JP2006250953A - Microcircuit for analyzing protein - Google Patents
Microcircuit for analyzing protein Download PDFInfo
- Publication number
- JP2006250953A JP2006250953A JP2006158127A JP2006158127A JP2006250953A JP 2006250953 A JP2006250953 A JP 2006250953A JP 2006158127 A JP2006158127 A JP 2006158127A JP 2006158127 A JP2006158127 A JP 2006158127A JP 2006250953 A JP2006250953 A JP 2006250953A
- Authority
- JP
- Japan
- Prior art keywords
- protein
- circuit
- microcircuit
- solution
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 36
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 36
- 239000012460 protein solution Substances 0.000 claims abstract description 12
- 229920000642 polymer Polymers 0.000 claims description 16
- 238000004458 analytical method Methods 0.000 claims description 10
- 238000001179 sorption measurement Methods 0.000 abstract description 17
- 239000000243 solution Substances 0.000 abstract description 16
- 229920001477 hydrophilic polymer Polymers 0.000 abstract description 6
- 230000035945 sensitivity Effects 0.000 abstract description 2
- 230000002708 enhancing effect Effects 0.000 abstract 2
- 230000000052 comparative effect Effects 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000000576 coating method Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 239000011247 coating layer Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000008055 phosphate buffer solution Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 229920001342 Bakelite® Polymers 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 235000005956 Cosmos caudatus Nutrition 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000004637 bakelite Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- QYSGYZVSCZSLHT-UHFFFAOYSA-N octafluoropropane Chemical compound FC(F)(F)C(F)(F)C(F)(F)F QYSGYZVSCZSLHT-UHFFFAOYSA-N 0.000 description 2
- 230000002572 peristaltic effect Effects 0.000 description 2
- 102000013415 peroxidase activity proteins Human genes 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000002032 lab-on-a-chip Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- -1 polyoxy Polymers 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Landscapes
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
Description
本発明は、蛋白質の構造・機能解析及び蛋白質を使用した反応に用いられる装置・機器の内、蛋白質溶液の流動または反応または分析を行なう微小回路に関する。 The present invention relates to a microcircuit that performs the flow, reaction, or analysis of a protein solution among apparatus / equipment used for protein structure / function analysis and reaction using a protein.
現在、種々の化学反応を行なう為の微小回路は反応効率、速度、省試薬の観点から注目されつつある技術であり、既に「ラボオンアチップ」と呼ばれる数センチ角の硝子製チップ上に形成された回路の中で化学反応・分析を行なう新しい分析方法に関する概念が一般的に定着している。 At present, microcircuits for performing various chemical reactions are a technology that is attracting attention from the viewpoint of reaction efficiency, speed, and reagent saving, and is already formed on a glass chip of several centimeters square called “lab-on-a-chip”. In general, the concept of new analytical methods for chemical reaction and analysis in a circuit is well established.
今後、バイオテクノロジーの進展に伴い生化学分野においても微小回路の利用は不可欠な技術であり、特に蛋白質の構造・機能解析及び蛋白質を使用した反応への微小回路の応用が期待されている(例えば特許文献1)。 In the future, with the progress of biotechnology, the use of microcircuits is an indispensable technology in the field of biochemistry, and in particular, the application of microcircuits to protein structure / function analysis and reactions using proteins is expected (for example, Patent Document 1).
蛋白質溶液を微小回路に流す際に大きな問題となるのは回路表面への蛋白質の吸着であり、微量蛋白質は吸着による減少及び構造変化の影響を大きく受けるだけでなく、回路をくり返し使用する場合には吸着した蛋白質が履歴として残る点、更に回路自体が微小であるために吸着残留した蛋白質によって回路が閉塞する恐れのある点も問題となる。 A major problem when flowing a protein solution through a microcircuit is protein adsorption on the circuit surface, and trace amounts of protein are not only greatly affected by the decrease and structural change caused by adsorption, but also when the circuit is used repeatedly. However, there is a problem that the adsorbed protein remains as a history, and that the circuit itself is very small, so that the circuit may be blocked by the adsorbed protein.
また微小回路内で2種類の溶液を流動させた状態で反応を行なう場合には、2種類の溶液が1本の回路内で相流を形成する事が重要であるが、吸着残留した蛋白質によって回路壁面に凹凸が形成され、その結果乱流が発生し反応効率が低下してしまう点は微小回路にとって非常に大きな問題である。 In addition, when the reaction is performed with two kinds of solutions flowing in a microcircuit, it is important that the two kinds of solutions form a phase flow in one circuit. The fact that irregularities are formed on the circuit wall surface, resulting in the occurrence of turbulent flow and reduced reaction efficiency is a very big problem for microcircuits.
現在微小回路に使用されている基材の殆どは硝子(石英硝子)若しくはプラスチック類であるが、それらの基材に対して蛋白質は高い吸着性を示す。 Most of the substrates currently used for microcircuits are glass (quartz glass) or plastics, but proteins exhibit high adsorptivity to these substrates.
また微小回路の加工性に関する問題点として、基材上に微小回路を形成した際に表面に微細な凹凸が発生する場合があり、その様な凹凸は前述の理由により好ましくない。
本発明の目的は感度、精度、再現性を向上させる蛋白質分析用微小回路の提供であり、回路壁面への蛋白質の吸着及び回路表面の平滑性の向上が前記目的を達成する為の課題であると考えた。 An object of the present invention is to provide a microcircuit for protein analysis that improves sensitivity, accuracy, and reproducibility. Adsorption of protein onto a circuit wall surface and improvement in smoothness of the circuit surface are problems for achieving the above object. I thought.
即ち本発明は、蛋白質溶液が接触する断面積1mm2以下の微小回路において、回路の少なくとも蛋白質溶液と接触する表面が超親水性ポリマーで被覆されている蛋白質分析用微小回路である。 That is, the present invention is a microcircuit for protein analysis in which a microcircuit having a cross-sectional area of 1 mm 2 or less in contact with a protein solution is coated with a superhydrophilic polymer at least on the surface of the circuit in contact with the protein solution.
以上述べた如く、本発明によれば下記の優れた効果が得られる。 As described above, according to the present invention, the following excellent effects can be obtained.
第一に、回路表面への蛋白質の吸着が無く、分析を行なう蛋白質の減少及び変性が発生しないために、微量かつ高精度な分析が可能となる。 First, since there is no protein adsorption on the circuit surface and no reduction or denaturation of the protein to be analyzed occurs, analysis with a very small amount and high accuracy becomes possible.
第二に、回路表面への蛋白質の吸着が無く、使用した蛋白質が回路内に履歴として残る事無く、くり返し精度の優れた分析を行なう事ができる。 Second, there is no protein adsorption on the circuit surface, and the used protein does not remain as a history in the circuit, and analysis with excellent repeatability can be performed.
第三に、回路表面への蛋白質の吸着が無く、回路内の乱流の発生が抑えられ閉塞の問題も無い。 Thirdly, there is no protein adsorption on the circuit surface, the occurrence of turbulence in the circuit is suppressed, and there is no problem of blockage.
第四に、超親水性ポリマーのコーティング及び膨潤により回路表面の平滑性向上も期待される。 Fourth, the smoothness of the circuit surface is expected to be improved by coating and swelling with the superhydrophilic polymer.
従来の硝子又はプラスチックへの蛋白質吸着は短時間の接触で発生し、低濃度領域(約1ng〜100ug/ml)においてその吸着率(接触させた蛋白質溶液中の蛋白質の内吸着する蛋白質の割合)は、最大約50%にも達し、一度吸着した蛋白質は不可逆な構造変化(変性)を起こし、変性した蛋白質は二次的な蛋白質の吸着を誘引し、結果として蛋白質の多層吸着層が形成される。 Conventional protein adsorption to glass or plastic occurs in a short time of contact, and its adsorption rate (ratio of protein adsorbed among proteins in the contacted protein solution) in a low concentration region (about 1 ng to 100 ug / ml). Reaches a maximum of about 50%, and once adsorbed protein undergoes irreversible structural changes (denaturation), the denatured protein induces secondary protein adsorption, resulting in the formation of a multilayer adsorption layer of proteins. The
そこで、本発明においては蛋白質溶液が接触する表面を超親水性ポリマーで被覆する事によって、蛋白質の吸着を引き起こす最も大きな要因である疎水性相互作用を低減し、蛋白質の初期の吸着を防止している。 Therefore, in the present invention, the surface that is in contact with the protein solution is coated with a superhydrophilic polymer to reduce the hydrophobic interaction, which is the largest factor causing protein adsorption, and to prevent initial protein adsorption. Yes.
超親水性ポリマーとは水との親和性に非常に優れたポリマーで、水に浸漬する事により表面に均一な自由水層を保持し、その水接触角が0〜1度となる高分子材料を指す。 A super hydrophilic polymer is a polymer that has a very good affinity with water, and is a polymer material that maintains a uniform free water layer on its surface when immersed in water, with a water contact angle of 0 to 1 degree. Point to.
超親水性ポリマーの例としては、ポリヒドロキシアルキルメタクリレート、ポリオキシC2−C4アルキレン基含有メタクリレート重合体又はこれを含む共重合体、あるいはポリビニルピロリドン、リン脂質・高分子複合体(特開平5−161491号公報及び特開平6−46831号公報)、2−メタクリロイルオキシエチルホスホリルコリン共重合体(以下MPCと略す)又はこれを含む共重合体(特開平9−3132号公報)などが挙げられる。 Examples of superhydrophilic polymers include polyhydroxyalkyl methacrylate, polyoxy C2-C4 alkylene group-containing methacrylate polymer or a copolymer containing the same, or polyvinylpyrrolidone, a phospholipid / polymer complex (Japanese Patent Laid-Open No. 5-161491). And 2-methacryloyloxyethyl phosphorylcholine copolymer (hereinafter abbreviated as MPC) or a copolymer containing the same (Japanese Patent Laid-Open No. 9-3132).
超親水性ポリマーの被覆は蛋白質の吸着防止以外の効果も有している。超親水性ポリマーは液体と接触する事で自由水を含み膨潤し、その表面は平滑になる。 The superhydrophilic polymer coating has effects other than prevention of protein adsorption. Superhydrophilic polymers swell with free water when in contact with a liquid, and the surface becomes smooth.
すなわち、回路表面の乱流の原因となる加工時の凹凸が超親水性ポリマーの被覆及び膨潤により低減される。超親水性ポリマーを被覆する際に注意すべき点は被覆層の厚みである。 That is, unevenness during processing that causes turbulence on the circuit surface is reduced by coating and swelling of the superhydrophilic polymer. A point to be noted when coating the superhydrophilic polymer is the thickness of the coating layer.
超親水性ポリマーの被覆層が厚すぎると、蛋白質溶液と接触して膨潤した際に回路を閉塞してしまう可能性があり、また、蛋白質の吸着性能も低下するため被覆層の厚みは5um以下が好ましく、表面が完全に覆われていれば可能な限り薄い層であることが好ましい。 If the coating layer of the super-hydrophilic polymer is too thick, it may clog the circuit when it swells in contact with the protein solution, and the protein adsorption performance also decreases, so the coating layer thickness is 5 μm or less. It is preferable that the layer be as thin as possible if the surface is completely covered.
超親水性ポリマーを被覆する方法としては特に限定するものでは無いが、超親水性ポリマーを溶媒に溶解した溶液を回路内に充填し、回路の開口端に吸引ポンプに接続した吸引ノズルをあて、充填した親水性ポリマー溶液を吸引し、回路表面に残留した親水性ポリマーが乾燥するまで吸引を続ける方法が好ましい。 The method of coating the superhydrophilic polymer is not particularly limited, but the circuit is filled with a solution obtained by dissolving the superhydrophilic polymer in a solvent, and a suction nozzle connected to a suction pump is applied to the open end of the circuit. A method of sucking the filled hydrophilic polymer solution and continuing the suction until the hydrophilic polymer remaining on the circuit surface is dried is preferable.
前記被覆方法によって、回路が閉塞する事無く超親水性の被覆層が形成され、その厚みは親水性ポリマー溶液の粘度によって容易に調節する事が出来る。また、エアレーション乾燥によって平滑な被覆表面を得る事が出来る。 By the coating method, a superhydrophilic coating layer is formed without clogging the circuit, and the thickness thereof can be easily adjusted by the viscosity of the hydrophilic polymer solution. In addition, a smooth coating surface can be obtained by aeration drying.
以下、実施例によって本発明を更に具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
(実施例1)
厚さ2mm、20×30mm角のポリスチレンプレートの長軸方向にドリルを用いて直径0.5mm、長さ30mmの直線状の回路を形成した。回路の一方の開口端からポリヒドロキシエチルメタクリレート(SIGMA製P−3932)の2.5Wt/vol%メタノール溶液を注入した。注入の際、0.5mmφの鈍針を先端に取り付けた2.5mlのシリンジを使用した。
Example 1
A linear circuit having a diameter of 0.5 mm and a length of 30 mm was formed using a drill in the long axis direction of a polystyrene plate having a thickness of 2 mm and a 20 × 30 mm square. A 2.5 Wt / vol% methanol solution of polyhydroxyethyl methacrylate (SIGMA P-3932) was injected from one open end of the circuit. At the time of injection, a 2.5 ml syringe with a 0.5 mmφ blunt needle attached to the tip was used.
注入後開口端にテープでふたをして30分間静置した後に、吸引ポンプ−トラップに接続したノズルを開口端に押し当て、1分間吸引を行なった。更に一晩乾燥させた。 After the injection, the opening end was covered with a tape and allowed to stand for 30 minutes, and then a nozzle connected to a suction pump-trap was pressed against the opening end to perform suction for 1 minute. It was further dried overnight.
乾燥後のコート層の厚みを回路部分を切り出して電子顕微鏡にて測定したところ、厚みは約1.3umであった。
(実施例2)
実施例1で使用した物と同一の回路の一方の開口端からMPCポリマーの0.5wt/vol%エタノール溶液を注入した。
When the thickness of the coating layer after drying was cut out with a circuit portion and measured with an electron microscope, the thickness was about 1.3 μm.
(Example 2)
A 0.5 wt / vol% ethanol solution of MPC polymer was injected from one open end of the same circuit as that used in Example 1.
MPCポリマーは、「リン脂質類似構造を有するハイドロゲル膜からの薬物放出 高分子論文集,46,591−595(1989)」の内容に従いMPCとBMA(ブチルメタクリレート)比=3/7の共重合体を合成し使用した。 MPC polymer is a co-polymer of MPC and BMA (butyl methacrylate) ratio = 3/7 in accordance with the content of “Drug Release from Hydrogel Membranes Having a Phospholipid-like Structure, 46,591-595 (1989)”. A coalescence was synthesized and used.
注入後開口端にテープでふたをして30分間静置した後に、吸引ポンプ−トラップに接続したノズルを開口端に押し当て、1分間吸引を行なった。 After the injection, the opening end was covered with a tape and allowed to stand for 30 minutes, and then a nozzle connected to a suction pump-trap was pressed against the opening end to perform suction for 1 minute.
更に一晩乾燥させ、実施例2とした。 Furthermore, it dried overnight and was set as Example 2.
乾燥後のコート層の厚みを回路部分を切り出して電子顕微鏡にて測定したところ、厚みは約0.5umであった。
(比較例1)
厚さ2mm、20×30mm角のポリスチレンプレートの長軸方向にドリルを用いて直径0.5mm、長さ30mmの直線状の回路を形成したものを比較例1とした。
(比較例2)
厚さ2mm、20×30mm角のガラス製プレートの長軸方向にドリルを用いて直径0.5mm、長さ30mmの直線状の回路を形成したものを比較例2とした。
(蛋白質吸着性の比較)
実施例1、実施例2及び比較例1、比較例2の回路部分に50ng/mlのウシアルブミン(BSA)溶液200ulをくり返し30回循環させた後にBSA溶液の濃度を測定し、濃度の変化率を求めた。
When the thickness of the coating layer after drying was cut out by a circuit portion and measured with an electron microscope, the thickness was about 0.5 μm.
(Comparative Example 1)
Comparative Example 1 was obtained by forming a linear circuit having a diameter of 0.5 mm and a length of 30 mm using a drill in the long axis direction of a polystyrene plate having a thickness of 2 mm and a 20 × 30 mm square.
(Comparative Example 2)
Comparative Example 2 was obtained by forming a linear circuit having a diameter of 0.5 mm and a length of 30 mm using a drill in the long axis direction of a glass plate having a thickness of 2 mm and a square of 20 × 30 mm.
(Comparison of protein adsorption)
After circulating 200 ul of a 50 ng / ml bovine albumin (BSA) solution 30 times repeatedly in the circuit portions of Example 1, Example 2, Comparative Example 1, and Comparative Example 2, the concentration of the BSA solution was measured, and the rate of change in the concentration Asked.
BSA溶液の濃度の測定は以下の手順で実施した。 The concentration of BSA solution was measured according to the following procedure.
回収したBSA溶液をELISA用プレート(住友ベークライト製 スミロンELISA用プレートH)に分注し、37℃で1時間インキュベート。その後プレートウォッシャーを用いて3回洗浄を繰り返した。尚、洗浄液には0.05%Tween20含有リン酸緩衝液(日水製薬製 ダルベッコPBS−pH7.4)を使用した。 The recovered BSA solution is dispensed onto an ELISA plate (Sumiton Bakelite Sumilon ELISA plate H) and incubated at 37 ° C. for 1 hour. Thereafter, washing was repeated 3 times using a plate washer. In addition, 0.05% Tween20-containing phosphate buffer (Nissui Pharmaceutical Dulbecco PBS-pH 7.4) was used as the washing solution.
その後、3%スキムミルク(コスモバイオ製)リン酸緩衝液溶液を250μL/ウェルで分注し、37℃で1時間インキュベートした。その後プレートウォッシャーを用いて3回洗浄を繰り返した。 Thereafter, 3% skim milk (manufactured by Cosmo Bio) phosphate buffer solution was dispensed at 250 μL / well and incubated at 37 ° C. for 1 hour. Thereafter, washing was repeated 3 times using a plate washer.
次にペルオキシターゼ標識坑ウシアルブミン抗体(コスモバイオ製)の1.5ug/mlリン酸緩衝液溶液を100ul/ウェルで分注し、室温で30分静置した後、プレートウォッシャーを用いて3回洗浄を繰り返した。 Next, a 1.5 ug / ml phosphate buffer solution of peroxidase-labeled bovine albumin antibody (manufactured by Cosmo Bio) was dispensed at 100 ul / well, allowed to stand at room temperature for 30 minutes, and then washed three times using a plate washer. Was repeated.
次にTMBZ基質緩衝液(住友ベークライト製 スミロンペルオキシターゼ用発色キットT)を用いて発色させた後に、プレートリーダーにて吸光度を測定、検量線から濃度を求め、初期濃度からの変化率を求めた。 Next, color was developed using a TMBZ substrate buffer (Sumitomo Bakelite's Sumilon Peroxidase Coloring Kit T), then the absorbance was measured with a plate reader, the concentration was determined from the calibration curve, and the rate of change from the initial concentration was determined.
結果は表1の通りで、実施例1、実施例2共に比較例1、比較例2に比べて蛋白質溶液中の蛋白質の濃度変化が大幅に抑えられている事を確認した。 The results are shown in Table 1, and it was confirmed that the changes in the concentration of the protein in the protein solution were greatly suppressed as compared with Comparative Examples 1 and 2 in both Examples 1 and 2.
(回路閉塞性の比較)
回路に吸着残留した蛋白質が与える影響を比較する為に、実施例1、比較例1を用いて以下の検討を実施した。
(Comparison of circuit occlusion)
In order to compare the influence of the protein adsorbed and retained on the circuit, the following examination was conducted using Example 1 and Comparative Example 1.
実施例1、比較例1各々の回路の開口端にシリコン製チューブを接着接続し、その中に500mg/mlのBSAリン酸緩衝液溶液を充填し、そのチューブをぺリスターポンプに接続する事でBSA溶液を回路に連続的に循環させる事の出来る装置を作製した。 Example 1 and Comparative Example 1 By adhering and connecting a silicon tube to the open end of each circuit, filling it with 500 mg / ml BSA phosphate buffer solution, and connecting the tube to a peristaltic pump. A device capable of continuously circulating the BSA solution through the circuit was produced.
実施例1、比較例1各々に接続したぺリスターポンプを1時間稼動させた後に純水洗浄後乾燥、更にポンプに接続した後にBSA溶液を1時間循環させる作業を5日間(30回)くり返し実施した後の回路の内腔面の状態を観察した。 Example 1 and Comparative Example 1 The peristaltic pumps connected to each were operated for 1 hour, then washed with pure water and dried, and then connected to the pump and circulated the BSA solution for 1 hour repeatedly for 5 days (30 times). The state of the luminal surface of the circuit after observation was observed.
その結果、実施例1においてはBSAの吸着層は確認されず回路内腔面は検討開始時の状態を保持していたが比較例1においては内腔面に一様にBSAが付着しており、所々で瘤状のかたまりが確認され、回路内でのBSA溶液の流れが妨げられている事は明らかであった。
As a result, in Example 1, the BSA adsorption layer was not confirmed, and the circuit lumen surface maintained the state at the start of the study, but in Comparative Example 1, BSA was uniformly adhered to the lumen surface. It was clear that a lump-like lump was confirmed in some places, and the flow of the BSA solution in the circuit was obstructed.
Claims (1)
A microcircuit for protein analysis in which at least a surface of a circuit that is in contact with a protein solution is coated with a superhydrophilic polymer in a microcircuit having a cross-sectional area of 1 mm 2 or less in contact with the protein solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006158127A JP2006250953A (en) | 2006-06-07 | 2006-06-07 | Microcircuit for analyzing protein |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006158127A JP2006250953A (en) | 2006-06-07 | 2006-06-07 | Microcircuit for analyzing protein |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001328028A Division JP3865614B2 (en) | 2001-10-25 | 2001-10-25 | Microcircuit for protein analysis |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006250953A true JP2006250953A (en) | 2006-09-21 |
Family
ID=37091596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006158127A Pending JP2006250953A (en) | 2006-06-07 | 2006-06-07 | Microcircuit for analyzing protein |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006250953A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008076306A (en) * | 2006-09-22 | 2008-04-03 | Sumitomo Bakelite Co Ltd | Micro flow channel device |
DE102006045618A1 (en) * | 2006-09-22 | 2008-05-08 | Institut für Physikalische Hochtechnologie e.V. | Measuring arrangement for quantitative analytics, has micro-channel section with transparent detection window and self-regenerating thin film that passes separation fluid into micro-channel and section between segments and channel wall |
-
2006
- 2006-06-07 JP JP2006158127A patent/JP2006250953A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008076306A (en) * | 2006-09-22 | 2008-04-03 | Sumitomo Bakelite Co Ltd | Micro flow channel device |
DE102006045618A1 (en) * | 2006-09-22 | 2008-05-08 | Institut für Physikalische Hochtechnologie e.V. | Measuring arrangement for quantitative analytics, has micro-channel section with transparent detection window and self-regenerating thin film that passes separation fluid into micro-channel and section between segments and channel wall |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10746749B2 (en) | Ellagic acid formulations for use in coagulation assays | |
Frank et al. | Polysaccharides and sticky membrane surfaces: critical ionic effects | |
Bright et al. | Decreased aperture surface energy enhances electrical, mechanical, and temporal stability of suspended lipid membranes | |
Echelmeier et al. | 3D printed droplet generation devices for serial femtosecond crystallography enabled by surface coating | |
Skarja et al. | A cone‐and‐plate device for the investigation of platelet biomaterial interactions | |
CN105283521A (en) | Surface treatment agent for surface configured from inorganic material, tool and device having modified surface, and method for manufacturing tool and device | |
JP5848763B2 (en) | Method for hydrophilizing the surface of fluid components and parts containing such components | |
Imani et al. | Hierarchical Structures, with Submillimeter Patterns, Micrometer Wrinkles, and Nanoscale Decorations, Suppress Biofouling and Enable Rapid Droplet Digitization | |
Ahmed et al. | Microengineered 3D collagen gels with independently tunable fiber anisotropy and directionality | |
JP3865614B2 (en) | Microcircuit for protein analysis | |
Marlena et al. | Monolithic polymeric porous superhydrophobic material with pneumatic plastron stabilization for functionally durable drag reduction in blood-contacting biomedical applications | |
JP2006250953A (en) | Microcircuit for analyzing protein | |
Belanger et al. | Evaluating the effect of shear stress on graft-to zwitterionic polycarboxybetaine coating stability using a flow cell | |
Rashid et al. | Non-specific adsorption of protein to microfluidic materials | |
JP4162969B2 (en) | Dispensing tip | |
JP2021517507A (en) | A method of depositing nanomaterials on the surface of a polymer gel with uniform rigidity | |
JP2018123275A (en) | Cell adhesion inhibitor | |
CN111077182A (en) | A liquid-assisted method for reducing contact thermal resistance of nanoribbons | |
JPWO2016039319A1 (en) | Protein adsorption inhibitor and protein adsorption inhibition method | |
Wang et al. | A mobile precursor determines protein resistance on nanostructured surfaces | |
US10775373B2 (en) | Method for enhancement of the uniform reaction on the porous materials | |
JP2009275223A (en) | Hydrophilic adhesive cover for covering fluidic device | |
JP2007085930A (en) | Method of using metal probe and analyzer | |
JPWO2019049734A1 (en) | New polyethylene glycol derivative and protein adsorption inhibitor | |
JP2016059346A (en) | Cell development method and kit for it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080430 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080909 |