[go: up one dir, main page]

JP2006250623A - Photodetection device and photodetection method - Google Patents

Photodetection device and photodetection method Download PDF

Info

Publication number
JP2006250623A
JP2006250623A JP2005065549A JP2005065549A JP2006250623A JP 2006250623 A JP2006250623 A JP 2006250623A JP 2005065549 A JP2005065549 A JP 2005065549A JP 2005065549 A JP2005065549 A JP 2005065549A JP 2006250623 A JP2006250623 A JP 2006250623A
Authority
JP
Japan
Prior art keywords
light
sample
optical element
sample surface
optical probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005065549A
Other languages
Japanese (ja)
Inventor
Izumi Ito
泉 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005065549A priority Critical patent/JP2006250623A/en
Publication of JP2006250623A publication Critical patent/JP2006250623A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photodetection device and a photodetection method using an optical fiber probe applicable to a scanning probe microscope or the like. <P>SOLUTION: In this photodetection device 1, light from a light source 2 is condensed onto a sample surface Sa by an optical probe 10, and reflected and scattered light from the sample S is condensed onto the second focal position of an ellipsoidal mirror 3 by the ellipsoidal mirror 3 arranged so that the first focal position thereof agrees with the condensing position of the optical probe 10 on the sample surface Sa, and focused light from the ellipsoidal mirror 3 is transmitted selectively through an aperture 4a of an aperture plate 4 arranged coincidently with the second focal position of the ellipsoidal mirror 3, and transmitted light is detected by a photodetector 5. Hereby, the reflected and scattered light from the sample S can be detected without passage through the optical probe 10, and photodetection can be performed with a high S/N ratio regardless of the shape or optical characteristics of the sample surface Sa and the material or the thickness of a shielding coating film 13 of the optical probe 10, or the like. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光検出装置及び光検出方法に関し、詳細には、走査型プローブ顕微鏡等に適用可能な光プローブを用いた光検出装置及び光検出方法に関する。   The present invention relates to a light detection device and a light detection method, and more particularly to a light detection device and a light detection method using an optical probe applicable to a scanning probe microscope or the like.

近年、STM(走査型トンネル顕微鏡)、AFM(走査型原子間力顕微鏡)をはじめとするSPM(走査型プローブ顕微鏡)技術を用いて、ナノオーダの計測・加工が行われている。このSPMの中にあって、回折限界以下の微小領域での光学的特性を検出することが可能な近接場光学顕微鏡は、バイオテクノロジー等の様々な分野での測定・評価装置として用いられている。また、上記近接場光学顕微鏡の技術を応用した、光記録装置や微細加工装置の研究開発も進められている。   In recent years, nano-order measurement and processing has been performed using SPM (scanning probe microscope) technology such as STM (scanning tunneling microscope) and AFM (scanning atomic force microscope). A near-field optical microscope that is capable of detecting optical characteristics in a minute region below the diffraction limit in this SPM is used as a measurement / evaluation apparatus in various fields such as biotechnology. . In addition, research and development of optical recording devices and microfabrication devices applying the above-mentioned near-field optical microscope technology is also in progress.

近接場光学顕微鏡では、回折限界以下の寸法の微細構造体をプローブとして用い、プローブ先端部を照明することでその近傍に近接場光を発生させる。この状態でプローブを試料面上で走査させることにより、プローブ近傍に局在している近接場光と試料面との電磁気的な相互作用により散乱、あるいは、試料面を透過した近接場光を検出して、試料面の光学的情報(光強度、スペクトル、偏光等)を得ることができる。   In the near-field optical microscope, a fine structure having a size equal to or smaller than the diffraction limit is used as a probe, and near-field light is generated in the vicinity thereof by illuminating the probe tip. By scanning the probe on the sample surface in this state, the near-field light scattered by the electromagnetic interaction between the near-field light localized near the probe and the sample surface, or near-field light transmitted through the sample surface is detected. Thus, optical information (light intensity, spectrum, polarization, etc.) of the sample surface can be obtained.

近接場光学顕微鏡では、一般に、コア周囲に、クラッドの設けられた光ファイバの一端に先鋭化されたコアを突出させた突出部を有し、当該突出部に、例えば、AuやAg等の金属により被覆された光プローブを備えて、光の波長を越えた分解能を有する光学像を得ることができるようになっている。   In the near-field optical microscope, generally, a core having a sharpened core projecting from one end of an optical fiber provided with a clad is provided around the core, and a metal such as Au or Ag is formed in the projecting part. An optical image having a resolution exceeding the wavelength of light can be obtained.

また、上記近接場光学顕微鏡により試料の微小領域における物性を測定する場合には、試料表面の光の波長より小さい領域に局在するエバネッセント光を検出して試料の形状を測定する。そして、全反射条件下で試料に光が照射されることにより生じたエバネッセント光を光プローブにより散乱させて散乱光に変換する。近接場光学顕微鏡は、この散乱光を、光プローブの形成されている突出部を通して光ファイバのコアに導き、光ファイバのもう一方の射出端に接続された検出器により検出する。   When measuring the physical properties of a sample in a micro area using the near-field optical microscope, the shape of the sample is measured by detecting evanescent light localized in an area smaller than the wavelength of light on the sample surface. Then, the evanescent light generated by irradiating the sample with light under the total reflection condition is scattered by the optical probe and converted into scattered light. The near-field optical microscope guides this scattered light to the core of the optical fiber through the protruding portion where the optical probe is formed, and detects it with a detector connected to the other exit end of the optical fiber.

すなわち、近接場光学顕微鏡は、光プローブにより散乱と検出の双方を行うことができる。   That is, the near-field optical microscope can perform both scattering and detection by the optical probe.

このように、近接場光学顕微鏡においては、高分解能で測定することはできるが、測定範囲が数十um程度と非常に狭いという問題がある。   As described above, the near-field optical microscope can measure with high resolution, but there is a problem that the measurement range is as narrow as about several tens of um.

また、近年、シリコンウエハ欠陥検査等の用途において、低分解能で測定した後に、近接場光を利用した高分解能の測定に切り換え、同一試料の測定・検査を継続して行えることが求められている。   Also, in recent years, in applications such as silicon wafer defect inspection, it is required to switch to high-resolution measurement using near-field light after measurement with low resolution, and to continue measurement and inspection of the same sample. .

そこで、従来、対物レンズによる観察系を含む通常の光学顕微鏡装置に、近接場光検出用光プローブを組み込んで、伝搬光を利用した広範囲測定を可能とする欠陥検査装置及び欠陥検査方法が提案されている(特許文献1参照)。   Therefore, conventionally, a defect inspection apparatus and a defect inspection method have been proposed in which an optical probe for detecting near-field light is incorporated into a normal optical microscope apparatus including an observation system using an objective lens, and a wide range measurement using propagation light is possible. (See Patent Document 1).

特開2000−055818号公報JP 2000-055818 A

しかしながら、上記従来技術にあっては、対物レンズによる広範囲測定により特定した物性測定を望む微小領域に対して、近接場光検出用の光プローブを位置合わせした上で近接場光測定(高分解能測定)を実施するため、位置合わせが非常に困難であり、長時間を要し、利用性が悪いという問題があった。   However, in the above prior art, the near-field light measurement (high resolution measurement) is performed after aligning the optical probe for near-field light detection with respect to the minute region desired to measure the physical properties specified by the wide range measurement by the objective lens. ) Is very difficult to align, takes a long time, and has poor usability.

そこで、本発明は、1つの集光用光学素子により、伝搬光を利用した高S/N比で広範囲測定と近接場光を利用した高分解能測定の双方を実現するとともに、試料からの反射・散乱光を集光用光学素子を通すことなく検出し、試料表面の形状、光学特性及び光プローブ等の集光用光学素子の遮光性被覆膜の材質、膜厚等に関わらず、高S/N比で光検出を行う光検出装置及び光検出方法を提供することを目的としている。   Therefore, the present invention realizes both a wide range measurement with a high S / N ratio using propagating light and a high resolution measurement using near-field light with a single condensing optical element, and reflection / reflection from the sample. Scattered light is detected without passing through a condensing optical element, and high S is obtained regardless of the shape, optical characteristics of the sample surface, and the material and film thickness of the light-shielding coating film of the condensing optical element such as an optical probe. An object of the present invention is to provide a photodetection device and a photodetection method for performing photodetection with an / N ratio.

請求項1記載の発明の光検出装置は、所定の波長の光を出射する光源と、前記光源からの光を試料表面に集光させる集光用光学素子と、第一焦点位置が当該試料表面上の前記集光用光学素子の集光位置と一致するように配置され、当該試料表面からの反射・散乱光を第二焦点位置に集光させる楕円面鏡と、当該楕円面鏡で前記第二焦点位置に集束される集束光を選択的に透過させる開口を有する光選択手段と、前記開口を透過する透過光を検出する光検出手段と、前記集光用光学素子と前記試料との間の距離を相対的に変化させる移動手段と、を備えていることにより、上記目的を達成している。   The light detection device according to claim 1 is a light source that emits light of a predetermined wavelength, a condensing optical element that condenses light from the light source on a sample surface, and a first focal position is the sample surface. An ellipsoidal mirror that is arranged to coincide with the condensing position of the concentrating optical element above and collects reflected / scattered light from the sample surface at a second focal position, and the ellipsoidal mirror Light selection means having an aperture that selectively transmits focused light focused at a bifocal position, light detection means for detecting transmitted light that passes through the aperture, and between the condensing optical element and the sample The above-mentioned object is achieved by providing moving means for relatively changing the distance.

この場合、例えば、請求項2に記載するように、前記光検出装置は、前記集光用光学素子が、伝播光と近接場光の双方を出射可能な光プローブであってもよい。   In this case, for example, as described in claim 2, in the light detection device, the condensing optical element may be an optical probe capable of emitting both propagation light and near-field light.

また、例えば、請求項3に記載するように、前記光検出装置は、前記試料を前記集光用光学素子に対して当該試料表面と平行の走査方向に移動させる試料走査手段を、備えていてもよい。   For example, as described in claim 3, the light detection device includes a sample scanning unit that moves the sample in a scanning direction parallel to the sample surface with respect to the condensing optical element. Also good.

さらに、例えば、請求項4に記載するように、前記光検出装置は、前記集光用光学素子を前記試料に対して当該試料表面と平行の走査方向に移動させる素子走査手段と、当該素子走査手段による前記集光用光学素子の移動に応じて前記光選択手段を介して前記開口を走査方向に移動させる開口走査手段と、を備えていてもよい。   Further, for example, as described in claim 4, the light detection device includes an element scanning unit that moves the condensing optical element with respect to the sample in a scanning direction parallel to the sample surface, and the element scanning. And an aperture scanning unit that moves the aperture in the scanning direction via the light selection unit according to the movement of the condensing optical element by the unit.

また、例えば、請求項5に記載するように、前記光検出装置は、前記光源の出射する所定の波長を適宜変更制御する波長制御手段を、備えていてもよい。   For example, as described in claim 5, the light detection device may include wavelength control means for appropriately changing and controlling a predetermined wavelength emitted by the light source.

請求項6記載の発明の光検出方法は、所定の波長の光を出射する光源からの光を、集光用光学素子で試料表面に集光させ、当該試料からの反射・散乱光を、その第一焦点位置が当該試料表面上の前記集光用光学素子の集光位置と一致するように配置されている楕円面鏡により当該楕円面鏡の第二焦点位置に集光させ、当該楕円面鏡の第二焦点位置と一致させて配置されている光選択手段の開口を、当該楕円面鏡からの集束光を選択的に透過させ、当該透過光を光検出手段で検出することにより、上記目的を達成している。   According to a sixth aspect of the present invention, there is provided a light detection method in which light from a light source that emits light having a predetermined wavelength is condensed on a sample surface by a condensing optical element, and reflected / scattered light from the sample is The ellipsoidal surface is focused on the second focal position of the ellipsoidal mirror by an ellipsoidal mirror arranged so that the first focal position coincides with the condensing position of the condensing optical element on the sample surface. By selectively transmitting the focused light from the ellipsoidal mirror through the aperture of the light selection means arranged so as to coincide with the second focal position of the mirror, and detecting the transmitted light by the light detection means, The goal has been achieved.

この場合、例えば、請求項7に記載するように、前記光検出方法は、前記集光用光学素子が、伝播光と近接場光の双方を出射可能な光プローブであってもよい。   In this case, for example, as described in claim 7, in the light detection method, the condensing optical element may be an optical probe capable of emitting both propagating light and near-field light.

また、例えば、請求項8に記載するように、前記光検出方法は、前記試料を前記集光用光学素子に対して当該試料表面に平行な方向に移動走査させて、当該試料表面の各位置からの反射・散乱光を検出してもよい。   Further, for example, as described in claim 8, the light detection method includes moving and scanning the sample in a direction parallel to the sample surface with respect to the condensing optical element, so that each position on the sample surface is measured. You may detect the reflected and scattered light from.

さらに、例えば、請求項9に記載するように、前記光検出方法は、前記集光用光学素子を前記試料表面に対して平行な方向に移動走査させ、前記光選択手段を介して前記開口を、当該集光用光学素子の移動に応じて変動する前記楕円面鏡の第二焦点位置に移動走査させ、前記試料表面の各位置からの反射・散乱光を検出してもよい。   Further, for example, as described in claim 9, in the light detection method, the condensing optical element is moved and scanned in a direction parallel to the sample surface, and the opening is opened via the light selection unit. Alternatively, the reflected and scattered light from each position on the sample surface may be detected by moving and scanning to the second focal position of the ellipsoidal mirror that fluctuates according to the movement of the condensing optical element.

また、例えば、請求項10に記載するように、前記光検出方法は、前記光源の出射する所定の波長を適宜変更制御してもよい。   For example, as described in claim 10, the light detection method may appropriately change and control a predetermined wavelength emitted from the light source.

本発明によれば、所定の波長の光を出射する光源からの光を、集光用光学素子で試料表面に集光させ、当該試料からの反射・散乱光を、その第一焦点位置が当該試料表面上の集光用光学素子の集光位置と一致するように配置されている楕円面鏡により当該楕円面鏡の第二焦点位置に集光させ、当該楕円面鏡の第二焦点位置と一致させて配置されている光選択手段の開口を、当該楕円面鏡からの集束光を選択的に透過させ、当該透過光を光検出手段で検出しているので、1つの集光用光学素子により、伝搬光を利用した高S/N比で広範囲測定と近接場光を利用した高分解能測定の双方を実現することができるとともに、試料からの反射・散乱光を集光用光学素子を通すことなく検出することができ、利用性を向上させることができるとともに、試料表面の形状、光学特性及び光プローブ等の集光用光学素子の遮光性被覆膜の材質、膜厚等に関わらず、高S/N比で光検出を行うことができる。   According to the present invention, light from a light source that emits light of a predetermined wavelength is condensed on the surface of the sample by the condensing optical element, and the reflected / scattered light from the sample is at the first focal position. The light is condensed at the second focal position of the ellipsoidal mirror by the ellipsoidal mirror arranged so as to coincide with the condensing position of the condensing optical element on the sample surface, The condensing light from the ellipsoidal mirror is selectively transmitted through the apertures of the light selecting means arranged to coincide with each other, and the transmitted light is detected by the light detecting means. As a result, it is possible to realize both a wide-range measurement with a high S / N ratio using propagating light and a high-resolution measurement using near-field light, and passing reflected / scattered light from a sample through a condensing optical element. And can improve the usability The shape of the sample surface, the material of the light-shielding coating film of the light converging optical element, such as optical properties and the optical probe, regardless of the film thickness and the like, it is possible to perform light detection in high S / N ratio.

以下、本発明の好適な実施例を添付図面に基づいて詳細に説明する。なお、以下に述べる実施例は、本発明の好適な実施例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, since the Example described below is a suitable Example of this invention, various technically preferable restrictions are attached | subjected, However, The scope of the present invention limits this invention especially in the following description. As long as there is no description of the effect, it is not restricted to these aspects.

図1〜図5は、本発明の光検出装置及び光検出方法の一実施例を示す図であり、図1は、本発明の光検出装置及び光検出方法の一実施例を適用した光検出装置1の要部概略構成図である。   1 to 5 are diagrams showing an embodiment of a light detection apparatus and a light detection method of the present invention, and FIG. 1 is a light detection to which one embodiment of the light detection apparatus and the light detection method of the present invention is applied. 2 is a schematic configuration diagram of a main part of the device 1. FIG.

図1において、光検出装置1は、例えば、試料Sの微小領域における光学物性を測定する近接場光学顕微鏡等に適用され、光を射出する光源2、光源2から射出された光を集光して試料Sの被測定面(試料表面)Saに照射する光プローブ(集光用光学素子)10、被測定面Saから反射、散乱した光を集光する楕円面鏡3、集束光を選択的に透過させる開口4aの形成されている開口板(光選択手段)4及び透過光を検出する光検出器(光検出手段)5等を備えている。   In FIG. 1, a photodetection device 1 is applied to, for example, a near-field optical microscope that measures optical properties in a minute region of a sample S, and condenses light emitted from the light source 2 and the light source 2. The optical probe (condensing optical element) 10 that irradiates the surface to be measured (sample surface) Sa of the sample S, the ellipsoidal mirror 3 that condenses the light reflected and scattered from the surface Sa to be measured, and the focused light selectively. And an aperture plate (light selection means) 4 in which an aperture 4a to be transmitted is formed, a photodetector (light detection means) 5 for detecting transmitted light, and the like.

光源2は、図示しない電源装置から供給される駆動電源に基づいて光を発振し、また、光波長変換部(波長制御手段)6が、光源2から射出される光の波長を切り換える。すなわち、光波長変換部6は、試料Sの光学特性に応じた射出光波長制御の際に光源2の出射する光の波長を切り換える。   The light source 2 oscillates light based on drive power supplied from a power supply device (not shown), and the light wavelength conversion unit (wavelength control means) 6 switches the wavelength of light emitted from the light source 2. That is, the light wavelength conversion unit 6 switches the wavelength of the light emitted from the light source 2 when controlling the emission light wavelength according to the optical characteristics of the sample S.

この光源2から射出された光は、図示しないコリメートレンズ、集光レンズを経て図示しない光ファイバに入射され、この光ファイバの先端面に、光プローブ10が形成されている。   The light emitted from the light source 2 is incident on an optical fiber (not shown) through a collimator lens and a condenser lens (not shown), and an optical probe 10 is formed on the tip surface of the optical fiber.

光プローブ10は、図2に拡大して示すように、光導波部11と突出部12を備えており、突出部12は、遮光性被覆層13で覆われている。光導波部11は、コア14の周囲にクラッド15が設けられた光ファイバで構成されており、コア14及びクラッド15は、それぞれ二酸化シリコン系ガラスで形成されているが、クラッド15にゲルマニウム、リン等が添加されることで、クラッド15がコア14よりもその屈折率が低くなるように組織制御されている。   As shown in an enlarged view in FIG. 2, the optical probe 10 includes an optical waveguide portion 11 and a protruding portion 12, and the protruding portion 12 is covered with a light-shielding coating layer 13. The optical waveguide unit 11 is composed of an optical fiber in which a clad 15 is provided around a core 14, and the core 14 and the clad 15 are each formed of silicon dioxide-based glass. The structure of the clad 15 is controlled so that the refractive index of the clad 15 is lower than that of the core 14.

突出部12は、光導波部11の一端においてクラッド15から突出させた円錐形状のコア14で形成され、第1テーパ部(伝搬光射出部)16aと第2テーパ部(近接場光発生部)16bを有している。   The protruding portion 12 is formed of a conical core 14 protruding from the clad 15 at one end of the optical waveguide portion 11, and includes a first tapered portion (propagating light emitting portion) 16a and a second tapered portion (near-field light generating portion). 16b.

試料Sは、移動制御部(移動手段、試料走査手段)17上に載置され、移動制御部17は、例えば、3軸アクチュエータ等により構成されていて、被測定面Saを光プローブ10に対して近接・離間させる方向に試料Sを移動させ、あるいは、試料Sを被測定面Saに平行な走査方向に走査させる。   The sample S is placed on a movement control unit (movement unit, sample scanning unit) 17, and the movement control unit 17 is configured by, for example, a three-axis actuator and the like, and the measurement surface Sa is placed on the optical probe 10. Then, the sample S is moved in the direction of approaching / separating, or the sample S is scanned in the scanning direction parallel to the surface Sa to be measured.

光検出装置1は、光源2から出射された光P(以下、伝搬光P)が、コア14内を伝搬して、光プローブ10に達すると、第1テーパ部16aを介して光プローブ10外に射出される。この光プローブ10の第1テーパ部16aの表面は、円錐テーパ形状に形成されており、第1テーパ部16aの表面の法線Haと伝搬光の光軸Paとの成す角θ1(以下、傾斜角θ1)が伝搬光Pにおける全反射角未満であって、かつ、0度よりも大きい形状である。   When the light P emitted from the light source 2 (hereinafter referred to as propagating light P) propagates through the core 14 and reaches the optical probe 10, the light detection device 1 passes outside the optical probe 10 via the first tapered portion 16a. Is injected into. The surface of the first taper portion 16a of the optical probe 10 is formed in a conical taper shape, and an angle θ1 (hereinafter referred to as an inclination) between the normal line Ha of the surface of the first taper portion 16a and the optical axis Pa of the propagating light. The angle θ1) is less than the total reflection angle in the propagating light P and has a shape larger than 0 degrees.

したがって、光プローブ10に入射した伝搬光Pの大部分が、第1テーパ部16aから遮光性被覆層13を透過した後、屈折光として光プローブ10の外部に射出される。   Therefore, most of the propagating light P incident on the optical probe 10 passes through the light-shielding coating layer 13 from the first taper portion 16a and is then emitted as refracted light to the outside of the optical probe 10.

光プローブ10から射出された光は、光プローブ10の先端から数百nm〜数um程度離れた位置で集光し、高い光強度を有する光スポットを形成する。   The light emitted from the optical probe 10 is collected at a position about several hundred nm to several um away from the tip of the optical probe 10 to form a light spot having high light intensity.

この光プローブ10から外部に出射された光が、光プローブ10の先端から離れた位置で集光し、高い光強度を有する光スポットを形成する現象は、傾斜角θ1が伝搬光Pにおける全反射角未満である際に固有の現象である。なお、従来のように傾斜角θ1が全反射角以上に形成された光プローブにおいては、光プローブ先端部近傍で最も高く、光プローブ先端から離れるに従って光強度が急速に低下し、光強度の低い光スポットしか形成することができない。   The phenomenon that the light emitted to the outside from the optical probe 10 is collected at a position away from the tip of the optical probe 10 to form a light spot having a high light intensity is that the inclination angle θ1 is totally reflected in the propagation light P. It is an inherent phenomenon when it is less than a corner. In the conventional optical probe in which the inclination angle θ1 is formed to be equal to or greater than the total reflection angle as in the prior art, the light intensity is highest near the distal end of the optical probe, and the light intensity decreases rapidly as the distance from the distal end of the optical probe decreases. Only a light spot can be formed.

この光プローブ10の傾斜角毎の光プローブ先端―集光スポット間距離の推移は、例えば、図3に示すようになる。図3は、第1テーパ部16aの屈折率1.53、射出媒質が空気である場合に、全反射角40°を境にそれを下回る入射角度において、光プローブ10の先端から数百nm〜数um程度離れた位置で集光していることを表している。   The transition of the distance between the optical probe tip and the focused spot for each tilt angle of the optical probe 10 is as shown in FIG. 3, for example. FIG. 3 shows that when the refractive index of the first taper portion 16a is 1.53 and the emission medium is air, the incident angle is less than that at a total reflection angle of 40 °, and the optical probe 10 has a tip of several hundred nm to This indicates that light is collected at a position about several um away.

そして、このスポット径は、第1テーパ部16aの根本の径D、傾斜角θ1及び伝搬光Pの波長によって制御することができる。したがって、必要な測定分解能と同程度のスポット径を取るように第1テーパ部16aの根本の径D、傾斜角θ1及び伝搬光Pの波長を決定する。   The spot diameter can be controlled by the diameter D of the first taper portion 16a, the inclination angle θ1, and the wavelength of the propagation light P. Accordingly, the root diameter D, the inclination angle θ1, and the wavelength of the propagation light P of the first taper portion 16a are determined so as to have a spot diameter comparable to the required measurement resolution.

なお、第1テーパ部31aは、図2では、円錐形状となっているが、図4に示すように、曲面形状のテーパとなっている第1テーパ部16cであってもよい。   In addition, although the 1st taper part 31a becomes a cone shape in FIG. 2, as shown in FIG. 4, the 1st taper part 16c which becomes a taper of a curved surface shape may be sufficient.

上記光プローブ10の第2テーパ部16b(近接場光発生部)には、図2に示すように、コア14内を伝搬する伝搬光Pのうち、ファイバ光軸近傍の成分が、光プローブ10に達した後、入射し、第2テーパ部16bの表面は、円錐テーパ形状であって、その表面の法線Hbと伝搬光Pの光軸Paとの成す角θ2(以下、傾斜角θ2)が伝搬光Pにおける全反射角以上であって、かつ、90度未満となる形状である。   As shown in FIG. 2, the second tapered portion 16b (near-field light generating portion) of the optical probe 10 includes a component in the vicinity of the fiber optical axis in the propagation light P propagating in the core 14, as shown in FIG. And the surface of the second taper portion 16b has a conical taper shape, and an angle θ2 (hereinafter referred to as an inclination angle θ2) formed by the normal Hb of the surface and the optical axis Pa of the propagating light P. Is a shape that is greater than or equal to the total reflection angle in propagating light P and less than 90 degrees.

したがって、光プローブ10に入射した伝搬光Pの大部分が、遮光性被覆層13と光プローブコア14との界面で反射するが、この際、一部の光Pは、遮光性被覆層13の表面に滲出し、遮光性被覆層13に沿って光プローブ10の先端部に向けて伝搬して、先端部に局在する表面プラズモンとなる。この表面プラズモンにより、光プローブ10の先端部近傍において、近接場光スポットを形成することができる。   Therefore, most of the propagating light P incident on the optical probe 10 is reflected at the interface between the light-shielding coating layer 13 and the optical probe core 14. At this time, a part of the light P is reflected on the light-shielding coating layer 13. It exudes to the surface, propagates along the light-shielding coating layer 13 toward the tip of the optical probe 10, and becomes a surface plasmon localized at the tip. With this surface plasmon, a near-field light spot can be formed near the tip of the optical probe 10.

なお、遮光性被覆層13は、どのような材質であってもよいが、光プラズマによる近接場光の増強効果が得られること及び化学的安定性に優れていることから、Au薄膜であることが望ましい。   The light-shielding coating layer 13 may be made of any material, but it is an Au thin film because the effect of enhancing near-field light by optical plasma is obtained and the chemical stability is excellent. Is desirable.

上記楕円面鏡3は、光プローブ10の先端から数百nm〜数um程度離れた位置で集光する光スポットの位置に第一焦点が一致するように配置されており、開口4aは、楕円面鏡3の第二焦点位置に配置されている。すなわち、光プローブ10から射出される伝搬光Pによる集光点と開口4aを共役関係とする共焦点光学系を構成する。したがって、試料Sの被測定面Saの高さ方向にも高分解能を有する測定を行うことができる。   The ellipsoidal mirror 3 is arranged so that the first focal point coincides with the position of the light spot collected at a position separated from the tip of the optical probe 10 by several hundred nm to several um, and the opening 4a has an elliptical shape. It is disposed at the second focal position of the surface mirror 3. That is, a confocal optical system in which the condensing point of the propagation light P emitted from the optical probe 10 and the opening 4a are conjugated is configured. Therefore, it is possible to perform measurement with high resolution also in the height direction of the measurement surface Sa of the sample S.

また、光プローブ10から射出される伝搬光Pの合焦位置に、試料Sの被測定面Saがあるときにのみ強い反射・散乱光を検出できることを利用し、合焦位置で被測定面Saに平行な方向にスライスした像(等高線像)を得ること(オプティカル・セクショニング)もできる。   In addition, by utilizing the fact that strong reflected / scattered light can be detected only when the measurement surface Sa of the sample S is at the focus position of the propagation light P emitted from the optical probe 10, the measurement surface Sa is measured at the focus position. It is also possible to obtain an image (contour image) sliced in a direction parallel to (optical sectioning).

そして、被測定面Saの高さ方向における一定の刻み毎にスライス像を取得し、計算機処理で重ね合わせることにより、被測定面Saの形状像を形成することができる。   Then, a slice image is obtained for each constant increment in the height direction of the surface to be measured Sa, and a shape image of the surface to be measured Sa can be formed by superimposing by computer processing.

光検出器5は、開口4a近傍に配置され、被測定面Saからの反射・散乱光のうち、開口4aを透過した成分のみを受光して光電変換し、輝度信号を生成する。   The photodetector 5 is disposed in the vicinity of the opening 4a, receives only the component transmitted through the opening 4a out of the reflected / scattered light from the measurement surface Sa, photoelectrically converts it, and generates a luminance signal.

光検出装置1は、光検出器5の生成する輝度信号を基に、画像を作成して、作成した画像を、図示しない表示部に表示し、ユーザは、この表示部に表示される画像に基づいて、試料Sの被測定面Saの詳細を測定、観察することができる。   The light detection device 1 creates an image based on the luminance signal generated by the light detector 5, displays the created image on a display unit (not shown), and the user displays the image displayed on the display unit. Based on this, the details of the measured surface Sa of the sample S can be measured and observed.

次に、本実施例の作用を説明する。まず、光検出装置1による伝搬光測定(広範囲測定)の測定動作について説明する。   Next, the operation of this embodiment will be described. First, the measurement operation of propagation light measurement (wide range measurement) by the light detection device 1 will be described.

光検出装置1は、光源2から射出された光を、その先端に光プローブ10の形成されている図示しない光ファイバに入射して、光ファイバを通して光プローブ10へ入射し、光プローブ10に入射された光を、そのままコア14内を伝搬させて、光プローブ10から出射させる。光プローブ10から射出された光は、光プローブ10の先端から離れた位置で集光し、光スポットを形成する。   The light detection device 1 makes light emitted from the light source 2 enter an optical fiber (not shown) having an optical probe 10 formed at the tip thereof, enter the optical probe 10 through the optical fiber, and enter the optical probe 10. The emitted light is propagated through the core 14 as it is and emitted from the optical probe 10. The light emitted from the optical probe 10 is collected at a position away from the tip of the optical probe 10 to form a light spot.

ここで、移動制御部17により試料Sの被測定面Saを、光プローブ10に対して近接離間させる方向に移動させ、上記集光により形成された光スポットの位置に試料Sの被測定面Saの位置を一致させる。この際に用いられる光プローブ先端―集光スポット間距離の情報については、予め実験等にて取得しておく。   Here, the surface to be measured Sa of the sample S is moved in the direction of approaching and separating from the optical probe 10 by the movement control unit 17, and the surface to be measured Sa of the sample S is moved to the position of the light spot formed by the light collection. Match the position of. Information on the distance between the tip of the optical probe and the focused spot used at this time is obtained in advance by an experiment or the like.

次に、移動制御部17により、試料Sの被測定面Saを光プローブ10に対して水平方向に走査させ、その際に発生する光プローブ10から射出された光の被測定面Saからの反射・散乱光を、楕円面鏡3で反射して、開口板4の開口4a付近に集光させる。すなわち、楕円面鏡3は、その第一焦点位置が被測定面Sa上の光プローブ10の集光位置と一致するように配置され、被測定面Saからの反射・散乱光を第二焦点位置である開口板4の開口4a位置に集光させる。   Next, the measurement surface Sa of the sample S is scanned in the horizontal direction with respect to the optical probe 10 by the movement control unit 17, and the light emitted from the optical probe 10 generated at that time is reflected from the measurement surface Sa. The scattered light is reflected by the ellipsoidal mirror 3 and condensed near the opening 4 a of the opening plate 4. In other words, the ellipsoidal mirror 3 is arranged such that the first focal position thereof coincides with the condensing position of the optical probe 10 on the measured surface Sa, and the reflected / scattered light from the measured surface Sa is transmitted to the second focal position. Is condensed at the position of the opening 4 a of the opening plate 4.

開口4aは、光プローブ射出光の集光点と共役関係となる共焦点配置されているので、光プローブ射出光における集光点からの反射散乱光のみを選択的に透過させる。開口4aを透過した透過光は、ピンホール後方に配置された光検出器5により受光され、光検出器5は、開口4aを透過した成分のみを光電変換して、輝度信号を生成する。   Since the aperture 4a is disposed confocally in a conjugate relationship with the condensing point of the optical probe emission light, only the reflected scattered light from the condensing point in the optical probe emission light is selectively transmitted. The transmitted light transmitted through the opening 4a is received by the photodetector 5 disposed behind the pinhole, and the photodetector 5 photoelectrically converts only the component transmitted through the opening 4a to generate a luminance signal.

光検出装置1は、光検出器5の生成する輝度信号を基に、画像を作成して、作成した画像を、図示しない表示部に表示し、ユーザは、この表示部に表示される画像に基づいて、試料Sの被測定面Saの詳細を測定、観察することができる。   The light detection device 1 creates an image based on the luminance signal generated by the light detector 5, displays the created image on a display unit (not shown), and the user displays the image displayed on the display unit. Based on this, the details of the measured surface Sa of the sample S can be measured and observed.

そして、光検出装置1は、測定の際に、光波長変換部6により、試料Sの光透過率の分散特性に合わせて光波長を選択するが、このとき、光反射率が高い波長を選択することで、検出光量を増大させることができ、さらに、高S/N比で光検出を行うことができる。   In the measurement, the light detection device 1 selects the light wavelength in accordance with the dispersion characteristic of the light transmittance of the sample S by the light wavelength conversion unit 6 at the time of measurement. At this time, the light detection device 1 selects a wavelength having a high light reflectance. By doing so, the amount of detected light can be increased, and furthermore, light detection can be performed with a high S / N ratio.

また、光検出装置1は、光検出器5として、分光機能を有する光検出器を用い、光波長変換部6、光源2において広い波長帯域幅をもつ光を発振すると、試料Sの光反射率スペクトル情報を得ることができる。   In addition, when the photodetector 1 uses a photodetector having a spectroscopic function as the photodetector 5 and oscillates light having a wide wavelength bandwidth in the light wavelength converter 6 and the light source 2, the light reflectance of the sample S is measured. Spectral information can be obtained.

さらに、光検出装置1は、楕円面鏡3により、光プローブ10への戻り光成分を用いることなく、試料Sの被測定面Saから発生する反射散乱光を高S/N比で検出することができる。   Further, the light detection device 1 detects the reflected scattered light generated from the measured surface Sa of the sample S with a high S / N ratio by using the ellipsoidal mirror 3 without using the light component returning to the optical probe 10. Can do.

また、光検出装置1は、開口4aを併せて用いた共焦点光学系を構成することにより、高分解能な測定を行うことができる。   In addition, the photodetecting device 1 can perform high-resolution measurement by configuring a confocal optical system that also uses the aperture 4a.

さらに、光検出装置1は、被測定面Saから発生する反射散乱光のうち、開口4aに到達する光が、楕円面鏡3で反射、集光された光のみであり、それ以外の光が、光プローブ10に遮られて、開口4aに到達しないため、開口4aに集光される光が、輪帯状光束となり、集光スポットが微小なものとなる。したがって、開口4aとして、スポットサイズに合わせた開口径を選択することで、より一層高分解能な測定を行うことができる。   Furthermore, in the light detection device 1, the light reaching the opening 4a is only the light reflected and collected by the ellipsoidal mirror 3 among the reflected and scattered light generated from the surface Sa to be measured, and other light is transmitted. Since the light is blocked by the optical probe 10 and does not reach the opening 4a, the light condensed on the opening 4a becomes a ring-shaped light beam, and the condensed spot becomes minute. Therefore, by selecting an aperture diameter that matches the spot size as the aperture 4a, measurement with higher resolution can be performed.

なお、試料Sの被測定面Saを光プローブ10に対して水平方向に走査させる際、光プローブ10の被測定面Saに対する高さを一定にすると、測定中において近接離間方向への制御が不要となり、光プローブ先端―集光スポット間距離の長さ(数百nm〜数um程度)と相俟って、より一層高速に走査することができ、測定時間を大幅に短縮することができる。   When the surface to be measured Sa of the sample S is scanned with respect to the optical probe 10 in the horizontal direction, if the height of the optical probe 10 with respect to the surface to be measured Sa is constant, control in the proximity / separation direction during measurement is unnecessary. Thus, coupled with the length of the distance between the tip of the optical probe and the focused spot (about several hundred nm to several um), scanning can be performed at higher speed, and the measurement time can be greatly shortened.

次に、近接場光測定(高分解能測定)の測定過程について、説明する。光検出装置1は、光源2から射出された光を、その先端に光プローブ10の形成されている図示しない光ファイバに入射して、光ファイバを通って光プローブ10に入射する。光プローブ10に入射された光は、そのままコア14内を伝搬し、光プローブ10の遮光性被覆層13に入射する。このとき、遮光性被覆層13の射出端側にエバネッセント波としての近接場光が滲出する。   Next, the measurement process of near-field light measurement (high resolution measurement) will be described. The light detection device 1 enters light emitted from the light source 2 into an optical fiber (not shown) having an optical probe 10 formed at the tip thereof, and enters the optical probe 10 through the optical fiber. The light incident on the optical probe 10 propagates through the core 14 as it is and enters the light-shielding coating layer 13 of the optical probe 10. At this time, near-field light as an evanescent wave exudes on the exit end side of the light-shielding coating layer 13.

光検出装置1は、近接場光が滲出している状態で、移動制御部17により、試料Sの被測定面Saを光プローブ10に対して近接する方向に移動させる。このとき、光プローブ10の先端と被測定面Saとの距離が、光源2から射出される光の波長λの1/4以下となる場合において、光プローブ10から滲出した近接場光が被測定面Sa上に照射され、被測定面Sa上には近接場光による微小な光スポットが形成される。   In the state in which near-field light is exuded, the light detection device 1 causes the movement control unit 17 to move the measurement target surface Sa of the sample S in a direction in which the measurement surface Sa approaches the optical probe 10. At this time, when the distance between the tip of the optical probe 10 and the measured surface Sa is equal to or less than ¼ of the wavelength λ of the light emitted from the light source 2, the near-field light oozed from the optical probe 10 is measured. The surface Sa is irradiated, and a minute light spot is formed on the surface Sa to be measured by near-field light.

光スポットを形成した近接場光のうち、被測定面Sa上で散乱光となる成分が、上記伝搬光の検出方法と同様に、楕円面鏡3により集光して、開口4aを介して光検出器5に導き、光検出器5で、開口4aを透過した成分のみを光電変換して、輝度信号を生成することで、試料Sの被測定面Saの高分解能測定を行うことができる。   Of the near-field light that forms the light spot, the component that becomes scattered light on the surface Sa to be measured is condensed by the ellipsoidal mirror 3 and is transmitted through the opening 4a in the same manner as the detection method of the propagation light. High resolution measurement of the surface Sa to be measured Sa of the sample S can be performed by leading to the detector 5 and photoelectrically converting only the component transmitted through the opening 4a and generating a luminance signal.

光検出装置1は、光検出器5の生成する輝度信号を基に、画像を作成して、作成した画像を、図示しない表示部に表示し、ユーザは、この表示部に表示される画像に基づいて、試料Sの被測定面Saの詳細を測定、観察することができる。   The light detection device 1 creates an image based on the luminance signal generated by the light detector 5, displays the created image on a display unit (not shown), and the user displays the image displayed on the display unit. Based on this, the details of the measured surface Sa of the sample S can be measured and observed.

なお、近接場光の検出方法としては、楕円面鏡3を使用せずに、光プローブ10への戻り光を検出する方法、すなわち、遮光性被覆層13を透過してコア14を経て図示しない光検出器に導く方法を用いてもよい。   As a method for detecting near-field light, a method for detecting return light to the optical probe 10 without using the ellipsoidal mirror 3, that is, not shown through the core 14 through the light-shielding coating layer 13. A method for leading to a photodetector may be used.

このように、本実施例の光検出装置1は、光源2からの光を、光プローブ10で試料表面Saに集光させ、当該試料Sからの反射・散乱光を、その第一焦点位置が試料表面Sa上の光プローブ10の集光位置と一致するように配置されている楕円面鏡3により楕円面鏡3の第二焦点位置に集光させ、楕円面鏡3の第二焦点位置と一致させて配置されている開口板4の開口4aを、楕円面鏡3からの集束光を選択的に透過させ、透過光を光検出器5で検出している。   As described above, the light detection apparatus 1 according to the present embodiment condenses the light from the light source 2 on the sample surface Sa by the optical probe 10, and reflects / scatters the light from the sample S at the first focal position. The elliptical mirror 3 arranged so as to coincide with the focal position of the optical probe 10 on the sample surface Sa is condensed at the second focal position of the elliptical mirror 3, and the second focal position of the elliptical mirror 3 is The convergent light from the ellipsoidal mirror 3 is selectively transmitted through the aperture 4 a of the aperture plate 4 that is arranged so as to be detected, and the transmitted light is detected by the photodetector 5.

したがって、試料Sからの反射・散乱光を光プローブ10を通すことなく検出することができ、試料表面Saの形状、光学特性及び光プローブ10の遮光性被覆膜13の材質、膜厚等に関わらず、高S/N比で光検出を行うことができる。   Therefore, the reflected / scattered light from the sample S can be detected without passing through the optical probe 10, and the shape and optical characteristics of the sample surface Sa, the material of the light-shielding coating film 13 of the optical probe 10, the film thickness, etc. Regardless, light detection can be performed with a high S / N ratio.

また、本実施例の光検出装置1は、集光用光学素子として、伝播光と近接場光の双方を出射可能な光プローブ10を用いている。   Further, the light detection apparatus 1 of the present embodiment uses an optical probe 10 that can emit both propagating light and near-field light as a condensing optical element.

したがって、通常の伝搬光を利用した広範囲測定(伝搬光測定)と近接場光測定を利用した高分解能測定の双方を、高S/N比で光検出を行うことができるとともに、近接場光(高分解能)測定における超高分解能測定を行うことができる。   Therefore, it is possible to perform light detection at a high S / N ratio for both wide-range measurement using normal propagation light (propagation light measurement) and high-resolution measurement using near-field light measurement, and near-field light ( High resolution measurement can be performed.

さらに、本実施例の光検出装置1は、移動制御部17により、試料Sを光プローブ10に対して試料表面Saと平行の走査方向に移動させている。   Furthermore, in the photodetector 1 of the present embodiment, the movement control unit 17 moves the sample S with respect to the optical probe 10 in the scanning direction parallel to the sample surface Sa.

したがって、検出信号の安定性を向上させつつ、試料Sが軽量である場合には、高速測定を行うことができる。   Therefore, high-speed measurement can be performed when the sample S is lightweight while improving the stability of the detection signal.

また、本実施例の光検出装置1は、光波長変換部6により、光源2の出射する所定の波長を適宜変更制御している。   Further, in the light detection device 1 of this embodiment, the predetermined wavelength emitted from the light source 2 is appropriately changed and controlled by the light wavelength conversion unit 6.

したがって、試料Sの光反射率の高い波長を選択したり、広帯域の光を発振することができ、検出信号の高S/N化及び試料Sの光反射スペクトルの取得を適切に行うことができる。   Therefore, it is possible to select a wavelength with a high light reflectance of the sample S or oscillate a broadband light, and to appropriately increase the S / N of the detection signal and acquire the light reflection spectrum of the sample S. .

なお、上記実施例においては、移動制御部17により、試料Sの被測定面Saを光プローブ10に対して近接離間する方向及び走査方向に移動させているが、試料Sの被測定面Saと光プローブ10との相対位置を移動させる方法としては、上記方法に限るものではなく、例えば、図5に示すように、光プローブ10に、プローブ制御部(素子走査手段)21を連結して、プローブ制御部21で、光プローブ10を試料Sの被測定面Saに平行な走査方向に走査させて、被測定面Sa上の光スポットの位置、すなわち、反射・散乱光の発生位置を変化させるようにしてもよい。なお、プローブ制御部21は、被測定面Saに平行な走査方向に光プローブ10を移動させるだけでなく、試料Sの被走査面Saに近接離間させる方向にも移動させてもよく、このようにすると、移動制御部17を用いる必要がない。   In the above embodiment, the movement control unit 17 moves the measured surface Sa of the sample S in the direction of approaching and separating from the optical probe 10 and the scanning direction. The method of moving the relative position with the optical probe 10 is not limited to the above method. For example, as shown in FIG. 5, a probe control unit (element scanning means) 21 is connected to the optical probe 10, The probe control unit 21 scans the optical probe 10 in the scanning direction parallel to the measurement target surface Sa of the sample S to change the position of the light spot on the measurement target Sa, that is, the generation position of the reflected / scattered light. You may do it. Note that the probe control unit 21 may not only move the optical probe 10 in the scanning direction parallel to the surface to be measured Sa, but also move it in the direction of approaching and separating from the surface to be scanned Sa of the sample S. In this case, it is not necessary to use the movement control unit 17.

一方、開口4aの形成されている開口板4には、開口走査部(開口走査手段)22が連結されており、開口走査部22は、開口板4、すなわち、開口4aを走査方向に移動させる。   On the other hand, an aperture scanning unit (aperture scanning means) 22 is connected to the aperture plate 4 in which the aperture 4a is formed, and the aperture scanning unit 22 moves the aperture plate 4, that is, the aperture 4a in the scanning direction. .

すなわち、光プローブ10を被測定面Saに平行な方向に移動させると、光プローブ10から射出されて被測定面Saで散乱、反射された光が楕円面鏡3に入射して楕円面鏡3で反射、集光される位置(光スポットと共役関係の位置)も、ずれるため、このずれ量の分だけ開口4aを開口走査部22によって走査することにより、共焦点検出を可能にする。   That is, when the optical probe 10 is moved in a direction parallel to the surface to be measured Sa, light emitted from the optical probe 10 and scattered and reflected by the surface to be measured Sa enters the ellipsoidal mirror 3 to enter the ellipsoidal mirror 3. Since the position reflected and condensed at (the position in a conjugate relationship with the light spot) is also shifted, the aperture scanning unit 22 scans the aperture 4a by the amount of the shift, thereby enabling confocal detection.

このように試料Sを走査せずに、光プローブ10を走査させると、試料Sが質量の大きいものであっても、また、動作させることにより試料S自身が破壊されやすい場合にも、適切に測定することができる。   If the optical probe 10 is scanned without scanning the sample S in this way, even if the sample S has a large mass, or when the sample S itself is easily destroyed by operation, it is appropriate. Can be measured.

そして、光検出装置1は、上述のように、試料Sの被測定面Saを、1つの光プローブ10に対して近接離間する方向に移動させることで、伝搬光Pによるスポットまたは近接場光によるスポットを選択的に切り換えて、被測定面Sa上に形成させることができ、1つの光プローブ10により、伝搬光Pを利用した高S/Nな広範囲測定と、近接場光を利用した高分解能測定の双方を実現することができる。   Then, as described above, the light detection apparatus 1 moves the measurement surface Sa of the sample S in the direction of approaching and separating from the one optical probe 10, so that the light detection apparatus 1 uses the spot by the propagation light P or the near-field light. Spots can be selectively switched and formed on the surface Sa to be measured, and a single optical probe 10 can be used for wide S / N wide-range measurement using propagating light P and high resolution using near-field light. Both measurements can be realized.

以上、本発明者によってなされた発明を好適な実施例に基づき具体的に説明したが、本発明は上記のものに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。   The invention made by the present inventor has been specifically described based on the preferred embodiments. However, the present invention is not limited to the above, and various modifications can be made without departing from the scope of the invention. Needless to say.

ナノオーダの計測・加工に利用する走査型プローブ顕微鏡等に適用することができる。   It can be applied to a scanning probe microscope or the like used for nano-order measurement / processing.

本発明の光検出装置及び光検出方法の一実施例を適用した光検出装置の要部概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The principal part schematic block diagram of the photon detection apparatus to which one Example of the photon detection apparatus and photodetection method of this invention is applied. 図1の光プローブの先端部分の拡大正面図。The enlarged front view of the front-end | tip part of the optical probe of FIG. 図1の光プローブの傾斜角毎の光プローブ先端―集光スポット間距離の推移を示す図。The figure which shows transition of the distance between optical probe front-end | tips and condensing spots for every inclination-angle of the optical probe of FIG. 図2の光プローブの第1テーパ部が曲面形状のテーパとなっている例の拡大正面図。The enlarged front view of the example in which the 1st taper part of the optical probe of FIG. 2 is a curved taper. 光プローブを移動させる場合の光検出装置の要部概略構成図。The principal part schematic block diagram of the photon detection apparatus in the case of moving an optical probe.

符号の説明Explanation of symbols

1 光検出装置
2 光源
3 楕円面鏡
4a 開口
4 開口板
5 光検出器
6 光波長変換部
10 光プローブ
11 光導波部
12 突出部
13 遮光性被覆層
14 コア
15 クラッド
16a 第1テーパ部
16b 第2テーパ部
16c 第1テーパ部
17 移動制御部
21 プローブ制御部
22 開口走査部
DESCRIPTION OF SYMBOLS 1 Photodetector 2 Light source 3 Ellipsoidal mirror 4a Aperture 4 Aperture plate 5 Optical detector 6 Optical wavelength conversion part 10 Optical probe 11 Optical waveguide part 12 Protrusion part 13 Light-shielding coating layer 14 Core 15 Cladding 16a 1st taper part 16b 1st taper part 16b 2 taper part 16c 1st taper part 17 movement control part 21 probe control part 22 aperture scanning part

Claims (10)

所定の波長の光を出射する光源と、前記光源からの光を試料表面に集光させる集光用光学素子と、第一焦点位置が当該試料表面上の前記集光用光学素子の集光位置と一致するように配置され、当該試料表面からの反射・散乱光を第二焦点位置に集光させる楕円面鏡と、当該楕円面鏡で前記第二焦点位置に集束される集束光を選択的に透過させる開口を有する光選択手段と、前記開口を透過する透過光を検出する光検出手段と、前記集光用光学素子と前記試料との間の距離を相対的に変化させる移動手段と、を備えていることを特徴とする光検出装置。   A light source that emits light of a predetermined wavelength, a condensing optical element that condenses the light from the light source on the sample surface, and a condensing position of the condensing optical element on the sample surface. And an ellipsoidal mirror that collects the reflected / scattered light from the sample surface at the second focal position and the focused light focused on the second focal position by the ellipsoidal mirror. A light selecting means having an opening to be transmitted through, a light detecting means for detecting transmitted light that is transmitted through the opening, a moving means for relatively changing the distance between the condensing optical element and the sample, A photodetection device comprising: 前記光検出装置は、前記集光用光学素子が、伝播光と近接場光の双方を出射可能な光プローブであることを特徴とする請求項1の光検出装置。   The optical detection device according to claim 1, wherein the condensing optical element is an optical probe capable of emitting both propagating light and near-field light. 前記光検出装置は、前記試料を前記集光用光学素子に対して当該試料表面と平行の走査方向に移動させる試料走査手段を、備えていることを特徴とする請求項1または請求項2記載の光検出装置。   3. The photodetecting device includes a sample scanning unit that moves the sample with respect to the condensing optical element in a scanning direction parallel to the sample surface. Light detection device. 前記光検出装置は、前記集光用光学素子を前記試料に対して当該試料表面と平行の走査方向に移動させる素子走査手段と、当該素子走査手段による前記集光用光学素子の移動に応じて前記光選択手段を介して前記開口を走査方向に移動させる開口走査手段と、を備えていることを特徴とする請求項1または請求項2記載の光検出装置。   The light detection device includes: an element scanning unit that moves the condensing optical element with respect to the sample in a scanning direction parallel to the sample surface; and the movement of the condensing optical element by the element scanning unit. The light detection apparatus according to claim 1, further comprising: an aperture scanning unit that moves the aperture in a scanning direction via the light selection unit. 前記光検出装置は、前記光源の出射する所定の波長を適宜変更制御する波長制御手段を、備えていることを特徴とする請求項1から請求項4のいずれかに記載の光検出装置。   The light detection apparatus according to claim 1, further comprising a wavelength control unit that appropriately changes and controls a predetermined wavelength emitted from the light source. 所定の波長の光を出射する光源からの光を、集光用光学素子で試料表面に集光させ、当該試料からの反射・散乱光を、その第一焦点位置が当該試料表面上の前記集光用光学素子の集光位置と一致するように配置されている楕円面鏡により当該楕円面鏡の第二焦点位置に集光させ、当該楕円面鏡の第二焦点位置と一致させて配置されている光選択手段の開口を、当該楕円面鏡からの集束光を選択的に透過させ、当該透過光を光検出手段で検出することを特徴とする光検出方法。   Light from a light source that emits light of a predetermined wavelength is condensed on the sample surface by a condensing optical element, and reflected / scattered light from the sample is collected at the first focal point on the sample surface. The elliptical mirror arranged so as to coincide with the condensing position of the optical element for light is condensed at the second focal position of the elliptical mirror, and is arranged so as to coincide with the second focal position of the elliptical mirror. A light detection method comprising: selectively passing the focused light from the ellipsoidal mirror through the opening of the light selection means, and detecting the transmitted light by the light detection means. 前記光検出方法は、前記集光用光学素子が、伝播光と近接場光の双方を出射可能な光プローブであることを特徴とする請求項6の光検出方法。   7. The light detection method according to claim 6, wherein the light collecting optical element is an optical probe capable of emitting both propagating light and near-field light. 前記光検出方法は、前記試料を前記集光用光学素子に対して当該試料表面に平行な方向に移動走査させて、当該試料表面の各位置からの反射・散乱光を検出することを特徴とする請求項6または請求項7記載の光検出方法。   The light detection method is characterized by detecting the reflected / scattered light from each position on the sample surface by moving and scanning the sample in a direction parallel to the sample surface with respect to the condensing optical element. The photodetection method according to claim 6 or 7. 前記光検出方法は、前記集光用光学素子を前記試料表面に対して平行な方向に移動走査させ、前記光選択手段を介して前記開口を、当該集光用光学素子の移動に応じて変動する前記楕円面鏡の第二焦点位置に移動走査させ、前記試料表面の各位置からの反射・散乱光を検出することを特徴とする請求項6または請求項7記載の光検出方法。   In the light detection method, the condensing optical element is moved and scanned in a direction parallel to the sample surface, and the aperture is changed according to the movement of the condensing optical element via the light selection means. The light detection method according to claim 6, wherein the second focal position of the ellipsoidal mirror is moved and scanned to detect reflected / scattered light from each position on the sample surface. 前記光検出方法は、前記光源の出射する所定の波長を適宜変更制御することを特徴とする請求項6から請求項9のいずれかに記載の光検出方法。
The light detection method according to any one of claims 6 to 9, wherein the light detection method appropriately changes and controls a predetermined wavelength emitted from the light source.
JP2005065549A 2005-03-09 2005-03-09 Photodetection device and photodetection method Pending JP2006250623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005065549A JP2006250623A (en) 2005-03-09 2005-03-09 Photodetection device and photodetection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005065549A JP2006250623A (en) 2005-03-09 2005-03-09 Photodetection device and photodetection method

Publications (1)

Publication Number Publication Date
JP2006250623A true JP2006250623A (en) 2006-09-21

Family

ID=37091301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005065549A Pending JP2006250623A (en) 2005-03-09 2005-03-09 Photodetection device and photodetection method

Country Status (1)

Country Link
JP (1) JP2006250623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012116168A3 (en) * 2011-02-23 2013-01-31 Rhk Technology, Inc. Integrated microscope and related methods and devices
JPWO2015121957A1 (en) * 2014-02-14 2017-03-30 富士通株式会社 Palpation support device, palpation support method, and palpation support program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012116168A3 (en) * 2011-02-23 2013-01-31 Rhk Technology, Inc. Integrated microscope and related methods and devices
JP2014507663A (en) * 2011-02-23 2014-03-27 アール・エイチ・ケイ・テクノロジー・インコーポレイテッド Integrated microscope and related methods and apparatus
US8997260B2 (en) 2011-02-23 2015-03-31 Ryan Murdick Integrated microscope and related methods and devices
JPWO2015121957A1 (en) * 2014-02-14 2017-03-30 富士通株式会社 Palpation support device, palpation support method, and palpation support program

Similar Documents

Publication Publication Date Title
KR100853739B1 (en) Optical fiber probe, optical detection device, and optical detection method
JP4472863B2 (en) Near-field optical probe and near-field optical device using the near-field optical probe
US8272068B2 (en) Scanning probe microscope and sample observing method using the same
JP4009197B2 (en) Scanning near-field optical microscope
JPH10293133A (en) Scanning proximity field optical microscope
JP4553240B2 (en) Photodetection device and photodetection method
EP0846932B1 (en) Scanning near-field optic/atomic force microscope
JP2005181085A (en) Optical trap probe near-field light microscope and near-field optical detection method
JP2006250623A (en) Photodetection device and photodetection method
JP2021025995A (en) Cantilever, scan probe microscope, and measurement method by scan probe microscope
JP4585053B2 (en) Scattering near-field microscope
JPWO2005003737A1 (en) Photodetection apparatus and method
JP4202076B2 (en) Scattering near-field microscope
JP4448534B2 (en) Scanning probe microscope
US9063335B2 (en) Apparatus and method for examining a specimen by means of probe microscopy
JP2010266452A (en) Scanning optical near-field microscope
JP2007322159A (en) Optical fiber probe, photodetector, and photodetection method
JP4064856B2 (en) Scanning probe microscope
JP4751440B2 (en) Near-field optical probe, manufacturing method thereof, and near-field optical device using the near-field optical probe
JP3953914B2 (en) Cantilever with translucent hole, manufacturing method thereof, and beam measuring method using the same
JP3669466B2 (en) Thermal spectrometer
US20070012873A1 (en) Scanning-type probe microscope
JP2000146802A (en) Optical near-field microscope
JPH10221352A (en) Lighting equipment
JP2007156033A (en) Optical fiber probe, inspection method and equipment