[go: up one dir, main page]

JP2006244715A - Bipolar membrane and fuel cell using it - Google Patents

Bipolar membrane and fuel cell using it Download PDF

Info

Publication number
JP2006244715A
JP2006244715A JP2005054193A JP2005054193A JP2006244715A JP 2006244715 A JP2006244715 A JP 2006244715A JP 2005054193 A JP2005054193 A JP 2005054193A JP 2005054193 A JP2005054193 A JP 2005054193A JP 2006244715 A JP2006244715 A JP 2006244715A
Authority
JP
Japan
Prior art keywords
region
fuel cell
composite membrane
main surface
bipolar membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005054193A
Other languages
Japanese (ja)
Inventor
Hiroki Kabumoto
浩揮 株本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005054193A priority Critical patent/JP2006244715A/en
Priority to KR1020060018588A priority patent/KR100760132B1/en
Priority to US11/363,187 priority patent/US20060194088A1/en
Priority to CN200710300716A priority patent/CN100576618C/en
Priority to CNB200610051466XA priority patent/CN100438171C/en
Publication of JP2006244715A publication Critical patent/JP2006244715A/en
Priority to KR1020070015697A priority patent/KR20070026753A/en
Priority to US11/790,958 priority patent/US20070202372A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bipolar membrane on which respective element cells of a flat type fuel cell can be connected in series in a simple way, and to provide the fuel cell using the bipolar membrane which can output the current and the voltage of given values. <P>SOLUTION: The bipolar membrane 10 has a plurality of regions with different properties. The membrane comprises a plurality of first regions 14 having proton conductivity between a first and a second main surfaces of the bipolar membrane 10, and second regions 16 having electron conductivity between the first and the second main surfaces of the bipolar membrane 10. The fuel cell 30 using the bipolar membrane 10 comprises a plurality of first electrodes 32, a plurality of second electrodes 34, a first electron conduction member 38b which connects a first electrode 32b on one side with a second region 16α, and a second electron conduction member 40a which connects a second electrode 34a on another side with the second region 16α. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複合膜およびその複合膜を用いた燃料電池に関し、具体的には、平面形燃料電池上の各セルを簡易な構造で接続することができる複合膜およびその複合膜を用いた燃料電池に関する。   The present invention relates to a composite membrane and a fuel cell using the composite membrane, and more specifically, a composite membrane capable of connecting cells on a planar fuel cell with a simple structure and a fuel using the composite membrane It relates to batteries.

燃料電池は水素と酸素とから電気エネルギを発生させる装置であり、高い発電効率を得ることができる。燃料電池の主な特徴としては、従来の発電方式のように熱エネルギや運動エネルギの過程を経ない直接発電であるので、小規模でも高い発電効率が期待できる、窒素化合物等の排出が少なく、騒音や振動も小さいので環境性が良いなどが挙げられる。このように、燃料電池は燃料のもつ化学エネルギを有効に利用でき、環境にやさしい特性をもっているので、21世紀を担うエネルギ供給システムとして期待され、宇宙用から自動車用、携帯機器用まで、大規模発電から小規模発電まで、種々の用途に使用できる将来有望な新しい発電システムとして注目され、実用化に向けて技術開発が本格化している。   A fuel cell is a device that generates electrical energy from hydrogen and oxygen, and can achieve high power generation efficiency. The main feature of the fuel cell is direct power generation that does not go through the process of thermal energy and kinetic energy as in the conventional power generation method, so high power generation efficiency can be expected even on a small scale, and there is little emission of nitrogen compounds, etc. Noise and vibration are also small, so the environmental performance is good. In this way, fuel cells can effectively use the chemical energy of fuels and have environmentally friendly characteristics, so they are expected to be energy supply systems for the 21st century, and are used on a large scale from space use to automobiles and portable devices. It is attracting attention as a promising new power generation system that can be used in various applications from power generation to small-scale power generation, and technological development is in full swing toward practical application.

中でも、固体高分子形燃料電池は、他の種類の燃料電池に比べて、作動温度が低く、高い出力密度を持つ特徴が有り、特に近年、固体高分子形燃料電池の一形態として、ダイレクトメタノール燃料電池(Direct Methanol Fuel Cell:DMFC)が注目を集めている。DMFCは、燃料であるメタノール水溶液を改質することなく直接アノードへ供給し、メタノール水溶液と酸素との電気化学反応により電力を得るものであり、この電気化学反応によりアノードからは二酸化炭素が、カソードからは生成水が、反応生成物として排出される。メタノール水溶液は水素に比べ、単位体積当たりのエネルギが高く、また、貯蔵に適しており、爆発などの危険性も低いため、自動車や携帯機器(携帯電話、ノート型パーソナルコンピュータ、PDA、MP3プレーヤ、デジタルカメラあるいは電子辞書(書籍))などの電源への利用が期待されている。   Among them, solid polymer fuel cells are characterized by low operating temperature and high power density compared to other types of fuel cells. In particular, as a form of solid polymer fuel cells, direct methanol A fuel cell (Direct Methanol Fuel Cell: DMFC) is attracting attention. In DMFC, an aqueous methanol solution as a fuel is directly supplied to the anode without modification, and electric power is obtained by an electrochemical reaction between the aqueous methanol solution and oxygen, and carbon dioxide is emitted from the anode to the cathode by this electrochemical reaction. The product water is discharged as a reaction product. Aqueous methanol solution has higher energy per unit volume than hydrogen, and is suitable for storage and has a low risk of explosion, so it can be used in automobiles and mobile devices (cell phones, notebook personal computers, PDAs, MP3 players, Use for power sources such as digital cameras or electronic dictionaries (books) is expected.

燃料電池はその起電力を目的に合わせて大きくしたスタック構造のものが一般的であるが、起電力をそれほど必要とせず、できるだけ薄いことが要求される携帯機器用のDMFCでは平面形の構成が採られる。
特開2003−197225号公報
A fuel cell generally has a stack structure in which the electromotive force is increased in accordance with the purpose. However, a DMFC for a portable device that does not require electromotive force and is required to be as thin as possible has a planar configuration. Taken.
JP 2003-197225 A

しかしながら、平面形の燃料電池は、スタッグ構造と比べて直列に接続することが困難であった。これに対し、特許文献1では固体高分子膜に接続配線を貫通させる手法が採られているが、この場合、固体高分子膜の接続配線を貫通させた部分に集中応力がかかってしまうという問題があった。   However, it is difficult to connect a planar fuel cell in series as compared to a stag structure. On the other hand, Patent Document 1 adopts a method of penetrating the connection wiring through the solid polymer film, but in this case, a problem that concentrated stress is applied to a portion of the solid polymer film through which the connection wiring is penetrated. was there.

本発明は、上記の課題に鑑みてなされたものであって、平面形燃料電池上の各セルを簡易な構造で接続することができる複合膜、並びに、この複合膜を用いて任意の電流値および電圧値を出力することができる燃料電池を提供することを目的とする。   The present invention has been made in view of the above problems, and is a composite membrane capable of connecting cells on a planar fuel cell with a simple structure, and an arbitrary current value using the composite membrane. It is another object of the present invention to provide a fuel cell that can output a voltage value.

上記目的を達成するために、本発明は、性質の異なる複数の領域を有する複合膜であって、複合膜の第1の主面と第2の主面との間においてプロトン伝導性を有する複数の第1の領域と、複合膜の第1の主面と第2の主面との間において電子伝導性を有する第2の領域と、を有することを特徴とする。これにより、この複合膜を用いて平面形燃料電池を作製するときに、平面形燃料電池上の各セルを簡易な構造で接続することができる。   In order to achieve the above object, the present invention provides a composite membrane having a plurality of regions having different properties, wherein the composite membrane has a proton conductivity between the first main surface and the second main surface of the composite membrane. And a second region having electron conductivity between the first main surface and the second main surface of the composite film. Thereby, when producing a planar fuel cell using this composite membrane, each cell on the planar fuel cell can be connected with a simple structure.

また、請求項2記載の発明は、請求項1記載の複合膜において、各第1の領域を分離すると共に絶縁性を有する第3の領域を有することを特徴とし、請求項3記載の発明は、請求項1または2記載の複合膜において、絶縁性を有すると共に多孔質な基材を備え、第1の領域は基材にプロトン伝導物質が充填されると共に、第2の領域は基材に電子伝導物質が充填されることを特徴とする。これにより、複合膜を容易に作製することができる。   The invention according to claim 2 is characterized in that, in the composite film according to claim 1, each first region is separated and a third region having an insulating property is provided. The composite membrane according to claim 1 or 2, further comprising an insulating and porous base material, wherein the first region is filled with a proton conductive material, and the second region is a base material. It is filled with an electron conductive material. Thereby, a composite film can be easily produced.

そして、請求項4記載の発明は、燃料電池であって、請求項1〜3のいずれかに記載の複合膜と、第1の主面に設けられ、第1の領域に対向するように配置された複数の第1の電極と、第2の主面に設けられ、第1の領域に対向するように配置された複数の第2の電極と、一方の第1の電極と第1の主面の第2の領域とを接続する第1の電子伝導部材と、一方の第1の電極と対向しない他方の第2の電極と第2の主面の第2の領域とを接続する第2の電子伝導部材と、と備えることを特徴とする。これにより、平面形燃料電池上の各セルを簡易な構造で接続することができ、各セルの並べ方あるいは接続の仕方によって、任意の電流値および電圧値を出力することができる。   According to a fourth aspect of the present invention, there is provided a fuel cell, wherein the composite membrane according to any one of the first to third aspects and the first main surface are disposed so as to face the first region. A plurality of first electrodes, a plurality of second electrodes provided on the second main surface and arranged to face the first region, one first electrode and the first main electrode A first electron-conducting member that connects the second region of the surface, a second electrode that connects the other second electrode that does not oppose one of the first electrodes, and a second region of the second main surface. And an electron conducting member. Thereby, each cell on a planar fuel cell can be connected with a simple structure, and an arbitrary current value and voltage value can be output depending on how the cells are arranged or connected.

最後に、請求項5記載の発明は、請求項4記載の燃料電池において、複合膜の、第1の領域および第2の領域以外の領域は、水以外の流体を透過しない性質を有することを特徴とする。これにより、クロスリークを低減し、燃料電池の電池効率を向上させることができる。   Finally, the invention according to claim 5 is the fuel cell according to claim 4, wherein regions other than the first region and the second region of the composite membrane do not transmit fluid other than water. Features. Thereby, cross leak can be reduced and the battery efficiency of a fuel cell can be improved.

本発明は、平面形燃料電池上の各セルを簡易な構造で接続することができ、これにより、任意の電流値および電圧値を出力することができる。   According to the present invention, each cell on a planar fuel cell can be connected with a simple structure, whereby an arbitrary current value and voltage value can be output.

本発明の複合膜10の作製方法ついて、図を用いて詳細に説明する。   A method for producing the composite film 10 of the present invention will be described in detail with reference to the drawings.

複合膜10の基材12は繊維状のフッ素系樹脂を厚さ50μm程度の不織布に加工したもの(以下、「多孔質フッ素フィルム」と称する)を用い、この基材12の、発電部14および接続部16となる部分以外の絶縁部18には、図1に示すように、絶縁物質20、本実施の形態では、フッ素樹脂20を多孔質フッ素フィルム12の孔を埋めるように充填する。基材12に絶縁物質20を、発電部14と接続部16とを分離するように、はじめに充填することにより、後に発電部14および接続部16に充填されるプロトン伝導物質22と電子伝導物質24とが混ざり合い、特に発電部14において、短絡してしまうことを防止することができる。   The base material 12 of the composite film 10 is a material obtained by processing a fibrous fluororesin into a non-woven fabric having a thickness of about 50 μm (hereinafter referred to as “porous fluorine film”). As shown in FIG. 1, the insulating portion 18 other than the portion that becomes the connecting portion 16 is filled with the insulating material 20, in this embodiment, the fluororesin 20 so as to fill the holes of the porous fluorine film 12. By first filling the base material 12 with the insulating material 20 so as to separate the power generation unit 14 and the connection unit 16 from each other, the proton conductive material 22 and the electron conductive material 24 to be filled in the power generation unit 14 and the connection unit 16 later. Can be prevented from being short-circuited, particularly in the power generation unit 14.

次に、図2に示すように、接続部16に電子導電物質24、本実施の形態では、粉末状のカーボンブラック(Vulcan XC−72:CABOT社製)24を多孔質フッ素フィルム12の孔を埋めるように充填する。従来のように接続配線を用いるのではなく、基材12上において長方形となる接続部16を配置することにより、接続面積(電子流通経路の断面積)を大きくすることができ、各発電部14間の電気抵抗を小さくし、発電効率を向上させることができる。また、膜の接続配線を通した部分から、燃料あるいは酸化剤がリークしたり、膜に亀裂が入り、燃料電池が破損したりすることを防止できる。最後に、発電部14にプロトン伝導物質22、本実施の形態では、5wt%Nafion溶液(DuPont社製)22を多孔質フッ素フィルム12の孔に充填し、溶媒成分を蒸発させる。   Next, as shown in FIG. 2, the electronic conductive material 24, in the present embodiment, powdered carbon black (Vulcan XC-72: manufactured by CABOT) 24 is formed in the connection portion 16 with holes in the porous fluorine film 12. Fill to fill. Instead of using connection wiring as in the prior art, by arranging the connection portion 16 that is rectangular on the base material 12, the connection area (cross-sectional area of the electron flow path) can be increased, and each power generation unit 14 The electric resistance between them can be reduced, and the power generation efficiency can be improved. Further, it is possible to prevent the fuel or the oxidant from leaking from the portion through which the connecting wiring of the membrane is passed, or the membrane is cracked and the fuel cell is damaged. Finally, the proton conductive material 22, in this embodiment, a 5 wt% Nafion solution (manufactured by DuPont) 22 is filled in the pores of the porous fluorine film 12 in the power generation unit 14 to evaporate the solvent component.

以上のような方法により作製された複合膜10を用いた平面形燃料電池30の構成について、図3および4を用いて詳細に説明する。図3は平面形燃料電池30の構成を示す模式斜視図であり、図4は図3のA−A’断面における断面図である。   The configuration of the planar fuel cell 30 using the composite membrane 10 produced by the above method will be described in detail with reference to FIGS. 3 is a schematic perspective view showing the configuration of the planar fuel cell 30, and FIG. 4 is a cross-sectional view taken along the line A-A 'of FIG.

図4の32はアノード側電極であり、アノード側電極32は、撥水処理を施したカーボンペーパを基材とし、その一方の面に、Pt−Ru黒と5wt%Nafion溶液(DuPont社製)とを混合した触媒ペーストを塗布して作製する。アノード側電極32は、図3では複合膜10の下面に位置するので図示されていないが、触媒ペーストを塗布した面が複合膜10の発電部14、すなわち、プロトン伝導物質22を充填した部分と接するように配置する。34はカソード側電極であり、カソード側電極34は、撥水処理を施したカーボンペーパにカーボンブラック(Vulcan XC−72:CABOT社製)を充填し、その一方の面に、Pt黒と5wt%Nafion溶液(DuPont社製)とを混合した触媒ペーストを塗布して作製する。本実施の形態ではカソード側電極34のみにカーボンブラックを充填したが、アノード側電極32およびカソード側電極34両方のカーボンペーパにカーボンブラックを充填する場合、カーボンペーパに充填するカーボンブラックの量は、カソード側の方がアノード側よりも多くすると、カソード側から生成される生成水を排出しやすくなり、カソード側へ空気を強制的に供給する空気供給手段をもたない燃料電池システムにおいても、生成水の排出と空気の供給とをスムーズに行うことができる。カソード側電極34は、複合膜10の上面に、触媒ペーストを塗布した面が複合膜10の発電部14、すなわち、プロトン伝導物質22を充填した部分と接するように配置する。   4 in FIG. 4 is an anode side electrode. The anode side electrode 32 is made of carbon paper subjected to water repellent treatment as a base material, and Pt-Ru black and 5 wt% Nafion solution (manufactured by DuPont) are provided on one side thereof. A catalyst paste mixed with and is applied. The anode side electrode 32 is not shown in FIG. 3 because it is located on the lower surface of the composite membrane 10, but the surface coated with the catalyst paste is the power generation unit 14 of the composite membrane 10, that is, the portion filled with the proton conducting material 22. Arrange to touch. 34 is a cathode side electrode, and the cathode side electrode 34 is filled with carbon black (Vulcan XC-72: manufactured by CABOT) in a carbon paper subjected to water repellent treatment, and Pt black and 5 wt% are formed on one surface thereof. A catalyst paste mixed with a Nafion solution (manufactured by DuPont) is applied and prepared. In this embodiment, only the cathode side electrode 34 is filled with carbon black. However, when carbon black is filled into the carbon paper of both the anode side electrode 32 and the cathode side electrode 34, the amount of carbon black filled into the carbon paper is When the cathode side is larger than the anode side, the generated water generated from the cathode side is easily discharged, and even in a fuel cell system that does not have an air supply means for forcibly supplying air to the cathode side. Water can be discharged and air can be supplied smoothly. The cathode side electrode 34 is disposed on the upper surface of the composite membrane 10 so that the surface coated with the catalyst paste is in contact with the power generation unit 14 of the composite membrane 10, that is, the portion filled with the proton conducting material 22.

アノード側電極32、複合膜10の発電部14およびカソード側電極34を合わせたセル36の外側には、集電体38、40が設けられる。集電体38、40には、セル36へ燃料および酸化剤を供給できるように、電子導電性、耐酸化性に優れた材料を用いた薄型で多孔質な部材が適している。本実施の形態において、集電体38、40は金メッシュを用いた。アノード側集電体38は、アノード側電極32を覆い、かつ、一方の端部(図4においては左端)をアノード側電極32より大きく形成し、複合膜10の接続部16に接続できる寸法にする。一方、カソード側集電体40は、カソード側電極34を覆い、かつ、一方の端部(図4においては右端)をカソード側電極34より大きく形成し、複合膜10の接続部16に接続できる寸法にする。   Current collectors 38 and 40 are provided outside the cell 36 including the anode side electrode 32, the power generation unit 14 of the composite membrane 10, and the cathode side electrode 34. A thin and porous member using a material excellent in electronic conductivity and oxidation resistance is suitable for the current collectors 38 and 40 so that a fuel and an oxidant can be supplied to the cell 36. In the present embodiment, the current collectors 38 and 40 are made of gold mesh. The anode-side current collector 38 covers the anode-side electrode 32 and has one end (left end in FIG. 4) larger than the anode-side electrode 32 so that it can be connected to the connecting portion 16 of the composite film 10. To do. On the other hand, the cathode-side current collector 40 covers the cathode-side electrode 34 and has one end portion (the right end in FIG. 4) larger than the cathode-side electrode 34 and can be connected to the connection portion 16 of the composite film 10. Make dimensions.

セル36aに設けられたカソード側集電体40aとセル36bに設けられたアノード側集電体38bとが接続部16αを介して接続され、同様に、セル36bに設けられたカソード側集電体40bとセル36cに設けられたアノード側集電体38cとが接続部16βを介して接続されるので、セル36a、36b、36cおよび36dは、直列に接続される。   A cathode-side current collector 40a provided in the cell 36a and an anode-side current collector 38b provided in the cell 36b are connected via the connecting portion 16α. Similarly, the cathode-side current collector provided in the cell 36b. Since 40b and the anode side current collector 38c provided in the cell 36c are connected via the connecting portion 16β, the cells 36a, 36b, 36c and 36d are connected in series.

本実施の形態では、8枚のセル36を2×4の配置とし、4枚のセルが直列に接続される場合について説明したが、図3におけるセル36の枚数あるいは配置や、接続部16の配置、集電体38、40の形状を変更することにより、一枚の複合膜10を用いた平面形燃料電池30から出力される電流値および電圧値を任意に設定できることは、当業者が容易に理解できるところである。また、触媒層を、カーボンペーパなどの電極基材上に触媒ペーストを塗布する方法で作製したが、電極基材を省いて集電体上に形成してもよく、さらには、複合膜上に形成して電極基材や集電体で挟持する作製工程を採ってもよい。触媒には、Pt−RuやPtからなる粒子(Pt−Ru黒やPt黒)を用いたが、触媒をカーボンブラックに担持させた触媒担持カーボンを用いてもよい。   In the present embodiment, the case where the eight cells 36 are arranged in a 2 × 4 manner and the four cells are connected in series has been described. However, the number or arrangement of the cells 36 in FIG. It is easy for those skilled in the art that the current value and the voltage value output from the planar fuel cell 30 using one composite membrane 10 can be arbitrarily set by changing the arrangement and the shape of the current collectors 38 and 40. I can understand. In addition, the catalyst layer was produced by applying a catalyst paste on an electrode substrate such as carbon paper, but it may be formed on a current collector by omitting the electrode substrate, and further on the composite film. You may take the preparation process which forms and clamps with an electrode base material or a collector. As the catalyst, particles composed of Pt—Ru or Pt (Pt—Ru black or Pt black) are used, but catalyst supporting carbon in which the catalyst is supported on carbon black may be used.

本発明は、起電力をそれほど必要とせず、できるだけ薄いことが要求される携帯機器用の平面形DMFCに限らず、家庭用あるいは自動車用の燃料電池においても利用可能である。   The present invention does not require so much electromotive force, and can be used not only in a planar DMFC for portable equipment that is required to be as thin as possible, but also in a fuel cell for home use or automobile.

本発明に係る複合膜の絶縁部の作製工程を示す模式図である。It is a schematic diagram which shows the preparation process of the insulation part of the composite film which concerns on this invention. 本発明に係る複合膜の接続部および発電部の作製工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the connection part and power generation part of the composite film which concern on this invention. 本発明に係る燃料電池の構成を示す斜視図である。1 is a perspective view showing a configuration of a fuel cell according to the present invention. 本発明に係る燃料電池の断面構成を示す断面図である。It is sectional drawing which shows the cross-sectional structure of the fuel cell which concerns on this invention.

符号の説明Explanation of symbols

10 複合膜
12 基材
14 発電部
16 接続部
18 絶縁部
20 絶縁物質
22 プロトン伝導物質
24 電子伝導物質
30 平面形燃料電池
32 アノード側電極
34 カソード側電極
36 セル
38 アノード側集電体
40 カソード側集電体



DESCRIPTION OF SYMBOLS 10 Composite film 12 Base material 14 Electric power generation part 16 Connection part 18 Insulation part 20 Insulation substance 22 Proton conduction substance 24 Electron conduction substance 30 Planar fuel cell 32 Anode side electrode 34 Cathode side electrode 36 Cell 38 Anode side collector 40 Cathode side Current collector



Claims (5)

性質の異なる複数の領域を有する複合膜であって、
前記複合膜の第1の主面と第2の主面との間においてプロトン伝導性を有する複数の第1の領域と、
前記複合膜の第1の主面と第2の主面との間において電子伝導性を有する第2の領域と、
を有することを特徴とする複合膜。
A composite film having a plurality of regions having different properties,
A plurality of first regions having proton conductivity between the first main surface and the second main surface of the composite membrane;
A second region having electron conductivity between the first main surface and the second main surface of the composite film;
A composite membrane characterized by comprising:
請求項1記載の複合膜において、
前記各第1の領域を分離すると共に絶縁性を有する第3の領域を有することを特徴とする請求項1記載の複合膜。
The composite membrane according to claim 1,
The composite film according to claim 1, further comprising a third region that separates the first regions and has an insulating property.
前記複合膜は、絶縁性を有すると共に多孔質な基材を備え、
前記第1の領域は前記基材にプロトン伝導物質が充填されると共に、前記第2の領域は前記基材に電子伝導物質が充填されることを特徴とする請求項1または2記載の複合膜。
The composite film has an insulating property and a porous base material,
3. The composite membrane according to claim 1, wherein the first region is filled with a proton conductive material in the base material, and the second region is filled with an electron conductive material in the base material. .
請求項1〜3のいずれかに記載の複合膜と、
前記第1の主面に設けられ、前記第1の領域に対向するように配置された複数の第1の電極と、
前記第2の主面に設けられ、前記第1の領域に対向するように配置された複数の第2の電極と、
一方の前記第1の電極と前記第1の主面の前記第2の領域とを接続する第1の電子伝導部材と、
前記一方の第1の電極と対向しない他方の前記第2の電極と前記第2の主面の前記第2の領域とを接続する第2の電子伝導部材と、
と備えることを特徴とする燃料電池。
A composite membrane according to any one of claims 1 to 3,
A plurality of first electrodes provided on the first main surface and arranged to face the first region;
A plurality of second electrodes provided on the second main surface and arranged to face the first region;
A first electron conducting member that connects one of the first electrodes and the second region of the first main surface;
A second electron-conducting member that connects the other second electrode that does not face the one first electrode and the second region of the second main surface;
A fuel cell comprising:
前記複合膜の、前記第1の領域および前記第2の領域以外の領域は、水以外の流体を透過しない性質を有することを特徴とする請求項4記載の燃料電池。


5. The fuel cell according to claim 4, wherein a region other than the first region and the second region of the composite membrane has a property of not transmitting fluid other than water.


JP2005054193A 2005-02-28 2005-02-28 Bipolar membrane and fuel cell using it Pending JP2006244715A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005054193A JP2006244715A (en) 2005-02-28 2005-02-28 Bipolar membrane and fuel cell using it
KR1020060018588A KR100760132B1 (en) 2005-02-28 2006-02-27 Composite membrane and fuel cell using composite membrane
US11/363,187 US20060194088A1 (en) 2005-02-28 2006-02-28 Compound membrane and fuel cell using the same
CN200710300716A CN100576618C (en) 2005-02-28 2006-02-28 Current collectors and fuel cells using them
CNB200610051466XA CN100438171C (en) 2005-02-28 2006-02-28 Compound membrane, electron conductive member and fuel cell using the same
KR1020070015697A KR20070026753A (en) 2005-02-28 2007-02-15 Composite membrane, fuel cell using composite membrane, current collector and fuel cell using current collector
US11/790,958 US20070202372A1 (en) 2005-02-28 2007-04-30 Compound membrane and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005054193A JP2006244715A (en) 2005-02-28 2005-02-28 Bipolar membrane and fuel cell using it

Publications (1)

Publication Number Publication Date
JP2006244715A true JP2006244715A (en) 2006-09-14

Family

ID=36947190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005054193A Pending JP2006244715A (en) 2005-02-28 2005-02-28 Bipolar membrane and fuel cell using it

Country Status (2)

Country Link
JP (1) JP2006244715A (en)
CN (2) CN100576618C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754365B2 (en) 2007-03-09 2010-07-13 Sanyo Electric Co., Ltd. Membrane electrode assembly, method for manufacturing the same, and fuel cell including the same
US8420275B2 (en) 2009-03-30 2013-04-16 Sanyo Electric Co., Ltd. Composite membrane, fuel cell, and method for fabricating the composite membranes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8900774B2 (en) * 2010-03-25 2014-12-02 Sanyo Electric Co., Ltd. Fuel cell layer, fuel cell system and method for fabricating the fuel cell layer
CN110061273B (en) * 2019-04-04 2022-06-07 江南山 Bendable inorganic solid electrolyte membrane and membrane electrode, sodium fuel cell monomer and metallic sodium regeneration unit formed by same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283892A (en) * 2000-03-17 2001-10-12 Samsung Electronics Co Ltd Single electrode cell pack for hydrogen ion exchange membrane solid polymer fuel cell and direct methanol fuel cell
WO2002059996A1 (en) * 2001-01-26 2002-08-01 Toray Industries, Inc. Polymer electrolyte film and method for preparation of the same, and solid polymer type fuel cell using the same
JP2003257453A (en) * 2001-12-27 2003-09-12 Toray Ind Inc High polymer solid electrolyte, manufacturing method therefor, and solid high polymer type fuel cell by use of the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0424691A1 (en) * 1989-10-23 1991-05-02 Asea Brown Boveri Ag Arrangement of elements for the conduction of current between ceramic hightemperature fuel cells
FR2819107B1 (en) * 2000-12-29 2003-09-05 Commissariat Energie Atomique METHOD FOR MANUFACTURING AN ASSEMBLY OF BASIC ELEMENTS FOR A FUEL CELL STAGE
ITMI20012538A1 (en) * 2001-12-03 2003-06-03 Uhdenora Technologies Srl ELASTIC CURRENT COLLECTOR
US7128994B2 (en) * 2001-12-28 2006-10-31 Dai Nippon Insatsu Kabushiki Kaisha Polyelectrolyte type fuel cell and separator for polyelectrolyte type fuel cell
KR100493153B1 (en) * 2002-03-20 2005-06-03 삼성에스디아이 주식회사 Air breathing direct methanol fuel cell pack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283892A (en) * 2000-03-17 2001-10-12 Samsung Electronics Co Ltd Single electrode cell pack for hydrogen ion exchange membrane solid polymer fuel cell and direct methanol fuel cell
WO2002059996A1 (en) * 2001-01-26 2002-08-01 Toray Industries, Inc. Polymer electrolyte film and method for preparation of the same, and solid polymer type fuel cell using the same
JP2003257453A (en) * 2001-12-27 2003-09-12 Toray Ind Inc High polymer solid electrolyte, manufacturing method therefor, and solid high polymer type fuel cell by use of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754365B2 (en) 2007-03-09 2010-07-13 Sanyo Electric Co., Ltd. Membrane electrode assembly, method for manufacturing the same, and fuel cell including the same
US8420275B2 (en) 2009-03-30 2013-04-16 Sanyo Electric Co., Ltd. Composite membrane, fuel cell, and method for fabricating the composite membranes

Also Published As

Publication number Publication date
CN101197449A (en) 2008-06-11
CN100438171C (en) 2008-11-26
CN1828988A (en) 2006-09-06
CN100576618C (en) 2009-12-30

Similar Documents

Publication Publication Date Title
KR100760132B1 (en) Composite membrane and fuel cell using composite membrane
US7875405B2 (en) Side-by-side fuel cells
JP2006253135A (en) FUEL CELL STACK AND FUEL CELL SYSTEM USING FUEL CELL STACK
JP4781626B2 (en) Fuel cell
JP5183080B2 (en) Fuel cell
JP3693039B2 (en) Liquid fuel supply type fuel cell
JP2014038857A (en) Fuel cell assembly
US20080199758A1 (en) Small portable fuel cell and membrane electrode assembly used therein
US20110294031A1 (en) Composite membrane and fuel cell
JP5362406B2 (en) Fuel cell
CN100438171C (en) Compound membrane, electron conductive member and fuel cell using the same
US20080274389A1 (en) Cathode end plate and breathable fuel cell stack using the same
US7862954B2 (en) Fuel cell
US7655343B2 (en) Liquid fuel supply type fuel cell
JP4018500B2 (en) Fuel cell
JP2005174770A (en) Fuel cell
JP3575477B2 (en) Fuel cell
JP2006066339A (en) Cell of fuel cell
JP5272364B2 (en) Fuel cell cartridge
JP4397324B2 (en) Fuel cell
JP2006216404A (en) Fuel cell
KR20060110650A (en) Stacks and Fuel Cell Systems Including the Same
JP2006310078A (en) Collector and fuel cell using the same
JP2006236686A (en) Connector for connecting fuel battery cell, and fuel cell unit
JP2013058500A (en) Fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019