JP2006243306A - Aluminum hollow optical fiber - Google Patents
Aluminum hollow optical fiber Download PDFInfo
- Publication number
- JP2006243306A JP2006243306A JP2005058388A JP2005058388A JP2006243306A JP 2006243306 A JP2006243306 A JP 2006243306A JP 2005058388 A JP2005058388 A JP 2005058388A JP 2005058388 A JP2005058388 A JP 2005058388A JP 2006243306 A JP2006243306 A JP 2006243306A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum
- optical fiber
- thin film
- hollow optical
- metal layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
本発明は,アルミニウム中空光ファイバをその製造方法に関するものである。 The present invention relates to a method for manufacturing an aluminum hollow optical fiber.
細径石英ガラス管の内面にアルミニウム薄膜が形成された中空ファイバあるいは中空光ファイバは,主に紫外および真空紫外レーザ光の伝送路として開発が進んでいる。また,この中空ファイバは空気やガスをコアとして用いるため,端面破壊の可能性も低く,また端面での反射がないので,通常の石英ガラス光ファイバでは伝送することのできない大きな瞬時電力をもつ短パルス光の伝送に適しており,QスイッチNd:YAGレーザに代表されるナノ秒パルス光や,さらにパルス幅の短いピコ秒,フェムト秒パルスを用いた産業およぼ医療分野への応用が展開されている。 Hollow fibers or hollow optical fibers in which an aluminum thin film is formed on the inner surface of a small-diameter quartz glass tube are being developed mainly as transmission paths for ultraviolet and vacuum ultraviolet laser light. Since this hollow fiber uses air or gas as the core, the end face is not likely to break, and there is no reflection at the end face, so there is a short instantaneous power that cannot be transmitted by a normal silica glass optical fiber. It is suitable for transmission of pulsed light, and is applied to industrial and medical fields using nanosecond pulsed light represented by Q-switched Nd: YAG laser and picosecond and femtosecond pulses with shorter pulse width. ing.
アルミニウム中空ファイバにおいて瞬時電力の大きなレーザパルス光を伝送する際,特にファイバを曲げた部分においてガラス管内面に形成したアルミニウム薄膜にレーザ照射によるアブレーションが生じ,アルミニウム薄膜に損傷をきたすことがある。この損傷はファイバ伝送損失の上昇を招き,ひいてはファイバ自体の損傷を招くことがある。 When laser pulse light with high instantaneous power is transmitted through an aluminum hollow fiber, the aluminum thin film formed on the inner surface of the glass tube may be ablated by laser irradiation, particularly at the bent portion of the fiber, and the aluminum thin film may be damaged. This damage can lead to an increase in fiber transmission loss and, in turn, damage to the fiber itself.
ガラス管に内装するアルミニウム薄膜のレーザ照射に対する耐久性を向上させるためには,アルミニウム層の膜厚を増加させるという手法が考えられるが,厚膜化にともない,アルミニウム薄膜の表面粗さが増大し,特に紫外・真空紫外領域という短波長の光に対する散乱損失の上昇によりファイバの伝送効率が低下するという欠点があった。
本発明の目的は,アルミニウム中空光ファイバの高出力レーザ光に対する耐久性を向上させることにある。 An object of the present invention is to improve the durability of an aluminum hollow optical fiber against high-power laser light.
本発明は上記の目的を達成するために,ガラス細管の内面にアルミニウム薄膜を形成したアルミニウム中空光ファイバにおいて,ガラス管とアルミニウム薄膜の間にアルミニウムとは異なる金属層を設けることによって,高出力レーザ光に対する耐久性を向上させたアルミニウム中空光ファイバを提供する。 In order to achieve the above object, the present invention provides a hollow optical fiber in which an aluminum thin film is formed on the inner surface of a glass thin tube, and a high-power laser is provided by providing a metal layer different from aluminum between the glass tube and the aluminum thin film. An aluminum hollow optical fiber with improved durability against light is provided.
ここで前記金属層が,銀,ニッケル,銅,モリブデンもしくはクロムのいずれかであってもよく,また,前記金属層が,メッキ法もしくは化学気相成長法によって形成されたものであっても良い。さらに前記レーザ光が,短パルス光であることを特徴とするものであってもよい。 Here, the metal layer may be any of silver, nickel, copper, molybdenum or chromium, and the metal layer may be formed by a plating method or a chemical vapor deposition method. . Furthermore, the laser beam may be a short pulse beam.
金属層の厚さが増大するために,金属層の強度が増して,レーザ照射に対する耐久性が向上する。 Since the thickness of the metal layer increases, the strength of the metal layer increases and the durability against laser irradiation improves.
ガラスに対してアルミニウムより高い付着強度を呈する金属を中間層とすれば,金属層の付着強度が増して,レーザ照射に対する耐久性が向上する。 If a metal exhibiting higher adhesion strength than glass is used as the intermediate layer, the adhesion strength of the metal layer is increased and the durability against laser irradiation is improved.
金属層の厚さが増加しても,アルミニウム薄膜の厚さは小さくすることができるので,その表面粗さも低く抑えることができる。 Even if the thickness of the metal layer increases, the thickness of the aluminum thin film can be reduced, so that the surface roughness can be kept low.
金属層の機械的強度,付着強度の増加,表面粗さの低減による伝送損失の低減により,瞬時電力が大きなレーザ光を伝送した際の耐久性が向上する。 Durability when transmitting laser light with high instantaneous power is improved by reducing the transmission loss by increasing the mechanical strength and adhesion strength of the metal layer and reducing the surface roughness.
以下,本発明の実施の形態の一例を詳述する。中間層となる金属としては銀薄膜を銀鏡反応にもとづくメッキ法によって形成した場合について以下に詳説するが,銀以外の金属を,メッキ法以外のさまざまな手法で形成しても同様の効果が得られる。たとえば,モリブデンをCVD法によりガラス管内面に生成することも可能である。中間金属層の上にアルミニウム薄膜を形成したときに,平滑な表面が得られるように,金属層の表面も充分平滑である必要がある。好ましくは表面粗さの二乗平均値が10nm以下,真空紫外などのより短波長へ適応させるためには,5nm以下である必要がある。また,中間層となる金属層の厚さには特に制限はないが,充分な平滑性を得るためには300nm以下であることが好ましい。また,基礎となるガラス細管については,充分な可撓性が得られるように,内径1mm以下,かつガラス肉厚が100μm以下であることが好ましく,その表面に樹脂による保護コーティングが施されているものであっても良い。 Hereinafter, an example of an embodiment of the present invention will be described in detail. The case where a silver thin film is formed by a plating method based on the silver mirror reaction will be described in detail below as the intermediate layer metal, but the same effect can be obtained by forming a metal other than silver by various methods other than the plating method. It is done. For example, molybdenum can be produced on the inner surface of a glass tube by the CVD method. The surface of the metal layer needs to be sufficiently smooth so that a smooth surface can be obtained when an aluminum thin film is formed on the intermediate metal layer. Preferably, the mean value of the surface roughness is 10 nm or less, and in order to adapt to a shorter wavelength such as vacuum ultraviolet, it is necessary to be 5 nm or less. The thickness of the metal layer serving as the intermediate layer is not particularly limited, but is preferably 300 nm or less in order to obtain sufficient smoothness. In addition, the glass thin tube as the base preferably has an inner diameter of 1 mm or less and a glass wall thickness of 100 μm or less so that sufficient flexibility can be obtained, and a protective coating with resin is applied to the surface. It may be a thing.
銀薄膜をガラス細管の内面に形成するために,硝酸銀水溶液をブドウ糖溶液と混合させ,ただちにガラス細管内に流入させる。このときに溶液の濃度,量および流入速度を制御することにより,生成される銀薄膜の厚さを決定することができる。また,この中間金属層の厚さをきわめて薄く,50nm以下として,半透明な黒褐色を呈するものとすれば,表面の粗さを小さく抑えることができるうえ,次工程であるアルミニウム成膜の際に,アルミニウム薄膜の形成を目視で確認することができる。また,銀薄膜形成の際に,複数のガラス細管を束ねることにより,同時に多数の細管に処理を行うことも可能である。 In order to form a silver thin film on the inner surface of a glass tube, an aqueous silver nitrate solution is mixed with a glucose solution and immediately flowed into the glass tube. At this time, the thickness of the silver thin film to be produced can be determined by controlling the concentration, amount and inflow rate of the solution. In addition, if the thickness of the intermediate metal layer is very thin and less than 50 nm and exhibits a translucent black-brown color, the roughness of the surface can be kept small, and the aluminum film is formed in the next process. The formation of the aluminum thin film can be visually confirmed. In addition, when forming a silver thin film, a plurality of glass tubes can be bundled to simultaneously process a large number of tubes.
次に,この中間金属層を形成したガラス細管の内面にさらにアルミニウム薄膜を形成する。その方法としては有機金属を原料とする化学気相成長法(MOCVD法)を用いることが好ましい。有機アルミニウム原料の蒸気をガラス細管内に流入させ,外部から50−150℃程度に加熱すると,細管の内面にアルミニウム薄膜が形成される。この際に,前工程として,塩化チタンの蒸気による処理を施すと,より低い温度で反応が生じ,アルミニウムの表面粗さを低減することが可能である。外部から加熱を行うヒータをガラス管にそって移動させることにより,管の長手方向に一様な厚さをもつアルミニウム薄膜を形成することが可能であり,本手法では長さ10cm程度の短いものから,2m以上の長いものまで製造可能である。 Next, an aluminum thin film is further formed on the inner surface of the glass thin tube on which the intermediate metal layer is formed. As the method, it is preferable to use a chemical vapor deposition method (MOCVD method) using an organic metal as a raw material. When the vapor of the organoaluminum raw material is caused to flow into the glass thin tube and heated to about 50-150 ° C. from outside, an aluminum thin film is formed on the inner surface of the thin tube. At this time, if the treatment with titanium chloride vapor is performed as a pre-process, the reaction occurs at a lower temperature, and the surface roughness of the aluminum can be reduced. It is possible to form an aluminum thin film with a uniform thickness in the longitudinal direction of the tube by moving the heater that heats from the outside along the glass tube. To longer than 2 m can be manufactured.
1 中空ファイバ
2 ガラスキャピラリーチューブ
3 中間金属層
4 アルミニウム薄膜
5 中空領域
1 hollow fiber 2 glass capillary tube 3 intermediate metal layer 4 aluminum thin film 5 hollow region
Claims (4)
The aluminum hollow optical fiber according to claim 1, wherein the laser light is short pulse light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005058388A JP2006243306A (en) | 2005-03-03 | 2005-03-03 | Aluminum hollow optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005058388A JP2006243306A (en) | 2005-03-03 | 2005-03-03 | Aluminum hollow optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006243306A true JP2006243306A (en) | 2006-09-14 |
Family
ID=37049789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005058388A Pending JP2006243306A (en) | 2005-03-03 | 2005-03-03 | Aluminum hollow optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006243306A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101950045A (en) * | 2010-09-02 | 2011-01-19 | 徐毅 | Cross-layer hollow energy transmitting fiber |
US10105041B2 (en) | 2014-05-15 | 2018-10-23 | Canon Kabushiki Kaisha | Light guiding optical system and endoscopic apparatus having the same |
US11628468B2 (en) | 2018-08-01 | 2023-04-18 | Nikon Corporation | Mist generator, mist film formation method and mist film formation apparatus |
-
2005
- 2005-03-03 JP JP2005058388A patent/JP2006243306A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101950045A (en) * | 2010-09-02 | 2011-01-19 | 徐毅 | Cross-layer hollow energy transmitting fiber |
US10105041B2 (en) | 2014-05-15 | 2018-10-23 | Canon Kabushiki Kaisha | Light guiding optical system and endoscopic apparatus having the same |
US11628468B2 (en) | 2018-08-01 | 2023-04-18 | Nikon Corporation | Mist generator, mist film formation method and mist film formation apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11478880B2 (en) | Method for producing at least one recess in a material by means of electromagnetic radiation and subsequent etching process | |
US8720040B2 (en) | Method of manufacturing a hollow waveguide | |
JP6382443B2 (en) | Ultra-thin chemically strengthened glass article and method for producing such glass article | |
TW201919805A (en) | Apparatuses and methods for laser processing transparent workpieces using an afocal beam adjustment assembly | |
JP2009527642A (en) | Method for producing a high quality surface and product having a high quality surface | |
KR102205333B1 (en) | Method of manufacturing through glass via | |
JP6996508B2 (en) | Manufacturing method of glass articles and glass articles | |
WO2020241805A1 (en) | Microstructured glass substrate, electroconductive layer-equipped glass substrate, and microstructured glass substrate production method | |
CN103476967A (en) | Method for enhancing a metallic coating on a steel strip | |
JP2006243306A (en) | Aluminum hollow optical fiber | |
CN109132998A (en) | The method of pulse nanosecond laser induction transparent dielectric material surface periodic structure | |
Hidai et al. | Structural Changes in Silica Glass by Continuous‐Wave Laser Backside Irradiation | |
US20180059321A1 (en) | Methods for forming ion-exchanged waveguides in glass substrates | |
JP6717487B2 (en) | Method of manufacturing plated products | |
US20160200630A1 (en) | Fabricating highly durable nanostructured coatings on polymer substrate | |
JP3914228B2 (en) | Hollow waveguide for laser energy transmission and manufacturing method thereof | |
JP4229084B2 (en) | Method for manufacturing hollow waveguide | |
WO2019156183A1 (en) | Processing device, processing method, and transparent substrate | |
JP2009262408A (en) | Method for scribing brittle material substrate and device therefor | |
DE50006834D1 (en) | METHOD AND MEANS FOR PRODUCING HYDROPHOBIC LAYERS ON FLUORIDE LAYERS AND OPTICAL SUBSTRATES | |
JP3718127B2 (en) | Medical laser transmission equipment | |
WO2020067493A1 (en) | Method of treating ceramics and ceramic member | |
KR100844616B1 (en) | Screen for electrodeless lamp and manufacturing method thereof | |
JP2008522835A5 (en) | ||
JP6593060B2 (en) | Method for manufacturing light guide plate |