[go: up one dir, main page]

JP2006246104A - Optical wavelength division multiplex transmitter, optical wavelength division multiplex transmission system, and optical transmission circuit - Google Patents

Optical wavelength division multiplex transmitter, optical wavelength division multiplex transmission system, and optical transmission circuit Download PDF

Info

Publication number
JP2006246104A
JP2006246104A JP2005060047A JP2005060047A JP2006246104A JP 2006246104 A JP2006246104 A JP 2006246104A JP 2005060047 A JP2005060047 A JP 2005060047A JP 2005060047 A JP2005060047 A JP 2005060047A JP 2006246104 A JP2006246104 A JP 2006246104A
Authority
JP
Japan
Prior art keywords
optical
wavelength
transmission
wavelength division
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005060047A
Other languages
Japanese (ja)
Other versions
JP4526123B2 (en
Inventor
Shin Kaneko
慎 金子
Junichi Kani
淳一 可児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005060047A priority Critical patent/JP4526123B2/en
Publication of JP2006246104A publication Critical patent/JP2006246104A/en
Application granted granted Critical
Publication of JP4526123B2 publication Critical patent/JP4526123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To transmit a wavelength division multiplex optical signal of which the transmission speed based on a spectrum-sliced WDM transmission system is ≥10.0 [Gbit/s] through an optical fiber transmission line consisting of a single mode fiber having zero-dispersion wavelength of 1,300-1,324 nm over 1.5 km. <P>SOLUTION: Each of a plurality of optical transmission circuits 11 modulates output light from a wade-band light source in a wide-band optical signal transmission means 112 by an electric signal to which forward error correction encoding is applied by an FEC coding circuit 111 to output a wide-band modulation optical signal having optical spectrum full width half maximum of ≥2 nm and random polarization, and a wavelength multiplexing means 12 segments respective wide-band modulation optical signals by slice width with full width half maximum of 37-160 GHz, arranges wavelength division multiplex optical signals at center frequency intervals of ≤357 GHz in a range of 1,450-1,650 nm wavelength and sends these optical signals to an optical fiber transmission line 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光波長分割多重送信装置、光波長分割多重伝送システム、光送信回路の構成に関する。   The present invention relates to a configuration of an optical wavelength division multiplexing transmission apparatus, an optical wavelength division multiplexing transmission system, and an optical transmission circuit.

光ファイバネットワークにおける伝送容量を増大するために、1本の光ファイバに波長の異なる光信号を多重して伝送する光波長分割多重(WDM)伝送システムが実現されている。このシステムを実現する方式として、複数の送信器毎に異なる波長の光を出力する光源を備える方式などが考えられるが、この方式では多種類の送信器が必要となり、経済性・保守運用性の面で課題がある。そこで、光WDM伝送システムにおいて、送信器の単一品種化を実現し、経済性・保守運用性を向上できる方式としてスペクトルスライスWDM伝送方式が検討されている。   In order to increase the transmission capacity in an optical fiber network, an optical wavelength division multiplexing (WDM) transmission system that multiplexes and transmits optical signals having different wavelengths on one optical fiber has been realized. As a method for realizing this system, a method including a light source that outputs light of a different wavelength for each of a plurality of transmitters can be considered. However, this method requires many types of transmitters, which is economical and easy to maintain. There is a problem in terms. Therefore, in an optical WDM transmission system, a spectrum slice WDM transmission system has been studied as a system that can realize a single type of transmitter and improve economy and maintenance operability.

図1は特許文献1に示されているスペクトルスライスWDM伝送方式による光WDM伝送システムの一例を示すものである。複数の送信器(ユーザ装置)1は広帯域な自然放出光(ASE)を発生する広帯域光源を備え、直接変調または外部変調により広帯域変調光信号を送信する。遠隔ノード2は、アクセス用光ファイバ伝送路を介して各送信器1から送信された広帯域変調光信号を入力し、それぞれ所定の波長をスペクトルスライスした光信号を光波長分割多重し、光ファイバ伝送路3に出力する。光ファイバ伝送路3を介して伝送された波長分割多重光信号は、波長分波器4により分波され、複数の受信器5で受信される。   FIG. 1 shows an example of an optical WDM transmission system based on the spectrum slice WDM transmission system disclosed in Patent Document 1. In FIG. The plurality of transmitters (user devices) 1 include a broadband light source that generates broadband spontaneous emission (ASE), and transmits a broadband modulated optical signal by direct modulation or external modulation. The remote node 2 inputs the broadband modulated optical signal transmitted from each transmitter 1 through the access optical fiber transmission line, and optically wavelength-division-multiplexes optical signals obtained by spectrally slicing predetermined wavelengths, and transmits the optical fiber. Output to path 3. The wavelength division multiplexed optical signal transmitted through the optical fiber transmission line 3 is demultiplexed by the wavelength demultiplexer 4 and received by a plurality of receivers 5.

このスペクトルスライスWDM伝送方式では、伝送信号を誤り訂正符号化して符合誤り率(BER)の閾値を10-4とすることにより、透過スペクトル半値全幅Δf[Hz]と光波長分割多重されたスペクトルスライス光信号の中心周波数(波長)間隔ΔF[Hz]との比である規格化スペクトル幅Δf/ΔFを0.45〜0.7とした時、光信号の伝送速度をBR[bit/s]とすると、BR/ΔFは0.028[bit/s/Hz]以下とすることで、良好な伝送特性を得られることが示されている。
特開2000−314507号公報
In this spectrum slice WDM transmission system, the transmission signal is error-corrected and the code error rate (BER) threshold value is set to 10 −4 , so that the transmission spectrum half-width Δf [Hz] and optical wavelength division multiplexed spectrum slice are obtained. When the normalized spectral width Δf / ΔF, which is the ratio to the optical signal center frequency (wavelength) interval ΔF [Hz], is 0.45 to 0.7, the transmission speed of the optical signal is BR [bit / s]. Then, it is shown that good transmission characteristics can be obtained by setting BR / ΔF to 0.028 [bit / s / Hz] or less.
JP 2000-314507 A

しかしながら、光信号の伝送速度BRが10.0[Gbit/s]の時には、Δfを160GHz(1.2nm)より太くする必要があり、波長分割多重光信号の波長範囲を光ファイバの低損失波長帯域である1.55μm帯(1450nm以上で1650nm以下)とし、光ファイバ伝送路を1300〜1324nmに零分散波長を有するシングルモードファイバとすると、Δfが大きいことからファイバ分散の影響によって波形が劣化し、1.5kmを超える光ファイバ伝送は不可能であるという問題があった。   However, when the transmission speed BR of the optical signal is 10.0 [Gbit / s], it is necessary to make Δf thicker than 160 GHz (1.2 nm), and the wavelength range of the wavelength division multiplexed optical signal is set to the low loss wavelength of the optical fiber. If the 1.55 μm band (1450 nm or more and 1650 nm or less) is used, and the optical fiber transmission line is a single mode fiber having a zero dispersion wavelength at 1300 to 1324 nm, the waveform deteriorates due to the influence of fiber dispersion because Δf is large. There is a problem that optical fiber transmission exceeding 1.5 km is impossible.

また、ランダムな偏波成分を有する10.0[Gbit/s]の広帯域信号光を送信可能な、半導体光集積回路からなる広帯域光信号送信手段は存在しなかった。   Further, there has been no broadband optical signal transmission means composed of a semiconductor optical integrated circuit capable of transmitting 10.0 [Gbit / s] broadband signal light having a random polarization component.

これを解決するために、本発明では、2nm以上の光スペクトル半値全幅を有し且つ偏波がランダムな広帯域変調光信号を出力する複数の光送信回路と、該複数の光送信回路からの広帯域変調光信号を光波長分割多重する波長合波手段とから構成され、前記光送信回路のうち少なくとも1つは、伝送速度10.0[Gbit/s]以上の入力信号を前方誤り訂正符号により符号化する前方誤り訂正符号化回路と、広帯域光源からの出力光を前記FEC符号化された信号によって変調する広帯域光送信手段とからなり、前記波長合波手段は、複数の光送信回路から出力された広帯域変調光信号を半値全幅37GHz(0.3nm)以上且つ160GHz(1.2nm)以下のスライス幅で切り出し、波長1450nmから1650nmまでの範囲に357GHz(2.8nm)以下の中心周波数(波長)間隔で配置して波長分割多重光信号とする特性を有する光波長分割多重送信装置を提案する。   In order to solve this, in the present invention, a plurality of optical transmission circuits that output a wideband modulated optical signal having a full width at half maximum of 2 nm or more and whose polarization is random, and a wideband from the plurality of optical transmission circuits Wavelength multiplexing means for optically wavelength-division-multiplexing the modulated optical signal, and at least one of the optical transmission circuits encodes an input signal having a transmission rate of 10.0 [Gbit / s] or more using a forward error correction code. Forward error correction encoding circuit and broadband optical transmission means for modulating the output light from the broadband light source by the FEC encoded signal, and the wavelength multiplexing means is output from a plurality of optical transmission circuits A broad-band modulated optical signal is cut out with a full width at half maximum of 37 GHz (0.3 nm) or more and a slice width of 160 GHz (1.2 nm) or less, and ranges from 1450 nm to 1650 nm. Suggest optical wavelength division multiplexing transmission apparatus having a characteristic of wavelength division multiplexed optical signals arranged at 357GHz (2.8 nm) or less of the center frequency (wavelength) intervals.

また、本発明では、前記光波長分割多重送信装置と、光波長分割多重受信装置と、これらを互いに接続する光ファイバ伝送路とから構成される光波長分割多重伝送システムであって、前記光波長分割多重受信装置は、伝送された波長分割多重光信号を中心周波数(波長)毎に分離する波長分波手段と、複数の光受信回路とから構成され、前記光受信回路のうち少なくとも1つは、受光した光信号を電気信号に変換する光信号受信手段と、FEC符号化された電気信号を復号する前方誤り訂正復号回路とからなり、前記光ファイバ伝送路は、零分散波長を1300〜1324nmに有するシングルモードファイバからなる光波長分割多重伝送システムを提案する。   Further, the present invention is an optical wavelength division multiplexing transmission system comprising the optical wavelength division multiplexing transmitter, the optical wavelength division multiplexing receiver, and an optical fiber transmission line connecting them together, wherein the optical wavelength The division multiplexing receiver includes wavelength demultiplexing means for separating a transmitted wavelength division multiplexed optical signal for each center frequency (wavelength) and a plurality of optical reception circuits, and at least one of the optical reception circuits is And an optical signal receiving means for converting the received optical signal into an electrical signal and a forward error correction decoding circuit for decoding the FEC-encoded electrical signal. The optical fiber transmission line has a zero dispersion wavelength of 1300 to 1324 nm. We propose an optical wavelength division multiplexing transmission system consisting of single-mode fibers.

また、本発明では、2nm以上の光スペクトル半値全幅を有し且つ偏波がランダムな広帯域変調光信号を出力する複数の光送信回路及び該複数の光送信回路からの広帯域変調光信号を光波長分割多重する波長合波手段と、光波長分割多重受信装置と、これらを互いに接続する光ファイバ伝送路とから構成される光波長分割多重伝送システムであって、前記光送信回路のうち少なくとも1つは、入力信号を前方誤り訂正符号により符号化する前方誤り訂正符号化回路と、広帯域光源からの出力光を前記FEC符号化された信号によって変調する広帯域光送信手段とからなり、前記波長合波手段は、複数の光送信回路から出力され光ファイバ伝送された伝送速度10.0[Gbit/s]以上の広帯域変調光信号を半値全幅37GHz(0.3nm)以上且つ160GHz(1.2nm)以下のスライス幅で切り出し、波長1450nmから1650nmまでの範囲に357GHz(2.8nm)以下の中心周波数(波長)間隔で配置して波長分割多重光信号とする特性を有し、前記光波長分割多重受信装置は、伝送された波長分割多重光信号を中心周波数(波長)毎に分離する波長分波手段と、複数の光受信回路とから構成され、前記光受信回路のうち少なくとも1つは、受光した光信号を電気信号に変換する光信号受信手段と、FEC符号化された電気信号を復号する前方誤り訂正復号回路とからなり、前記光ファイバ伝送路は、零分散波長を1300〜1324nmに有するシングルモードファイバからなる光波長分割多重伝送システムを提案する。   Also, in the present invention, a plurality of optical transmission circuits that output a broadband modulated optical signal having a full width at half maximum of 2 nm or more and a random polarization, and the broadband modulated optical signals from the plurality of optical transmission circuits are converted into optical wavelengths. An optical wavelength division multiplexing transmission system comprising wavelength multiplexing means for division multiplexing, an optical wavelength division multiplexing receiver, and an optical fiber transmission line connecting them together, wherein at least one of the optical transmission circuits Comprises a forward error correction encoding circuit that encodes an input signal with a forward error correction code, and a broadband optical transmitter that modulates output light from a broadband light source with the FEC encoded signal, and the wavelength multiplexing The means outputs a wideband modulated optical signal having a transmission speed of 10.0 [Gbit / s] or more output from a plurality of optical transmission circuits and transmitted through an optical fiber at a full width at half maximum of 37 GHz (0.3 n ) The characteristics are cut out with a slice width of not less than 160 GHz (1.2 nm) and disposed at a center frequency (wavelength) interval of not more than 357 GHz (2.8 nm) in a wavelength range of 1450 nm to 1650 nm to obtain a wavelength division multiplexed optical signal. And the optical wavelength division multiplexing receiver comprises wavelength demultiplexing means for separating the transmitted wavelength division multiplexed optical signal for each center frequency (wavelength) and a plurality of optical reception circuits, and the optical reception At least one of the circuits comprises an optical signal receiving means for converting a received optical signal into an electrical signal, and a forward error correction decoding circuit for decoding the FEC-encoded electrical signal, and the optical fiber transmission line includes: An optical wavelength division multiplexing transmission system composed of a single mode fiber having a zero dispersion wavelength of 1300 to 1324 nm is proposed.

また、本発明では、入力信号を前方誤り訂正符号により符号化する前方誤り訂正符号化回路と、出力スペクトルが2nm以上の光スペクトル半値全幅を有する広帯域光源からの出力光を前記FEC符号化された信号によって変調し、2nm以上の光スペクトル半値全幅を有し且つ偏波がランダムな伝送速度10.0[Gbit/s]以上の広帯域変調光信号を出力する広帯域光信号送信手段と、該広帯域光信号送信手段の後段に配置された光波長フィルタとから構成され、前記光波長フィルタは、波長1450nmから1650nmまでの範囲において半値全幅37GHz(0.3nm)以上且つ160GHz(1.2nm)以下の透過幅を有する光送信回路を提案する。   In the present invention, the forward error correction encoding circuit that encodes the input signal with the forward error correction code, and the output light from the broadband light source having an output spectrum full width at half maximum of 2 nm or more are FEC-encoded. A broadband optical signal transmitting means for modulating a signal and outputting a broadband modulated optical signal having a full width at half maximum of 2 nm or more and having a random polarization and a transmission speed of 10.0 [Gbit / s] or more; And an optical wavelength filter disposed at a subsequent stage of the signal transmitting means, and the optical wavelength filter transmits a full width at half maximum of 37 GHz (0.3 nm) or more and 160 GHz (1.2 nm) or less in a wavelength range of 1450 nm to 1650 nm. An optical transmission circuit having a width is proposed.

また、本発明では、2nm以上の光スペクトル半値全幅を有し且つ偏波がランダムな広帯域光信号を出力する広帯域光信号送信手段及び波長1450nmから1650nmまでの範囲において半値全幅37GHz(0.3nm)以上且つ160GHz(1.2nm)以下の透過幅を有する光波長フィルタを少なくとも含む複数の光送信回路及び該複数の光送信回路からの広帯域光信号を光波長分割多重する光カプラと、光波長分割多重受信装置と、これらを互いに接続する光ファイバ伝送路とから構成される光波長分割多重伝送システムであって、前記光送信回路のうち少なくとも1つは、請求項6または7記載の光送信回路であり、前記光カプラは、複数の光送信回路から出力され光ファイバ伝送された広帯域変調光信号を合波して波長分割多重光信号とし、前記光波長分割多重受信装置は、伝送された波長分割多重光信号を中心周波数(波長)毎に分離する波長分波手段と、複数の光受信回路とから構成され、前記光受信回路のうち少なくとも1つは、受光した光信号を電気信号に変換する光信号受信手段と、FEC符号化された電気信号を復号する前方誤り訂正復号回路とからなり、前記光ファイバ伝送路は、零分散波長を1300〜1324nmに有するシングルモードファイバである光波長分割多重伝送システムを提案する。   In the present invention, a broadband optical signal transmitting means for outputting a broadband optical signal having an optical spectrum full width at half maximum of 2 nm or more and random polarization, and a full width at half maximum of 37 GHz (0.3 nm) in the wavelength range from 1450 nm to 1650 nm. A plurality of optical transmission circuits including at least an optical wavelength filter having a transmission width of 160 GHz (1.2 nm) or less, an optical coupler for optical wavelength division multiplexing of broadband optical signals from the plurality of optical transmission circuits, and optical wavelength division 8. An optical wavelength division multiplexing transmission system comprising a multiplex receiver and an optical fiber transmission line connecting them together, wherein at least one of the optical transmission circuits is an optical transmission circuit according to claim 6 or 7. The optical coupler combines a wideband modulated optical signal output from a plurality of optical transmission circuits and transmitted through an optical fiber to divide the wavelength. The optical wavelength division multiplex receiver is a multiplexed optical signal, and includes a wavelength demultiplexing unit that separates the transmitted wavelength division multiplexed optical signal for each center frequency (wavelength), and a plurality of optical receiver circuits. At least one of the receiving circuits comprises an optical signal receiving means for converting the received optical signal into an electric signal, and a forward error correction decoding circuit for decoding the FEC encoded electric signal, and the optical fiber transmission line is An optical wavelength division multiplexing transmission system that is a single mode fiber having a zero dispersion wavelength of 1300 to 1324 nm is proposed.

また、本発明では、前記光波長分割多重送信装置または光波長分割多重伝送システムもしくは光送信回路において、広帯域光信号送信手段を、半導体光増幅器と電界吸収型光変調器とを集積化した半導体光回路より構成することを提案する。   According to the present invention, in the optical wavelength division multiplexing transmission apparatus, the optical wavelength division multiplexing transmission system, or the optical transmission circuit, the broadband optical signal transmission means is a semiconductor optical in which a semiconductor optical amplifier and an electroabsorption optical modulator are integrated. It is proposed to configure the circuit.

本発明によれば、伝送速度10.0[Gbit/s]以上のスペクトルスライスWDM伝送方式において、波長分割多重光信号の中心周波数(波長)間隔を357GHz(2.8nm)以下にでき、1.55μm帯でスペクトル幅が37GHz(0.3nm)以上且つ160GHz(1.2nm)以下の光信号を1300〜1324nmに零分散波長を有するシングルモードファイバ上で伝送する場合に、従来不可能であった1.5kmを超える伝送が可能となる。   According to the present invention, in a spectrum slice WDM transmission system with a transmission rate of 10.0 [Gbit / s] or higher, the center frequency (wavelength) interval of wavelength division multiplexed optical signals can be 357 GHz (2.8 nm) or less. In the case of transmitting an optical signal having a spectral width of 37 GHz (0.3 nm) or more and 160 GHz (1.2 nm) or less in a 55 μm band on a single mode fiber having a zero dispersion wavelength at 1300 to 1324 nm, it was impossible in the past. Transmission exceeding 1.5 km is possible.

また、ランダムな偏波成分を有する伝送速度10.0[Gbit/s]以上の広帯域信号光を送信可能な、半導体光集積回路からなる広帯域光信号送信手段の実現が可能となる。   In addition, it is possible to realize a broadband optical signal transmission unit composed of a semiconductor optical integrated circuit capable of transmitting broadband signal light having a random polarization component and a transmission rate of 10.0 [Gbit / s] or more.

<第1の実施の形態>
図2は本発明の第1の実施の形態にかかる光波長分割多重(WDM)伝送システムを示すもので、本システムは、光波長分割多重送信装置10と、光波長分割多重受信装置20と、これらを互いに接続する光ファイバ伝送路3とから構成される。
<First Embodiment>
FIG. 2 shows an optical wavelength division multiplexing (WDM) transmission system according to the first embodiment of the present invention. This system includes an optical wavelength division multiplexing transmitter 10, an optical wavelength division multiplexing receiver 20, and The optical fiber transmission line 3 connects these components to each other.

光波長分割多重送信装置10は、複数の光送信回路11と、波長合波手段12とから構成され、さらに各光送信回路11は、前方誤り訂正(Forward Error Correction:FEC)符号化回路111と、広帯域光信号送信手段112とからなる。   The optical wavelength division multiplexing transmission apparatus 10 includes a plurality of optical transmission circuits 11 and wavelength multiplexing means 12, and each optical transmission circuit 11 further includes a forward error correction (FEC) encoding circuit 111. And broadband optical signal transmission means 112.

FEC符号化回路111は、入力(電気)信号を前方誤り訂正符号により符号化する。広帯域光信号送信手段112は、広帯域光源からの出力光を前記FEC符号化された信号によって変調し、2nm以上の光スペクトル半値全幅を有し且つ偏波がランダムな広帯域変調光信号を出力する。   The FEC encoding circuit 111 encodes an input (electrical) signal with a forward error correction code. The broadband optical signal transmission unit 112 modulates the output light from the broadband light source with the FEC encoded signal, and outputs a broadband modulated optical signal having an optical spectrum full width at half maximum of 2 nm or more and random polarization.

広帯域光源は、図3に示すように、出力スペクトルが2nm以上の光スペクトル半値全幅を有し、100GHz(0.8nm)間隔でスライスした場合、2チャンネル以上の波長チャネルを確保できる広帯域光信号を出力するものとする。例えば、スーパールミネッセントダイオード(SLD)や、半導体光増幅器(SOA)、エルビウム添加光ファイバ増幅器(EDFA)などの光増幅器の自然放出光(ASE)などがこれにあたる。   As shown in FIG. 3, the broadband light source has a full width at half maximum of the optical spectrum with an output spectrum of 2 nm or more, and a broadband optical signal that can secure two or more wavelength channels when sliced at 100 GHz (0.8 nm) intervals. Shall be output. For example, spontaneous emission light (ASE) of an optical amplifier such as a super luminescent diode (SLD), a semiconductor optical amplifier (SOA), an erbium-doped optical fiber amplifier (EDFA), or the like corresponds to this.

偏波がランダムとは、出力光の各偏波成分のパワー差が3dB以下であることを意味し、図4(a)に示すように、偏波無依存光増幅器(SOA,EDFA)からなる広帯域光源の駆動電流を直接変調することにより、または図4(b)に示すように、偏波無依存光増幅器(SOA,EDFA)からのASEを電界吸収型光変調器などの偏波無依存外部変調器で外部変調することにより、偏波がランダムな広帯域変調光信号を得ることができる。   Random polarization means that the power difference between the polarization components of the output light is 3 dB or less, and as shown in FIG. 4 (a), the polarization independent optical amplifier (SOA, EDFA) is used. By directly modulating the driving current of the broadband light source, or as shown in FIG. 4B, the ASE from the polarization independent optical amplifier (SOA, EDFA) is not dependent on the polarization of an electroabsorption optical modulator or the like. By performing external modulation with an external modulator, a broadband modulated optical signal with random polarization can be obtained.

波長合波手段12は、図5に示すように、複数の光送信回路11からの広帯域変調光信号を切り出し、光波長分割多重して光ファイバ伝送路3へ送出するもので、アレー導波路回折格子(AWG)などがこれにあたる。波長合波手段12は、後述するように、複数の光送信回路11から出力された広帯域変調光信号を半値全幅37GHz(0.3nm)以上且つ160GHz(1.2nm)以下のスライス幅で切り出し、波長1450nmから1650nmまでの範囲に357GHz(2.8nm)以下の中心周波数(波長)間隔で配置して波長分割多重光信号とする特性を有する。   As shown in FIG. 5, the wavelength multiplexing means 12 cuts out a wideband modulated optical signal from a plurality of optical transmission circuits 11, performs optical wavelength division multiplexing, and sends it to the optical fiber transmission line 3. A lattice (AWG) or the like corresponds to this. As will be described later, the wavelength multiplexing unit 12 cuts out the broadband modulated optical signal output from the plurality of optical transmission circuits 11 with a full width at half maximum of 37 GHz (0.3 nm) or more and a slice width of 160 GHz (1.2 nm) or less, The wavelength division multiplexed optical signal has a characteristic of being arranged at a center frequency (wavelength) interval of 357 GHz (2.8 nm) or less in a wavelength range of 1450 nm to 1650 nm.

光波長分割多重受信装置20は、波長分波手段21と、複数の光受信回路22とから構成され、さらに各光受信回路22は、光信号受信手段221と、前方誤り訂正(FEC)復号回路222とからなる。   The optical wavelength division multiplexing receiver 20 includes a wavelength demultiplexing unit 21 and a plurality of optical receiving circuits 22, and each optical receiving circuit 22 further includes an optical signal receiving unit 221 and a forward error correction (FEC) decoding circuit. 222.

波長分波手段21は、光ファイバ伝送路3を介して伝送された波長分割多重光信号を中心周波徴(波長)毎に分離し、複数の光受信回路22に送出するもので、AWGなどがこれにあたる。光信号受信手段221は、波長分波手段21からの変調光信号を受光し、FEC符号化された電気信号に変換して出力する。FEC復号回路222は、前記FEC符号化された電気信号を復号して元の電気信号(入力信号)を出力する。   The wavelength demultiplexing means 21 separates the wavelength division multiplexed optical signal transmitted through the optical fiber transmission line 3 for each central frequency (wavelength) and sends it to a plurality of optical receiving circuits 22. This is the case. The optical signal receiving means 221 receives the modulated optical signal from the wavelength demultiplexing means 21, converts it into an FEC-encoded electrical signal, and outputs it. The FEC decoding circuit 222 decodes the FEC encoded electric signal and outputs the original electric signal (input signal).

光送信回路11への入力(電気)信号が10.0[Gbit/s]の時の、波長合波手段12におけるスライス幅Δf[Hz]と1チャネル当たりの送信パワー及び受信感度との関係を図6に示す。   When the input (electrical) signal to the optical transmission circuit 11 is 10.0 [Gbit / s], the relationship between the slice width Δf [Hz] in the wavelength multiplexing means 12 and the transmission power and reception sensitivity per channel is shown. As shown in FIG.

曲線(1)は、出力パワー−10[dBm/nm]の広帯域光源からの広帯域光信号を各スライス幅でスライスした場合の送信パワーを示したものである。曲線(2)は、前方誤り訂正符号を適用しない場合に符号誤り率(BER)が1×10-12となる受信感度である。曲線(3)は、FECの符号として、Reed-Solomon(255,239)FECを適用して、BERの閥値を1.8×10-4とした場合に、FEC復号後にBERが1×10-12となる受信感度である。曲線(4)は、FECの符号として、T.Mizuochiらによる文献("Forwad Error Correction Based on Block Turbo Code With 3-bit Soft Decision for 10-Gb/s Optical Communication Systems,""IEEE Journal Selected Topics in Quantum Electronics, Vo.10, No.2, pp.376−386, 2004)に記載されたFEC(以降、BTC−FEC)を想定した場合に、FEC復号後にBERが1×10-12となる受信感度である。符号化後の信号の伝送速度は、12.4[bit/s]である。 Curve (1) shows the transmission power when a broadband optical signal from a broadband light source with an output power of −10 [dBm / nm] is sliced with each slice width. Curve (2) represents the reception sensitivity at which the code error rate (BER) is 1 × 10 −12 when the forward error correction code is not applied. Curve (3) shows that when Reed-Solomon (255, 239) FEC is applied as the FEC code and the BER threshold value is 1.8 × 10 −4 , the BER is 1 × 10 after FEC decoding. The reception sensitivity is -12 . Curve (4) is the FEC code as a reference by T. Mizuochi et al. (“Forwad Error Correction Based on Block Turbo Code With 3-bit Soft Decision for 10-Gb / s Optical Communication Systems,” “IEEE Journal Selected Topics in When FEC (hereinafter referred to as BTC-FEC) described in Quantum Electronics, Vo.10, No.2, pp.376-386, 2004) is assumed, BER becomes 1 × 10 −12 after FEC decoding The transmission speed of the encoded signal is 12.4 [bit / s].

曲線(1)と、曲線(2)、(3)及び(4)との差が、送信側と受信側との間で許容される損失となる。   The difference between the curve (1) and the curves (2), (3) and (4) is the loss allowed between the transmission side and the reception side.

特許文献1には、前方誤り訂正符号によりBERの閾値を10-4としたスペクトルスライスWDM伝送方式において(Reed-Solomon(255,239)に相当)、良好な伝送特性を得るために、スライス幅Δf[Hz]と、波長分割多重されたスペクトルスライス光信号の中心周波数(波長)間隔ΔF[Hz]との比である規格化スペクトル幅Δf/ΔFを0.45〜0.7とした場合、光信号の伝送速度BR[bit/s]と、ΔF[Hz]との比BR/ΔFを0.028[bit/s/Hz]以下にする必要があることが示されている。即ち、例えばBRを10.0[Gbit/s]とすると、ΔFを357GHz(2.8nm)より太くすれば良いことが記されている。しかしながら、光信号の偏波成分は明確でなく、また、ガウス型の透過スペクトルを有する波長合波手段によって光信号のスペクトルをスライスすることを特徴としている。 In Patent Document 1, in a spectrum slice WDM transmission system (corresponding to Reed-Solomon (255, 239)) in which a BER threshold is set to 10 −4 by a forward error correction code, the slice width is obtained in order to obtain good transmission characteristics. When the normalized spectral width Δf / ΔF, which is the ratio of Δf [Hz] and the center frequency (wavelength) interval ΔF [Hz] of the wavelength slice multiplexed spectrum slice optical signal, is 0.45 to 0.7, It has been shown that the ratio BR / ΔF between the optical signal transmission rate BR [bit / s] and ΔF [Hz] needs to be 0.028 [bit / s / Hz] or less. That is, for example, when BR is 10.0 [Gbit / s], it is described that ΔF should be thicker than 357 GHz (2.8 nm). However, the polarization component of the optical signal is not clear, and the optical signal spectrum is sliced by wavelength multiplexing means having a Gaussian transmission spectrum.

図6の結果を得るにあたっては、光信号の偏波成分をランダムとし、半値全幅の範囲において平坦な透過スペクトルを有する波長合波手段によって光信号のスペクトルをスライスすることを前提として計算を行った。   In obtaining the result of FIG. 6, the calculation was performed on the assumption that the polarization component of the optical signal is random and the spectrum of the optical signal is sliced by wavelength multiplexing means having a flat transmission spectrum in the full width at half maximum range. .

Reed-Solomon(255,239)またはBTC−FECによりFEC符号化された1.55μm帯(1450〜1650nm)の広帯域光信号を、1300〜1324nmに零分散波長を有するシングルモードファイバ(1.55μm帯における分散値は約17ps/nm/km)で伝送した時の、スライス幅Δfに対する分散耐力を計算した結果を図7に示す。これは分散ペナルティが1dBとなるファイバ長である。   Reed-Solomon (255, 239) or BTC-FEC-encoded 1.55 μm band (1450-1650 nm) broadband optical signal, single mode fiber (1.55 μm band) with zero dispersion wavelength at 1300-1324 nm FIG. 7 shows the calculation result of the dispersion tolerance with respect to the slice width Δf when the dispersion value is transmitted at about 17 ps / nm / km. This is the fiber length with a dispersion penalty of 1 dB.

特許文献1では、前方誤り訂正符号によりBERの閾値を1×10-4とした場合(Reed-Solomon(255,239)に相当)、Δf/ΔFが0.45〜0.7である時に、BR/ΔFを0.028[bit/s/Hz]以下とするために、BRが10.0[Gbit/s]では、Δfを160GHz(1.2nm)より太くすれば、良好な伝送特性を得られることが示されているが、波長分割多重光信号の波長帯域を1.55μm帯、光ファイバ伝送路を1300〜1324nmに零分散波長を有するシングルモードファイバとすると、図7よりΔfが160GHz(1.2nm)より太い時、分散耐カが1.5km以下となってしまうことが分かる。 In Patent Document 1, when the threshold value of BER is set to 1 × 10 −4 by a forward error correction code (corresponding to Reed-Solomon (255, 239)), when Δf / ΔF is 0.45 to 0.7, In order to set BR / ΔF to 0.028 [bit / s / Hz] or less, when BR is 10.0 [Gbit / s], if Δf is thicker than 160 GHz (1.2 nm), good transmission characteristics can be obtained. As shown in FIG. 7, if the wavelength band of the wavelength division multiplexed optical signal is 1.55 μm band and the optical fiber transmission line is a single mode fiber having a zero dispersion wavelength in 1300 to 1324 nm, Δf is 160 GHz from FIG. It can be seen that when the thickness is larger than (1.2 nm), the dispersion resistance becomes 1.5 km or less.

図6より、FECを適用した場合にΔfを37GHz(0.3nm)以上且つ160GHz(1.2nm)以下にすることが可能であることが分かるが、図7よりΔfを160GHz(1.2nm)以下にすることで、初めて1.5kmを超える光ファイバ伝送が可能であることが分かる。この時、ΔFはΔfよりも太ければ良いため、357GHz(2.8nm)以下とすることが可能である。   6 that Δf can be set to 37 GHz (0.3 nm) or more and 160 GHz (1.2 nm) or less when FEC is applied. From FIG. 7, Δf is 160 GHz (1.2 nm). It can be seen that, for the first time, optical fiber transmission exceeding 1.5 km is possible for the first time. At this time, since ΔF is thicker than Δf, it can be set to 357 GHz (2.8 nm) or less.

システムの任意の場所(例えば、光ファイバ伝送路と光波長分割多重受信装置との間)に分散補償回路を配置し、光ファイバ伝送距離をさらに拡大することができる。この場合、本発明により、分散を与えるシングルモードファイバの長さに換算して1.5km分だけ、分散補償回路が補償する分散量の誤差を許容できる。   A dispersion compensation circuit can be arranged at any location in the system (for example, between the optical fiber transmission line and the optical wavelength division multiplexing receiver) to further increase the optical fiber transmission distance. In this case, according to the present invention, an error in the amount of dispersion compensated by the dispersion compensation circuit can be allowed by 1.5 km in terms of the length of the single mode fiber providing dispersion.

<第2の実施の形態>
図8は本発明の第2の実施の形態にかかる光WDM伝送システム、ここでは第1の実施の形態の光WDM伝送システムにおいて、複数の光送信回路と波長合波手段とが互いに光ファイバ伝送路によって接続され、波長スプリッタ型PON(Passive Optical Network)を構成し、さらに、同様の構成要素を逆向きに配置し、逆方向の通信を実施することで双方向通信を行うようにした例を示す。
<Second Embodiment>
FIG. 8 shows an optical WDM transmission system according to the second embodiment of the present invention, here, in the optical WDM transmission system of the first embodiment, a plurality of optical transmission circuits and wavelength multiplexing means transmit optical fibers to each other. An example in which a wavelength splitter type PON (Passive Optical Network) is connected by a path, and the same components are arranged in the opposite direction and bidirectional communication is performed by carrying out the communication in the opposite direction. Show.

即ち、図8において、31は光送信回路11及び光受信回路22からなる複数の光送受信回路、32は波長合分波手段、33,34は光ファイバ伝送路であり、これらによって一方の光波長多重送受信装置30が構成される。また、41は波長合分波手段、42は光送信回路11及び光受信回路22からなる複数の光送受信回路、であり、これらによって他方の光波長多重送受信装置40が構成される。波長スプリッタ型PONにおいては、波長合分波手段(波長合波及び分波手段)としてAWGなどを用いる。   That is, in FIG. 8, reference numeral 31 denotes a plurality of optical transmission / reception circuits including the optical transmission circuit 11 and the optical reception circuit 22, 32 denotes wavelength multiplexing / demultiplexing means, and 33 and 34 denote optical fiber transmission lines. A multiplex transmitter / receiver 30 is configured. Reference numeral 41 denotes wavelength multiplexing / demultiplexing means, and reference numeral 42 denotes a plurality of optical transmission / reception circuits including the optical transmission circuit 11 and the optical reception circuit 22, and the other optical wavelength multiplexing transmission / reception apparatus 40 is constituted by these. In the wavelength splitter type PON, AWG or the like is used as wavelength multiplexing / demultiplexing means (wavelength multiplexing / demultiplexing means).

この場合も、第1の実施の形態の場合と同様、光信号の伝送速度が10.0[Gbit/s]以上で、スライス幅Δfを半値全幅37GHz(0.3nm)以上且つ160GHz(1.2nm)以下にすることが可能である。よって、1.55μm帯の偏波無依存広帯域信号を、1300〜1324nmに零分散波長を有するシングルモードファイバで伝送する場合、従来、不可能であった1.5kmを超える光ファイバ伝送が可能となる。   Also in this case, as in the case of the first embodiment, the optical signal transmission speed is 10.0 [Gbit / s] or more, and the slice width Δf is not less than 37 GHz (0.3 nm) full width at half maximum and 160 GHz (1. 2 nm) or less. Therefore, when transmitting a polarization-independent broadband signal in the 1.55 μm band with a single mode fiber having a zero dispersion wavelength at 1300 to 1324 nm, it is possible to transmit an optical fiber exceeding 1.5 km, which has been impossible in the past. Become.

システムの任意の場所(例えば、光ファイバ伝送路と光波長分割多重送受信装置との間)に分散補償回路を配置し、光ファイバ伝送距離をさらに拡大することができる。この場合、本発明により、分散を与えるシングルモードファイバの長さに換算して1.5km分だけ、光送信回路と波長合分波手段を繋ぐ複数の光ファイバ伝送路の距離差を許容できる。   A dispersion compensation circuit can be arranged at any place in the system (for example, between the optical fiber transmission line and the optical wavelength division multiplexing transmitter / receiver) to further increase the optical fiber transmission distance. In this case, according to the present invention, the distance difference between the plurality of optical fiber transmission lines connecting the optical transmission circuit and the wavelength multiplexing / demultiplexing means can be allowed by 1.5 km in terms of the length of the single mode fiber that gives dispersion.

<第3の実施の形態>
図9は本発明の第3の実施の形態にかかる光送信回路、ここでは第1または第2の実施の形態で用いた光送信回路に光波長フィルタを加えた例を示すもので、図中、113は波長1450nmから1650nmまでの範囲において半値全幅37GHz(0.3nm)以上且つ160GHz(1.2nm)以下の透過幅を有する光波長フィルタである。
<Third Embodiment>
FIG. 9 shows an example in which an optical wavelength filter is added to the optical transmission circuit according to the third embodiment of the present invention, here the optical transmission circuit used in the first or second embodiment. 113 are optical wavelength filters having a full width at half maximum of 37 GHz (0.3 nm) or more and a transmission width of 160 GHz (1.2 nm) or less in the wavelength range of 1450 nm to 1650 nm.

光波長フィルタ113は、広帯域光信号送信手段112の後段に配置され、FEC符号化回路111及び広帯域光信号送信手段112とともに光送信回路11Aを構成する。   The optical wavelength filter 113 is disposed at the subsequent stage of the broadband optical signal transmission unit 112, and constitutes the optical transmission circuit 11A together with the FEC encoding circuit 111 and the broadband optical signal transmission unit 112.

前記構成によれば、広帯域光信号送信手段112から出力される2nm以上の光スペクトル半値全幅を有し且つ偏波がランダムな広帯域変調光信号より、半値全幅37GHz(0.3nm)以上且つ160GHz(1.2nm)以下の変調光信号として切り出すことができる。   According to the above-described configuration, the full width at half maximum of 37 GHz (0.3 nm) or more and 160 GHz (with a full width at half maximum of 2 nm output from the broadband optical signal transmission unit 112 and having a random polarization whose polarization is random is 160 GHz ( 1.2 nm) or less as a modulated light signal.

<第4の実施の形態>
図10は本発明の第4の実施の形態にかかる光WDM伝送システム、ここでは第2の実施の形態の光WDM伝送システムにおいて、光送信回路11の代わりに第3の実施の形態に示した光送信回路11Aを用い、光受信回路22の代わりに光波長フィルタ113と同様な光波長フィルタ223を光信号受信手段の前段に配置した光受信回路22Aを用いて光送受信回路31Aとし、さらに、波長合分波手段32の代わりに光カプラ(パワースプリッタ)35を用いてパワースプリッタ型PON(Passive Optical Network)の光波長分割多重送受信装置30Aを構成した例を示す。
<Fourth embodiment>
FIG. 10 shows an optical WDM transmission system according to a fourth embodiment of the present invention, here an optical WDM transmission system according to the second embodiment, which is shown in the third embodiment instead of the optical transmission circuit 11. Using the optical transmission circuit 11A, an optical transmission / reception circuit 31A using the optical reception circuit 22A in which an optical wavelength filter 223 similar to the optical wavelength filter 113 is disposed in front of the optical signal reception means instead of the optical reception circuit 22, is used. An example is shown in which an optical coupler (power splitter) 35 is used in place of the wavelength multiplexing / demultiplexing means 32 to configure a power splitter type PON (Passive Optical Network) optical wavelength division multiplexing transmitter / receiver 30A.

この場合も、第2の実施の形態と同様に、光信号の伝送速度が10.0[Gbit/s]以上で、波長分割多重光信号のスペクトル幅Δfを37GHz(0.3nm)以上且つ160GHz(1.2nm)以下にすることが可能である。よって、1.55μm帯の偏波無依存広帯域信号を、1300〜1324nmに零分散波長を有するシングルモードファイバで伝送する場合、従来、不可能であった1.5kmを超える光ファイバ伝送が可能となる。   Also in this case, similarly to the second embodiment, the transmission speed of the optical signal is 10.0 [Gbit / s] or more, and the spectral width Δf of the wavelength division multiplexed optical signal is 37 GHz (0.3 nm) or more and 160 GHz. (1.2 nm) or less is possible. Therefore, when transmitting a polarization-independent broadband signal in the 1.55 μm band with a single mode fiber having a zero dispersion wavelength at 1300 to 1324 nm, it is possible to transmit an optical fiber exceeding 1.5 km, which has been impossible in the past. Become.

システムの任意の場所(例えば、光ファイバ伝送路と光波長分割多重送受信装置との間)に分散補償回路を配置し、光ファイバ伝送距離をさらに拡大することができる。この場合、本発明により、分散を与えるシングルモードファイバの長さに換算して1.5km分だけ、光送信回路と波長合分波手段又は光カプラを繋ぐ複数の光ファイバ伝送路の距離差を許容できる。   A dispersion compensation circuit can be arranged at any place in the system (for example, between the optical fiber transmission line and the optical wavelength division multiplexing transmitter / receiver) to further increase the optical fiber transmission distance. In this case, according to the present invention, the distance difference between the plurality of optical fiber transmission lines connecting the optical transmission circuit and the wavelength multiplexing / demultiplexing means or the optical coupler by 1.5 km in terms of the length of the single mode fiber giving dispersion is obtained. acceptable.

<第5の実施の形態>
本発明の第5の実施の形態にかかる光波長分割多重送信装置、光波長分割多重伝送システム及び光送信回路は、半導体光増幅器と電界吸収型光変調器とを集積化した半導体光回路より構成される広帯域光信号送信手段を用いたことを特徴とする。
<Fifth embodiment>
An optical wavelength division multiplexing transmission apparatus, an optical wavelength division multiplexing transmission system, and an optical transmission circuit according to a fifth embodiment of the present invention are configured by a semiconductor optical circuit in which a semiconductor optical amplifier and an electroabsorption optical modulator are integrated. The broadband optical signal transmitting means is used.

従来、この半導体光回路は、レーザ光を電界吸収型光変調器側から入射し、該電界吸収型光変調器から出力される信号光を半導体光増幅器により増幅する用途で用いられている。   Conventionally, this semiconductor optical circuit has been used for the purpose of amplifying signal light incident from an electroabsorption optical modulator and outputting signal light from the electroabsorption optical modulator by a semiconductor optical amplifier.

半導体光増幅器の自然放出光を電界吸収型光変調器によって変調することにより、この半導体光回路を、ランダムな偏波成分を有する伝送速度10.0[Gbit/s]以上の広帯域光信号を送信可能な広帯域光信号送信手段として用いることができ、これにより、第1〜4の実施の形態に記載した装置、システム及び回路を小サイズで実現できる。   By modulating the spontaneous emission light of the semiconductor optical amplifier by an electroabsorption optical modulator, this semiconductor optical circuit transmits a broadband optical signal having a random polarization component and a transmission rate of 10.0 [Gbit / s] or more. It can be used as a possible broadband optical signal transmission means, whereby the devices, systems and circuits described in the first to fourth embodiments can be realized in a small size.

従来のスペクトルスライスWDM伝送方式による光WDM伝送システムの一例を示す構成図Configuration diagram showing an example of an optical WDM transmission system based on a conventional spectrum slice WDM transmission system 本発明の第1の実施の形態にかかる光WDM伝送システムの構成図1 is a configuration diagram of an optical WDM transmission system according to a first embodiment of the present invention. 広帯域光源からの広帯域光信号のスペクトル図Spectrum diagram of broadband optical signal from broadband light source 広帯域光信号送信手段の具体例を示す構成図Configuration diagram showing a specific example of broadband optical signal transmission means 波長合波手段における広帯域変調光信号の切り出しのようすを示すスペクトル図Spectral diagram showing how a wideband modulated optical signal is cut out by wavelength multiplexing means 波長合波手段におけるスライス幅と1チャネル当たりの送信パワー及び受信感度との関係を示すグラフGraph showing the relationship between slice width, transmission power per channel and reception sensitivity in wavelength multiplexing means FEC符号化された光信号をシングルモードファイバで伝送した時の波長合波手段におけるスライス幅に対する分散耐力を計算した結果を示すグラフThe graph which shows the result of having calculated the dispersion tolerance with respect to the slice width in the wavelength multiplexing means at the time of transmitting the optical signal by which FEC encoding was carried out with the single mode fiber 本発明の第2の実施の形態にかかる光WDM伝送システムの構成図1 is a configuration diagram of an optical WDM transmission system according to a second embodiment of the present invention. 本発明の第3の実施の形態にかかる光送信回路の構成図Configuration diagram of an optical transmission circuit according to a third embodiment of the present invention 本発明の第4の実施の形態にかかる光WDM伝送システムの構成図The block diagram of the optical WDM transmission system concerning the 4th Embodiment of this invention

符号の説明Explanation of symbols

3:光ファイバ伝送路、10:光波長分割多重送信装置、11,11A:光送信回路、12:波長合波手段、20:光波長分割多重受信装置、21:波長分波手段、22,22A:光受信回路、30,30A,40:光波長分割多重送受信装置、31,31A,42:光送受信回路、32,41:波長合分波手段、33,34:光ファイバ伝送路、35:光カプラ、111:FEC符号化回路、112:広帯域光信号送信手段、113,223:光波長フィルタ、221:光信号受信手段、222:FEC復号回路。   3: optical fiber transmission line, 10: optical wavelength division multiplexing transmitter, 11, 11A: optical transmission circuit, 12: wavelength multiplexing means, 20: optical wavelength division multiplexing reception apparatus, 21: wavelength demultiplexing means, 22, 22A : Optical receiver circuit, 30, 30A, 40: Optical wavelength division multiplexing transmitter / receiver, 31, 31A, 42: Optical transmitter / receiver circuit, 32, 41: Wavelength multiplexing / demultiplexing means, 33, 34: Optical fiber transmission line, 35: Light Coupler: 111: FEC encoding circuit; 112: broadband optical signal transmission means; 113, 223: optical wavelength filter; 221: optical signal reception means; 222: FEC decoding circuit.

Claims (8)

2nm以上の光スペクトル半値全幅を有し且つ偏波がランダムな広帯域変調光信号を出力する複数の光送信回路と、該複数の光送信回路からの広帯域変調光信号を光波長分割多重する波長合波手段とから構成され、
前記光送信回路のうち少なくとも1つは、伝送速度10.0[Gbit/s]以上の入力信号を前方誤り訂正符号により符号化する前方誤り訂正符号化回路と、広帯域光源からの出力光を前記FEC符号化された信号によって変調する広帯域光送信手段とからなり、
前記波長合波手段は、複数の光送信回路から出力された広帯域変調光信号を半値全幅37GHz(0.3nm)以上且つ160GHz(1.2nm)以下のスライス幅で切り出し、波長1450nmから1650nmまでの範囲に357GHz(2.8nm)以下の中心周波数(波長)間隔で配置して波長分割多重光信号とする特性を有する
ことを特徴とする光波長分割多重送信装置。
A plurality of optical transmitter circuits that output a broadband modulated optical signal having a full width at half maximum of 2 nm or more and a random polarization; and a wavelength combination for optical wavelength division multiplexing of the broadband modulated optical signals from the plurality of optical transmitter circuits. Wave means,
At least one of the optical transmission circuits includes a forward error correction encoding circuit that encodes an input signal having a transmission rate of 10.0 [Gbit / s] or more with a forward error correction code, and output light from a broadband light source. A broadband optical transmitter that modulates with an FEC-encoded signal;
The wavelength multiplexing means cuts out a wideband modulated optical signal output from a plurality of optical transmission circuits with a full width at half maximum of 37 GHz (0.3 nm) or more and a slice width of 160 GHz (1.2 nm) or less, and has a wavelength from 1450 nm to 1650 nm. An optical wavelength division multiplexing transmitter characterized by having a wavelength division multiplexed optical signal arranged in a range with a center frequency (wavelength) interval of 357 GHz (2.8 nm) or less.
請求項1記載の光波長分割多重送信装置において、
広帯域光信号送信手段は、半導体光増幅器と電界吸収型光変調器とを集積化した半導体光回路より構成される
ことを特徴とする光波長分割多重送信装置。
The optical wavelength division multiplexing transmitter according to claim 1,
The broadband optical signal transmission means is composed of a semiconductor optical circuit in which a semiconductor optical amplifier and an electroabsorption optical modulator are integrated.
請求項1または2記載の光波長分割多重送信装置と、光波長分割多重受信装置と、これらを互いに接続する光ファイバ伝送路とから構成される光波長分割多重伝送システムであって、
前記光波長分割多重受信装置は、伝送された波長分割多重光信号を中心周波数(波長)毎に分離する波長分波手段と、複数の光受信回路とから構成され、
前記光受信回路のうち少なくとも1つは、受光した光信号を電気信号に変換する光信号受信手段と、FEC符号化された電気信号を復号する前方誤り訂正復号回路とからなり、
前記光ファイバ伝送路は、零分散波長を1300〜1324nmに有するシングルモードファイバからなる
ことを特徴とする光波長分割多重伝送システム。
An optical wavelength division multiplexing transmission system comprising the optical wavelength division multiplexing transmission device according to claim 1, an optical wavelength division multiplexing reception device, and an optical fiber transmission line connecting them to each other,
The optical wavelength division multiplexing receiver is composed of wavelength demultiplexing means for separating the transmitted wavelength division multiplexed optical signal for each central frequency (wavelength), and a plurality of optical receiving circuits,
At least one of the optical receiving circuits comprises an optical signal receiving means for converting a received optical signal into an electric signal, and a forward error correction decoding circuit for decoding the FEC encoded electric signal,
The optical fiber transmission line is composed of a single mode fiber having a zero dispersion wavelength of 1300 to 1324 nm. An optical wavelength division multiplexing transmission system.
2nm以上の光スペクトル半値全幅を有し且つ偏波がランダムな広帯域変調光信号を出力する複数の光送信回路及び該複数の光送信回路からの広帯域変調光信号を光波長分割多重する波長合波手段と、光波長分割多重受信装置と、これらを互いに接続する光ファイバ伝送路とから構成される光波長分割多重伝送システムであって、
前記光送信回路のうち少なくとも1つは、入力信号を前方誤り訂正符号により符号化する前方誤り訂正符号化回路と、広帯域光源からの出力光を前記FEC符号化された信号によって変調する広帯域光送信手段とからなり、
前記波長合波手段は、複数の光送信回路から出力され光ファイバ伝送された伝送速度10.0[Gbit/s]以上の広帯域変調光信号を半値全幅37GHz(0.3nm)以上且つ160GHz(1.2nm)以下のスライス幅で切り出し、波長1450nmから1650nmまでの範囲に357GHz(2.8nm)以下の中心周波数(波長)間隔で配置して波長分割多重光信号とする特性を有し、
前記光波長分割多重受信装置は、伝送された波長分割多重光信号を中心周波数(波長)毎に分離する波長分波手段と、複数の光受信回路とから構成され、
前記光受信回路のうち少なくとも1つは、受光した光信号を電気信号に変換する光信号受信手段と、FEC符号化された電気信号を復号する前方誤り訂正復号回路とからなり、
前記光ファイバ伝送路は、零分散波長を1300〜1324nmに有するシングルモードファイバからなる
ことを特徴とする光波長分割多重伝送システム。
A plurality of optical transmission circuits that output a broadband modulated optical signal having a full width at half maximum of 2 nm or more and a random polarization, and wavelength multiplexing for optical wavelength division multiplexing of the broadband modulated optical signals from the plurality of optical transmission circuits An optical wavelength division multiplex transmission system comprising means, an optical wavelength division multiplex receiver, and an optical fiber transmission line connecting them together,
At least one of the optical transmission circuits includes a forward error correction encoding circuit that encodes an input signal with a forward error correction code, and a broadband optical transmission that modulates output light from a broadband light source using the FEC encoded signal. Consisting of means,
The wavelength multiplexing means outputs a wideband modulated optical signal having a transmission speed of 10.0 [Gbit / s] or more output from a plurality of optical transmission circuits and transmitted through an optical fiber to a full width at half maximum of 37 GHz (0.3 nm) or more and 160 GHz (1 .2 nm) with a slice width of less than or equal to, and arranged at a center frequency (wavelength) interval of not more than 357 GHz (2.8 nm) in a wavelength range of 1450 nm to 1650 nm to have a wavelength division multiplexed optical signal,
The optical wavelength division multiplexing receiver is composed of wavelength demultiplexing means for separating the transmitted wavelength division multiplexed optical signal for each central frequency (wavelength), and a plurality of optical receiving circuits,
At least one of the optical receiving circuits comprises an optical signal receiving means for converting a received optical signal into an electric signal, and a forward error correction decoding circuit for decoding the FEC encoded electric signal,
The optical fiber transmission line is composed of a single mode fiber having a zero dispersion wavelength of 1300 to 1324 nm. An optical wavelength division multiplexing transmission system.
請求項4記載の光波長分割多重伝送システムにおいて、
広帯域光信号送信手段は、半導体光増幅器と電界吸収型光変調器とを集積化した半導体光回路より構成される
ことを特徴とする光波長分割多重伝送システム。
The optical wavelength division multiplexing transmission system according to claim 4,
The broadband optical signal transmission means is composed of a semiconductor optical circuit in which a semiconductor optical amplifier and an electroabsorption optical modulator are integrated. An optical wavelength division multiplex transmission system, wherein:
入力信号を前方誤り訂正符号により符号化する前方誤り訂正符号化回路と、出力スペクトルが2nm以上の光スペクトル半値全幅を有する広帯域光源からの出力光を前記FEC符号化された信号によって変調し、2nm以上の光スペクトル半値全幅を有し且つ偏波がランダムな伝送速度10.0[Gbit/s]以上の広帯域変調光信号を出力する広帯域光信号送信手段と、該広帯域光信号送信手段の後段に配置された光波長フィルタとから構成され、
前記光波長フィルタは、波長1450nmから1650nmまでの範囲において半値全幅37GHz(0.3nm)以上且つ160GHz(1.2nm)以下の透過幅を有する
ことを特徴とする光送信回路。
A forward error correction encoding circuit that encodes an input signal with a forward error correction code, and an output light from a broadband light source having an output spectrum full width at half maximum of 2 nm or more is modulated by the FEC-encoded signal, and 2 nm Broadband optical signal transmitting means for outputting a broadband modulated optical signal having a full width at half maximum of the optical spectrum and having a random polarization and a transmission rate of 10.0 [Gbit / s] or higher, and a subsequent stage of the broadband optical signal transmitting means And an arranged optical wavelength filter,
The optical wavelength filter has a full width at half maximum of 37 GHz (0.3 nm) or more and a transmission width of 160 GHz (1.2 nm) or less in a wavelength range of 1450 nm to 1650 nm.
請求項6記載の光送信回路において、
広帯域光信号送信手段は、半導体光増幅器と電界吸収型光変調器とを集積化した半導体光回路より構成される
ことを特徴とする光送信回路。
The optical transmission circuit according to claim 6,
The broadband optical signal transmission means is composed of a semiconductor optical circuit in which a semiconductor optical amplifier and an electroabsorption optical modulator are integrated.
2nm以上の光スペクトル半値全幅を有し且つ偏波がランダムな広帯域光信号を出力する広帯域光信号送信手段及び波長1450nmから1650nmまでの範囲において半値全幅37GHz(0.3nm)以上且つ160GHz(1.2nm)以下の透過幅を有する光波長フィルタを少なくとも含む複数の光送信回路及び該複数の光送信回路からの広帯域光信号を光波長分割多重する光カプラと、光波長分割多重受信装置と、これらを互いに接続する光ファイバ伝送路とから構成される光波長分割多重伝送システムであって、
前記光送信回路のうち少なくとも1つは、請求項6または7記載の光送信回路であり、
前記光カプラは、複数の光送信回路から出力され光ファイバ伝送された広帯域変調光信号を合波して波長分割多重光信号とし、
前記光波長分割多重受信装置は、伝送された波長分割多重光信号を中心周波数(波長)毎に分離する波長分波手段と、複数の光受信回路とから構成され、
前記光受信回路のうち少なくとも1つは、受光した光信号を電気信号に変換する光信号受信手段と、FEC符号化された電気信号を復号する前方誤り訂正復号回路とからなり、
前記光ファイバ伝送路は、零分散波長を1300〜1324nmに有するシングルモードファイバである
ことを特徴とする光波長分割多重伝送システム。
Broadband optical signal transmitting means for outputting a broadband optical signal having a full width at half maximum of 2 nm or more and a random polarization, and a full width at half maximum of 37 GHz (0.3 nm) or more and 160 GHz (1. A plurality of optical transmission circuits including at least an optical wavelength filter having a transmission width of 2 nm) or less, an optical coupler for optical wavelength division multiplexing of broadband optical signals from the plurality of optical transmission circuits, an optical wavelength division multiplexing receiver, and these An optical wavelength division multiplexing transmission system composed of optical fiber transmission lines that connect each other,
At least one of the optical transmission circuits is an optical transmission circuit according to claim 6 or 7,
The optical coupler combines a wideband modulated optical signal output from a plurality of optical transmission circuits and transmitted through an optical fiber to form a wavelength division multiplexed optical signal,
The optical wavelength division multiplexing receiver is composed of wavelength demultiplexing means for separating the transmitted wavelength division multiplexed optical signal for each central frequency (wavelength), and a plurality of optical receiving circuits,
At least one of the optical receiving circuits comprises an optical signal receiving means for converting a received optical signal into an electric signal, and a forward error correction decoding circuit for decoding the FEC encoded electric signal,
The optical fiber transmission line is a single mode fiber having a zero dispersion wavelength of 1300 to 1324 nm. An optical wavelength division multiplexing transmission system, wherein:
JP2005060047A 2005-03-04 2005-03-04 Optical wavelength division multiplexing transmission apparatus, optical wavelength division multiplexing transmission system, optical transmission circuit Expired - Fee Related JP4526123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005060047A JP4526123B2 (en) 2005-03-04 2005-03-04 Optical wavelength division multiplexing transmission apparatus, optical wavelength division multiplexing transmission system, optical transmission circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005060047A JP4526123B2 (en) 2005-03-04 2005-03-04 Optical wavelength division multiplexing transmission apparatus, optical wavelength division multiplexing transmission system, optical transmission circuit

Publications (2)

Publication Number Publication Date
JP2006246104A true JP2006246104A (en) 2006-09-14
JP4526123B2 JP4526123B2 (en) 2010-08-18

Family

ID=37052030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005060047A Expired - Fee Related JP4526123B2 (en) 2005-03-04 2005-03-04 Optical wavelength division multiplexing transmission apparatus, optical wavelength division multiplexing transmission system, optical transmission circuit

Country Status (1)

Country Link
JP (1) JP4526123B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114621A (en) * 2008-11-06 2010-05-20 Nippon Telegr & Teleph Corp <Ntt> Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu
JP2010114623A (en) * 2008-11-06 2010-05-20 Nippon Telegr & Teleph Corp <Ntt> Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu
CN111903074A (en) * 2018-03-26 2020-11-06 日本电气株式会社 Subsea branching device, optical subsea cable system and optical communication method
CN116318385A (en) * 2023-03-06 2023-06-23 深圳市光为光通信科技有限公司 Signal modulation method and system of coherent light module

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103444A (en) * 1980-12-19 1982-06-28 Nec Corp Optical communication device
JPH08307018A (en) * 1995-05-11 1996-11-22 Nippon Telegr & Teleph Corp <Ntt> Photosignal generator
JPH09247098A (en) * 1996-03-05 1997-09-19 Toshiba Corp Light transmitter and light transmission system
JP2002314507A (en) * 2001-04-18 2002-10-25 Nippon Telegr & Teleph Corp <Ntt> Spectrally sliced light transmission method and transmitter
JP2003066389A (en) * 2001-08-28 2003-03-05 Nippon Telegr & Teleph Corp <Ntt> Device for reproducing optical clock
JP2003131180A (en) * 2001-10-25 2003-05-08 Nippon Telegr & Teleph Corp <Ntt> Optical subcarrier modulator
JP2003202529A (en) * 2001-03-13 2003-07-18 Ricoh Co Ltd Semiconductor optical modulator, semiconductor light emitting device and wavelength variable laser device and multiwavelength laser device and optical transmission system
JP2003298511A (en) * 2002-04-05 2003-10-17 Nippon Telegr & Teleph Corp <Ntt> Optical network
JP2003315574A (en) * 2002-04-19 2003-11-06 Sumitomo Electric Ind Ltd Optical multiplexer / demultiplexer
JP2004029583A (en) * 2002-06-27 2004-01-29 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer/demultiplexer
JP2004180343A (en) * 2004-02-05 2004-06-24 Mitsubishi Electric Corp Optical transmitter

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103444A (en) * 1980-12-19 1982-06-28 Nec Corp Optical communication device
JPH08307018A (en) * 1995-05-11 1996-11-22 Nippon Telegr & Teleph Corp <Ntt> Photosignal generator
JPH09247098A (en) * 1996-03-05 1997-09-19 Toshiba Corp Light transmitter and light transmission system
JP2003202529A (en) * 2001-03-13 2003-07-18 Ricoh Co Ltd Semiconductor optical modulator, semiconductor light emitting device and wavelength variable laser device and multiwavelength laser device and optical transmission system
JP2002314507A (en) * 2001-04-18 2002-10-25 Nippon Telegr & Teleph Corp <Ntt> Spectrally sliced light transmission method and transmitter
JP2003066389A (en) * 2001-08-28 2003-03-05 Nippon Telegr & Teleph Corp <Ntt> Device for reproducing optical clock
JP2003131180A (en) * 2001-10-25 2003-05-08 Nippon Telegr & Teleph Corp <Ntt> Optical subcarrier modulator
JP2003298511A (en) * 2002-04-05 2003-10-17 Nippon Telegr & Teleph Corp <Ntt> Optical network
JP2003315574A (en) * 2002-04-19 2003-11-06 Sumitomo Electric Ind Ltd Optical multiplexer / demultiplexer
JP2004029583A (en) * 2002-06-27 2004-01-29 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer/demultiplexer
JP2004180343A (en) * 2004-02-05 2004-06-24 Mitsubishi Electric Corp Optical transmitter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114621A (en) * 2008-11-06 2010-05-20 Nippon Telegr & Teleph Corp <Ntt> Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu
JP2010114623A (en) * 2008-11-06 2010-05-20 Nippon Telegr & Teleph Corp <Ntt> Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu
CN111903074A (en) * 2018-03-26 2020-11-06 日本电气株式会社 Subsea branching device, optical subsea cable system and optical communication method
CN111903074B (en) * 2018-03-26 2023-09-15 日本电气株式会社 Submarine branching device, optical submarine cable system and optical communication method
CN116318385A (en) * 2023-03-06 2023-06-23 深圳市光为光通信科技有限公司 Signal modulation method and system of coherent light module
CN116318385B (en) * 2023-03-06 2024-08-27 深圳市光为光通信科技有限公司 Signal modulation method and system of coherent light module

Also Published As

Publication number Publication date
JP4526123B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
US7831118B2 (en) Coarse wavelength division multiplexing optical transmission system, and coarse wavelength division multiplexing optical transmission method
US20090136229A1 (en) Method and System for Transmitting Information in an Optical Communication System Using Distributed Amplification
JP2004533163A6 (en) Method and system for communicating clock signals over an optical link
JP2004533163A (en) Method and system for communicating a clock signal over an optical link
JP3887603B2 (en) Method call system for demultiplexing non-intensity modulated wavelength division multiplexed (WDM) signals
JP3887602B2 (en) Receiver and method for receiving a multi-channel optical signal
JPH09116492A (en) Wavelength multiplex light amplifying/repeating method/ device
US20040062550A1 (en) Wavelength division multiplexing optical transmission system, and wavelength division multiplexing optical transmission method
RU2407169C1 (en) Device and method for optical line terminal (olt) and optical network unit (onu) in wavelength-independent wavelength division multiplex passive optical networks
US11438086B2 (en) Optical amplification in an optical network
JP4526123B2 (en) Optical wavelength division multiplexing transmission apparatus, optical wavelength division multiplexing transmission system, optical transmission circuit
US9093816B2 (en) Transmission apparatus and transmission system
JP3940083B2 (en) Method and system for adjusting optical signals based on propagation conditions
KR101477355B1 (en) Interferometric noise suppression apparatus and optical communication system comprising the same
JP4237527B2 (en) WDM optical transmission system
Rasztovits-Wiech et al. Bidirectional EDFA for future extra large passive optical networks
US20210083450A1 (en) Suppressing signal noise on an optical fiber
Hwang et al. 2.5-Tb/s (256× 12.4 Gb/s) Transmission of 12.5-GHz-Spaced Ultra-dense WDM Channels over a Standard Single-Mode Fiber of 2000 km
JP2004048583A (en) Optical multiplex transmission equipment
JP2003023397A (en) Optical transmitter/receiver and wavelength multiplexed optical transmitting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees