、比較のために車両用空力装置70の応答曲線を一点鎖線にて示している。
また、車両用空力装置75では、前輪Wを転舵状態から中立位置に戻す際、すなわち中立位置に対する転舵方向と操舵トルクの作用方向とが逆である場合に、転舵時とは逆向きのロール力を生じさせるため、中立位置に復帰に伴う(期間P8、P9)の車体姿勢の変化が速やかに収束する。
このように、第6の実施形態に係る車両用空力装置70では、空気のホイールハウスHに対する出入りをコントロールすることができ、その結果、自動車Sの運動性能を向上することができた。
(第7の実施形態)
第7の実施形態に係る車両用空力装置80(図13に括弧書きにて示す)は、機械的には、第6の実施形態に係る車両用空力装置75と同様に構成されている。この車両用空力装置80の空力ECU74は、制御パラメータとして操舵トルクに代えて操舵トルクの変化率すなわち操舵トルクの時間微分値である操舵速度(ベクトル)を用い、図17のフローチャートに示す制御に代えて、図19のフローチャートに示す制御を行う構成とされている。
この空力ECU74は、基本的に、操舵トルクの変化方向に応じてフェンダライナ72の移動方向を切り換えるようになっている。この実施形態では、空力ECU74は、操舵トルクの絶対値が増加する場合には、内輪側のフェンダライナ72を前輪Wiから離間させると共に外輪側のフェンダライナ72を前輪Woに近接させ、操舵トルクの絶対値が減少する場合には、内輪側のフェンダライナ72を前輪Wiに近接させると共に外輪側のフェンダライナ72を前輪Woから離間させるように構成されている。
以下、第7の実施形態の作用について、図19に示すフローチャートを参照しつつ、第6の実施形態とは異なる部分を説明する。
上記構成の車両用空力装置80が左右の前輪Wにそれぞれ適用された自動車Sでは、空力ECU74は、ステップS40で、操舵センサ66の出力信号に基づいて、操舵トルクの変化が生じたか否かを判断する。操舵トルクの変化がない、すなわち各前輪Wの位置変化がない(中立位置又は所定の転舵角で維持されている)と判断した場合、空力ECU74は、ステップS42に進み、左右のフェンダライナ72を中立位置(基準位置)に位置させる。
ステップS40で操舵トルクの所定値以上の変化が生じた、すなわち前輪Wの転舵位置の変化が生じると判断した場合、空力ECU74は、ステップS44に進み、前輪Wが直前位置に対し右側に移動するか否か、すなわち前輪Wを右側に転舵する方向の操舵トルクが直前よりも増加したか否か(右側に転舵されていた場合には右向きの操舵トルクの絶対値が増加したか否か、左側に転舵されていた場合には左向き操舵トルクの絶対値が減少したか否か)を判断する。前輪が直前位置に対し右側に転舵すると判断した場合、空力ECU74は、ステップS46に進み、内輪であるか外輪であるかに拘わらず右側の前輪W用のフェンダライナ72を車体Bに近接させる共に、左側の前輪W用のフェンダライナ72を車体Bから離間させる。
ステップS44で前輪Wが直前位置に対し右側に転舵しない、すなわち直前位置に対し左側に転舵すると判断した場合、空力ECU74は、ステップS48に進み、内輪であるか外輪であるかに拘わらず左側の前輪W用のフェンダライナ72を車体Bに近接させると共に、右側の前輪W用のフェンダライナ72を車体Bから離間させる。そして、空力ECU74は、ステップS42、S46、S48の後は、ステップS40に戻る。
以上の制御を図20のタイミングチャートを例にさらに説明すると、期間P10では、ステップS42に進んで各フェンダライナ72が中立位置に保持される。操舵が開始された後の期間P11では、操舵速度が正であり操舵トルクが増加し続けると判断される。すると、右側のフェンダライナ72が前輪Wiから離間すると共に左側のフェンダライナ72が前輪Woに近接し、第5及び第6の実施形態と同様に旋回応答性が向上する。このとき、操舵速度すなわち操舵トルクの微分値は操舵トルク自体よりも短い時間で立ち上がるので、空気力による外輪の接地力を増す方向のローリング発生タイミングが一層早くなり、旋回応答性が一層向上する。
次いで、期間P12では、操舵角は緩やかに増加を続けるが操舵速度が負となり、操舵トルクの絶対値が減少したと判断される(なお、この例では、操舵トルクは減少しながら実際の操舵角は増している)。すると、右側のフェンダライナ72が前輪Wiに近接すると共に左側のフェンダライナ72が前輪Woから離間する。これにより、図20(E)に第6実施形態(一点鎖線)と比較しつつ実線にて示すように、横加速度又はロールのピークが抑制される。また、その後の期間P13では、操舵トルクが一定で転舵角が維持されており、操舵速度が0と判断されて左右のフェンダライナ72は中立位置に復帰する。このため、第6の実施形態(期間P7)との比較では、横加速度のゲインは減少する。
右側に転舵していた前輪Wを中立位置に復帰させる前期である期間P14では、操舵速度が負であり操舵トルクが減少し続けると判断される。すると、右側のフェンダライナ72が前輪Wiに近接すると共に左側のフェンダライナ72が前輪Woから離間する。これに続く期間P15では、一転して操舵速度が正となり、右側のフェンダライナ72が前輪Wiから離間すると共に左側のフェンダライナ72が前輪Woに近接する。これにより、中立位置への復帰の前期に車体Bの旋回によるローリングを解消する方向のロール力を作用させ、後期にはこのローリング解消のブレーキとなる方向のロール力を作用させることができ、中立位置に復帰に伴う車体姿勢の変化(揺り戻し)が小さく、かつ速やかに収束する。この実施形態では、図20(E)に示すように、揺り戻しが殆ど生じないことが確認された。
このように、第7の実施形態に係る車両用空力装置80では、空気のホイールハウスHに対する出入りをコントロールすることができ、その結果、自動車Sの運動性能を向上することができた。
(第8の実施形態)
第8の実施形態に係る車両用空力装置85(図13に括弧書きにて示す)は、機械的には、第6又は第7の実施形態に係る車両用空力装置75、80と同様に構成されている。この車両用空力装置85の空力ECU74は、制御パラメータとして操舵トルクの変化率に加えてヨーレートセンサ68の出力信号を用い、図19のフローチャートに示す制御に代えて、図21のフローチャートに示す制御を行う構成とされている。
空力ECU74は、基本的には図19のフローチャートに示す制御を行うが、ヨーレートセンサ68の出力信号が所定の閾値を超えた場合には、上記旋回応答性を向上するための制御に優先して、車体安定性向上(例えばスピン防止)のための制御、すなわち、旋回に伴うローリングを解消する方向の空気力を付与する制御を行うように構成されている。
以下、第8の実施形態の作用について、図21に示すフローチャートを参照しつつ、第7の実施形態とは異なる部分を説明する。なお、図21に示す各ステップのうち、図19の制御と同じステップについては、図19と同一の符号を付して説明を省略する。
上記構成の車両用空力装置85が左右の前輪Wにそれぞれ適用された自動車Sでは、空力ECU74は、ヨーレートセンサ68の出力信号に基づいて、ステップS50でヨーレートが所定の閾値を超えるか否かを判断する。ヨーレートが閾値以下であると判断した場合は、ステップS40に進み、ステップS50に戻るまで図19のフローチャートに示す制御と同様の制御を行う。
一方、ステップS50でヨーレートが所定の閾値を超えると判断した場合、空力ECU74は、ステップS52に進み、旋回方向が右であるか否かを判断する。旋回方向が右であると判断した場合には、空力ECU74は、ステップS44での判断後の場合とは逆にステップS48に進み、内輪となる右側の前輪Wi用のフェンダライナ72を車体Bに近接させると共に、外輪となる左側の前輪Wo用のフェンダライナ72を車体Bから離間させる。ステップS52で旋回方向が左であると判断した場合には、空力ECU74は、ステップS44での判断後の場合とは逆にステップS46に進み、内輪となる左側の前輪Wi用のフェンダライナ72を車体Bに近接させると共に、外輪となる右側の前輪Wo用のフェンダライナ72を車体Bから離間させる。
以上ににより、車両用空力装置85が左右の前輪Wにそれぞれ適用された自動車Sでは、車体Bに作用する揚力は外輪側で内輪側よりも大きくなり、全体として旋回に伴うローリングを解消する方向の空気力(ロール力)が車体Bに作用する。これにより、車体姿勢が安定し、過大なヨーレートが解消される。
以上の制御を図22のタイミングチャートを例にさらに説明する。例えば図22(A)に操舵角及び操舵トルクにて示すような右側への操舵を行った場合、操舵速度(操舵トルクの微分値)、ヨーレートは、それぞれ図22(B)、図22(C)に示すようになる。このヨーレートが閾値を超えている期間P20、P21では、上記ステップS52後のステップS48を実行し、内輪となる右側の前輪Wi用のフェンダライナ72を車体Bに近接させると共に、外輪となる左側の前輪Wo用のフェンダライナ72を車体Bから離間させる。これにより、右旋回に伴うローリングを解消する方向の空気力(ロール力)が車体Bに作用し、車体Bはロール角が抑えられて姿勢が安定する。
例えば図22(B)に示す操舵速度に対し第7実施形態の制御を行った場合、図22(D)、図22(E)に想像線で示すように、期間P20、P21において右旋回に伴うローリングを補助する方向の空気力が作用する状況が生じる。この場合、図22(F)に想像線にて示すように、ロール応答、横加速度のゲインが過大となるためタイヤには高い接地性能が要求されるが、この実施形態では、期間P20、P21に上記制御を行うことで、ロールが抑えられて安定性が向上する。しかも、ヨーレートが閾値を超えない範囲では、第7実施形態と同様の制御を行うため、旋回応答性等の向上と急操舵時等の安定性の確保とを両立することができる。
このように、第8の実施形態に係る車両用空力装置85では、空気のホイールハウスHに対する出入りをコントロールすることができ、その結果、自動車Sの運動性能及び旋回安定性を向上することができた。
なお、この第8の実施形態では、第7の実施形態の制御をベースにヨーレートを制御パラメータに加えた例を示したが、例えば、第5又は第6の実施形態の制御(構成)をベースにヨーレートを制御パラメータに加えて構成しても良い。また、定常走行時等には、第4の実施形態に係る前輪Wとフェンダライナ72との間隔dを一定に保つための制御行うようにしても良い。
(第9の実施形態)
第9の実施形態に係る車両用空力装置90(図13に括弧書きにて示す)は、機械的には、第6乃至第8の実施形態に係る車両用空力装置75、80、85と同様に構成されている。この車両用空力装置90の空力ECU74は、制御パラメータとして操舵トルクの変化率、ヨーレートセンサ68の出力信号に加えて、一対の圧力センサ92の出力信号を用い、図19のフローチャートに示す制御に代えて、図21のフローチャートに示す制御を行う構成とされている。
空力ECU74は、基本的には図21のフローチャートに示す制御を行うが、直進時に一対の圧力センサの出力差が所定の閾値を超える場合すなわち横風がある場合には、横風の方向に応じて該横風による横力をキャンセルするための制御を行うように構成されている。空力ECU74は、一対の圧力センサ92のうち出力信号が大きい圧力センサ92の配置側から横風が吹いていると判断する(一対の圧力センサの信号の差分値が正であるか負であるかに基づいて横風の方向を判断する)ようになっている。
以下、第9の実施形態の作用について、図23に示すフローチャートを参照しつつ、第8の実施形態とは異なる部分を説明する。なお、図23に示す各ステップのうち、図21の制御と同じステップについては、図21と同一の符号を付して説明を省略する。
上記構成の車両用空力装置90が左右の前輪Wにそれぞれ適用された自動車Sでは、空力ECU74は、ステップS50でヨーレートが閾値以下である判断し、ステップS40で操舵トルクに所定値以上のトルク変化がないと判断した場合、すなわち自動車Sの直進(定常走行)状態であると判断した場合、ステップS60に進み、一対の圧力センサ92の出力差に基づいて、横風があるか否かを判断する。横風がない場合には、ステップS42に進み、左右のフェンダライナ72を中立位置に位置させる。ステップS60で横風がある、すなわち一対の圧力センサ92の出力差が閾値を超えると判断した空力ECU74は、ステップS62に進み、横風の方向を判断する。
横風が右から吹いていると判断した場合、空力ECU74は、ステップS46に進み、右側への転舵時と同様に、右側の前輪W用のフェンダライナ72を車体Bに近接させる共に、左側の前輪W用のフェンダライナ72を車体Bから離間させる。図24に示すタイミングチャートの期間P24は、この状態に相当する。ステップS62で横風が左から吹いていると判断した場合、空力ECU74は、ステップS48に進み、左側の前輪W用のフェンダライナ72を車体Bに近接させると共に、右側の前輪W用のフェンダライナ72を車体Bから離間させる。図24に示すタイミングチャートの期間P25は、この状態に相当する。
例えば図25(A)に示される如く、右からの横風に基づく横力Fwが車体Bに作用した場合、右側のフェンダライナ72を前輪Wから離間させると共に、左側のフェンダライナ72を前輪Wに近接させることで、上記右側への転舵の場合と同様に、車体右側の気流乱れに基づく負圧により右側への空気力(Fr−Fl)が作用すると共に、左右のホイールハウスHを通過する空気量の差によって右側を左側よりも持ち上げようとする揚力が作用する。
前者の横力は、横風が直接的に車体Bを左側に押す力に抗し、後者の揚力は、横力に基づくロールモーメントに抗するロールモーメントを生じさせる。これにより、車両用空力装置90が左右の前輪Wにそれぞれ適用された自動車Sでは、横風に対する安定性が向上する。このような横風に抗する横力、揚力を生じさせない構成では、図25(B)に示される如く、空気力(Fr−Fl)がほぼ0であるため、横風による左向きの横力Fwが相殺されることなく作用する。
したがって、横風に対する制御を行う本実施形態では、図24(D)に示される如く、この制御を行わない第8の実施形態に対し、横風を受けたときのロール量、横加速度が低減されることが確認された。
このように、第9の実施形態に係る車両用空力装置90では、空気のホイールハウスHに対する出入りをコントロールすることができ、その結果、自動車Sの運動性能、旋回安定性、及び横風に対する安定性を向上することができた。
なお、この第9の実施形態では、第8の実施形態の制御をベースにヨーレートを制御パラメータに加えた例を示したが、例えば、第4乃至第7の実施形態の制御(構成)をベースに横風(一対の圧力センサの出力信号)を制御パラメータに加えて構成しても良い。
また、上記第5乃至第9の実施形態では、左右のフェンダカバー72を互いに上下方向の反対向きに動作する例を示したが、本発明はこれに限定されず、例えば、操舵に対し内輪側若しくは外輪側のフェンダカバー72を動かし、又は横風に対し風上若しくは風下ののフェンダカバー72を動かし、他方のフェンダカバー72を中立位置に保持するようにしても良い。
さらに、上記第5乃至第9の実施形態では、空力ECU74が各種センサの出力信号を得るように構成した例を示したが、本発明はこれに限定されず、例えば、各実施形態において制御パラメータとして用いない信号を出力センサについては、設置又は空力ECUとの接続を省略しても良いことは言うまでもない。
(第10の実施形態)
第10の実施形態では、図26に示される如く、自動車Sが4つの車輪全てに対応して車両用空力装置10、40、45、50、70、75、80、85、90を備えている。これにより、前後左右のホイールハウスHに対する空気の出入りをそれぞれコントロールすることができ、空力性能、旋回応答性、車両安定性などを一層向上させることが可能になる。なお、この場合において、前輪の後輪とで異なる構成の車両用空力装置を採用することも可能である。例えば、前輪Wに対しては、車両用空力装置70、75、80、8590を適用し、操舵されない後輪Wについては車両用空力装置10、40、45、50の何れかを適用することができる。
なお、上記実施形態では、フェンダライナ34、42、46、52、72が本発明におけるカバー部材である例を示したが、本発明はこれに限定されず、例えば、フェンダライナに代えて(泥除け機能を有することなく)、又はフェンダライナと独立して、カバー部材を設けても良い。
本発明の第1の実施形態に係る車両用空力装置を前方から見た断面図である。 本発明の第1の実施形態に係る車両用空力装置を模式的に示す図であって、(A)は正面図、(B)は側面図、(C)は平面図である。 本発明の第1の実施形態に係る車両用空力装置の動作を模式的に示す図であって、(A)は定常状態の側面図、(B)は車高低下状態の側面図、(C)は車高上昇状態の側面図である。 (A)は本発明の第1の実施形態に係る車両用空力装置が適用された車輪の車体に対する変位を示す線図、(B)は上記路面を通過したときのホイールハウスからの空気吹出量を示す線図である。 本発明の第2の実施形態に係る車両用空力装置を模式的に示す側面図である。 本発明の第3の実施形態に係る車両用空力装置を模式的に示す側面図である。 本発明の第4の実施形態に係る車両用空力装置を前方から見た断面図である。 本発明の第4の実施形態に係る車両用空力装置が左右の前輪に適用された自動車の模式的な平面図である。 本発明の第4の実施形態に係る車両用空力装置を模式的に示す図であって、(A)は正面図、(B)は側面図、(C)は平面図である。 本発明の第4の実施形態に係る車両用空力装置の動作を模式的に示す図であって、(A)は定常状態の側面図、(B)は車高低下状態の側面図、(C)は車高上昇状態の側面図である。 本発明の第4の実施形態に係る車両用空力装置を構成する空力ECUの制御フローを示すフローチャートである。 本発明の第4の実施形態に係る車両用空力装置を構成する空力ECUの制御例を示すタイミングチャートであって、(A)は車輪の車体に対する変位、(B)はフェンダライナの目標位置、(C)はアクチュエータの動作時期、(D)はホイールハウスからの空気吹出量をそれぞれ示す。 本発明の第5の実施形態に係る車両用空力装置が左右の前輪に適用された自動車の模式的な平面図である。 本発明の第5の実施形態に係る車両用空力装置の動作を模式的に示す図であって、(A)は定常状態の側面図、(B)は車高低下状態の側面図、(C)は車高上昇状態の側面図である。 本発明の第5の実施形態に係る車両用空力装置を構成する空力ECUの制御フローを示すフローチャートである。 本発明の第5の実施形態に係る車両用空力装置を構成する空力ECUの制御例を示すタイミングチャートであって、(A)は操舵角、(B)は右フェンダライナの変位、(C)は左フェンダライナの変位、(D)は横G又はロールの大きさをそれぞれ示す。 本発明の第6の実施形態に係る車両用空力装置を構成する空力ECUの制御フローを示すフローチャートである。 本発明の第6の実施形態に係る車両用空力装置を構成する空力ECUの制御例を示すタイミングチャートであって、(A)は操舵角及び操舵トルク、(B)は右フェンダライナの変位、(C)は左フェンダライナの変位、(D)は横G又はロールの大きさをそれぞれ示す。 本発明の第7の実施形態に係る車両用空力装置を構成する空力ECUの制御フローを示すフローチャートである。 本発明の第7の実施形態に係る車両用空力装置を構成する空力ECUの制御例を示すタイミングチャートであって、(A)は操舵角及び操舵トルク、(B)は操舵トルクの時間微分値、(C)は右フェンダライナの変位、(D)は左フェンダライナの変位、(E)は横G又はロールの大きさをそれぞれ示す。 本発明の第8の実施形態に係る車両用空力装置を構成する空力ECUの制御フローを示すフローチャートである。 本発明の第8の実施形態に係る車両用空力装置を構成する空力ECUの制御例を示すタイミングチャートであって、(A)は操舵角及び操舵トルク、(B)は操舵トルクの時間微分値、(C)はヨーレート、(D)は右フェンダライナの変位、(E)は左フェンダライナの変位、(F)は横G又はロールの大きさをそれぞれ示す。 本発明の第9の実施形態に係る車両用空力装置を構成する空力ECUの制御フローを示すフローチャートである。 本発明の第9の実施形態に係る車両用空力装置を構成する空力ECUの制御例を示すタイミングチャートであって、(A)は操舵角、(B)は右フェンダライナの変位、(C)は左フェンダライナの変位、(D)は横G又はロールの大きさをそれぞれ示す。 (A)は、本発明の第9の実施形態に係る車両用空力装置が適用された自動車の横風に抗する空気力が生成される状態を説明するための模式的な平面図であり、(B)は第9の実施形態の制御を行わない場合を示す比較例である。 本発明の第10の実施形態に係る車両用空力装置が適用された自動車の模式的な平面図である。 本発明の第1の実施形態に対する第1比較例を模式的に示す図であって、(A)は定常状態の側面図、(B)は車高低下状態の側面図、(C)は車高上昇状態の側面図である。 本発明の第1の実施形態に対する第2比較例を模式的に示す図であって、(A)は定常状態の側面図、(B)は車高低下状態の側面図、(C)は車高上昇状態の側面図である。
符号の説明
10 車両用空力装置
20 フロントサスペンション
28 下ばね受け(懸架装置における車輪と共に車体に対し接離する側)
34 フェンダライナ(カバー部材)
40・45・50・70・75・80・85・90 車両用空力装置
42・46・52・72 フェンダライナ
56 アクチュエータ(駆動装置)
58・74 空力ECU(制御装置)
60 車高センサ(走行状態検出装置)
66 操舵センサ(走行状態検出装置、操舵状態検出装置、操舵角センサ、トルクセンサ)
68 ヨーレートセンサ(走行状態検出装置、ヨー運動検出装置)
92 圧力センサ(走行状態検出装置、横風検出装置)
B 車体
H ホイールハウス
W 前輪(車輪)

Claims (25)

  1. ホイールハウスに配設された車輪が、懸架装置によって車体に対し接離可能に支持された車両に適用される車両用空力装置であって、
    前記車輪の前記車体に対する接離方向に沿って該車体に対し接離可能に支持され、前記ホイールハウス内で前記車輪を上側から覆うカバー部材を備えた車両用空力装置。
  2. 前記カバー部材は、前記ホイールハウスを経由した車体への異物の侵入を抑制するためのフェンダライナを兼ねる請求項1記載の車両用空力装置。
  3. 前記カバー部材は、前記懸架装置における前記車輪と共に前記車体に対し接離する側に固定されている請求項1又は請求項2記載の車両用空力装置。
  4. 前記カバー部材を前記車体に対し接離する方向に駆動するための駆動装置と、
    車両の走行状態に応じた信号を出力する走行状態検出装置と、
    前記走行状態検出装置の出力信号に基づいて前記駆動装置を駆動して、前記カバー部材を前記車体に対し接離させる制御装置と、
    をさらに備えた請求項1又は請求項2記載の車両用空力装置。
  5. 前記走行状態検出装置は、前記車輪の車体に対する接離量に応じた信号を出力する車高センサを含み、
    前記制御装置は、前記車高センサの出力信号に基づいて、前記カバー部材が前記車輪との間隔を所定範囲に保つように前記駆動装置を駆動する請求項4記載の車両用空力装置。
  6. 前記走行状態検出装置は、車両の操舵状態に応じた信号を出力する操舵状態検出装置を含み、
    前記制御装置は、前記操舵状態検出装置の出力信号に基づいて、操舵により転舵される左右の車輪を覆う各カバー部材が独立して前記車体に対し接離するように前記駆動装置を制御する請求項4又は請求項5記載の車両用空力装置。
  7. 前記制御装置は、前記操舵状態検出装置の出力信号に基づいて操舵を検知した場合に、
    内輪が外輪よりも車体に対し離間する方向のローリングを生じさせる方向の空気力が車体に作用するように、前記駆動装置を制御する請求項6記載の車両用空力装置。
  8. 前記制御装置は、前記操舵状態検出装置の出力信号に基づいて操舵を検知した場合に、内輪側の前記カバー部材が基準位置に位置する状態よりも該内輪から離間する状況が生じるように前記駆動装置を制御する請求項6又は請求項7記載の車両用空力装置。
  9. 前記制御装置は、前記操舵状態検出装置の出力信号に基づいて操舵を検知した場合に、外輪側の前記カバー部材が基準位置に位置する状態よりも該外輪に近接する状況が生じるように前記駆動装置を制御する請求項6乃至請求項8の何れか1項記載の車両用空力装置。
  10. 前記操舵状態検出装置は、操舵角に応じた信号を出力する操舵角センサである請求項6乃至請求項9の何れか1項記載の車両用空力装置。
  11. 前記制御装置は、前記操舵角センサの出力信号に基づいて車輪が中立位置に対する一方側に転舵されている状態を検知している場合に、内輪側の前記カバー部材が該内輪から離間するように前記駆動装置を制御する請求項10記載の車両用空力装置。
  12. 前記制御装置は、前記操舵角センサの出力信号に基づいて車輪が中立位置に対する一方側に転舵されている状態を検知している場合に、外輪側の前記カバー部材が該外輪に近接するように前記駆動装置を制御する請求項10又は請求項11記載の車両用空力装置。
  13. 前記操舵状態検出装置は、操舵トルクに応じた信号を出力するトルクセンサである請求項6乃至請求項9の何れか1項記載の車両用空力装置。
  14. 前記制御装置は、前記トルクセンサの出力信号に基づいて操舵トルク作用方向が中立位置に対する転舵方向に一致していることを検知している場合に、内輪側の前記カバー部材が該内輪から離間するように前記駆動装置を制御する請求項13記載の車両用空力装置。
  15. 前記制御装置は、前記トルクセンサの出力信号に基づいて操舵トルク作用方向が中立位置に対する転舵方向とは逆であることを検知している場合に、内輪側の前記カバー部材が該内輪に近接するように前記駆動装置を制御する請求項14記載の車両用空力装置。
  16. 前記制御装置は、前記トルクセンサの出力信号に基づいて操舵トルク作用方向が中立位置に対する転舵方向に一致していることを検知している場合に、外輪側の前記カバー部材が該外輪に近接するように前記駆動装置を制御する請求項13乃至請求項15の何れか1項記載の車両用空力装置。
  17. 前記制御装置は、前記トルクセンサの出力信号に基づいて操舵トルク作用方向が中立位置に対する転舵方向とは逆であることを検知している場合に、外輪側の前記カバー部材が該外輪から離間するように前記駆動装置を制御する請求項16記載の車両用空力装置。
  18. 前記制御装置は、前記トルクセンサの出力信号の時間変化率に基づいて操舵トルクの絶対値が増加していることを検知している場合に、内輪側の前記カバー部材が該内輪から離間するように前記駆動装置を制御する請求項13記載の車両用空力装置。
  19. 前記制御装置は、前記トルクセンサの出力信号の時間変化率に基づいて操舵トルクの絶対値が減少していることを検知している場合に、内輪側の前記カバー部材が該内輪に近接するように前記駆動装置を制御する請求項18記載の車両用空力装置。
  20. 前記制御装置は、前記トルクセンサの出力信号の時間変化率に基づいて操舵トルクの絶対値が増加していることを検知している場合に、外輪側の前記カバー部材が該外輪に近接するように前記駆動装置を制御する請求項13、請求項18、又は請求項19記載の車両用空力装置。
  21. 前記制御装置は、前記トルクセンサの出力信号の時間変化率に基づいて操舵トルクの絶対値が減少していることを検知している場合に、外輪側の前記カバー部材が該外輪から離間するように前記駆動装置を制御する請求項20記載の車両用空力装置。
  22. 前記走行状態検出装置は、車体のヨー運動に応じた信号又はヨー運動の時間変化に応じた信号を出力するヨー運動検出装置を含み、
    前記制御装置は、ヨー運動検出装置の出力信号に基づいてヨー運動の変化率が所定値よりも大である場合に、内輪が外輪よりも車体に対し離間する方向のローリングを抑制する方向の空気力が車体に作用するように、前記駆動装置を制御する請求項6乃至請求項21の何れか1項記載の車両用空力装置。
  23. 前記制御装置は、ヨー運動検出装置の出力信号に基づいてヨー運動の変化率が所定値よりも大である場合に、請求項7乃至請求項21の何れか1項記載の制御に優先して、内輪側の前記カバー部材が基準位置に位置する状態よりも該内輪に近接するように、又は外輪側の前記カバー部材が基準位置に位置する状態よりも該外輪から離間するように、前記駆動装置を制御する請求項22記載の車両用空力装置。
  24. 前記走行状態検出装置は、車両に作用する横風の方向に応じた信号を出力する横風検出装置を含み、
    前記制御装置は、前記横風検出装置の出力信号に基づいて、横風の風上側において前記カバー部材が基準位置に位置する状態よりも前記車輪から離間するように、又は横風の風下側において前記カバー部材が基準位置に位置する状態よりも前記車輪に近接するように、前記駆動装置を制御する請求項4乃至請求項23の何れか1項記載の車両用空力装置。
  25. 前記横風検出装置は、車体前部において車幅方向中央部を挟んで互いに反対側に配置された一対の圧力センサを含み、
    前記制御装置は、前記一対の圧力センサの出力信号差に基づいて横風の作用方向を検知する請求項24記載の車両用空力装置。
JP2005078113A 2005-03-17 2005-03-17 車両用空力装置 Withdrawn JP2006256517A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005078113A JP2006256517A (ja) 2005-03-17 2005-03-17 車両用空力装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005078113A JP2006256517A (ja) 2005-03-17 2005-03-17 車両用空力装置

Publications (1)

Publication Number Publication Date
JP2006256517A true JP2006256517A (ja) 2006-09-28

Family

ID=37096203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005078113A Withdrawn JP2006256517A (ja) 2005-03-17 2005-03-17 車両用空力装置

Country Status (1)

Country Link
JP (1) JP2006256517A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7380869B2 (en) 2006-01-16 2008-06-03 Toyota Jidosha Kabushiki Kaisha Aerodynamic device for vehicle
WO2014054697A1 (ja) * 2012-10-02 2014-04-10 学校法人日本大学 自動車の運動制御方法、自動車の運動制御装置及び自動車
DE102016204318A1 (de) * 2016-03-16 2017-09-21 Continental Automotive Gmbh Radlaufanordnung für ein Rad, Kraftfahrzeug mit einer Radlaufanordnung

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7380869B2 (en) 2006-01-16 2008-06-03 Toyota Jidosha Kabushiki Kaisha Aerodynamic device for vehicle
WO2014054697A1 (ja) * 2012-10-02 2014-04-10 学校法人日本大学 自動車の運動制御方法、自動車の運動制御装置及び自動車
DE102016204318A1 (de) * 2016-03-16 2017-09-21 Continental Automotive Gmbh Radlaufanordnung für ein Rad, Kraftfahrzeug mit einer Radlaufanordnung
DE102016204318B4 (de) 2016-03-16 2023-03-30 Vitesco Technologies GmbH Radlaufanordnung für ein Rad, Kraftfahrzeug mit einer Radlaufanordnung

Similar Documents

Publication Publication Date Title
CN102381152B (zh) 悬架控制装置
US12233677B2 (en) Suspension system for an off-road vehicle utilizing hydraulically coupled remote mounted springs
JPH0741784B2 (ja) サスペンシヨンとステアリングの総合制御装置
US12017497B2 (en) Vehicle control device
JP4648126B2 (ja) 車両用サスペンション装置
JP4732061B2 (ja) サスペンションの制御装置
JP2007253929A (ja) 車両用空力装置
CN208585235U (zh) 一种提高公交车乘坐舒适性的智能辅助系统
JP2008189008A (ja) 車両統合制御装置
JP2006256517A (ja) 車両用空力装置
JP4648125B2 (ja) 可変減衰力ダンパの制御装置
JP7095271B2 (ja) 車両のステアリング制御方法及び制御装置
JP2006044523A (ja) サスペンションの制御装置
JP5162283B2 (ja) 減衰力可変ダンパの制御装置および制御方法
JP2003165447A (ja) 操舵装置
KR20050051262A (ko) 자동차의 프런트서스펜션 구조
JP2009241726A (ja) 車両のサスペンション装置
KR20050118405A (ko) 쇽업쇼버의 감쇠력 제어 시스템
AU2021291797A1 (en) Control device, vehicle, and control method
JP5923427B2 (ja) 車両
JP4744327B2 (ja) 車両姿勢制御装置
KR101297961B1 (ko) 차량용 능동제어 후륜 현가장치의 토우제어장치와 그제어방법
JP7598376B2 (ja) 制御装置、車両及び制御方法
JPH05213027A (ja) サスペンション制御装置
JP2658529B2 (ja) 車両用キャスタ角制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070426

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090203