[go: up one dir, main page]

JP2006255878A - Method for producing fine structure and use thereof - Google Patents

Method for producing fine structure and use thereof Download PDF

Info

Publication number
JP2006255878A
JP2006255878A JP2005254042A JP2005254042A JP2006255878A JP 2006255878 A JP2006255878 A JP 2006255878A JP 2005254042 A JP2005254042 A JP 2005254042A JP 2005254042 A JP2005254042 A JP 2005254042A JP 2006255878 A JP2006255878 A JP 2006255878A
Authority
JP
Japan
Prior art keywords
alignment film
fine structure
target substance
liquid film
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005254042A
Other languages
Japanese (ja)
Inventor
Masaaki Noborisaka
雅聡 登阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University NUC
Original Assignee
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University NUC filed Critical Kyoto University NUC
Priority to JP2005254042A priority Critical patent/JP2006255878A/en
Publication of JP2006255878A publication Critical patent/JP2006255878A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Polarising Elements (AREA)

Abstract

【課題】 目的物質の結晶性の有無に関わらず、ミクロン以䞋の呚期を有し、さらに望たしくは以䞋の呚期を有する埮现構造を圢成可胜であり、か぀、圓該埮现構造の配向を制埡するこずも可胜であり、さらに、埮现構造の圢成察象基板等の自由床を高めるこずが可胜な埮现構造䜓の補造技術を提䟛する。
【解決手段】 䟋えば基板の平滑な圢成面に、ポリテトラフルオロ゚チレンを擊り぀けお配向膜を圢成し配向膜圢成工皋、圓該配向膜の䞊に、䞊蚘埮现構造䜓ずなる目的物質を溶媒に溶解した目的物質溶液の液膜を圢成させ液膜圢成工皋、圓該液膜から溶媒を蒞発させながら察流を誘起させる察流誘起工皋。これにより、より奜たしくは数十の呚期で栌子状の埮现パタヌンを有する埮现構造䜓を簡䟿、䜎コストか぀配向制埡可胜に補造するこずができる。
【遞択図】 なし
PROBLEM TO BE SOLVED: To form a fine structure having a period of 1 micron or less, more preferably having a period of 100 nm or less, and controlling the orientation of the fine structure irrespective of the presence or absence of crystallinity of a target substance. It is also possible to provide a fine structure manufacturing technique capable of increasing the degree of freedom of a fine structure formation target (substrate or the like).
For example, polytetrafluoroethylene is rubbed onto a smooth formation surface of a substrate to form an alignment film (alignment film forming step), and a target substance that becomes the fine structure is formed on the alignment film as a solvent. A liquid film of the target substance solution dissolved in the liquid film is formed (liquid film formation process), and convection is induced while the solvent is evaporated from the liquid film (convection induction process). Thereby, a fine structure having a lattice-like fine pattern with a period of several tens of nanometers can be manufactured more easily, at low cost, and with controllable orientation.
[Selection figure] None

Description

本発明は自己組織化自己集合化珟象を甚いた、空間的芏則性を有する物質の埮现埮小構造䜓の補造方法およびこれにより埗られる埮现構造䜓、䞊びにその代衚的な利甚に関するものであり、特に、各皮光孊材料や電子材料に奜適に甚いるこずができる埮现構造䜓およびその補造方法ず、その利甚に関するものである。   The present invention relates to a method for producing a fine (micro) structure of a material having spatial regularity using a self-organization (self-assembly) phenomenon, a fine structure obtained thereby, and a typical use thereof. In particular, the present invention relates to a microstructure that can be suitably used for various optical materials and electronic materials, a manufacturing method thereof, and use thereof.

近幎、光孊材料や電子材料を甚いお補造される各皮電子・光孊デバむスにおいおは高性胜化の芁求がたすたす倧きくなっおいる。具䜓的には、䟋えば、半導䜓装眮等では集積床のより䞀局の向䞊が求められおおり、各皮情報を取り扱うデバむスでは、情報量のさらなる高密床化、特に、画像を取り扱うデバむスであれば画像情報のさらなる高粟现化が求められおいる。   In recent years, various electronic and optical devices manufactured using optical materials and electronic materials are increasingly required to have high performance. Specifically, for example, semiconductor devices and the like are required to further improve the degree of integration, and in devices that handle various types of information, further increase in the amount of information, especially image information if the device handles images. There is a demand for further higher definition.

このような芁求に察応する手法の䞀぀ずしお、量子サむズ効果を利甚する技術が提案されおいる。すなわち、光孊材料や電子材料等に甚いられる物質、䟋えば各皮金属や半導䜓の結晶を〜の倧きさ説明の䟿宜䞊、この範囲の倧きさを「数十レベル」ず称するに制埡すれば、量子サむズ効果が発珟するため、高性胜デバむスの補造に䞊蚘量子サむズ効果を利甚するこずが提案されおいる。   As one of methods for meeting such a demand, a technique using a quantum size effect has been proposed. That is, a substance used for an optical material or an electronic material, for example, a crystal of various metals or a semiconductor is controlled to a size of 1 to 100 nm (for convenience of explanation, the size of this range is referred to as “several tens of nm level”). For example, since the quantum size effect appears, it has been proposed to use the quantum size effect for manufacturing a high-performance device.

䞊蚘数十レベルの埮现構造に関わらず、䞀般に、埮现構造を圢成するためには、加工察象ずなる目的物質の倧きさず圢態ずを制埡する必芁がある。このような技術ずしおは、䟋えば、マスクを甚いた蒞着法、光化孊反応および重合反応を甚いた光リ゜グラフィヌ技術、レヌザヌアブレヌション技術等が挙げられる。   Regardless of the fine structure of several tens of nanometers above, in general, in order to form a fine structure, it is necessary to control the size and form of the target substance to be processed. Examples of such a technique include a vapor deposition method using a mask, a photolithographic technique using a photochemical reaction and a polymerization reaction, a laser ablation technique, and the like.

たた、最近では、埮现構造を圢成するための新たな技術動向ずしお、ナノテクノロゞヌ分野における自己組織化技術が泚目を集めおいる。埮现構造の圢成に自己組織化技術を甚いれば、このような埮现構造を有する埮现構造䜓の生産性を向䞊させたり、補造コストを䜎枛させお経枈性を向䞊させたりするこずができる䞊に、圓該埮现構造䜓を圢成する察象に぀いお遞択肢が広がる。そのため補造技術ずしおの自由床に優れおいるずいう利点がある。   Recently, self-organization technology in the nanotechnology field is attracting attention as a new technology trend for forming fine structures. If self-organization technology is used for the formation of the fine structure, the productivity of the fine structure having such a fine structure can be improved, the manufacturing cost can be reduced, and the economy can be improved. Options for the object for forming the microstructure are expanded. Therefore, there exists an advantage that it is excellent in the freedom degree as a manufacturing technique.

自己組織化により数十レベルの埮现構造を圢成する技術は、倚くの堎合、結晶成長を利甚しおいる。具䜓的には、䟋えば、特定の結晶性物質からなる半導䜓のロッド棒状構造䜓、ワむダヌ玐状構造䜓、およびこれらを集合させた栌子状構造䜓等を補造する技術が知られおいる。   In many cases, a technique for forming a microstructure of several tens of nanometers by self-organization uses crystal growth. Specifically, for example, a technique for manufacturing semiconductor rods (rod-like structures), wires (string-like structures) made of a specific crystalline substance, and a lattice-like structure in which these are assembled is known. Yes.

さらに、非結晶性物質の自己組織化に぀いおも皮々の技術が提案されおいる。具䜓的には、䟋えば、非特蚱文献〜に開瀺されおいる技術や特蚱文献に開瀺されおいる技術等が挙げられる。非特蚱文献〜に開瀺されおいる技術によれば、ハニカム状の穎が䞀定の呚期で繰り返される埮现構造を圢成するこずが可胜である。たた、特蚱文献に開瀺されおいる技術によれば、䞻ずしお、盎線が䞊んだ圢の平行栌子状のパタヌンが繰り返される埮现構造を圢成するこずが可胜である。たた、この技術では、立䜓物の衚面䞊に膜面を圢成するこずも可胜である。   Furthermore, various techniques have been proposed for self-organization of non-crystalline substances. Specifically, the technique currently disclosed by the nonpatent literatures 1-4, the technique currently disclosed by patent document 1, etc. are mentioned, for example. According to the techniques disclosed in Non-Patent Documents 1 to 4, it is possible to form a fine structure in which honeycomb-shaped holes are repeated at a constant period. Further, according to the technique disclosed in Patent Document 1, it is possible to form a fine structure in which a parallel grid pattern in which straight lines are arranged is repeated. In this technique, it is also possible to form a film surface on the surface of a three-dimensional object.

たた、結晶性物質により埮现構造を圢成するずきに、圓該埮现構造の配向を制埡するこずを可胜ずする技術も提案されおいる。䟋えば、非特蚱文献では、結晶の配向生長を利甚しお埮现構造の配向を制埡しおいる。
特開−号公報平成幎月日公開   −    − −    − −  −    − 
In addition, a technique has been proposed that enables the orientation of the microstructure to be controlled when the microstructure is formed of a crystalline substance. For example, in Non-Patent Document 5, the orientation of the fine structure is controlled by utilizing the orientation growth of crystals.
JP 2003-151766 A (published May 23, 2003) Chemistry Letters p. 821-822 (1996) Thin Solid Films Vol. 327-329, p829-832 (1998) Thin Solid Films Vol. 327-329, p854-856 (1998) Chaos Vol. 9, p308-314 (1999) Nature Vol 352, p414-417 (1991)

しかしながら、䞊蚘埓来の技術では、埮现構造の圢成に目的物質の結晶性が倧きく圱響したり、圢成可胜な埮现構造の皮類が限定されたりする䞊に、埮现構造の配向を良奜に制埡するこずが困難ずなっおいる。そのため、埮现構造䜓の補造技術ずしお芋れば実甚性に劣るずいう課題を有しおいる。   However, in the above conventional technique, the crystallinity of the target substance greatly affects the formation of the microstructure, the types of the microstructure that can be formed are limited, and the orientation of the microstructure can be controlled well. It has become difficult. Therefore, there is a problem that it is inferior in practicality when viewed as a manufacturing technique of a fine structure.

具䜓的には、たず、䞊蚘非特蚱文献〜に開瀺されおいる技術では、埮现構造ずしおハニカム状の穎の呚期的なパタヌンが圢成されるこずは確認されおいるが、それ以倖の埮现構造、䟋えば、棒状構造䜓を補造するこずは確認されおいない。しかも、これらの技術では、Όから数Όの範囲でパタヌンの呚期を有する構造が報告されおいるのみであり、特に、䞊蚘数十レベルの埮现構造を圢成するこずは事実䞊できないため、技術的には、さらなる埮现化を図るこずが課題ずなっおいる。   Specifically, first, in the techniques disclosed in Non-Patent Documents 1 to 4, it has been confirmed that a periodic pattern of honeycomb-shaped holes is formed as a fine structure. It has not been confirmed to produce structures such as rod-like structures. In addition, in these techniques, only a structure having a pattern period in the range of 0.1 ÎŒm to several ÎŒm has been reported, and in particular, it is practically impossible to form the fine structure of the above-mentioned tens of nm level. Technically, further miniaturization is an issue.

たた、䞊蚘特蚱文献に開瀺されおいる技術では、埮现構造ずしお栌子状の呚期的なパタヌンを圢成するこずが可胜であるが、やはり䞊蚘非特蚱文献〜に開瀺されおいる技術ず同様に、報告されおいる埮现構造はΌから数Όの範囲にパタヌンの呚期を有する構造である。それゆえ、この技術でもさらなる埮现化が課題ずなっおいる。   Further, in the technique disclosed in Patent Document 1, it is possible to form a lattice-like periodic pattern as a fine structure, but it is also the same as the technique disclosed in Non-Patent Documents 1 to 4 described above. In addition, the reported fine structure is a structure having a pattern period in a range of 0.1 ÎŒm to several ÎŒm. Therefore, further miniaturization is an issue in this technology.

さらに、埮现構造䜓を広範な目的で䜿甚する堎合には、圓該埮现構造䜓が備える埮现構造は、呚期的な栌子状のパタヌンを有する構造栌子状構造、たたは、棒状構造や玐状構造のように、集合するこずで栌子状構造を圢成可胜な構造であるこずが奜たしい。加えお、圓該埮现構造䜓を補造するに圓っおは、その呚期的な構造の配向が制埡可胜であるこずがより䞀局奜たしい。   Furthermore, when the fine structure is used for a wide range of purposes, the fine structure included in the fine structure is a structure having a periodic lattice pattern (lattice structure), or a rod-like structure or a string-like structure. Thus, it is preferable that the lattice structure be formed by gathering. In addition, in manufacturing the microstructure, it is even more preferable that the orientation of the periodic structure can be controlled.

しかしながら、䞊蚘非特蚱文献〜に開瀺されおいる技術では、栌子状構造も棒状構造や玐状構造も圢成するこずはできない。䞀方、特蚱文献に開瀺されおいる技術では、栌子状のパタヌンを圢成するこずが可胜であるずずもに、その配向も制埡するこずは可胜ずされおいる。しかしながら、パタヌンの呚期が数十レベルである埮现構造を圢成するこずは党く開瀺されおいない。   However, the techniques disclosed in Non-Patent Documents 1 to 4 cannot form a lattice structure, a rod structure, or a string structure. On the other hand, in the technique disclosed in Patent Document 1, it is possible to form a lattice-like pattern and to control the orientation thereof. However, there is no disclosure of forming a fine structure having a pattern period of several tens of nanometers.

たた、䞊蚘非特蚱文献に開瀺されおいる技術は、䞊述したように、結晶の配向生長を利甚しおいる。そのため、この技術の適甚範囲は、結晶性物質による埮现構造䜓の補造に限定される。たた、この技術では、結晶の配向は制埡するこずができおも、その粒子倖圢は制埡するこずができないため、棒状構造や玐状構造、あるいはこれらが集合した栌子状構造を圢成するこずはできない。   In addition, the technique disclosed in Non-Patent Document 5 utilizes crystal orientation growth as described above. Therefore, the scope of application of this technique is limited to the production of a fine structure using a crystalline substance. Also, with this technique, the crystal orientation cannot be controlled even if the crystal orientation can be controlled, so that a rod-like structure, a string-like structure, or a lattice-like structure in which these are assembled cannot be formed. .

このように、自己組織化により圢状の制埡された埮现構造䜓を補造する堎合、呚期的な構造を以䞋ずし、か぀、その配向を制埡するには、察象ずなる物質が結晶性でなければならない。   As described above, when a microstructure having a shape controlled by self-organization is manufactured, in order to control the orientation of the periodic structure to be 100 nm or less and the orientation thereof is not crystalline, Don't be.

さらに、このような結晶性物質を結晶化しお埮现構造䜓を補造する堎合、圓該結晶性物質は、所望の性質を発揮するように、特定の結晶孊的方向に沿っお生長する性質を有するものでなければならない。このような結晶性物質は限定されおいるため、埮现構造䜓の補造に利甚可胜な物質は限定されおいる。   Furthermore, when producing a microstructure by crystallizing such a crystalline substance, the crystalline substance has a property of growing along a specific crystallographic direction so as to exhibit a desired property. Must. Since such crystalline materials are limited, the materials that can be used for the production of microstructures are limited.

たた、䞀般に、目的物質の溶液を甚いお自己組織化により基板の衚面に埮现構造を圢成する堎合、基板ずなる物質ず溶液ずの間の濡れ性等を適切に組み合わせる必芁がある。そのため、利甚可胜な目的物質ず溶媒、基板の組み合わせが厳しく制玄されおいる。さらに、非結晶性物質の堎合、呚期的な埮现構造の倧きさを十分に小さくするこずは未だに実珟されおいない。   In general, when a fine structure is formed on the surface of a substrate by self-organization using a solution of the target substance, it is necessary to appropriately combine wettability between the substance to be the substrate and the solution. For this reason, combinations of target substances, solvents, and substrates that can be used are severely restricted. Furthermore, in the case of an amorphous material, it has not yet been realized to sufficiently reduce the size of the periodic fine structure.

本発明は䞊蚘課題に鑑みおなされたものであり、その目的は、目的物質の結晶性の有無に関わらず、ミクロン以䞋の呚期を有し、さらに望たしくは以䞋の呚期を有する埮现構造を圢成可胜であり、か぀、圓該埮现構造の配向を制埡するこずも可胜であり、さらに、埮现構造の圢成察象基板等の自由床を高めるこずが可胜な埮现構造䜓の補造技術を提䟛するこずにある。   The present invention has been made in view of the above problems, and its purpose is to form a microstructure having a period of 1 micron or less, more preferably a period of 100 nm or less, regardless of the presence or absence of crystallinity of the target substance. Provided is a fine structure manufacturing technique that can be formed and the orientation of the fine structure can be controlled, and further, the degree of freedom of a fine structure formation target (substrate, etc.) can be increased. There is.

本発明者らは、䞊蚘課題に鑑み鋭意怜蚎した結果、高分子材料からなる配向膜を圢成した基板衚面に目的物質の溶液の被膜液膜を圢成し、この液膜から溶媒を蒞発させながら察流を誘起させるこずで数十レベルの呚期的な埮现構造を圢成可胜であり、か぀、その配向も制埡するこずが可胜である䞊に、広範な基板を䜿甚可胜であるこずを芋出し、本発明を完成させるに至った。   As a result of intensive studies in view of the above problems, the inventors of the present invention formed a coating film (liquid film) of the target substance on the substrate surface on which the alignment film made of the polymer material was formed, and evaporated the solvent from the liquid film. However, by inducing convection, it is possible to form a periodic fine structure on the order of several tens of nanometers, and it is possible to control the orientation of the substrate and to find that a wide range of substrates can be used. The present invention has been completed.

すなわち、本発明にかかる埮现構造䜓の補造方法は、䞊蚘の課題を解決するために、䞀定の呚期で埮现パタヌンが繰り返される構造を有しおおり、圓該埮现パタヌンの呚期間隔が少なくずもΌ以䞋ずなっおいる埮现構造䜓の補造方法であっお、平滑な圢成面に、少なくずも高分子材料からなる配向膜を圢成する配向膜圢成工皋ず、圓該配向膜の䞊に、䞊蚘埮现構造䜓ずなる目的物質を溶媒に溶解した目的物質溶液の液膜を圢成する液膜圢成工皋ず、圓該液膜から溶媒を蒞発させながら察流を誘起させる察流誘起工皋ずを含むこずを特城ずしおいる。   That is, the fine structure manufacturing method according to the present invention has a structure in which a fine pattern is repeated at a constant period in order to solve the above-described problem, and the periodic interval of the fine pattern is at least 1 ÎŒm or less. A method for producing a microstructure, comprising: an alignment film forming step of forming an alignment film made of at least a polymer material on a smooth formation surface; and an object of forming the microstructure on the alignment film It includes a liquid film forming step for forming a liquid film of a target substance solution in which a substance is dissolved in a solvent, and a convection induction step for inducing convection while evaporating the solvent from the liquid film.

䞊蚘補造方法においおは、䞊蚘高分子材料ずしおフッ玠暹脂が甚いられるこずが奜たしく、䞊蚘フッ玠暹脂が、ポリテトラフルオロ゚チレンであるこずがより奜たしい。   In the production method, a fluororesin is preferably used as the polymer material, and the fluororesin is more preferably polytetrafluoroethylene.

たた、䞊蚘補造方法においおは、䞊蚘配向膜圢成工皋では、䞊蚘圢成面に高分子材料を擊り぀けるこずにより配向膜を圢成するこずが奜たしく、䞊蚘配向膜圢成工皋は、平滑な圢成面を有する基板に察しお斜されるこずが奜たしい。   In the manufacturing method, in the alignment film forming step, it is preferable to form an alignment film by rubbing a polymer material on the forming surface, and the alignment film forming step includes a substrate having a smooth forming surface. It is preferable to be applied to.

たた、䞊蚘補造方法においおは、䞊蚘液膜圢成工皋では、圢成面を目的物質溶液に浞挬するか、あるいは、圢成面に目的物質溶液を塗垃、噎霧たたは滎䞋するこずにより液膜を圢成するこずが奜たしく、䞊蚘液膜圢成工皋ず察流誘起工皋ずが同時に行われるこずがより奜たしい。   Further, in the manufacturing method, in the liquid film forming step, a liquid film may be formed by immersing the formation surface in a target substance solution, or applying, spraying, or dropping the target substance solution on the formation surface. Preferably, the liquid film forming step and the convection induction step are more preferably performed simultaneously.

䞊蚘補造方法により埗られる䞊蚘埮现構造䜓は、棒状たたは玐状、あるいはこれらを集合させた栌子状の圢状を有しおおり、それゆえ、本発明には、䞊蚘補造方法により補造される埮现構造䜓も含たれる。たた、本発明の代衚的な利甚技術ずしおは、埮现構造䜓を甚いおなる電子およびたたは光孊デバむスを挙げるこずができる。   The fine structure obtained by the production method has a rod shape, a string shape, or a lattice shape in which these are assembled. Therefore, the present invention includes a fine structure produced by the production method. The body is also included. In addition, as a typical application technique of the present invention, an electronic and / or optical device using a fine structure can be cited.

本発明は、䞊蚘のように、ガラス等の平滑な基板䞊にフッ玠暹脂等の高分子材料を擊り぀けお配向膜を圢成し、この䞊に、目的物質の溶液をキャストしお液膜を圢成し、この液膜から、察流を誘起するように溶媒を蒞発させる。これにより、数十〜数癟の間隔で、棒状構造、たたは、栌子状の埮现パタヌンが呚期的に配列した埮现構造を圢成するこずができる。しかも、目的物質の結晶性の有無にかかわらず䞊蚘埮现構造が圢成できるずずもに、圓該埮现構造の配向も制埡するこずができる。   As described above, the present invention forms an alignment film by rubbing a polymer material such as fluororesin on a smooth substrate such as glass, and forms a liquid film by casting a solution of the target substance on the alignment film. Then, the solvent is evaporated from the liquid film so as to induce convection. Thereby, a fine structure in which rod-like structures or lattice-like fine patterns are periodically arranged at intervals of several tens to several hundreds of nanometers can be formed. In addition, the fine structure can be formed regardless of the crystallinity of the target substance, and the orientation of the fine structure can be controlled.

特に、䞊蚘栌子状の埮现パタヌンを圢成する棒状構造の倪さは以䞋ずするこずができる䞊に、結晶性物質でも非結晶物質でも埮现構造を圢成するこずが可胜ずなる。そのため、目的に応じた適切な材料を甚いお量子サむズ効果を有する埮现構造䜓を補造するこずができる。   In particular, the thickness of the rod-like structure that forms the lattice-like fine pattern can be 50 nm or less, and it is possible to form a fine structure using either a crystalline material or an amorphous material. Therefore, a fine structure having a quantum size effect can be manufactured using an appropriate material according to the purpose.

たた、レゞストや蒞着法等を䜿甚せずに、溶液による自己組織化珟象を利甚しお、所望の方向ぞ空間芏則性を有する呚期的な栌子状構造やそれを構成する棒状構造を圢成するこずができる。そのため、簡䟿な工皋、䜎コスト、省資源、省゚ネルギヌで、ナノメヌトルオヌダヌの呚期的な埮现構造を圢成するこずができる。   In addition, using a self-organization phenomenon caused by a solution without using a resist or vapor deposition method, a periodic lattice structure having spatial regularity in a desired direction and a rod-like structure constituting the structure are formed. Can do. Therefore, a periodic fine structure of nanometer order can be formed with a simple process, low cost, resource saving, and energy saving.

このように、本発明は、新たに芋出されたタむプの自己構造圢成珟象を甚いた新芏な技術であり、補造される埮现構造䜓は、ナノテクノロゞヌにおけるボトムアップ型基板技術ずしお有効に利甚するこずずができるずいう効果を奏する。   As described above, the present invention is a novel technique using a newly discovered type of self-structure formation phenomenon, and the manufactured microstructure is effectively used as a bottom-up substrate technique in nanotechnology. There is an effect that it can be.

本発明の䞀実斜圢態に぀いお図に基づいお説明するず以䞋の通りであるが、本発明はこれに限定されるものではない。   An embodiment of the present invention will be described below with reference to FIG. 6, but the present invention is not limited to this.

本発明にかかる埮现構造䜓の補造方法
本発明にかかる埮现構造䜓の補造方法は、平滑な圢成面に、少なくずも高分子材料からなる配向膜を圢成する配向膜圢成工皋ず、圓該配向膜の䞊に、䞊蚘埮现構造䜓ずなる目的物質を溶媒に溶解した目的物質溶液の液膜を圢成する液膜圢成工皋ず、圓該液膜から溶媒を蒞発させながら察流を誘起させる察流誘起工皋ずを含んでいる。埗られる埮现構造䜓は、䞀定の呚期で埮现パタヌンが繰り返される構造呚期的な埮现構造を有しおいるものであるが、本発明では、埮现パタヌンずしお栌子状パタヌンたたはこれを構成する棒状構造が圢成可胜であり、か぀、埮现パタヌンの呚期間隔が少なくずもΌ以䞋、奜たしくは数十〜数癟の範囲内、より奜たしくは以䞋ずなっおいる。
(I) Manufacturing method of microstructure according to the present invention A manufacturing method of a microstructure according to the present invention includes an alignment film forming step of forming an alignment film made of at least a polymer material on a smooth forming surface, and the alignment A liquid film forming step of forming a liquid film of a target substance solution in which the target substance to be the microstructure is dissolved in a solvent on the film; and a convection inducing step of inducing convection while evaporating the solvent from the liquid film; Is included. The obtained fine structure has a structure in which a fine pattern is repeated at a constant period (periodic fine structure). However, in the present invention, a lattice pattern or a rod shape constituting the fine pattern is used as the fine pattern. The structure can be formed, and the periodic interval of the fine pattern is at least 1 ÎŒm or less, preferably in the range of several tens to several hundreds of nm, more preferably 100 nm or less.

〔目的物質およびその溶液〕
本発明においお、埮现構造を圢成する目的物質ずしおは特に限定されるものではなく、補造する埮现構造䜓の甚途や皮類等に応じお奜適な物質を遞択しお甚いるこずができる。特に、本発明では、目的物質の結晶性の有無にかかわりなく埮现構造䜓を補造するこずができるので、埓来の技術ず比べおより広範な物質を利甚するこずができる。
[Target substance and its solution]
In the present invention, the target substance for forming the fine structure is not particularly limited, and a suitable substance can be selected and used according to the use or type of the fine structure to be produced. In particular, in the present invention, since a fine structure can be produced regardless of the crystallinity of the target substance, a wider range of substances can be used as compared with conventional techniques.

䞊蚘目的物質の代衚的な具䜓䟋ずしおは、ポリ゚チレン、ポリプロピレン、ポリ塩化ビニル等の結晶性高分子ポリスチレン、ポリメタクリル酞メチル等の非結晶性高分子、−ゞ−カルバゟリル−−ヘキサゞむン、ポルフィリン、フタロシアニン等の䜎分子有機化合物氎酞化カルシりム、ステアリン酞ナトリりム等の金属塩金、銀等の金属コロむド粒子高分子のラテックスカヌボンナノチュヌブ等のナノ構造䜓等を挙げるこずができる。   Typical examples of the target substance include crystalline polymers such as polyethylene, polypropylene, and polyvinyl chloride; amorphous polymers such as polystyrene and polymethyl methacrylate; 1,6-di (N-carbazolyl) ) Low molecular organic compounds such as -2,4-hexadiyne, porphyrin, phthalocyanine; metal salts such as calcium hydroxide and sodium stearate; metal colloidal particles such as gold and silver; polymer latex; nanostructures such as carbon nanotubes Body; and the like.

䞊蚘目的物質は溶液たたは分散液ずしお調補されお、液膜圢成工皋により配向膜䞊に液膜ずしお圢成される。䞊蚘溶液たたは分散液を調補するために甚いられる溶媒たたは分散媒䜓は特に限定されるものではなく、目的物質を十分に溶解たたは分散できるずずもに、察流誘起工皋にお察流を誘起するように蒞発可胜なものであればよい。ただし、基板を溶解したり腐食したり、あるいは基板に浞透するものは適さないため、遞択の際は、基板の材質も考慮する必芁がある。なお、以䞋の説明では特に蚀及しない限りにおいお、溶媒および分散媒䜓のこずを単に「溶媒」ず呌ぶ。   The target substance is prepared as a solution or a dispersion, and formed as a liquid film on the alignment film by a liquid film forming step. The solvent (or dispersion medium) used to prepare the solution or dispersion is not particularly limited, and the target substance can be sufficiently dissolved or dispersed and evaporated to induce convection in the convection induction step. Anything is possible. However, materials that dissolve or corrode the substrate or penetrate the substrate are not suitable, and therefore the material of the substrate needs to be taken into consideration when selecting. In the following description, the solvent and the dispersion medium are simply referred to as “solvent” unless otherwise specified.

具䜓的な溶媒ずしおは、䟋えば、ベンれン、トル゚ン、キシレン等の芳銙族系溶媒アセトン、メチル゚チルケトン等のケトン系溶媒メタノヌル、゚タノヌル、ブタノヌル、む゜プロパノヌル等のアルコヌル系溶媒ゞ゚チル゚ヌテル等の゚ヌテル系溶媒その他の有機溶媒氎等を挙げるこずができる。これら溶媒は単独で甚いるこずもできるし、皮類以䞊を組み合わせた混合物ずしお甚いるこずもできる。   Specific examples of the solvent include aromatic solvents such as benzene, toluene, and xylene; ketone solvents such as acetone and methyl ethyl ketone; alcohol solvents such as methanol, ethanol, butanol, and isopropanol; ether solvents such as diethyl ether. Other organic solvents; water; and the like. These solvents can be used alone or as a mixture of two or more.

なお、基板ず溶媒ずの濡れ性に぀いおは特に限定されるものではない。前述したように、溶液を甚いた自己組織化による埮现構造の圢成では、基板ず溶媒ずの濡れ性が重芁ずなるが、本発明では濡れ性を考慮する必芁はないため、埓来よりも䜿甚する溶媒の自由床を高めるこずができる。   The wettability between the substrate and the solvent is not particularly limited. As described above, wettability between the substrate and the solvent is important in the formation of a fine structure by self-organization using a solution, but in the present invention, it is not necessary to consider wettability, so that it is used more than before. The degree of freedom of the solvent can be increased.

本発明では、目的物質を溶液ずしおもよいし分散液ずしおもよいが、分散液ずしお甚いる堎合には、目的物質の粒子が少なくずも以䞋であるこずが奜たしい。これにより埗られる埮现構造の倧きさをより小さくするこずができる。たた、分散液の堎合、溶媒䞭で粒子が安定しお分散できるように、公知の界面掻性剀や乳化剀を添加しおもよい。これらの添加量は特に限定されるものではなく、目的物質の粒子を有効に分散可胜であり、か぀、液膜圢成工皋や察流誘起工皋に悪圱響を及がさない範囲内であればよい。   In the present invention, the target substance may be a solution or a dispersion, but when used as a dispersion, the target substance particles are preferably at least 100 nm or less. Thereby, the size of the fine structure obtained can be further reduced. In the case of a dispersion, a known surfactant or emulsifier may be added so that the particles can be stably dispersed in a solvent. The amount of these additives is not particularly limited as long as the particles of the target substance can be effectively dispersed and do not adversely affect the liquid film formation step and the convection induction step.

本発明においお、䞊蚘溶液たたは分散液の調補方法は特に限定されるものではなく、溶液の堎合は、目的物質および溶媒の組み合わせに応じお、圓該目的物質の溶解床等を考慮しお公知の方法で溶液ずしお調補すればよい。同様に、分散液の堎合も、目的物質の溶媒ぞの分散性等を考慮しお公知の方法で分散液ずしお調補すればよい。たた、目的物質溶液たたは分散液の濃床は特に限定されるものではないが、通垞は、×-10 〜重量の範囲内であるこずが奜たしく、×-4 〜重量の範囲内であるこずがより奜たしい。目的物質溶液たたは分散液がこのような垌薄溶液たたは分散液でないず、察流誘起工皋においお有効に埮现構造を圢成するこずができなくなる。 In the present invention, the method for preparing the solution or dispersion is not particularly limited. In the case of a solution, depending on the combination of the target substance and the solvent, a known method can be used in consideration of the solubility of the target substance. What is necessary is just to prepare as a solution. Similarly, in the case of a dispersion, the dispersion may be prepared by a known method in consideration of the dispersibility of the target substance in a solvent. Further, the concentration of the target substance solution or dispersion is not particularly limited, but it is usually preferably in the range of 1.0 × 10 −10 to 1.0% by weight, and 1.0 × 10 More preferably, it is in the range of -4 to 0.1% by weight. If the target substance solution (or dispersion liquid) is not such a dilute solution (or dispersion liquid), a fine structure cannot be formed effectively in the convection induction process.

なお、説明の䟿宜䞊、本明现曞では、「溶液」のみ蚘茉されおいる箇所に぀いおは、目的物質および溶媒の組み合わせに応じお「分散液」ず蚀い換えるこずができる。すなわち、本発明で甚いおいる「溶液」ずいう文蚀には、目的物質が溶液分散媒䜓に分散しおいる「分散液」の圢態も含たれる。たた、本発明にかかる補造方法には、必芁に応じお、目的物質溶液を調補する工皋が含たれおいおもよい。   Note that, for convenience of explanation, in this specification, a part where only “solution” is described can be rephrased as “dispersion liquid” depending on the combination of the target substance and the solvent. That is, the term “solution” used in the present invention includes a form of “dispersion” in which a target substance is dispersed in a solution (dispersion medium). In addition, the production method according to the present invention may include a step of preparing a target substance solution, if necessary.

〔基板〕
本発明では、奜たしくは、平滑な衚面を有する基板を甚いお埮现構造䜓を補造する。぀たり、基板の平滑な衚面を埮现構造䜓の圢成面ずしお甚いる。ここで、基板の具䜓的な材質に限定されるものではなく、平滑な衚面を圢成可胜であり、甚いる溶媒に察しお安定であり、配向膜圢成工皋、液膜圢成工皋、察流誘起工皋等の各工皋に耐久性を有するものであればよい。
〔substrate〕
In the present invention, the fine structure is preferably manufactured using a substrate having a smooth surface. That is, the smooth surface of the substrate is used as the formation surface of the fine structure. Here, it is not limited to a specific material of the substrate, can form a smooth surface, is stable with respect to the solvent used, such as an alignment film formation process, a liquid film formation process, a convection induction process, etc. What is necessary is just to have durability in each process.

特に、本発明では、埌述するように、配向膜の材質ずしお奜たしくはポリテトラフルオロ゚チレンを甚いる堎合、基板の枩床を抂ね℃以䞊にするこずが必芁ずなる。それゆえ、少なくずも℃以䞊の加熱に耐える材質であるこずが奜たしい。より具䜓的には、℃の枩床で十分な硬床、匷床、剛性を有しおいるこずが奜たしい。   In particular, in the present invention, as described later, when polytetrafluoroethylene is preferably used as the material of the alignment film, the temperature of the substrate needs to be approximately 180 ° C. or higher. Therefore, it is preferable that the material withstands heating at least 180 ° C. or higher. More specifically, it preferably has sufficient hardness, strength, and rigidity at a temperature of 180 ° C.

このような物質ずしおは、具䜓的には、䟋えば、゜ヌダラむムガラス、無アルカリガラス等のガラス系材料雲母の劈開面、シリコンり゚ファヌ等のシリカ系材料各皮金属ポリむミド等の耐熱性有機高分子材料酞化むンゞりムスズ、酞化スズ等のその他の無機材料等を挙げなどが挙げられる。   Specific examples of such substances include glass-based materials such as soda lime glass and alkali-free glass; silica-based materials such as cleaved surfaces of mica and silicon wafers; various metals; ) Polymer materials; other inorganic materials such as indium tin oxide (ITO) and tin oxide; and the like.

基板の圢状は平板状であればよく、そのサむズも特に限定されるものではなく、埮现構造䜓の皮類や補造蚭備等に応じお適切な倧きさのものを甚いればよい。たた、本発明では、埮现構造䜓の圢成面は平滑であればよいので、その圢状は必ずしも平板状である必芁はなく、配向膜が圢成可胜な平滑性を有しおいれば局面や角を有する面等であっおもよく、基板のような二次元的な構造を有するものでなく、立䜓的な構造を有するもの立䜓物であっおもよい。   The shape of the substrate may be a flat plate shape, and the size is not particularly limited, and a substrate having an appropriate size may be used according to the type of microstructure, manufacturing equipment, or the like. In the present invention, the surface on which the fine structure is formed needs only to be smooth, so the shape does not necessarily have to be a flat shape. It may be a surface having a three-dimensional structure (three-dimensional object) instead of a two-dimensional structure such as a substrate.

〔配向膜圢成工皋〕
配向膜圢成工皋は、埮现構造䜓の圢成面に、少なくずも高分子材料からなる配向膜を圢成する工皋である。ここで、配向膜の材質である高分子材料ずしおは、基板の圢成面においお有効に配向膜ずしお圢成可胜であり、埌段の液膜圢成工皋や察流誘起工皋においお安定に存圚し、埮现構造の圢成に悪圱響を及がさないものであれば特に限定されるものではないが、奜たしくはフッ玠暹脂が甚いられる。䞭でも、ポリテトラフルオロ゚チレンを特に奜たしく甚いるこずができる。
[Alignment film formation process]
The alignment film forming step is a step of forming an alignment film made of at least a polymer material on the formation surface of the microstructure. Here, as the polymer material that is the material of the alignment film, it can be effectively formed as an alignment film on the formation surface of the substrate, and exists stably in the subsequent liquid film formation process and convection induction process, and forms a fine structure. Although it will not specifically limit if it does not have a bad influence on this, Preferably a fluororesin is used. Among these, polytetrafluoroethylene can be particularly preferably used.

䞊蚘配向膜の膜厚は特に限定されるものではなく、分子レベルの凹凞を有する配向膜であればその厚みはどのような厚みであっおもよい。䞊蚘ポリテトラフルオロ゚チレンの配向膜の堎合では、以䞊の膜厚であればよい。たた、配向膜は基板の衚面を完党に芆っおいる必芁はなく、埌述する実斜䟋に瀺すように郚分的に基板の衚面が露出しおいおも良い。   The thickness of the alignment film is not particularly limited, and the thickness may be any thickness as long as the alignment film has unevenness at the molecular level. In the case of the alignment film of polytetrafluoroethylene, the film thickness may be 0.5 nm or more. In addition, the alignment film does not need to completely cover the surface of the substrate, and the surface of the substrate may be partially exposed as shown in Example 1 described later.

䞊蚘配向膜の具䜓的な圢成方法は特に限定されるものではないが、䞊蚘圢成面に高分子材料を擊り぀けるこずにより配向膜を圢成する方法を奜適に甚いるこずができる。このずき擊り぀ける高分子材料の圢状は特に限定されるものではなく、圢成面の圢状や基板の圢状等に応じお適宜奜たしい圢状のものを甚いればよい。埌述する実斜䟋では、棒状のポリテトラフルオロ゚チレンを甚いおいる。   Although the specific formation method of the said alignment film is not specifically limited, The method of forming an alignment film by rubbing a polymeric material on the said formation surface can be used suitably. The shape of the polymer material to be rubbed at this time is not particularly limited, and a material having a preferable shape may be used depending on the shape of the formation surface, the shape of the substrate, and the like. In the examples described later, rod-shaped polytetrafluoroethylene is used.

ずころで、平滑な基板䞊に予めポリテトラフルオロ゚チレンを擊り぀ける等しお分子レベルの凹凞を有する配向膜を圢成し、その䞊に様々な結晶性物質を、溶液、溶融物、蒞着等の手法により配向生長させるこずが可胜であるこずは知られおいる非特蚱文献参照。䟋えば、埌述する実斜䟋で圢成されるポリテトラフルオロ゚チレンの配向膜は非特蚱文献においお開瀺されおいる手法ず同䞀であるが、圓該配向膜の䜜甚は党く異なる。   By the way, an alignment film having unevenness at the molecular level is formed on a smooth substrate by rubbing polytetrafluoroethylene in advance, and various crystalline substances are formed on the alignment film by a technique such as solution, melt, or vapor deposition. It is known that orientation growth can be achieved (see Non-Patent Document 5). For example, the alignment film of polytetrafluoroethylene formed in Examples described later is the same as the technique disclosed in Non-Patent Document 5, but the operation of the alignment film is completely different.

぀たり、非特蚱文献に開瀺されおいる技術では、ポリテトラフルオロ゚チレンの配向膜は、結晶性物質における特定の結晶孊的方向を、圓該配向膜の配向方向ず平行に配列させる䜜甚を有しおいる。これに察しお、本発明における配向膜は、栌子状の埮现パタヌンを圢成する物質においお結晶性は䞍芁であっお、配向膜の䞊に圢成された液膜から溶媒が蒞発する際の察流により埮现パタヌンが生じる。   That is, in the technique disclosed in Non-Patent Document 5, the alignment film of polytetrafluoroethylene has an action of arranging a specific crystallographic direction in the crystalline material in parallel with the alignment direction of the alignment film. ing. On the other hand, the alignment film in the present invention does not require crystallinity in the material forming the lattice-like fine pattern, and is fine due to convection when the solvent evaporates from the liquid film formed on the alignment film. A pattern occurs.

以䞋、ポリテトラフルオロ゚チレンの配向膜を圢成する堎合を䟋に挙げお、配向膜圢成工皋をより詳现に説明する。ポリテトラフルオロ゚チレンの配向膜は、基板の枩床を℃〜℃の範囲内、奜たしくは℃〜℃の範囲内に制埡し、圓該基板の衚面圢成面䞊にポリテトラフルオロ゚チレンの固たりを抌し぀けながら滑らせるこずにより圢成される。基板の枩床が℃未満では、ポリテトラフルオロ゚チレンの薄膜を圢成するこずができない。たた、℃を超えるずポリテトラフルオロ゚チレンの融点よりも高すぎるため、配向が損なわれたり衚面圢状が荒れたりしおしたうなどの問題が生じる。   Hereinafter, the alignment film forming step will be described in more detail by taking as an example the case of forming an alignment film of polytetrafluoroethylene. In the alignment film of polytetrafluoroethylene, the temperature of the substrate is controlled within a range of 180 ° C. to 360 ° C., preferably within a range of 250 ° C. to 340 ° C., and polytetrafluoroethylene is formed on the surface (formation surface) of the substrate. It is formed by sliding while pressing the lump. When the substrate temperature is less than 180 ° C., a polytetrafluoroethylene thin film cannot be formed. Moreover, since it is higher than melting | fusing point of polytetrafluoroethylene when it exceeds 360 degreeC, problems, such as alignment being impaired and surface shape becoming rough, arise.

䞊蚘配向膜を圢成する前には、圢成面を適切な手法で掗浄するこずが奜たしい。これにより圢成面䞊に安定しお配向膜を圢成するこずができる。埌述する実斜䟋では、アルカリ掗浄液でガラス基板の衚面を掗浄しおからポリテトラフルオロ゚チレンの配向膜を圢成しおいるが、これに限定されるものではなく、圢成面の材質等に応じお適切な掗浄方法・掗浄条件を遞択すればよい。   Before forming the alignment film, it is preferable to clean the formation surface by an appropriate technique. Thereby, the alignment film can be stably formed on the formation surface. In the examples described later, the alignment film of polytetrafluoroethylene is formed after cleaning the surface of the glass substrate with an alkali cleaning solution, but is not limited to this, and is appropriate depending on the material of the formation surface, etc. The cleaning method and cleaning conditions should be selected.

䞊蚘圢成面にポリテトラフルオロ゚チレンを擊り぀ける条件は特に限定されるものではなく、圢成面の皮類すなわち基板の皮類に応じお、配向膜を圢成するこずが可胜な適切な条件を蚭定すればよい。䟋えば、埌述する実斜䟋では、ポリテトラフルオロ゚チレンの棒を所定の圧力および速床で抌し぀けながら移動させるこずにより配向膜を圢成しおいる。   The conditions for rubbing polytetrafluoroethylene on the formation surface are not particularly limited, and appropriate conditions for forming the alignment film can be set according to the type of the formation surface (that is, the type of the substrate). That's fine. For example, in the embodiments described later, the alignment film is formed by moving a polytetrafluoroethylene rod while pressing it at a predetermined pressure and speed.

ポリテトラフルオロ゚チレンの配向膜を平板状の基板に圢成する方法に぀いお、図に基づいおより具䜓的に説明する。図では、基板は加熱手段により所定の枩床たで加熱される。この加熱手段の皮類は特に限定されるものではなく、基板の皮類に応じお公知の加熱装眮を甚いるこずができる埌述する実斜䟋ではホットプレヌトを甚いおいる。ポリテトラフルオロ゚チレンの固䜓この堎合は棒状は最初図䞭巊の䜍眮にあるが、圧迫移動装眮によっお基板に抌し぀けられながら図䞭右方向に滑らされる。その結果ずしお、ポリテトラフルオロ゚チレンの薄膜配向膜が基板䞊に圢成される。   A method for forming an alignment film of polytetrafluoroethylene on a flat substrate will be described more specifically with reference to FIG. In FIG. 6, the substrate 2 is heated to a predetermined temperature by the heating means 6. The type of the heating means 6 is not particularly limited, and a known heating device can be used according to the type of the substrate 2 (in the examples described later, a hot plate is used). The polytetrafluoroethylene solid (in this case, a rod-like shape) 5 is initially in the left position in the figure, but is slid rightward in the figure while being pressed against the substrate 2 by the compression moving device 7. As a result, a polytetrafluoroethylene thin film (alignment film) 1 is formed on the substrate 2.

なお、䞊蚘の䟋では、加熱した状態でポリテトラフルオロ゚チレンの固たりを擊り぀けお配向膜を圢成するこずができれば、圢成面は任意の曲面圢状等であっおもよい。たた、埌段の液膜圢成工皋においお液膜が圢成か぀保持可胜であり、察流誘起工皋においお察流を生じさせるように液膜から溶媒を蒞発可胜であれば、圢成面の圢状は特に限定されるものではない。したがっお、埮现構造䜓を圢成する察象物は必ずしも平板状の基板に限定されるものではない。   In the above example, as long as the alignment film can be formed by rubbing a mass of polytetrafluoroethylene in a heated state, the formation surface may have an arbitrary curved surface shape or the like. In addition, the shape of the formation surface is particularly limited as long as the liquid film can be formed and maintained in the subsequent liquid film forming process and the solvent can be evaporated from the liquid film so as to cause convection in the convection induction process. is not. Therefore, the target for forming the fine structure is not necessarily limited to the flat substrate.

圢成されたポリテトラフルオロ゚チレンの薄膜が配向膜か吊かは、埮分干枉光孊顕埮鏡により圓該薄膜の衚面を芳察するこずにより確認するこずができる。配向膜であれば、その衚面にスゞ状の凹凞を芳察するこずができる。   Whether or not the formed polytetrafluoroethylene thin film is an alignment film can be confirmed by observing the surface of the thin film with a differential interference optical microscope. In the case of the alignment film, streaky irregularities can be observed on the surface thereof.

〔液膜圢成工皋〕
䞊蚘液膜圢成工皋では、圢成面を目的物質溶液に浞挬するか、あるいは、圢成面に目的物質溶液を塗垃、噎霧たたは滎䞋するこずにより液膜を圢成する。ここで蚀う液膜ずは、配向膜䞊に圢成された、目的物質溶液の被服局たたは塗膜を指すものずする。䞊蚘配向膜䞊に液膜を圢成する方法は特に限定されるものではなく、䞊蚘のように、目的物質溶液に、配向膜の圢成された基板を浞挬し、それを匕き䞊げる方法いわゆる浞挬塗垃法たたはディッピング法バヌコヌタヌ、ロヌルコヌタヌ、ブラシ等の各皮塗工手段による塗垃法゚アブラシ、アトマむザヌ等による噎霧法滎䞋等の方法を挙げるこずができる。通垞は、ディッピング法および噎霧法がより奜たしく甚いるこずができる。
[Liquid film formation process]
In the liquid film forming step, the liquid film is formed by immersing the forming surface in the target substance solution, or coating, spraying, or dropping the target substance solution on the forming surface. The liquid film here refers to a coating layer (or coating film) of the target substance solution formed on the alignment film. The method for forming the liquid film on the alignment film is not particularly limited. As described above, the substrate on which the alignment film is formed is immersed in the target substance solution and the substrate is pulled up (so-called dip coating method). Or a dipping method); a coating method using various coating means such as a bar coater, a roll coater, and a brush; a spraying method using an air brush or an atomizer; Usually, a dipping method and a spray method can be used more preferably.

なお、液膜を圢成する堎合、基板および配向膜党䜓を均䞀に液膜で芆うように、圓該液膜を圢成する必芁は無いが、埮现構造の埮现パタヌンのサむズずその呚期を制埡するためには、液膜の膜厚やその他の圢成条件は適切に制埡されるこずが奜たしい。䞀般に、液膜の膜厚は、〜Όの範囲内であるこずが奜たしく、〜Όの範囲内であるこずがより奜たしい。ただし、奜適な範囲は溶液の濃床や察流誘起工皋の枩床等の諞条件により幅広く倉化するので、本発明で甚いる液膜の膜厚は䞊蚘範囲に限定されるものではない。   When forming the liquid film, it is not necessary to form the liquid film so that the entire substrate and the alignment film are uniformly covered with the liquid film, but in order to control the size and period of the fine pattern of the fine structure. The film thickness of the liquid film and other formation conditions are preferably controlled appropriately. In general, the film thickness of the liquid film is preferably in the range of 0.01 to 100 ÎŒm, and more preferably in the range of 0.1 to 10 ÎŒm. However, since the preferred range varies widely depending on various conditions such as the concentration of the solution and the temperature of the convection induction process, the film thickness of the liquid film used in the present invention is not limited to the above range.

液膜圢成工皋における目的物質溶液の枩床は、目的物質の溶媒䞭の溶解たたは分散状態が良奜ずなるような枩床であればよく、特に限定されるものではない。たた、圢成された液膜は、氎平ずなるように保持されおいる必芁はなく、傟斜しおいおもよい。本発明では、埌述する察流誘起工皋においお、液膜から溶媒が蒞発する際に、目的物質溶液内の化孊ポテンシャルの差に起因するマランゎニ察流が重芁であるため、重力の方向が液膜に察しおどのような向きにあっおも利甚するこずができる。   The temperature of the target substance solution in the liquid film forming step is not particularly limited as long as it is a temperature at which the target substance is dissolved (or dispersed) in a solvent. Moreover, the formed liquid film does not need to be held so as to be horizontal, and may be inclined. In the present invention, Marangoni convection due to the difference in chemical potential in the target substance solution is important when the solvent evaporates from the liquid film in the convection induction process described later. It can be used in any orientation.

〔察流誘起工皋〕
䞊蚘察流誘起工皋では、前段の液膜圢成工皋にお配向膜䞊に圢成された液膜から溶媒を蒞発させるこずにより察流、具䜓的にはマランゎニ察流堎合によっおはベナヌル察流を誘起し、これにより、少なくずもΌ以䞋の呚期的な埮现構造を圢成する。マランゎニ察流ずは、枩床募配あるいは濃床募配により生じる界面液䜓−液䜓、あるいは液䜓−気䜓匵力の差により生じる衚面近傍の流䜓の流れのこずであり、本発明では、液膜から溶媒を蒞発させるこずによりマランゎニ察流を生じさせ、これにより栌子状の埮现パタヌンを呚期的に圢成するこずが可胜になるず考えられる。たたベナヌル察流ずは、䞊面で冷华され密床が増した流䜓が䞋降するために生じる察流で、重力の圱響を無芖できない堎合には考慮される。
[Convection induction process]
In the convection inducing step, convection, specifically Marangoni convection (possibly Benard convection) is induced by evaporating the solvent from the liquid film formed on the alignment film in the previous liquid film formation step. Thus, a periodic fine structure of at least 1 ÎŒm or less is formed. Marangoni convection is a flow of fluid near the surface caused by a difference in interface (liquid-liquid or liquid-gas) tension caused by a temperature gradient or concentration gradient. In the present invention, the solvent is evaporated from the liquid film. Thus, it is considered that Marangoni convection is generated, and thereby a lattice-like fine pattern can be periodically formed. Benard convection is convection caused by a descending fluid that has been cooled and increased in density on the upper surface, and is considered when the influence of gravity cannot be ignored.

本工皋においお、液膜から溶媒を蒞発させる方法は特に限定されるものではなく、加熱、枛圧、およびこれらの組み合わせ等、公知の手法を甚いるこずができる。䟋えば、埌述する実斜䟋では、ホットプレヌト等の加熱手段により加熱する手法を甚いおいる。たた、埌述する実斜䟋では、配向膜の圢成された基板を加熱しながら液膜を圢成しおいる。すなわち、液膜圢成工皋ず察流誘起工皋ずを同時に行っおいる。このように、目的物質の皮類や補造しようずする埮现構造䜓の皮類等に応じお、液膜圢成工皋および察流誘起工皋は同時に行っおもよいし、別の工皋ずしお明確に区別しお行っおもよい。   In this step, the method for evaporating the solvent from the liquid film is not particularly limited, and known methods such as heating, decompression, and combinations thereof can be used. For example, in the embodiments described later, a method of heating by a heating means such as a hot plate is used. In the examples described later, the liquid film is formed while heating the substrate on which the alignment film is formed. That is, the liquid film formation step and the convection induction step are performed simultaneously. Thus, depending on the type of target substance and the type of microstructure to be manufactured, the liquid film forming step and the convection inducing step may be performed simultaneously, or may be performed clearly as separate steps. Good.

たた、本工皋では、埮现構造を圢成する際に、溶媒を蒞発させる速床を調節するこずにより、埮现パタヌンの均䞀性や圢成呚期のサむズ等を調節するこずができる。そのために、基板、溶液、雰囲気の枩床および呚囲の気圧や雰囲気䞭の溶媒の蒞気圧等の諞条件を適宜制埡すればよい。このように諞条件を制埡するこずにより、埮现パタヌンの間隔や呚期の倧きさを様々に倉化させた埮现構造䜓を補造するこずが可胜である。   In this step, the uniformity of the fine pattern, the size of the formation cycle, and the like can be adjusted by adjusting the rate at which the solvent is evaporated when forming the fine structure. For this purpose, various conditions such as the temperature of the substrate, the solution, the atmosphere, the ambient pressure, and the vapor pressure of the solvent in the atmosphere may be appropriately controlled. By controlling various conditions in this way, it is possible to manufacture a fine structure in which the interval between fine patterns and the size of the period are variously changed.

このように諞条件を制埡するこずにより、埮现パタヌンの呚期や圓該埮现パタヌンを圢成する棒状あるいは玐状構造の倪さを様々に倉化させた埮现構造䜓を補造するこずが可胜である。たた、䜍眮に応じお埮现パタヌンの呚期や棒状構造の倪さが連続的に倉化するような埮现構造䜓を補造するこずも可胜である。特に、本発明では、埮现構造ずしお栌子状の埮现パタヌンの繰り返し構造を圢成するこずができるが、栌子の呚期は少なくずも〜の範囲内で、栌子を圢成する棒状構造の倪さは〜の範囲内で倉化させるように制埡するこずができる。   By controlling various conditions in this way, it is possible to manufacture a fine structure in which the period of the fine pattern and the thickness of the rod-like or string-like structure forming the fine pattern are variously changed. It is also possible to manufacture a fine structure in which the period of the fine pattern and the thickness of the rod-like structure change continuously according to the position. In particular, in the present invention, a repetitive structure of a lattice-like fine pattern can be formed as the fine structure, but the period of the lattice is at least in the range of 10 to 500 nm, and the thickness of the rod-like structure forming the lattice is 1 nm to It can be controlled to change within a range of 200 nm.

本発明では、配向膜の衚面に圢成される高さ数〜数癟の埮现な筋状構造が、察流誘起工皋においお液膜からの溶媒の蒞発に圱響を䞎える。すなわち、蒞発過皋にある目的物質溶液の茪郭をその筋状構造に沿っおある皋床の時間固定する。その間、目的物質溶液の内郚から茪郭郚に向かう流動が生じ、蒞発に䌎う察流ず盞たっお、目的物質溶液䞭に溶解しおいた目的物質を、筋状構造に沿っお棒状に基板衚面に析出させるこずができるため、呚期性を有する栌子状の埮现パタヌンを圢成するこずが可胜になる。   In the present invention, a fine streak structure having a height of several nm to several hundred nm formed on the surface of the alignment film affects the evaporation of the solvent from the liquid film in the convection induction process. That is, the outline of the target substance solution in the evaporation process is fixed for a certain time along the streak structure. In the meantime, flow from the inside of the target substance solution to the contour occurs, and coupled with the convection accompanying evaporation, the target substance dissolved in the target substance solution is deposited on the substrate surface in a rod shape along the streak structure. Therefore, it becomes possible to form a lattice-like fine pattern having periodicity.

II本発明にかかる埮现構造䜓
本発明にかかる埮现構造䜓は、䞊蚘補造方法によっお補造されるものであり、具䜓的には、呚期的な棒状構造、玐状構造、あるいはこれらを集合させた栌子状構造を有しおいるものである。
(II) Fine structure according to the present invention The fine structure according to the present invention is manufactured by the above-described manufacturing method, and specifically, a periodic rod-shaped structure, a string-shaped structure, or an assembly of these. It has a lattice structure.

本発明により補造される埮现構造䜓は、䞊蚘のように、特に、呚期的に栌子状の埮现パタヌンが繰り返される埮现構造栌子状構造たたはそれを圢成する棒状構造が圢成され、しかもこれら構造の圢成呚期は、少なくずもΌ以䞋、奜たしくは数十〜数癟の範囲内、より奜たしくは数十ずなっおいる。   As described above, the fine structure manufactured according to the present invention is formed with a fine structure (grid-like structure) in which a lattice-like fine pattern is periodically repeated or a rod-like structure forming the fine structure. The formation period is at least 1 ÎŒm or less, preferably in the range of several tens to several hundreds of nanometers, more preferably several tens of nanometers.

たた、本発明により補造される埮现構造䜓は目的物質が結晶性のものであっおも、補造盎埌は非結晶性、あるいは非垞に結晶性の䜎い状態になっおいる。   Further, even if the target substance is crystalline, the microstructure produced according to the present invention is non-crystalline or very low in crystallinity immediately after production.

前述したように、埮现構造䜓を広範な目的で䜿甚する堎合には、圓該埮现構造䜓が備える埮现構造は、呚期的な栌子状のパタヌンを有する構造栌子状構造、たたは、棒状構造や玐状構造のように、集合するこずで栌子状構造を圢成可胜な構造であるこずが奜たしい。本発明では、このような呚期的な栌子状構造を有する埮现構造䜓を簡玠、䜎コスト、か぀省゚ネルギヌで補造するこずができるだけでなく、栌子状構造の配向を制埡するこずもでき、さらには、甚いる目的物質の自由床も埓来よりも広範なものずなっおいる。それゆえ、本発明の利甚分野は、埓来の技術ず比べおも非垞に広いものずなっおいる。   As described above, when a fine structure is used for a wide range of purposes, the fine structure included in the fine structure is a structure having a periodic lattice pattern (lattice structure), a rod-like structure, A structure that can form a lattice-like structure by gathering, such as a string-like structure, is preferable. In the present invention, not only can a microstructure having such a periodic lattice structure be manufactured simply, at low cost and with energy saving, but also the orientation of the lattice structure can be controlled. The degree of freedom of the target substance used is also wider than before. Therefore, the field of application of the present invention is very broad compared to the prior art.

埓来では、同様なスケヌルのパタヌンを圢成する堎合には、線や電子線などの波長が短いすなわち高゚ネルギヌの攟射線を甚いた倧掛かりな装眮が必芁ずなり、たた、倚くの䜜業工皋を必芁ずしおいた。したがっお、コストの点で問題があり、等の高付加䟡倀補品を補造するためだけに甚いられおいた。これに察しお本発明では、攟射線の発生装眮は䞍芁であり、補造皋も高分子を基板に擊り぀けお配向膜を圢成し、その䞊に溶液をキャストしお蒞発させるだけであるため、非垞に簡䟿ずなっおいる。それゆえ、本発明は非垞に簡䟿か぀安䟡に埮现なパタヌンを圢成できるため、コストの厳しい甚途にも甚いるこずができる。   Conventionally, in order to form a pattern with a similar scale, a large-scale apparatus using radiation with a short wavelength (ie, high energy) such as an X-ray or an electron beam is required, and many work steps are required. I was trying. Therefore, there is a problem in terms of cost, and it has been used only for manufacturing high value-added products such as CPUs. On the other hand, in the present invention, a radiation generating device is unnecessary, and the manufacturing process is merely to rub a polymer against a substrate to form an alignment film, and then cast and evaporate the solution on the alignment film. It has become simple. Therefore, since the present invention can form a fine pattern very easily and inexpensively, it can be used for cost-intensive applications.

たた、溶媒の蒞発を利甚した自己組織化による呚期的な埮现パタヌンの圢成技術ずしおは、前蚘特蚱文献に開瀺されおいる技術が知られおいるが、この技術は、぀の面をほが密着させおずらしながら溶媒を蒞発させるため、加工可胜な面の圢状に制玄がある。前蚘特蚱文献に開瀺されおいる技術は、原理があたり明確ではないが、公開公報においおは〜の広範囲で埮现構造が圢成できるず蚘茉されおいるものの、実斜䟋では、Όの䟋しか挙げられおいないため、数十レベルで埮现パタヌンを圢成できるか吊かは䞍明である。   Further, as a technique for forming a periodic fine pattern by self-organization using evaporation of a solvent, the technique disclosed in Patent Document 1 is known. Since the solvent is evaporated while being shifted, there is a restriction on the shape of the workable surface. Although the principle of the technique disclosed in Patent Document 1 is not so clear, the publication discloses that a fine structure can be formed in a wide range of 0.1 nm to 100 mm. Since only examples are given, it is unknown whether a fine pattern can be formed at a level of several tens of nm.

本発明よりも桁違いに倧きなスケヌルでは、マランゎニ察流衚面匵力の違いによっお起こる、無重力䞋でも生じる察流によっお匕き起こされる指状パタヌン圢成が知られおいるが、埓来技術の埮现パタヌンは数十〜数癟Όのレベルであり、本発明で圢成可胜な数十レベルの埮现パタヌンよりサむズが〜桁倧きい。本発明の原理はマランゎニ察流が関係しおいるず想定されるが、埓来技術の埮现パタヌン圢成技術ずは䜜甚が異なっおいる。   On an order of magnitude larger than that of the present invention, finger-like pattern formation caused by Marangoni convection (convection caused by a difference in surface tension, which occurs even under weightlessness) is known. The size is several hundred ÎŒm, and the size is two to three orders of magnitude larger than a fine pattern of several tens nm level that can be formed by the present invention. Although the principle of the present invention is assumed to be related to Marangoni convection, the operation is different from that of the conventional fine pattern forming technology.

III 本発明の利甚
本発明にかかる埮现構造䜓の補造方法およびこれにより埗られる埮现構造䜓の利甚分野は特に限定されるものではなく、量子サむズ効果を利甚できるような分野に広く甚いるこずができる。代衚的な䟋ずしおは、圓該埮现構造䜓を甚いおなる電子およびたたは光孊デバむスを挙げるこずができる。
(III) Use of the present invention The method for producing the microstructure according to the present invention and the field of use of the microstructure obtained thereby are not particularly limited, and are widely used in fields where the quantum size effect can be utilized. Can do. As a typical example, an electronic and / or optical device using the microstructure can be given.

より具䜓的には、量子薄膜、量子ワむダヌ、光孊玠子、衚面吞着タンパク質怜査装眮、デヌタ蚘録材料、マむクロ電子回路、およびそれらを䜜補するために甚いるテンプレヌトや、ナノリ゜グラフィヌのためのマスク等が挙げられる。   More specifically, a quantum thin film, a quantum wire, an optical element, a surface adsorption protein inspection apparatus, a data recording material, a microelectronic circuit, a template used for producing them, a mask for nanolithography, and the like can be mentioned. .

あるいは、䟋えば、本発明を甚いお、導電性高分子材料によりパタヌニングを行うこずにより、埮小サむズの導線を導電性高分子材料から補造するこずができる。たた、゚レクトロクロミック材料を甚いるこずで、電流に応じたパタヌンの倉化を利甚した衚瀺デバむスなどの䜜成も可胜である。   Alternatively, for example, by using the present invention and patterning with a conductive polymer material, it is possible to manufacture a small-sized conductive wire from the conductive polymer material. In addition, by using an electrochromic material, it is possible to create a display device or the like using a change in a pattern corresponding to a current.

さらに、金属ナノ粒子を甚いお圢成された埮现構造䜓には光孊異方性があるこずから埌述する実斜䟋、この特性を衚瀺動䜜に利甚した衚瀺デバむスを䜜成するこずも可胜である。   Furthermore, since the microstructure formed using the metal nanoparticles has optical anisotropy (Example 7 described later), it is also possible to create a display device using this characteristic for display operation. .

たた、本発明を甚いた光孊デバむスは、可芖光線から玫倖線、線の波長領域における回折栌子グレヌティング材料や干枉フィルタヌずしおの利甚が可胜である。たた蛍光材料たたは燐光材料を利甚すれば、芏則的なパタヌンを持った露光材料や、ディスプレむ材料のフィルタヌずしおの䜿甚が可胜である。芏則的な埮现パタヌンを制埡するこずで、フォトニック結晶ず同様の効果を、有機材料を甚いお実珟するこずも可胜である。   Further, the optical device using the present invention can be used as a diffraction grating (grating material) or an interference filter in the wavelength region of visible light, ultraviolet light, and X-rays. If a fluorescent material or a phosphorescent material is used, it can be used as a filter for exposure materials having a regular pattern and display materials. By controlling the regular fine pattern, the same effect as that of the photonic crystal can be realized using an organic material.

たた、光、熱、電気、磁気ずいった物理的な゚ネルギヌを加えるこずによっお状態倉化や化孊倉化を起こしうる材料を甚いるこずで、決められた埮现パタヌンに番地を割り圓おるこずにより、蚘録材料を補造するこずも可胜である。   In addition, recording materials are manufactured by assigning addresses to predetermined fine patterns by using materials that can cause state changes and chemical changes by applying physical energy such as light, heat, electricity, and magnetism. Is also possible.

さらに、栌子状構造を正孔茞送材料で圢成し、電子茞送性材料を呚囲に充填し、あるいは逆に栌子状構造を電子茞送性材料で圢成し、正孔茞送材料を呚囲に充填し、そこに光励起する色玠を導入するこずにより、光発電デバむスを構築するこずができる。   Furthermore, the lattice structure is formed with a hole transport material and filled with an electron transport material, or conversely, the lattice structure is formed with an electron transport material and filled with a hole transport material. A photovoltaic device can be constructed by introducing a dye that is photoexcited into the light.

このように、本発明を甚いお、基板や立䜓物䞊に様々な埮现構造䜓を補造しおそれを衚瀺デバむス、光孊デバむス、電子デバむス、発光デバむス、光発電デバむスたずめお電子デバむスおよびたたは光孊デバむスず称するずしお甚いるこずが可胜である。これら電子デバむスや光孊デバむスを補造する際、本発明により盎接䞊蚘デバむスに甚いられる構造を目的物質により圢成する必芁はない。䟋えば、目的物質により埮现構造䜓を圢成し、その埌で攟射線の照射あるいは加熱等の物理的手段、あるいは目的物質ず他の物質を反応させるなどの化孊的手段により目的物質を倉化させ、䞊蚘デバむスで甚いられる物質により圢成された埮现構造䜓を埗るこずができる。たた、目的物質により構成された埮现構造䜓をテンプレヌトずしお、別の物質による埮现構造䜓を補造するこずもできる。   As described above, the present invention is used to manufacture various microstructures on a substrate or a three-dimensional object and to display the microstructure on a display device, an optical device, an electronic device, a light emitting device, a photovoltaic device (collectively an electronic device and / or It can be used as an optical device). When manufacturing these electronic devices and optical devices, it is not necessary to form the structure directly used for the device according to the present invention with a target substance. For example, a fine structure is formed from the target substance, and then the target substance is changed by physical means such as irradiation of radiation or heating, or chemical means such as reaction of the target substance with another substance. A microstructure formed of the substance used can be obtained. In addition, a fine structure made of another substance can be manufactured using a fine structure constituted of a target substance as a template.

以䞋に本発明を甚いた発光デバむスの䞀䟋に぀いお具䜓的に説明する。   Hereinafter, an example of a light-emitting device using the present invention will be specifically described.

本発明を甚いた発光デバむスは、陜極、陰極の䞀察の電極間に発光局もしくは発光局を含む有機局を有する玠子であり、発光局のほか正孔泚入局、正孔茞送局、電子泚入局、電子茞送局、保護局などを有しおもよく、たたこれらの各局はそれぞれ他の機胜を備えたものであっおもよい。各局の補造にはそれぞれ皮々の材料を甚いるこずができる。   A light-emitting device using the present invention is an element having a light-emitting layer or an organic layer including a light-emitting layer between a pair of electrodes of an anode and a cathode, and in addition to the light-emitting layer, a hole injection layer, a hole transport layer, and an electron injection layer , An electron transport layer, a protective layer, etc., and each of these layers may have other functions. Various materials can be used for manufacturing each layer.

本発明を甚いた発光デバむスにおいおは、補造された埮现構造䜓を発光デバむスの有機局ずしお甚いるこずが奜たしく、補造された埮现構造䜓を発光デバむスの発光局ずしお甚いるこずがより奜たしい。   In the light-emitting device using the present invention, the manufactured microstructure is preferably used as the organic layer of the light-emitting device, and the manufactured microstructure is more preferably used as the light-emitting layer of the light-emitting device.

陜極は正孔泚入局、正孔茞送局、発光局などに正孔を䟛絊するものであり、金属、合金、金属酞化物、電気䌝導性化合物、たたはこれらの混合物などを甚いるこずができ、奜たしくは仕事関数が以䞊の材料である。具䜓的には、䟋えば、酞化スズ、酞化亜鉛、酞化むンゞりム、等の導電性金属酞化物金、銀、クロム、ニッケル等の金属さらにこれらの金属ず導電性金属酞化物ずの混合物たたは積局物ペり化銅、硫化銅等の無機導電性物質ポリアニリン、ポリチオフェン、ポリピロヌル等の有機導電性材料およびこれらずずの積局物等を挙げるこずができる。これらの䞭でも、奜たしくは、導電性金属酞化物であり、特に、生産性、高導電性、透明性等の点からが特に奜たしい。   The anode supplies holes to a hole injection layer, a hole transport layer, a light emitting layer, and the like, and a metal, an alloy, a metal oxide, an electrically conductive compound, or a mixture thereof can be used. Is a material having a work function of 4 eV or more. Specifically, for example, conductive metal oxides such as tin oxide, zinc oxide, indium oxide and ITO; metals such as gold, silver, chromium and nickel; and a mixture of these metals and conductive metal oxides or Laminates; inorganic conductive materials such as copper iodide and copper sulfide; organic conductive materials such as polyaniline, polythiophene and polypyrrole; and laminates of these with ITO; Among these, conductive metal oxides are preferable, and ITO is particularly preferable from the viewpoints of productivity, high conductivity, transparency, and the like.

陜極の膜厚は材料により適宜遞択可胜であるが、通垞〜Όの範囲内のものが奜たしく、〜Όの範囲内のものがより奜たしく、〜の範囲内のものがさらに奜たしい。   The film thickness of the anode can be appropriately selected depending on the material, but is usually preferably in the range of 10 nm to 5 ÎŒm, more preferably in the range of 50 nm to 1 ÎŒm, and still more preferably in the range of 100 nm to 500 nm.

陜極は通垞、゜ヌダラむムガラス、無アルカリガラス、透明暹脂基板等の䞊に局ずしお圢成したものが甚いられる。基板ずしおガラスを甚いる堎合、その材質に぀いおは、ガラスからの溶出むオンを少なくするため、無アルカリガラスを甚いるこずが奜たしい。たた、゜ヌダラむムガラスを甚いる堎合、シリカなどのバリアコヌトを斜したものを䜿甚するこずが奜たしい。基板の厚みは、機械的匷床を保぀のに十分であれば特に限定されるものではないが、ガラスを甚いる堎合には、通垞以䞊、奜たしくは以䞊のものを甚いるこずが奜たしい。   The anode is usually formed as a layer on soda-lime glass, non-alkali glass, a transparent resin substrate or the like. When glass is used as the substrate, alkali-free glass is preferably used as the material in order to reduce ions eluted from the glass. Moreover, when using soda-lime glass, it is preferable to use what gave barrier coatings, such as a silica. The thickness of the substrate is not particularly limited as long as it is sufficient to maintain the mechanical strength, but when glass is used, it is usually 0.2 mm or more, preferably 0.7 mm or more. preferable.

陜極の䜜補は、材料によっお公知の方法を甚いるこずができ、特に限定されるものではないが、䟋えばの堎合、電子ビヌム法、スパッタリング法、抵抗加熱蒞着法、化孊反応法ゟルヌゲル法など、酞化むンゞりムスズの分散物の塗垃などの方法で膜補造される。陜極は掗浄その他の凊理により、玠子の駆動電圧を䞋げたり、発光効率を高めたりするこずも可胜である。䟋えばの堎合、−オゟン凊理、プラズマ凊理などが有効である。   The anode can be produced by a known method depending on the material, and is not particularly limited. For example, in the case of ITO, an electron beam method, a sputtering method, a resistance heating vapor deposition method, a chemical reaction method (sol-gel method, etc.) A film is produced by a method such as application of a dispersion of indium tin oxide. The anode can be subjected to cleaning or other treatments to lower the drive voltage of the element or increase the light emission efficiency. For example, in the case of ITO, UV-ozone treatment, plasma treatment, etc. are effective.

陰極は電子泚入局、電子茞送局、発光局などに電子を䟛絊するものであり、電子泚入局、電子茞送局、発光局などの負極ず隣接する局ずの密着性やむオン化ポテンシャル、安定性等を考慮しお遞択するこずができる。   The cathode supplies electrons to the electron injection layer, the electron transport layer, the light emitting layer, etc., and the adhesion, ionization potential, stability, etc., between the negative electrode and the adjacent layer such as the electron injection layer, electron transport layer, light emitting layer, etc. Can be selected.

陰極の材料ずしおは金属、合金、金属ハロゲン化物、金属酞化物、電気䌝導性化合物、たたはこれらの混合物を甚いるこずができ、具䜓的には、䟋えば、、、、等のアルカリ金属及びそのフッ化物、等のアルカリ土類金属及びそのフッ化物金、銀、鉛、アルミニりム、ナトリりム−カリりム合金たたはそれらの混合金属リチりム−アルミニりム合金たたはそれらの混合金属マグネシりム−銀合金たたはそれらの混合金属むンゞりム、むッテリビりム等の垌土類金属等を挙げるこずができる。これらの䞭でも、奜たしくは仕事関数が以䞋の材料であり、より奜たしくはアルミニりム、リチりム−アルミニりム合金たたはそれらの混合金属、マグネシりム−銀合金たたはそれらの混合金属等である。   As a material for the cathode, a metal, an alloy, a metal halide, a metal oxide, an electrically conductive compound, or a mixture thereof can be used. Specifically, for example, an alkali metal such as Li, Na, K, or Cs And its fluorides; alkaline earth metals such as Mg and Ca and their fluorides; gold, silver, lead, aluminum, sodium-potassium alloys or mixed metals thereof; lithium-aluminum alloys or mixed metals thereof; magnesium-silver Alloys or mixed metals thereof; rare earth metals such as indium and ytterbium; Among these, a material having a work function of 4 eV or less is preferable, and aluminum, a lithium-aluminum alloy or a mixed metal thereof, a magnesium-silver alloy, or a mixed metal thereof is more preferable.

陰極は、䞊蚘化合物及び混合物の単局構造だけでなく、䞊蚘化合物及び混合物を含む積局構造を取るこずもできる。陰極の膜厚は材料により適宜遞択するこずができ、特に限定されるものではないが、通垞〜Όの範囲内であるこずが奜たしく、〜Όの範囲内であるこずがより奜たしく、〜Όの範囲内であるこずがさらに奜たしい。   The cathode can take not only a single layer structure of the compound and the mixture but also a laminated structure including the compound and the mixture. The film thickness of the cathode can be appropriately selected depending on the material and is not particularly limited, but is usually preferably in the range of 10 nm to 5 ÎŒm, more preferably in the range of 50 nm to 1 ÎŒm, and 100 nm. More preferably, it is in the range of ˜1 ÎŒm.

陰極の䜜補には、電子ビヌム法、スパッタリング法、抵抗加熱蒞着法、コヌティング法などの方法を甚いるこずができ、金属を単䜓で蒞着するこずも、二成分以䞊を同時に蒞着するこずもできる。さらに、耇数の金属を同時に蒞着しお合金電極を補造するこずも可胜であり、たたあらかじめ調補した合金を蒞着させおもよい。陜極および陰極のシヌト抵抗は䜎い方が奜たしい。   For the production of the cathode, methods such as an electron beam method, a sputtering method, a resistance heating vapor deposition method, and a coating method can be used. A metal can be vapor-deposited alone or two or more components can be vapor-deposited simultaneously. Furthermore, it is possible to produce an alloy electrode by simultaneously depositing a plurality of metals, or an alloy prepared in advance may be deposited. The sheet resistance of the anode and the cathode is preferably low.

発光局の材料は、電界印加時に陜極たたは正孔泚入局、正孔茞送局から正孔を泚入するこずができるずずもに陰極たたは電子泚入局、電子茞送局から電子を泚入するこずができる機胜や、泚入された電荷を移動させる機胜、正孔ず電子の再結合の堎を提䟛しお発光させる機胜を有する局を補造するこずができるものであれば特に限定されるものではない。具䜓的には、䟋えば、アミン化合物、ベンゟオキサゟヌル誘導䜓、ベンゟむミダゟヌル誘導䜓、ベンゟチアゟヌル誘導䜓、スチリルベンれン誘導䜓、ポリフェニル誘導䜓、ゞフェニルブタゞ゚ン誘導䜓、テトラフェニルブタゞ゚ン誘導䜓、ナフタルむミド誘導䜓、クマリン誘導䜓、ペリレン誘導䜓、ペリノン誘導䜓、オキサゞアゟヌル誘導䜓、アルダゞン誘導䜓、ピラリゞン誘導䜓、シクロペンタゞ゚ン誘導䜓、ビススチリルアントラセン誘導䜓、キナクリドン誘導䜓、ピロロピリゞン誘導䜓、チアゞアゟロピリゞン誘導䜓、シクロペンタゞ゚ン誘導䜓、スチリルアミン誘導䜓、芳銙族ゞメチリディン化合物、−キノリノヌル誘導䜓の金属錯䜓や垌土類錯䜓に代衚される各皮金属錯䜓等、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマヌ化合物等を挙げるこずができる。   The material of the light emitting layer is a function that can inject holes from the anode or hole injection layer, hole transport layer and cathode or electron injection layer, electron transport layer when an electric field is applied, The layer is not particularly limited as long as it can manufacture a layer having a function of moving the injected charge and a function of emitting light by providing a recombination field of holes and electrons. Specifically, for example, amine compounds, benzoxazole derivatives, benzimidazole derivatives, benzothiazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenylbutadiene derivatives, tetraphenylbutadiene derivatives, naphthalimide derivatives, coumarin derivatives, perylene derivatives, perinones. Derivatives, oxadiazole derivatives, aldazine derivatives, pyralidine derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives, quinacridone derivatives, pyrrolopyridine derivatives, thiadiazolopyridine derivatives, cyclopentadiene derivatives, styrylamine derivatives, aromatic dimethylidin compounds, 8- Various metal complexes represented by metal complexes and rare earth complexes of quinolinol derivatives, polythiophene, polyphenylene, polyphenylene Polymeric compounds such as vinylene and the like.

発光局の膜厚は特に限定されるものではないが、通垞〜Όの範囲内であるこずが奜たしく、〜Όの範囲内であるこずがより奜たしく、〜の範囲内がさらに奜たしい。   The thickness of the light emitting layer is not particularly limited, but is usually preferably in the range of 1 nm to 5 ÎŒm, more preferably in the range of 5 nm to 1 ÎŒm, and still more preferably in the range of 10 nm to 500 nm. .

発光局に含有する発光材料自らが発光玠子の発光に寄䞎する物質は、䞀重項励起子から発光するもの、䞉重項励起子から発光するもの、䞡者から発光するもの等、䜕れの発光材料であっおも甚いるこずができる。特に䞉重項励超子からの発光が含たれる発光材料ずの組み合わせでその効果がより䞀局有効に発揮されるため奜たしい。   The light-emitting material contained in the light-emitting layer (a substance that contributes to the light emission of the light-emitting element) is any light-emitting material such as one that emits light from singlet excitons, one that emits light from triplet excitons, or one that emits light from both. Can be used. In particular, the combination with a light-emitting material including light emission from triplet excited superons is preferable because the effect is more effectively exhibited.

発光局の補造方法は、本発明により埗られる埮现構造䜓を圓該発光局に適甚しない堎合、特に限定されるものではないが、抵抗加熱蒞着、電子ビヌム、スパッタリング、分子積局法、コヌティング法スピンコヌト法、キャスト法、ディップコヌト法など、法、むンクゞェット法などの方法が甚いられ、奜たしくは抵抗加熱蒞着、コヌティング法が甚いられる。   The manufacturing method of the light emitting layer is not particularly limited when the microstructure obtained by the present invention is not applied to the light emitting layer, but resistance heating vapor deposition, electron beam, sputtering, molecular lamination method, coating method (spin (Coating method, casting method, dip coating method, etc.), LB method, ink jet method and the like are used, preferably resistance heating vapor deposition and coating method are used.

正孔泚入局、正孔茞送局の材料は、陜極から正孔を泚入する機胜、正孔を茞送する機胜、陰極から泚入された電子を障壁する機胜のいずれか有しおいるものであればよい。具䜓的には、䟋えば、カルバゟヌル誘導䜓、トリアゟヌル誘導䜓、オキサゟヌル誘導䜓、オキサゞアゟヌル誘導䜓、むミダゟヌル誘導䜓、ポリアリヌルアルカン誘導䜓、ピラゟリン誘導䜓、ピラゟロン誘導䜓、フェニレンゞアミン誘導䜓、アリヌルアミン誘導䜓、アミノ眮換カルコン誘導䜓、スチリルアントラセン誘導䜓、フルオレノン誘導䜓、ヒドラゟン誘導䜓、スチルベン誘導䜓、シラザン誘導䜓、芳銙族第䞉玚アミン化合物、スチリルアミン化合物、芳銙族ゞメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ−ビニルカルバゟヌル誘導䜓、アニリン系共重合䜓、チオフェンオリゎマヌ、ポリチオフェン等の導電性高分子オリゎマヌ等を挙げるこずができる。   The material of the hole injection layer and the hole transport layer may be any one having a function of injecting holes from the anode, a function of transporting holes, or a function of blocking electrons injected from the cathode. Good. Specifically, for example, carbazole derivative, triazole derivative, oxazole derivative, oxadiazole derivative, imidazole derivative, polyarylalkane derivative, pyrazoline derivative, pyrazolone derivative, phenylenediamine derivative, arylamine derivative, amino-substituted chalcone derivative, styrylanthracene Derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidin compounds, porphyrin compounds, polysilane compounds, poly (N-vinylcarbazole) derivatives, anilines Examples thereof include conductive polymer oligomers such as copolymer, thiophene oligomer, and polythiophene.

正孔泚入局、正孔茞送局の膜厚は特に限定されるものではないが、通垞〜Όの範囲内であるこずが奜たしく、〜Όの範囲内であるこずがより奜たしく、〜の範囲内であるこずがさらに奜たしい。正孔泚入局、正孔茞送局は䞊述した材料の皮たたは皮以䞊からなる単局構造であっおもよいし、同䞀組成たたは異皮組成の耇数局からなる倚局構造であっおもよい。   The thicknesses of the hole injection layer and the hole transport layer are not particularly limited, but are usually preferably in the range of 1 nm to 5 ÎŒm, more preferably in the range of 5 nm to 1 ÎŒm, and 10 nm to More preferably, it is in the range of 500 nm. The hole injection layer and the hole transport layer may have a single-layer structure composed of one or more of the materials described above, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.

正孔泚入局、正孔茞送局の補造方法ずしおは、本発明により埗られる埮现構造䜓を圓該各局に通甚しない堎合、真空蒞着法や法やむンクゞェット法、前蚘正孔泚入茞送剀を溶媒に溶解たたは分散させおコヌティングする方法スピンコヌト法、キャスト法、ディップコヌト法など等を奜適に甚いるこずができる。コヌティング法の堎合、暹脂成分ず共に溶解たたは分散するこずができ、暹脂成分ずしおは、具䜓的には、䟋えば、ポリ塩化ビニル、ポリカヌボネヌト、ポリスチレン、ポリメチルメタクリレヌト、ポリブチルメタクリレヌト、ポリ゚ステル、ポリスルホン、ポリフェニレンオキシド、ポリブタゞ゚ン、ポリ−ビニルカルバゟヌル、ケトン暹脂、フェノキシ暹脂、ポリアミド、゚チルセルロヌス、酢酞ビニル、暹脂、ポリりレタン、䞍飜和ポリ゚ステル暹脂、アルキド暹脂、゚ポキシ暹脂、シリコン暹脂等を挙げるこずができる。   As a manufacturing method of the hole injection layer and the hole transport layer, when the fine structure obtained by the present invention is not applicable to each layer, a vacuum deposition method, an LB method, an ink jet method, and the hole injection transport agent as a solvent. A method of coating by dissolving or dispersing (a spin coating method, a casting method, a dip coating method, or the like) can be preferably used. In the case of the coating method, it can be dissolved or dispersed together with the resin component. Specific examples of the resin component include polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, and polyphenylene oxide. , Polybutadiene, poly (N-vinylcarbazole), ketone resin, phenoxy resin, polyamide, ethyl cellulose, vinyl acetate, ABS resin, polyurethane, unsaturated polyester resin, alkyd resin, epoxy resin, silicone resin, and the like.

電子泚入局、電子茞送局の材料は、陰極から電子を泚入する機胜、電子を茞送する機胜、陜極から泚入された正孔を障壁する機胜のいずれか有しおいるものであればよい。具䜓的には、䟋えば、トリアゟヌル誘導䜓、オキサゟヌル誘導䜓、オキサゞアゟヌル誘導䜓、フルオレノン誘導䜓、アントラキノゞメタン誘導䜓、アントロン誘導䜓、ゞフェニルキノン誘導䜓、チオピランゞオキシド誘導䜓、カルビゞむミド誘導䜓、フルオレニリデンメタン誘導䜓、ゞスチリルピラゞン誘導䜓、ナフタレンペリレン等の耇玠環テトラカルボン酞無氎物、フタロシアニン誘導䜓、−キノリノヌル誘導䜓の金属錯䜓やメタルフタロシアニン、ベンゟオキサゟヌルやベンゟチアゟヌルを配䜍子ずする金属錯䜓に代衚される各皮金属錆䜓等を挙げるこずができる。   The material for the electron injection layer and the electron transport layer may be any material having any one of a function of injecting electrons from the cathode, a function of transporting electrons, and a function of blocking holes injected from the anode. Specifically, for example, triazole derivatives, oxazole derivatives, oxadiazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbidiimide derivatives, fluorenylidenemethane derivatives, Various metals represented by metal complexes of distyrylpyrazine derivatives, heterocyclic tetracarboxylic anhydrides such as naphthaleneperylene, phthalocyanine derivatives, 8-quinolinol derivatives, metal phthalocyanines, benzoxazole and benzothiazole ligands A rust body etc. can be mentioned.

電子泚入局、電子茞送局の膜厚は特に限定されるものではないが、通垞〜Όの範囲内であるこずが奜たしく、〜Όの範囲内であるこずがより奜たしく、〜の範囲内であるこずがさらに奜たしい。電子泚入局、電子茞送局は䞊述した材料の皮たたは皮以䞊からなる単局構造であっおもよいし、同䞀組成たたは異皮組成の耇数局からなる倚局構造であっおもよい。   The film thicknesses of the electron injection layer and the electron transport layer are not particularly limited, but are usually preferably in the range of 1 nm to 5 ÎŒm, more preferably in the range of 5 nm to 1 ÎŒm, and more preferably in the range of 10 nm to 500 nm. More preferably, it is within the range. The electron injection layer and the electron transport layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.

電子泚入局、電子茞送局の補造方法ずしおは、本発明により埗られる埮现構造䜓を圓該各局に適甚しない堎合、真空蒞者法や法やむンクゞェット法、前蚘電子泚入茞送剀を溶媒に溶解たたは分散させおコヌティングする方法スピンコヌ卜法、キャスト法、ディップコヌト法など等を甚いるこずができる。コヌティング法の堎合、暹脂成分ず共に溶解たたは分散するこずができ、暹脂成分ずしおは䟋えば、正孔泚入茞送局の堎合に䟋瀺したものが連甚できる。   As a manufacturing method of an electron injection layer and an electron transport layer, when the microstructure obtained by the present invention is not applied to each layer, a vacuum steamer method, an LB method, an ink jet method, or the electron injection transport agent is dissolved in a solvent or A method of coating by dispersing (spin coating method, casting method, dip coating method, etc.) can be used. In the case of the coating method, it can be dissolved or dispersed together with the resin component, and as the resin component, for example, those exemplified in the case of the hole injection transport layer can be used continuously.

保護局の材料ずしおは、氎分や酞玠等の玠子劣化を促進するものが玠子内に入るこずを抑止する機胜を有しおいるものであればよい。具䜓的には、䟋えば、、、、、、、等の金属、、2 、23、、、、、23、2、2等の金属酞化物2、3、2等の金属フッ化物ポリ゚チレン、ポリプロピレン、ポリメチルメタクリレヌト、ポリむミド、ポリりレア等の高分子ポリテトラフルオロ゚チレン、ポリクロロトリフルオロ゚チレン、ポリゞクロロゞフルオロ゚チレン、クロロトリフルオロ゚チレンずゞクロロゞフルオロ゚チレンずの共重合䜓、テトラフルオロ゚チレンず少なくずも皮のコモノマヌずを含むモノマヌ混合物を共重合させお埗られる共重合䜓、共重合䞻鎖に環状構造を有する含フッ玠共重合䜓等のハロゲン系高分子吞氎率以䞊の吞氎性物質吞氎率以䞋の防湿性物質等を挙げるこずができる。 As a material for the protective layer, any material may be used as long as it has a function of suppressing the entry of elements that promote element deterioration such as moisture and oxygen into the element. Specifically, for example, In, Sn, Pb, Au , Cu, Ag, Al, Ti, a metal such as Ni; MgO, SiO, SiO 2, Al 2 O 3, GeO, NiO, CaO, BaO, Fe 2 Metal oxides such as O 3 , Y 2 O and TiO 2 ; Metal fluorides such as MgF 2 , LiF, AlF 3 and CaF 2; Polymers such as polyethylene, polypropylene, polymethyl methacrylate, polyimide and polyurea; Polytetrafluoroethylene , Polychlorotrifluoroethylene, polydichlorodifluoroethylene, a copolymer of chlorotrifluoroethylene and dichlorodifluoroethylene, and a copolymer obtained by copolymerizing a monomer mixture containing tetrafluoroethylene and at least one comonomer , Halogen-based polymers such as fluorine-containing copolymers having a cyclic structure in the copolymer main chain Water absorption more than 1% of the water-absorbing material; water absorption of 0.1% or less proof materials; and the like.

保護局の補造方法に぀いおも特に限定されるものではなく、具䜓的には、䟋えば、真空蒞者法、スパッタリング法、反応性スパッタリング法、分子線゚ピタキシ法、クラスタヌむオンビヌム法、むオンプレヌティング法、プラズマ重合法高呚波励超むオンプレヌティング法、プラズマ法、レヌザヌ法、熱法、ガス゜ヌス法、コヌティング法、むンクゞェット法を奜適に甚いるこずができる。   The method for producing the protective layer is not particularly limited, and specifically, for example, a vacuum steamer method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, A plasma polymerization method (high frequency excitation super ion plating method), a plasma CVD method, a laser CVD method, a thermal CVD method, a gas source CVD method, a coating method, and an ink jet method can be suitably used.

本発明に぀いお、実斜䟋および比范䟋、䞊びに図〜、図・〜図に基づいおより具䜓的に説明するが、本発明はこれに限定されるものではない。圓業者は本発明の範囲を逞脱するこずなく、皮々の倉曎、修正、および改倉を行うこずができる。   The present invention will be described more specifically based on Examples and Comparative Examples, and FIGS. 1 to 5 and FIGS. 7A and 7B to 12, but the present invention is not limited thereto. . Those skilled in the art can make various changes, modifications, and alterations without departing from the scope of the present invention.

〔実斜䟋〕
アルカリ掗浄剀ずしお氎酞化カリりムの重量溶液を氎ず゚タノヌルの混合溶液重量混合比を溶媒ずしお調補した。そのアルカリ掗浄剀䞭に光孊顕埮鏡甚のスラむドガラス基板を時間以䞊浞挬した埌取り出し、蒞留氎によりアルカリ掗浄剀を掗い流した。圓該スラむドガラスを颚也埌、℃に加熱したホットプレヌト䞊に茉せお、その䞊からポリテトラフルオロ゚チレンの棒を圧力、速床で抌し぀けながら移動させた。これらの操䜜により、圓該スラむドガラス䞊にポリテトラフルオロ゚チレンの配向膜を圢成した。埮分干枉光孊顕埮鏡により、圓該配向薄膜によるスゞ状の凹凞を確認した配向膜圢成工皋。この堎合、圓該配向膜は基板衚面を完党に芆わず、䞀郚基板衚面が露出しおいた。
[Example 1]
A 1% by weight solution of potassium hydroxide as an alkaline detergent was prepared using a mixed solution of water and ethanol (weight mixing ratio 1:10) as a solvent. The slide glass (substrate) for an optical microscope was immersed in the alkaline detergent for 1 hour or more and then taken out, and the alkaline detergent was washed away with distilled water. The slide glass was air-dried and then placed on a hot plate heated to 300 ° C., and a polytetrafluoroethylene rod was moved from above by pressing it at a pressure of 0.8 MPa and a speed of 2.6 cm / sec. By these operations, an alignment film of polytetrafluoroethylene was formed on the slide glass. The differential interference optical microscope confirmed the stripe-like unevenness | corrugation by the said alignment thin film (alignment film formation process). In this case, the alignment film did not completely cover the substrate surface, and part of the substrate surface was exposed.

次に、溶媒ずしおパラキシレン和光玔薬補、特玚を甚い、これを加熱し沞隰させ、盎鎖状ポリ゚チレン補、校正甚暙準詊料、を溶解し、×-4重量の溶液目的物質溶液を調補した。䞊蚘ガラス基板䞊のポリテトラフルオロ゚チレン配向膜をホットプレヌト䞊で所定の枩床℃〜℃に加熱し、その䞊に玄℃に加熱した䞊蚘ポリ゚チレンの溶液を噎霧した液膜圢成工皋・察流誘起工皋。 Next, para-xylene (manufactured by Wako Pure Chemicals, special grade) is used as a solvent, and this is heated and boiled to dissolve linear polyethylene (manufactured by Fluka, standard sample for GPC calibration, Mw = 36,500). A 3 × 10 −4 wt% solution (target substance solution) was prepared. The polytetrafluoroethylene alignment film on the glass substrate is heated to a predetermined temperature (80 ° C. to 110 ° C.) on a hot plate, and the polyethylene solution heated to about 140 ° C. is sprayed thereon (liquid film formation) Process / convection induction process).

これに埗られた埮现構造䜓に金およびカヌボンを真空蒞着し、レプリカ法によっおガラス基板から詊料を剥離し、透過型電子顕埮鏡によっお芳察した。その結果、図に瀺すような栌子状の埮现パタヌンの呚期的な圢成が確認された。   Gold and carbon were vacuum-deposited on the microstructure thus obtained, the sample was peeled off from the glass substrate by a replica method, and observed with a transmission electron microscope. As a result, periodic formation of a lattice-like fine pattern as shown in FIG. 1 was confirmed.

たた、このような栌子状構造を圢成する際に、各工皋の条件の関係を怜蚎したずころ、図に瀺すように、栌子状構造の棒状構造の平均倪さず、ホットプレヌトの枩床の間に盞関関係が芋られた。図の盞関関係は、本発明による呚期的な栌子状構造を圢成する際、溶媒を蒞発させる枩床により圓該棒状構造の倪さが制埡可胜であるこずを瀺す。図に芋られる栌子状の埮现パタヌンからは、制限芖野電子回折においお、ポリテトラフルオロ゚チレン結晶に起因する回折ピヌクの他には結晶性の回折ピヌクは怜出されなかった。このこずはポリ゚チレンが非結晶状態にあるこずを瀺す。   Further, when the relationship between the conditions of each process was examined when forming such a lattice-like structure, as shown in FIG. 2, between the average thickness of the lattice-like structure of the rod-like structure and the temperature of the hot plate. Correlation was seen. The correlation of FIG. 2 shows that the thickness of the rod-like structure can be controlled by the temperature at which the solvent is evaporated when the periodic lattice-like structure according to the present invention is formed. From the lattice-like fine pattern shown in FIG. 1, in the limited-field electron diffraction, no crystalline diffraction peak was detected in addition to the diffraction peak due to the polytetrafluoroethylene crystal. This indicates that the polyethylene is in an amorphous state.

〔比范䟋〕
ホットプレヌトの枩床を℃ずしおポリ゚チレンの栌子状構造を圢成し、その埌、スラむドガラスに付着した状態で℃においお分間加熱溶解し、その埌宀枩に冷华した以倖は、䞊蚘実斜䟋ず同様にしお埮现構造䜓を補造し、金およびカヌボンの蒞着を斜し、透過型電子顕埮鏡により芳察した。
[Comparative Example 1]
Except for forming a polyethylene lattice structure at a hot plate temperature of 80 ° C., and then heating and dissolving at 150 ° C. for 1 minute while attached to the slide glass, and then cooling to room temperature, the same as in Example 1 above. A microstructure was manufactured, gold and carbon were deposited, and observed with a transmission electron microscope.

その結果、栌子状の埮现パタヌンは芳察されず、ポリ゚チレンが溶解したために生じた塊状の構造が芋られた。制限芖野電子回折においお、この塊状の構造からポリ゚チレン結晶に起因する回折ピヌクが確認された。このこずは実斜䟋にお芳察された栌子状構造を圢成するポリ゚チレン分子が倉質せず、十分な結晶性を持っおいたこずを瀺す。   As a result, a lattice-like fine pattern was not observed, and a massive structure formed because polyethylene was dissolved was observed. In the limited-field electron diffraction, a diffraction peak due to the polyethylene crystal was confirmed from this massive structure. This indicates that the polyethylene molecules forming the lattice-like structure observed in Example 1 did not change and had sufficient crystallinity.

〔比范䟋〕
䞊蚘スラむドガラス䞊のポリテトラフルオロ゚チレンの配向膜をホットプレヌト䞊で℃に加熱し、その䞊に玄℃に加熱したパラキシレンポリ゚チレンを含たない溶媒のみを噎霧した。その埌、実斜䟋ず同様しお、基板の衚面に金およびカヌボンの蒞着を斜し、透過型電子顕埮鏡により芳察した。
[Comparative Example 2]
The alignment film of polytetrafluoroethylene on the slide glass was heated to 80 ° C. on a hot plate, and paraxylene (only a solvent not containing polyethylene) heated to about 140 ° C. was sprayed thereon. Thereafter, as in Example 1, gold and carbon were deposited on the surface of the substrate and observed with a transmission electron microscope.

その結果、栌子状の埮现パタヌンは芳察されず、図に瀺すように、配向したポリテトラフルオロ゚チレンのスゞ状構造のみが芳察された。このこずは実斜䟋にお芳察された栌子状構造を圢成しおいた物質が確実にポリ゚チレンであったこずを裏付けおいる。   As a result, a lattice-like fine pattern was not observed, and only an oriented polytetrafluoroethylene streaky structure was observed as shown in FIG. This confirms that the material forming the lattice structure observed in Example 1 was polyethylene.

〔実斜䟋〕
溶媒ずしおメチル゚チルケトン和光玔薬補を甚い、これにポリスチレン   補、を溶解し、×-3重量の溶液目的物質溶液を調補した。実斜䟋ず同様にしおスラむドガラス基板䞊にポリテトラフルオロ゚チレン配向膜を圢成し、これを宀枩たたはホットプレヌト䞊で所定の枩床℃〜℃に加熱し、その䞊に䞊蚘ポリスチレン溶液を噎霧した。その埌、実斜䟋ず同様にしお金およびカヌボンを蒞着させ、透過型電子顕埮鏡により芳察した。その結果、いずれのホットプレヌト枩床においおも図に瀺すような栌子状の埮现パタヌンの圢成が確認された。
[Example 2]
Methyl ethyl ketone (manufactured by Wako Pure Chemical Industries, Ltd.) was used as a solvent, and polystyrene (Scientific Polymer Products Inc., Mw = 45,000) was dissolved in this, and a 4.2 × 10 −3 wt% solution (target substance solution) was dissolved. Prepared. In the same manner as in Example 1, a polytetrafluoroethylene alignment film is formed on a slide glass (substrate), and this is heated to a predetermined temperature (80 ° C. to 110 ° C.) at room temperature or on a hot plate. A polystyrene solution was sprayed. Thereafter, gold and carbon were deposited in the same manner as in Example 1 and observed with a transmission electron microscope. As a result, formation of a lattice-like fine pattern as shown in FIG. 4 was confirmed at any hot plate temperature.

〔実斜䟋〕
実斜䟋ず同様に調補したポリスチレン溶液を実斜䟋ず同様にしお䜜補したスラむドガラス䞊のポリテトラフルオロ゚チレンの配向膜䞊に宀枩で滎䞋し、その蒞発する過皋を埮分干枉光孊顕埮鏡により芳察した。その結果、ポリスチレン溶液の液膜の茪郭郚に、図䞊に瀺すような、察流により圢成された密床の揺らぎが確認された。図䞋は、図䞊に瀺す顕埮鏡写真の䞀郚で暪方向に切った断面の様子を瀺しおいる。同図では、基板スラむドガラスの䞊に圢成されたポリテトラフルオロ゚チレンの配向膜䞊に、さらにポリスチレンのメチル゚チルケトン溶液の液膜が圢成され、圓該液膜䞭に溶液の察流が圢成されおいるこずを瀺しおいる。
Example 3
A polystyrene solution prepared in the same manner as in Example 2 was dropped at room temperature onto an alignment film of polytetrafluoroethylene on a slide glass prepared in the same manner as in Example 1, and the evaporation process was observed with a differential interference optical microscope. . As a result, the fluctuation of density formed by convection as shown in FIG. 5 was confirmed in the contour portion of the liquid film of the polystyrene solution. The lower part of FIG. 5 shows a state of a cross section cut in the horizontal direction in a part of the micrograph shown in FIG. In the figure, a liquid film of polystyrene methyl ethyl ketone solution 3 is further formed on a polytetrafluoroethylene alignment film 1 formed on a substrate (slide glass) 2, and a convection 4 of the solution is formed in the liquid film. It shows that it is formed.

〔実斜䟋〕
蒞留氎を沞隰させながらポリビニルアルコヌル補を溶解し、×-3重量の溶液目的物質溶液を調補した。実斜䟋ず同様にしお䜜補したスラむドガラス䞊のポリテトラフルオロ゚チレンの配向膜をホットプレヌト䞊で℃に加熱し、その䞊に䞊蚘ポリビニルアルコヌル溶液を滎䞋し氎分を蒞発させた。その埌、実斜䟋ず同様しお金およびカヌボンを蒞着させ、透過型電子顕埮鏡により芳察した。その結果、図ず類䌌した栌子状の埮现パタヌンの圢成が確認された。制限芖野電子回折においお、この栌子状構造から、ポリビニルアルコヌル結晶の回折ピヌクは芳察されなかった。このこずはポリビニルアルコヌルが非結晶状態にあるこずを瀺す。
Example 4
Polyvinyl alcohol (manufactured by Aldrich) was dissolved while boiling distilled water to prepare a 3.8 × 10 −3 wt% solution (target substance solution). A polytetrafluoroethylene alignment film on a slide glass produced in the same manner as in Example 1 was heated to 80 ° C. on a hot plate, and the polyvinyl alcohol solution was dropped thereon to evaporate water. Thereafter, gold and carbon were vapor-deposited in the same manner as in Examples, and observed with a transmission electron microscope. As a result, formation of a lattice-like fine pattern similar to FIG. 4 was confirmed. In the limited field electron diffraction, the diffraction peak of the polyvinyl alcohol crystal was not observed from this lattice structure. This indicates that the polyvinyl alcohol is in an amorphous state.

〔実斜䟋〕
アセトン和光玔薬補に−ゞ−カルバゟリル−−ヘキサゞむン1,6-di(N-carbazolyl)-2,4-hexadiyne、を溶解し、重量の溶液を調補した。この溶液䞭に、実斜䟋ず同様にしお䜜補したスラむドガラス䞊のポリテトラフルオロ゚チレンの配向膜を浞挬し、取り出した埌颚也した。その埌、実斜䟋ず同様にしお金およびカヌボンを蒞着させ、透過型電子顕埮鏡により芳察した。その結果、図ず類䌌した栌子状の埮现パタヌンの圢成が確認された。制限芖野電子回折においお、この栌子状構造から、結晶の回折ピヌクは芳察されなかった。このこずはが非結晶状態にあるこずを瀺す。
Example 5
1,6-di (N-carbazolyl) -2,4-hexadiyne (1,6-di (N-carbazolyl) -2,4-hexadiyne, DCHD) is dissolved in acetone (manufactured by Wako Pure Chemical Industries). A 25 wt% solution was prepared. An alignment film of polytetrafluoroethylene on a slide glass produced in the same manner as in Example 1 was immersed in this DCHD solution, taken out, and then air-dried. Thereafter, gold and carbon were deposited in the same manner as in Example 1 and observed with a transmission electron microscope. As a result, formation of a lattice-like fine pattern similar to that in FIG. 1 was confirmed. In the limited field electron diffraction, no diffraction peak of the DCHD crystal was observed from this lattice structure. This indicates that DCHD is in an amorphous state.

〔実斜䟋〕
実斜䟋1ず同様にポリテトラフルオロ゚チレンの配向膜をスラむドガラス䞊に䜜成した。䞊蚘ガラス基板䞊の配向膜をホットプレヌトで℃に加熱し、その䞊に平均粒埄が、、の金コロむド分散液(British BioCell International, Ltd.補、型番は各々EMGC5、EMGC15、EMGC50)を各々滎䞋し、分散媒䜓の氎を蒞発させた。その埌、実斜䟋ず同様にしおカヌボンを真空蒞着し、レプリカ法によっおガラス基板から詊料を剥離し、透過型電子顕埮鏡によっお芳察した。その結果、平均粒埄、、それぞれの金コロむドの配列構造が確認された。図・に、その䞀䟋ずしおの金コロむドの配列構造を瀺す。なお、図は、図の郚分拡倧図である。
Example 6
In the same manner as in Example 1, an alignment film of polytetrafluoroethylene was formed on a slide glass. The alignment film on the glass substrate is heated to 70 ° C. with a hot plate, and a gold colloid dispersion liquid having an average particle diameter of 5 nm, 15 nm, or 50 nm (manufactured by British BioCell International, Ltd., model numbers are EMGC5, EMGC15, EMGC50) was added dropwise to evaporate the water of the dispersion medium. Thereafter, carbon was vacuum-deposited in the same manner as in Example 1, the sample was peeled off from the glass substrate by the replica method, and observed with a transmission electron microscope. As a result, gold colloidal array structures with average particle sizes of 5 nm, 15 nm, and 50 nm were confirmed. FIGS. 7A and 7B show an arrangement structure of colloidal gold of 15 nm as an example. FIG. 7B is a partially enlarged view of FIG.

〔実斜䟋〕
実斜䟋においお甚いた平均粒埄、、の金コロむド分散液を、実斜䟋ず同様にしお䜜補したスラむドガラス䞊のポリテトラフルオロ゚チレンの配向膜䞊に宀枩で各々滎䞋し、分散媒䜓の氎を蒞発させた。そしお、ガラス基板をそのたた埮分干枉顕埮鏡で芳察した。その結果、平均粒埄、、いずれの金コロむドに぀いおも配列構造が確認された。図・にその䞀䟋を瀺す。図は平均粒埄の金コロむドの配列構造であり、図は平均粒埄の金コロむドの配列構造である。なお、図䞭の矢印は、配向膜の配向方向を瀺す。
Example 7
The gold colloid dispersion liquid having an average particle diameter of 5 nm, 15 nm, and 50 nm used in Example 6 was dropped at room temperature onto the alignment film of polytetrafluoroethylene on the slide glass prepared in the same manner as in Example 1, and dispersed. The medium water was evaporated. And the glass substrate was observed with the differential interference microscope as it was. As a result, an array structure was confirmed for gold colloids having an average particle diameter of 5 nm, 15 nm, and 50 nm. An example is shown in FIGS. FIG. 8A shows an arrangement structure of gold colloids having an average particle diameter of 5 nm, and FIG. 8B shows an arrangement structure of gold colloids having an average particle diameter of 50 nm. In addition, the arrow in a figure shows the orientation direction of an alignment film.

たた、各サンプルのガラス基板に、実斜䟋ず同様にしおカヌボンを真空蒞着し、レプリカ法によっおガラス基板から詊料を剥離し、透過型電子顕埮鏡によっお芳察した。図・に、その䞀䟋ずしお平均粒埄の金コロむドの配列構造を瀺す。なお、図は、図の郚分拡倧図である。図・からも、金コロむドの配列構造を確認するこずができた。   Moreover, carbon was vacuum-deposited on the glass substrate of each sample in the same manner as in Example 1, the sample was peeled off from the glass substrate by the replica method, and observed with a transmission electron microscope. FIGS. 9A and 9B show an arrangement structure of gold colloids having an average particle diameter of 50 nm as an example. FIG. 9 (b) is a partially enlarged view of FIG. 9 (a). 9A and 9B also confirmed the arrangement structure of the colloidal gold.

さらに、䞊蚘透過型電子顕埮鏡甚詊料を偏光顕埮鏡によっお芳察したずころ、盎亀した偏光板の光軞に察しお床の方向に埮现構造䜓が配向した堎合には透過光匷床が極倧になり、偏光板の光軞ず埮现構造䜓の配向が平行あるいは垂盎の堎合には透過光匷床が極小になる珟象が芳察された。図・および図・にこの珟象を瀺す。図・は、平均粒埄の金コロむドの配列構造を偏光顕埮鏡を甚いお芳察した顕埮鏡画像であり、図䞭の矢印は配向膜の配向方向を瀺す。なお、図は偏光板の光軞がそれぞれ玙面巊右方向ず玙面䞊䞋方向ずにある偏光板盎亀偏光板の間に挟持された状態の画像であり、図は偏光板の光軞がずもに玙面䞊䞋方向にある偏光板平行偏光板の間に挟持された状態の画像である。図・は、図・のそれぞれの芖野を床回転させた状態で芳察した顕埮鏡画像である。図ず図ずを比范するず、図における埮现構造䜓配列構造の透過光匷床が、図よりも䜎䞋しおいるこずが瀺された。   Furthermore, when the sample for the transmission electron microscope was observed with a polarizing microscope, when the fine structure was oriented in the direction of 45 degrees with respect to the optical axis of the orthogonal polarizing plate, the transmitted light intensity became maximum, and the polarization When the optical axis of the plate and the orientation of the fine structure are parallel (or vertical), a phenomenon that the transmitted light intensity is minimized is observed. FIGS. 10A and 10B and FIGS. 11A and 11B show this phenomenon. FIGS. 10A and 10B are microscopic images obtained by observing the arrangement structure of colloidal gold particles having an average particle diameter of 50 nm using a polarizing microscope, and the arrows in the figure indicate the alignment direction of the alignment film. 10A is an image in a state where the optical axis of the polarizing plate is sandwiched between polarizing plates (orthogonal polarizing plates) in the horizontal direction of the paper and the vertical direction of the paper, respectively. FIG. It is an image in a state of being sandwiched between polarizing plates (parallel polarizing plates) in which the optical axes of the polarizing plates are both in the vertical direction of the paper. FIGS. 11A and 11B are microscopic images observed in a state where the respective fields of view of FIGS. 10A and 10B are rotated by 45 degrees. Comparing FIG. 10 (a) and FIG. 11 (a), it is shown that the transmitted light intensity of the fine structure (array structure) in FIG. 11 (a) is lower than that in FIG. 10 (a). It was.

〔実斜䟋〕
アクリロニトリル・ブタゞ゚ン共重合䜓ラテックス日本れオン補、Nipol1562、平均粒埄、固圢分41%に蒞留氎を加えお1䞇倍に垌釈した垌釈液を、実斜䟋ず同様にしお䜜補したスラむドガラス䞊のポリテトラフルオロ゚チレンの配向膜䞊に宀枩で滎䞋し、分散媒䜓の氎を蒞発させた。その埌、癜金パラゞりムおよびカヌボンを真空蒞着し、レプリカ法によっおガラス基板から詊料を剥離し、透過型電子顕埮鏡によっお芳察した。芳察結果を図に瀺す。その結果、図に瀺すように、平均粒埄のアクリロニトリル・ブタゞ゚ン共重合䜓ラテックスによっお配列構造が埗られるこずが瀺された。なお、図の矢印は配向膜の配向方向を瀺す。
Example 8
A slide prepared in the same manner as in Example 1 with a diluted solution obtained by adding distilled water to acrylonitrile-butadiene copolymer latex (manufactured by Zeon Corporation, Nipol1562, average particle size 50 nm, solid content 41%) and diluting 10,000 times It dropped at room temperature on the alignment film of the polytetrafluoroethylene on glass, and the water of the dispersion medium was evaporated. Thereafter, platinum palladium and carbon were vacuum-deposited, the sample was peeled off from the glass substrate by a replica method, and observed with a transmission electron microscope. The observation results are shown in FIG. As a result, as shown in FIG. 12, it was shown that an array structure was obtained with acrylonitrile-butadiene copolymer latex having an average particle diameter of 50 nm. The arrows in FIG. 12 indicate the alignment direction of the alignment film.

なお本発明は、以䞊説瀺した各構成に限定されるものではなく、特蚱請求の範囲に瀺した範囲で皮々の倉曎が可胜であり、異なる実斜圢態や実斜䟋にそれぞれ開瀺された技術的手段を適宜組み合わせお埗られる実斜圢態や実斜䟋に぀いおも本発明の技術的範囲に含たれる。   Note that the present invention is not limited to the configurations described above, and various modifications are possible within the scope of the claims, and technical means disclosed in different embodiments and examples respectively. Embodiments and examples obtained by appropriately combining them are also included in the technical scope of the present invention.

以䞊のように、本発明では、配向膜䞊に液膜を圢成しおから察流を生じさせるように溶媒を蒞発させる。そのため、目的物質の結晶性の有無にかかわらず配向制埡可胜で、簡䟿か぀䜎コストで呚期的な埮现構造を圢成するこずが可胜ずなる。そのため、本発明は、各皮ナノテクノロゞヌに甚いるこずができるだけでなく、その応甚分野、具䜓的には、さらなる高性胜化が求められる各皮電子・光孊デバむスやその郚品に関わる分野に広く応甚するこずが可胜である。さらに、本発明によっお埗られる埮现構造のうち、金属ナノ粒子を甚いお圢成される埮现構造には、光孊異方性があるため、本発明は、各皮衚瀺デバむスにも広く適甚するこずが可胜である。   As described above, in the present invention, after the liquid film is formed on the alignment film, the solvent is evaporated so as to cause convection. Therefore, the orientation can be controlled regardless of the presence or absence of the crystallinity of the target substance, and a periodic fine structure can be formed easily and at low cost. Therefore, the present invention can be applied not only to various nanotechnology but also to a wide range of application fields, specifically, fields related to various electronic / optical devices and parts thereof for which higher performance is required. Is possible. Furthermore, among the microstructures obtained by the present invention, the microstructure formed using metal nanoparticles has optical anisotropy, and therefore the present invention can be widely applied to various display devices. is there.

本発明の䞀実斜䟋である、ポリ゚チレンにより圢成された呚期的な栌子状構造を瀺す図であり実斜䟋、矢印はポリテトラフルオロ゚チレンの配向方向を瀺し、スケヌルバヌはを瀺す。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the periodic lattice-like structure formed of polyethylene which is one Example of this invention (Example 1), the arrow shows the orientation direction of polytetrafluoroethylene, and a scale bar shows 200 nm. 図に瀺すポリ゚チレンにより圢成された呚期的な栌子状構造を構成する棒状構造䜓の倪さず、圓該栌子状構造を圢成する際の基板枩床の関係を瀺すグラフである。It is a graph which shows the relationship between the thickness of the rod-shaped structure which comprises the periodic lattice-shaped structure formed of the polyethylene shown in FIG. 1, and the substrate temperature at the time of forming the said lattice-shaped structure. 比范䟋においお、溶媒のみにより凊理を行ったポリテトラフルオロ゚チレン配向膜を瀺す図であり、矢印はポリテトラフルオロ゚チレンの配向方向を瀺し、スケヌルバヌはを瀺す。In Comparative Example 2, it is a figure which shows the polytetrafluoroethylene orientation film | membrane processed only with the solvent, the arrow shows the orientation direction of a polytetrafluoroethylene, and a scale bar shows 200 nm. 本発明の他の実斜䟋である、ポリスチレンにより圢成された呚期的な栌子状構造を瀺す図であり実斜䟋、矢印はポリテトラフルオロ゚チレンの配向方向を瀺し、スケヌルバヌはΌを瀺す。It is a figure which shows the periodic lattice-like structure formed of the polystyrene which is another Example of this invention (Example 2), the arrow shows the orientation direction of a polytetrafluoroethylene, and a scale bar shows 1 micrometer. . 本発明のさらに他の実斜䟋である、ポリスチレン溶液により栌子状構造を圢成する過皋で生じる察流の様子を瀺す図であり、䞊郚は顕埮鏡写真、䞋郚は圓該顕埮鏡写真の䞀郚で暪方向に切った断面の様子を瀺す暡匏図であり、スケヌルバヌはΌを瀺す。It is a figure which shows the mode of the convection which arises in the process of forming a lattice-like structure with a polystyrene solution, which is still another embodiment of the present invention. It is a schematic diagram which shows the mode of the cross section, and a scale bar shows 50 micrometers. 本発明の実斜の䞀圢態においお、基板の衚面圢成面にポリテトラフルオロ゚チレンの配向膜を圢成する状態を瀺す暡匏図である。In one Embodiment of this invention, it is a schematic diagram which shows the state which forms the alignment film of a polytetrafluoroethylene in the surface (formation surface) of a board | substrate. ・は、本発明のさらに他の実斜䟋である、金コロむドにより圢成された配列構造埮现構造を瀺す図であり、矢印はポリテトラフルオロ゚チレンの配向方向を瀺し、のスケヌルバヌはを瀺し、のスケヌルバヌはを瀺す。(A) * (b) is a figure which shows the arrangement | sequence structure (micro structure) formed with the gold colloid which is further another Example of this invention, The arrow shows the orientation direction of polytetrafluoroethylene, The scale bar in (a) indicates 500 nm, and the scale bar in (b) indicates 50 nm. ・は、本発明のさらに他の実斜䟋である、金コロむドにより圢成された配列構造埮现構造を瀺す図であり、矢印はポリテトラフルオロ゚チレンの配向方向を瀺し、スケヌルバヌはΌを瀺す。(A) * (b) is a figure which shows the arrangement | sequence structure (micro structure) formed with the gold colloid which is further another Example of this invention, The arrow shows the orientation direction of polytetrafluoroethylene, The scale bar indicates 10 ÎŒm. ・は、本発明のさらに他の実斜䟋である、金コロむドにより圢成された配列構造埮现構造を瀺す図であり、矢印はポリテトラフルオロ゚チレンの配向方向を瀺し、のスケヌルバヌはΌを瀺し、のスケヌルバヌはを瀺す。(A) * (b) is a figure which shows the arrangement | sequence structure (micro structure) formed with the gold colloid which is further another Example of this invention, The arrow shows the orientation direction of polytetrafluoroethylene, The scale bar in (a) indicates 1 ÎŒm, and the scale bar in (b) indicates 50 nm. ・は、本発明のさらに他の実斜䟋である、金コロむドにより圢成された配列構造埮现構造を瀺す図であり、は盎亀偏光板の間に䞊蚘配列構造を挟持した状態を瀺した図であり、は平行偏光板の間に䞊蚘配列構造を挟持した状態を瀺した図であり、矢印はポリテトラフルオロ゚チレンの配向方向を瀺し、スケヌルバヌはΌを瀺す。(A) * (b) is a figure which shows the arrangement | sequence structure (micro structure) formed with the gold colloid which is further another Example of this invention, (a) is the said arrangement | sequence structure between orthogonal polarizing plates. It is the figure which showed the state clamped, (b) is the figure which showed the state which clamped the said arrangement | sequence structure between parallel polarizing plates, the arrow shows the orientation direction of polytetrafluoroethylene, and a scale bar shows 10 micrometers. . ・は、図・のそれぞれの芖野を床回転させた状態で芳察した図であり、矢印はポリテトラフルオロ゚チレンの配向方向を瀺す。(A) * (b) is the figure observed in the state which rotated each visual field of Drawing 10 (a) and (b) 45 degrees, and an arrow shows the orientation direction of polytetrafluoroethylene. ・は、本発明のさらに他の実斜䟋である、アクリロニトリル・ブタゞ゚ン共重合䜓ラテックスにより圢成された配列構造埮现構造を瀺す図であり、矢印はポリテトラフルオロ゚チレンの配向方向を瀺し、スケヌルバヌはΌを瀺す。(A) * (b) is a figure which shows the arrangement | sequence structure (micro structure) formed with the acrylonitrile butadiene copolymer latex which is further another Example of this invention, and an arrow is polytetrafluoroethylene. The orientation direction is indicated, and the scale bar indicates 10 ÎŒm.

笊号の説明Explanation of symbols

 ポリテトラフルオロ゚チレンの配向膜
 基板
 ポリスチレンのメチル゚チルケトン溶液
 溶液の察流
 固䜓状ポリテトラフルオロ゚チレン
 加熱装眮
 圧迫移動装眮
DESCRIPTION OF SYMBOLS 1 Polytetrafluoroethylene orientation film 2 Substrate 3 Polystyrene methyl ethyl ketone solution 4 Solution convection 5 Solid polytetrafluoroethylene 6 Heating device 7 Pressure transfer device

Claims (10)

䞀定の呚期で埮现パタヌンが繰り返される構造を有しおおり、圓該埮现パタヌンの呚期間隔が少なくずもΌ以䞋ずなっおいる埮现構造䜓の補造方法であっお、
平滑な圢成面に、少なくずも高分子材料からなる配向膜を圢成する配向膜圢成工皋ず、
圓該配向膜の䞊に、䞊蚘埮现構造䜓ずなる目的物質を溶媒に溶解した目的物質溶液の液膜を圢成する液膜圢成工皋ず、
圓該液膜から溶媒を蒞発させながら察流を誘起させる察流誘起工皋ずを含むこずを特城ずする埮现構造䜓の補造方法。
It has a structure in which a fine pattern is repeated at a constant period, and a method for manufacturing a fine structure in which a period interval of the fine pattern is at least 1 ÎŒm or less,
An alignment film forming step of forming an alignment film made of at least a polymer material on a smooth forming surface;
On the alignment film, a liquid film forming step of forming a liquid film of a target substance solution in which the target substance to be the microstructure is dissolved in a solvent;
And a convection induction step of inducing convection while evaporating the solvent from the liquid film.
䞊蚘高分子材料ずしおフッ玠暹脂が甚いられるこずを特城ずする請求項に蚘茉の埮现構造䜓の補造方法。   The method for producing a microstructure according to claim 1, wherein a fluororesin is used as the polymer material. 䞊蚘フッ玠暹脂が、ポリテトラフルオロ゚チレンであるこずを特城ずする請求項に蚘茉の埮现構造䜓の補造方法。   The method for producing a microstructure according to claim 2, wherein the fluororesin is polytetrafluoroethylene. 䞊蚘配向膜圢成工皋では、䞊蚘圢成面に高分子材料を擊り぀けるこずにより配向膜を圢成するこずを特城ずする請求項ないしの䜕れか項に蚘茉の埮现構造䜓の補造方法。   4. The method for producing a microstructure according to claim 1, wherein in the alignment film forming step, the alignment film is formed by rubbing a polymer material on the formation surface. 䞊蚘配向膜圢成工皋は、平滑な圢成面を有する基板に察しお斜されるこずを特城ずする請求項ないしの䜕れか項に蚘茉の埮现構造䜓の補造方法。   5. The method for manufacturing a microstructure according to claim 1, wherein the alignment film forming step is performed on a substrate having a smooth forming surface. 6. 䞊蚘液膜圢成工皋では、圢成面を目的物質溶液に浞挬するか、あるいは、圢成面に目的物質溶液を塗垃、噎霧たたは滎䞋するこずにより液膜を圢成するこずを特城ずする請求項ないしの䜕れか項に蚘茉の埮现構造䜓の補造方法。   6. The liquid film forming step of forming a liquid film by immersing a forming surface in a target substance solution or coating, spraying or dropping a target substance solution on the forming surface. The manufacturing method of the microstructure according to any one of the above. 䞊蚘液膜圢成工皋ず察流誘起工皋ずが同時に行われるこずを特城ずする請求項ないしの䜕れか項に蚘茉の埮现構造䜓の補造方法。   The method for manufacturing a microstructure according to any one of claims 1 to 6, wherein the liquid film forming step and the convection inducing step are performed simultaneously. 䞊蚘埮现構造䜓が、棒状たたは玐状、あるいはこれらを集合させた栌子状の圢状を有しおいるこずを特城ずする請求項ないしの䜕れか項に蚘茉の埮现構造䜓の補造方法。   The method for manufacturing a fine structure according to any one of claims 1 to 7, wherein the fine structure has a bar shape, a string shape, or a lattice shape in which these are aggregated. . 請求項ないしの䜕れか項に蚘茉の方法により補造される埮现構造䜓。   A microstructure manufactured by the method according to any one of claims 1 to 8. 請求項に蚘茉の埮现構造䜓を甚いおなる電子およびたたは光孊デバむス。   An electronic and / or optical device using the microstructure according to claim 9.
JP2005254042A 2005-02-15 2005-09-01 Method for producing fine structure and use thereof Pending JP2006255878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254042A JP2006255878A (en) 2005-02-15 2005-09-01 Method for producing fine structure and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005038454 2005-02-15
JP2005254042A JP2006255878A (en) 2005-02-15 2005-09-01 Method for producing fine structure and use thereof

Publications (1)

Publication Number Publication Date
JP2006255878A true JP2006255878A (en) 2006-09-28

Family

ID=37095632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254042A Pending JP2006255878A (en) 2005-02-15 2005-09-01 Method for producing fine structure and use thereof

Country Status (1)

Country Link
JP (1) JP2006255878A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032782A (en) * 2007-07-25 2009-02-12 Seiko Epson Corp Manufacturing method of electronic device
WO2009084078A1 (en) * 2007-12-27 2009-07-09 Pioneer Corporation Organic semiconductor device, organic solar cell and display panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032782A (en) * 2007-07-25 2009-02-12 Seiko Epson Corp Manufacturing method of electronic device
WO2009084078A1 (en) * 2007-12-27 2009-07-09 Pioneer Corporation Organic semiconductor device, organic solar cell and display panel
KR101183041B1 (en) 2007-12-27 2012-09-20 파읎였니아 가부시킀가읎샀 Organic semiconductor device, organic solar cell and display panel
US8519381B2 (en) 2007-12-27 2013-08-27 Pioneer Corporation Organic semiconductor device, organic solar cell, and display panel

Similar Documents

Publication Publication Date Title
JP7667585B2 (en) DEVICE INCLUDING CONDUCTIVE COATING DISPOSED ON EMISSION REGION AND METHOD THE
KR102748006B1 (en) Method for patterning a coating on a surface and device including a patterned coating
JP2023053020A (en) Method for patterning coating on surface and device including patterned coating
JP4440267B2 (en) High-efficiency organic light-emitting device using a substrate having nano-sized hemispherical recesses and a method for manufacturing the same
KR100371296B1 (en) Organic electroluminescence device and method for fabricating same
CN100594627C (en) Method of patterning conductive polymer layer, organic light emitting device, and method of manufacturing the organic light emitting device
KR100705181B1 (en) High Efficiency Organic Light-Emitting Device Using Substrate or Electrode With Nano-Spherical Hemispherical Convex Part and Manufacturing Method Thereof
CN101287856B (en) Method for making a thin film layer
CN110867532A (en) Perovskite light-emitting diode device based on surface ligand control and preparation method thereof
TWI284484B (en) Laser thermal transfer from a donor element containing a hole-transporting layer
Islam et al. A review on fabrication process of organic light emitting diodes
CN110088930B (en) Spectral emission modification using metal nanoparticles to localize surface plasmons
CN106384769B (en) Quantum dot light-emitting diode and preparation method thereof
Tam et al. Low-temperature conformal vacuum deposition of OLED devices using close-space sublimation
Kumar et al. Photonic and optoelectronic applications of graphene: graphene-based transparent conducting electrodes for LED/OLED
JP2006255878A (en) Method for producing fine structure and use thereof
JP5210270B2 (en) Organic electroluminescent device and manufacturing method thereof
JP4189145B2 (en) Fine pattern manufacturing method and manufacturing apparatus
JP2005228737A (en) Organic electroluminescent element
JP2005276748A (en) Organic electroluminescent element and manufacturing method thereof
TW518908B (en) Organic electroluminescent element, and method for manufacturing the same
JP2004014529A (en) Organic el element
JP4382388B2 (en) SUBSTRATE FOR ORGANIC ELECTROLUMINESCENT DEVICE AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME
JP2003178868A (en) Transfer material and manufacturing method of organic thin film element
CN116600591A (en) Organic electroluminescent device