[go: up one dir, main page]

JP2006242285A - Piping joint seal structure - Google Patents

Piping joint seal structure Download PDF

Info

Publication number
JP2006242285A
JP2006242285A JP2005058881A JP2005058881A JP2006242285A JP 2006242285 A JP2006242285 A JP 2006242285A JP 2005058881 A JP2005058881 A JP 2005058881A JP 2005058881 A JP2005058881 A JP 2005058881A JP 2006242285 A JP2006242285 A JP 2006242285A
Authority
JP
Japan
Prior art keywords
pipe
fluid
hydrogen
shape memory
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005058881A
Other languages
Japanese (ja)
Inventor
Yasuyuki Iida
康之 飯田
Nobuo Kobayashi
信夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005058881A priority Critical patent/JP2006242285A/en
Publication of JP2006242285A publication Critical patent/JP2006242285A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Mutual Connection Of Rods And Tubes (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】 形状記憶合金の材料選択の自由度が高い配管継手部のシール構造を提供すること。
【解決手段】 配管11(第1の流体配管)とその端部に挿入された配管12(第2の流体配管)との間をシールする配管継手部1のシール構造において、配管11の外側に外嵌されて該配管11を配管12側に締め付ける形状記憶合金環4を備え、該形状記憶合金環4は、所定の変態温度以上における内径が該変態温度未満における内径よりも小さくなるよう構成されている。配管11と配管12との間にはシール材5が設けられている。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a seal structure of a pipe joint portion having a high degree of freedom in selecting a material of a shape memory alloy.
SOLUTION: In a seal structure of a pipe joint portion 1 that seals between a pipe 11 (first fluid pipe) and a pipe 12 (second fluid pipe) inserted at an end thereof, the pipe 11 is provided outside the pipe 11. A shape memory alloy ring 4 that is externally fitted and tightens the pipe 11 to the pipe 12 side is provided, and the shape memory alloy ring 4 is configured such that an inner diameter at a predetermined transformation temperature or higher is smaller than an inner diameter at a temperature lower than the transformation temperature. ing. A sealing material 5 is provided between the pipe 11 and the pipe 12.
[Selection] Figure 1

Description

本発明は、第1の流体配管とその端部に挿入された第2の流体配管との間を気密又は/及びシールする配管継手部のシール構造に関する。   The present invention relates to a seal structure of a pipe joint portion that hermetically seals and / or seals between a first fluid pipe and a second fluid pipe inserted at an end thereof.

広く一般産業で使用される配管継手部のシール構造として、そのシール材に形状記憶合金を使用した技術が知られている。例えば、特許文献1に開示のシール構造では、互いに連結される流体配管のフランジ接合面間に、形状記憶合金からなるシール材が介装されている。形状記憶合金は、シール材として繰り返し使用でき且つ高温高圧な流体にも適用可能なため、経費及び資源を節約しつつ、高いシール性を実現することができる。
特開平07−239036号公報
As a seal structure of a pipe joint part widely used in general industries, a technique using a shape memory alloy as a seal material is known. For example, in the seal structure disclosed in Patent Document 1, a seal material made of a shape memory alloy is interposed between flange joint surfaces of fluid pipes connected to each other. Since the shape memory alloy can be repeatedly used as a sealing material and can be applied to a high-temperature and high-pressure fluid, high sealing performance can be realized while saving costs and resources.
Japanese Patent Application Laid-Open No. 07-239036

しかしながら、特許文献1のシール構造では、配管内を流れる水素にシール材である形状記憶合金が直接接触してしまうため、強度や耐食性の観点から形状記憶合金の材料選択に制約を受けるという問題があった。また、このような問題は、配管内を流れる流体の種類や状態(圧力、温度等)と、形状記憶合金との組合せ如何によって、水素以外の流体が配管内を流れる場合にも起こり得る。   However, in the seal structure of Patent Document 1, since the shape memory alloy that is the seal material is in direct contact with hydrogen flowing in the pipe, there is a problem that the material selection of the shape memory alloy is restricted from the viewpoint of strength and corrosion resistance. there were. Such a problem can also occur when a fluid other than hydrogen flows in the pipe depending on the combination of the type and state (pressure, temperature, etc.) of the fluid flowing in the pipe and the shape memory alloy.

本発明は、上記事情に鑑みて成されたものであり、流体配管同士の継手部を嵌め合わせ構造とし、この嵌め合わせ部の外周に形状記憶合金環を設けてなる配管継手部のシール構造において、形状記憶合金の材料選択の自由度を高めることを目的とする。   The present invention has been made in view of the above circumstances. In a seal structure of a pipe joint portion in which a joint portion between fluid pipes is a fitting structure, and a shape memory alloy ring is provided on the outer periphery of the fitting portion. An object is to increase the degree of freedom in selecting the material of the shape memory alloy.

本発明においては上記の課題を解決するために以下の手段を採用した。すなわち、請求項1に記載の発明は、第1の流体配管とその端部に挿入された第2の流体配管との間を気密又は/及びシールする配管継手部のシール構造であって、前記第1の流体配管の外側に外挿されて該第1の流体配管を前記第2の流体配管側に締め付ける形状記憶合金環を備え、該形状記憶合金環は、所定の変態温度以上における内径が該変態温度未満における内径よりも小さいことを特徴とする。   In the present invention, the following means are adopted in order to solve the above problems. That is, the invention according to claim 1 is a seal structure of a pipe joint part that hermetically seals and / or seals between a first fluid pipe and a second fluid pipe inserted at an end thereof. A shape memory alloy ring that is extrapolated to the outside of the first fluid pipe and tightens the first fluid pipe to the second fluid pipe side has an inner diameter at a predetermined transformation temperature or higher. It is characterized by being smaller than the inner diameter below the transformation temperature.

本発明の構成によれば、例えば配管圧、流体温度の上昇に起因して、形状記憶合金環が所定の変態温度以上になると、該形状記憶合金環はそれまでの状態と比較して縮径するので、第1の流体配管が第2の流体配管を締め付け、これら流体配管間のシール圧が高まる。形状記憶合金環自体は第1の流体配管の外側に設けられているから、流体配管内を流れる流体とは直接触れない。このため、強度・耐食性等の制約があった形状記憶合金の材料選択の幅を広げることができる。   According to the configuration of the present invention, when the shape memory alloy ring becomes equal to or higher than a predetermined transformation temperature due to, for example, an increase in piping pressure or fluid temperature, the shape memory alloy ring is reduced in diameter compared with the previous state. Therefore, the first fluid piping tightens the second fluid piping, and the seal pressure between these fluid pipings increases. Since the shape memory alloy ring itself is provided outside the first fluid pipe, it does not directly contact the fluid flowing in the fluid pipe. For this reason, the range of the material selection of the shape memory alloy which has restrictions, such as intensity | strength and corrosion resistance, can be expanded.

請求項2に記載の発明は、請求項1に記載の配管継手部のシール構造において、前記第1の流体配管と第2の流体配管との間にシール材が設けられていることを特徴とする。   The invention according to claim 2 is characterized in that, in the seal structure of the pipe joint part according to claim 1, a seal material is provided between the first fluid pipe and the second fluid pipe. To do.

本発明の構成によれば、第1の流体配管と第2の流体配管との間のシールが確実に行われる。   According to the configuration of the present invention, the seal between the first fluid pipe and the second fluid pipe is reliably performed.

この構成においては、第2の流体配管の線膨張係数が第1の流体配管の線膨張係数よりも大きいことが好ましい。流体圧が上昇するとそれに伴い温度も上昇するため、「第2の流体配管の線膨張係数≦第1の流体配管の線膨張係数」であると、第1の流体配管の管径の方が第2の流体配管の管径よりも大きくなり、シール材への緊迫力が弱くなるからである。   In this configuration, it is preferable that the linear expansion coefficient of the second fluid pipe is larger than the linear expansion coefficient of the first fluid pipe. As the fluid pressure rises, the temperature rises accordingly. Therefore, if “the linear expansion coefficient of the second fluid piping ≦ the linear expansion coefficient of the first fluid piping”, the diameter of the first fluid piping is the first. It is because it becomes larger than the diameter of 2 fluid piping, and the tension | tensile_strength to a sealing material becomes weak.

これに対し、上記構成によれば、流体圧が高いときには、シール材への緊迫力を高めることができる。このことは、高いシール性が求められる条件に合わせてシール材の締め代を過量に設定する必要がないことを意味するので、流体圧が低いときのシール材の締め代を小さくし得て、クリープの発生を抑制できる。   On the other hand, according to the said structure, when the fluid pressure is high, the tension | tensile_strength to a sealing material can be raised. This means that it is not necessary to set an excessive amount for the sealing material according to the condition where high sealing performance is required, so the sealing material can be made smaller when the fluid pressure is low, The generation of creep can be suppressed.

なお、例えば流体配管同士が直接金属接触される「オートクレーブ型継手」等に適用する場合は、本発明の構成に係るシール材は不要である。   For example, when applied to an “autoclave-type joint” in which fluid pipes are in direct metal contact, the sealing material according to the configuration of the present invention is unnecessary.

請求項3に記載の発明は、請求項1または2に記載の配管継手部のシール構造において、前記第1の流体配管及び第2の流体配管は高圧水素用であることを特徴とする。   The invention according to claim 3 is the seal structure of the pipe joint part according to claim 1 or 2, wherein the first fluid pipe and the second fluid pipe are for high-pressure hydrogen.

本発明に係る配管継手部のシール構造は、形状記憶合金の選択に制約がある高圧水素用配管に用いることが好適である。かかる場合には、形状記憶合金環が水素と直接触れないため、水素脆化の虞がなく、材料選択の自由度が高まる。   The seal structure of the pipe joint part according to the present invention is preferably used for high-pressure hydrogen pipes that have restrictions on the selection of shape memory alloys. In such a case, since the shape memory alloy ring does not come into direct contact with hydrogen, there is no possibility of hydrogen embrittlement and the degree of freedom in material selection is increased.

本発明においては、形状記憶合金環を用いて継手部を外側から締め付けることにより、この継手部における第1及び第2の流体配管間のシール性が確保されるので、形状記憶合金の材料選択の自由度が高い配管継手部のシール構造を提供することができる。   In the present invention, by tightening the joint portion from the outside using the shape memory alloy ring, the sealing performance between the first and second fluid pipes in the joint portion is ensured. It is possible to provide a pipe joint seal structure having a high degree of freedom.

本発明に係る配管継手部のシール構造の一実施形態を以下に説明する。図3は、本発明の一適用例に係る燃料電池システムを示しており、酸化ガスとしての空気(外気)は空気供給路71を介して燃料電池20の空気供給口に供給される。空気供給路71には空気から微粒子を除去するエアフィルタA1、空気を加圧するコンプレッサA3、供給空気圧を検出する圧力センサP4及び空気に所要の水分を加える加湿器A21が設けられている。   One embodiment of a seal structure for a pipe joint according to the present invention will be described below. FIG. 3 shows a fuel cell system according to an application example of the present invention. Air (outside air) as an oxidizing gas is supplied to an air supply port of the fuel cell 20 via an air supply path 71. The air supply path 71 is provided with an air filter A1 that removes particulates from the air, a compressor A3 that pressurizes the air, a pressure sensor P4 that detects the supply air pressure, and a humidifier A21 that adds required moisture to the air.

燃料電池20から排出される空気オフガスは排気路72を経て外部に放出される。排気路72には、排気圧を検出する圧力センサP1、圧力調整弁A4及び加湿器A21の熱交換器が設けられている。   The air off gas discharged from the fuel cell 20 is discharged to the outside through the exhaust path 72. The exhaust path 72 is provided with a pressure sensor P1 for detecting the exhaust pressure, a pressure regulating valve A4, and a heat exchanger for the humidifier A21.

燃料ガスとしての水素ガスは水素供給源(例えば高圧水素タンク)30から燃料供給路74を介して燃料電池20の水素供給口に供給される。燃料供給路74には、水素供給源30から水素を供給しあるいは供給を停止する遮断弁H100、水素供給源30からの水素ガスの供給圧力を検出する圧力センサP6、燃料電池20への水素ガスの供給圧力を減圧して調整する水素調圧弁H9、水素調圧弁H9の下流の水素ガス圧力を検出する圧力センサP9、燃料電池20の水素供給口と燃料供給路74間を開閉する遮断弁H21及び水素ガスの燃料電池20の入口圧力を検出する圧力センサP5が設けられている。   Hydrogen gas as fuel gas is supplied from a hydrogen supply source (for example, a high-pressure hydrogen tank) 30 to a hydrogen supply port of the fuel cell 20 through a fuel supply path 74. The fuel supply path 74 includes a shutoff valve H100 that supplies or stops supplying hydrogen from the hydrogen supply source 30, a pressure sensor P6 that detects the supply pressure of hydrogen gas from the hydrogen supply source 30, and hydrogen gas to the fuel cell 20. The pressure regulating valve H9 for reducing and adjusting the supply pressure of the fuel, the pressure sensor P9 for detecting the hydrogen gas pressure downstream of the hydrogen pressure regulating valve H9, and the shutoff valve H21 for opening and closing between the hydrogen supply port of the fuel cell 20 and the fuel supply path 74. And a pressure sensor P5 for detecting the inlet pressure of the hydrogen gas fuel cell 20 is provided.

燃料電池20で消費されなかった水素ガスは水素オフガスとして水素循環路75に排出され、燃料供給路74の調圧弁H9の下流側に戻される。水素循環路75には、水素オフガスの温度を検出する温度センサT31、燃料電池20と循環路75を連通/遮断する遮断弁H22、水素オフガスから水分を回収する気液分離器H42、回収した生成水を循環路75外の図示しないタンク等に回収する排水弁H41、水素オフガスを加圧する水素ポンプH50及び逆流阻止弁(逆止弁)H52が設けられている。水素循環路75は排出制御弁(パージ弁)H51を介してパージ流路76によって排気路72に接続される。   The hydrogen gas that has not been consumed in the fuel cell 20 is discharged as hydrogen off-gas to the hydrogen circulation path 75 and returned to the downstream side of the pressure regulating valve H9 in the fuel supply path 74. The hydrogen circulation path 75 includes a temperature sensor T31 for detecting the temperature of the hydrogen off-gas, a shutoff valve H22 for communicating / blocking the fuel cell 20 and the circulation path 75, a gas-liquid separator H42 for recovering moisture from the hydrogen off-gas, and a recovered generation. A drain valve H41 that collects water in a tank (not shown) outside the circulation path 75, a hydrogen pump H50 that pressurizes hydrogen off-gas, and a backflow prevention valve (check valve) H52 are provided. The hydrogen circulation path 75 is connected to the exhaust path 72 by a purge flow path 76 via a discharge control valve (purge valve) H51.

更に、燃料電池20の冷却水出入口には冷却水を循環させる冷却路73が設けられる。冷却路73には、燃料電池20から排水される冷却水の温度を検出する温度センサT1、冷却水の熱を外部に放熱するラジエータ(熱交換器)C2、冷却水を加圧して循環させるポンプC1及び燃料電池20に供給される冷却水の温度を検出する温度センサT2が設けられている。ラジエータC2にはモータによって回転駆動される冷却ファンC13が設けられている。   Furthermore, a cooling path 73 for circulating the cooling water is provided at the cooling water inlet / outlet of the fuel cell 20. In the cooling path 73, a temperature sensor T1 that detects the temperature of the cooling water drained from the fuel cell 20, a radiator (heat exchanger) C2 that radiates the heat of the cooling water to the outside, and a pump that pressurizes and circulates the cooling water. A temperature sensor T2 for detecting the temperature of the cooling water supplied to C1 and the fuel cell 20 is provided. The radiator C2 is provided with a cooling fan C13 that is rotationally driven by a motor.

燃料電池20は燃料電池セル(単位セル)を所要数積層した燃料電池スタックとして構成され、水素供給源30から供給される水素を燃料として発電を行う。   The fuel cell 20 is configured as a fuel cell stack in which a required number of fuel cells (unit cells) are stacked, and generates power using hydrogen supplied from the hydrogen supply source 30 as fuel.

制御部50は、図示しない車両のアクセル信号などの要求負荷や燃料電池システムの各部のセンサ(圧力センサ、温度センサ、流量センサ、出力電流計、出力電圧計等)から制御情報を受け取り、システム各部の弁類やモータ類の運転を制御する
図1は、上記の燃料電池システムの水素供給源30に対して高圧水素を充填、および、水素供給源30から水素を放出する際に用いられる2本の配管が軸方向に接続されてなる配管継手部1を示している。この配管継手部1においては、水素供給源30に接続されている配管(第1の流体配管)11の一端部に、燃料電池20側に延びる別の配管(第2の流体配管)12が挿入接続されている。これら配管11,12は、燃料供給路74の一部を構成している。
The control unit 50 receives control information from a requested load such as an accelerator signal of a vehicle (not shown) and sensors (pressure sensor, temperature sensor, flow rate sensor, output ammeter, output voltmeter, etc.) of each part of the fuel cell system. FIG. 1 shows two fuel cells used when charging the hydrogen supply source 30 of the fuel cell system with high-pressure hydrogen and releasing hydrogen from the hydrogen supply source 30. The pipe joint part 1 formed by connecting the pipes in the axial direction is shown. In this pipe joint 1, another pipe (second fluid pipe) 12 extending to the fuel cell 20 side is inserted into one end of a pipe (first fluid pipe) 11 connected to the hydrogen supply source 30. It is connected. These pipes 11 and 12 constitute a part of the fuel supply path 74.

配管継手部1は、配管11の外側に外嵌されて配管11を配管12側に締め付ける形状記憶合金環4と、配管11と配管12との間に介在された環状のシール材5とを備えている。形状記憶合金環4は短い円筒形状であり、所定の変態温度以上における内径が該変態温度未満における内径よりも小さくなるよう構成されている。室温状態における内径は、配管11の外径よりも小さく構成されている。   The pipe joint portion 1 includes a shape memory alloy ring 4 that is fitted on the outside of the pipe 11 and fastens the pipe 11 to the pipe 12 side, and an annular seal material 5 interposed between the pipe 11 and the pipe 12. ing. The shape memory alloy ring 4 has a short cylindrical shape and is configured such that an inner diameter at a predetermined transformation temperature or higher is smaller than an inner diameter at a temperature lower than the transformation temperature. The inner diameter in the room temperature state is configured to be smaller than the outer diameter of the pipe 11.

形状記憶合金環4としては、例えばTiNi系、Cu系、Fe系等の形状記憶合金が使用される。この形状記憶合金環4は、配管11,12内を流れる水素に直接触れることがないので、これら例示した形状記憶合金の他に、水素脆化の虞のない種々の形状記憶合金を使用することが可能である。   As the shape memory alloy ring 4, for example, a shape memory alloy such as TiNi, Cu, or Fe is used. Since this shape memory alloy ring 4 does not directly contact the hydrogen flowing in the pipes 11 and 12, in addition to these illustrated shape memory alloys, various shape memory alloys that do not cause hydrogen embrittlement should be used. Is possible.

配管12の外径は配管11の内径よりも小さく、配管11に対して内挿される。また、配管12の線膨張係数は配管11の線膨張係数よりも大きい。   The outer diameter of the pipe 12 is smaller than the inner diameter of the pipe 11 and is inserted into the pipe 11. Further, the linear expansion coefficient of the pipe 12 is larger than the linear expansion coefficient of the pipe 11.

配管接続時においては、間にシール材5を挟んで配管12を配管11に挿入し、配管11の外側から形状記憶合金環4を配管11に圧入する。このとき、配管11と配管12との間にはシール5が介在しているため、配管内を流れる流体(水素)は確実にシールされる。   At the time of pipe connection, the pipe 12 is inserted into the pipe 11 with the sealing material 5 interposed therebetween, and the shape memory alloy ring 4 is press-fitted into the pipe 11 from the outside of the pipe 11. At this time, since the seal 5 is interposed between the pipe 11 and the pipe 12, the fluid (hydrogen) flowing through the pipe is reliably sealed.

水素供給源30への水素充填時には、図2の(a)に示したように時間とともにガス圧が高まり圧縮され、それにより温度が上昇する。形状記憶合金環4は所定の変態温度以上になると縮径し、配管11が配管12を締め付ける。配管12は配管11よりも線膨張係数が大きいから、温度上昇に伴う配管12の径方向の膨張量は配管11の膨張量よりも大きい。したがって、ガス圧が上昇するに伴って、配管11と配管12との締め代は更に大きくなり、シール性が向上する。   When the hydrogen supply source 30 is filled with hydrogen, as shown in FIG. 2A, the gas pressure increases with time and is compressed, thereby increasing the temperature. When the shape memory alloy ring 4 reaches a predetermined transformation temperature or higher, the diameter is reduced, and the pipe 11 tightens the pipe 12. Since the piping 12 has a larger linear expansion coefficient than the piping 11, the expansion amount in the radial direction of the piping 12 due to the temperature rise is larger than the expansion amount of the piping 11. Accordingly, as the gas pressure increases, the tightening allowance between the pipe 11 and the pipe 12 is further increased, and the sealing performance is improved.

水素放出時には、図2(b)に示したように温度とともに圧力が徐々に低下し、それにしたがって内側の配管12が収縮する。   When hydrogen is released, the pressure gradually decreases with temperature as shown in FIG. 2B, and the inner pipe 12 contracts accordingly.

以上説明したように、本実施形態に係る配管継手部1のシール構造は、水素配管の継手部を嵌め合わせ構造にすると共に、この嵌め合わせ部の外周に形状記憶合金環4を設けているので、以下の効果を得ることができる。すなわち、形状記憶合金環4は、配管11の外側に設けられており、配管11,12内の水素と直接触れることがないので、水素に対する耐食性、強度の制約を受けず、形状記憶合金の材料選定の自由度を上げることができる。   As described above, the seal structure of the pipe joint portion 1 according to the present embodiment has a fitting structure for the joint portion of the hydrogen pipe, and the shape memory alloy ring 4 is provided on the outer periphery of the fitting portion. The following effects can be obtained. That is, since the shape memory alloy ring 4 is provided outside the pipe 11 and does not come into direct contact with hydrogen in the pipes 11 and 12, the shape memory alloy material is not subject to restrictions on corrosion resistance and strength against hydrogen. The degree of freedom of selection can be increased.

水素供給源30への水素充填時には、形状記憶合金環5が所定の変態温度以上で縮径するため、配管11,12間のシール性が高まる。しかも、配管圧、流体温度の上昇に従って配管11と配管12との締め代が徐々に大きくなる。また、水素放出時には、配管圧、流体温度の低下に従って配管11と配管12との締め代は徐々に低下する。つまり、温度が低くガス圧が低いときには締め代を小さくでき、温度が高くガス圧が高いときだけ選択的に締め代を大きくすることができる。   When the hydrogen supply source 30 is filled with hydrogen, the shape memory alloy ring 5 is reduced in diameter at a predetermined transformation temperature or higher, so that the sealing performance between the pipes 11 and 12 is improved. In addition, the tightening allowance between the pipe 11 and the pipe 12 gradually increases as the pipe pressure and fluid temperature rise. Further, when hydrogen is released, the interference between the pipe 11 and the pipe 12 gradually decreases as the pipe pressure and fluid temperature decrease. That is, the interference can be reduced when the temperature is low and the gas pressure is low, and the interference can be selectively increased only when the temperature is high and the gas pressure is high.

したがって、必要時には確実なシール性を得ることができると同時に、低圧時には締め代が小さくなるので、配管11,配管12,及びシール材5にクリープが発生することを抑制することができる。   Therefore, a reliable sealing property can be obtained when necessary, and at the same time, the tightening margin is reduced at a low pressure, so that the occurrence of creep in the pipe 11, the pipe 12, and the seal material 5 can be suppressed.

なお、本発明に係る配管継手部のシール構造を、例えば配管同士が直接金属接触される「オートクレーブ型継手」等に適用する場合は、上記実施形態に示したシール材5は不要である。   In addition, when applying the seal structure of the pipe joint part according to the present invention to, for example, an “autoclave-type joint” in which pipes are directly in metal contact, the sealing material 5 shown in the above embodiment is not necessary.

また、上記実施形態においては燃料電池システムの高圧水素配管に適用した場合について示したが、本発明に係る配管継手部のシール構造の用途はこれに限定されないことは言うまでもない。燃料電池システム以外に用いてもよいし、水素配管以外の配管に用いることも可能である。   Moreover, in the said embodiment, although shown about the case where it applied to the high voltage | pressure hydrogen piping of a fuel cell system, it cannot be overemphasized that the use of the seal structure of the piping joint part which concerns on this invention is not limited to this. It may be used for other than the fuel cell system, and can also be used for piping other than hydrogen piping.

本発明の一実施形態として示した配管継手の一部を破断して示した斜視図である。It is the perspective view which fractured | ruptured and showed a part of piping joint shown as one Embodiment of this invention. (a)は充填時、(b)は放出時のガス温度・圧力の経時変化を示した図である。(A) is a figure which showed the time-dependent change of gas temperature and pressure at the time of filling, (b) at the time of discharge | release. 本発明の一適用例に係る燃料電池システムを概略的に説明する説明図である。It is explanatory drawing which illustrates roughly the fuel cell system which concerns on one example of application of this invention.

符号の説明Explanation of symbols

1…配管継手、4…形状記憶合金環、5…シール材、11…配管(第1の流体配管)、12…配管(第2の流体配管)、20…燃料電池、30…水素ガス供給源、74…燃料供給路   DESCRIPTION OF SYMBOLS 1 ... Piping joint, 4 ... Shape memory alloy ring, 5 ... Sealing material, 11 ... Piping (1st fluid piping), 12 ... Piping (2nd fluid piping), 20 ... Fuel cell, 30 ... Hydrogen gas supply source 74 ... Fuel supply path

Claims (3)

第1の流体配管とその端部に挿入された第2の流体配管との間を気密又は/及び液密にシールする配管継手部のシール構造であって、
前記第1の流体配管の外側に外挿されて該第1の流体配管を前記第2の流体配管側に締め付ける形状記憶合金環を備え、該形状記憶合金環は、所定の変態温度以上における内径が該変態温度未満における内径よりも小さい、配管継手部のシール構造。
A seal structure of a pipe joint portion that hermetically or / and liquid-tightly seals between a first fluid pipe and a second fluid pipe inserted at an end thereof,
A shape memory alloy ring that is extrapolated to the outside of the first fluid pipe and tightens the first fluid pipe to the second fluid pipe; the shape memory alloy ring has an inner diameter at a predetermined transformation temperature or higher; Is a seal structure of a pipe joint part, which is smaller than the inner diameter at a temperature lower than the transformation temperature.
前記第1の流体配管と第2の流体配管との間にシール材が設けられている、請求項1に記載の配管継手部のシール構造。   The seal structure of the pipe joint part according to claim 1, wherein a seal material is provided between the first fluid pipe and the second fluid pipe. 前記第1の流体配管及び第2の流体配管は高圧水素用である、請求項1または2に記載の配管継手部のシール構造。   The seal structure of a pipe joint part according to claim 1 or 2, wherein the first fluid pipe and the second fluid pipe are for high-pressure hydrogen.
JP2005058881A 2005-03-03 2005-03-03 Piping joint seal structure Pending JP2006242285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005058881A JP2006242285A (en) 2005-03-03 2005-03-03 Piping joint seal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005058881A JP2006242285A (en) 2005-03-03 2005-03-03 Piping joint seal structure

Publications (1)

Publication Number Publication Date
JP2006242285A true JP2006242285A (en) 2006-09-14

Family

ID=37048907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005058881A Pending JP2006242285A (en) 2005-03-03 2005-03-03 Piping joint seal structure

Country Status (1)

Country Link
JP (1) JP2006242285A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249400A (en) * 2008-04-01 2009-10-29 Jsr Corp Method for producing polymer for photoresist
KR101200076B1 (en) * 2010-11-29 2012-11-12 한국건설기술연구원 Connecting Structure Of Pipe and Connecting Method Of Pipe
JP2013182832A (en) * 2012-03-02 2013-09-12 Aisin Seiki Co Ltd Water purifying device of fuel cell system
US8763231B2 (en) 2009-04-10 2014-07-01 3M Innovative Properties Company Blind fasteners
US8870236B2 (en) 2009-11-16 2014-10-28 3M Innovative Properties Company Pipe section joining
CN105529483A (en) * 2014-10-15 2016-04-27 丰田自动车株式会社 Hydrogen supply piping and method of manufacturing hydrogen supply piping
US9422964B2 (en) 2009-04-10 2016-08-23 3M Innovative Properties Company Blind fasteners

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249400A (en) * 2008-04-01 2009-10-29 Jsr Corp Method for producing polymer for photoresist
US8763231B2 (en) 2009-04-10 2014-07-01 3M Innovative Properties Company Blind fasteners
US9422964B2 (en) 2009-04-10 2016-08-23 3M Innovative Properties Company Blind fasteners
US8870236B2 (en) 2009-11-16 2014-10-28 3M Innovative Properties Company Pipe section joining
KR101200076B1 (en) * 2010-11-29 2012-11-12 한국건설기술연구원 Connecting Structure Of Pipe and Connecting Method Of Pipe
JP2013182832A (en) * 2012-03-02 2013-09-12 Aisin Seiki Co Ltd Water purifying device of fuel cell system
CN105529483A (en) * 2014-10-15 2016-04-27 丰田自动车株式会社 Hydrogen supply piping and method of manufacturing hydrogen supply piping

Similar Documents

Publication Publication Date Title
US8146953B2 (en) Pipe joint cover structure and pipe connection method
CN101553678B (en) Fluid control valve and fuel cell system
CN101128952B (en) Method for using hydrogen storage tank and hydrogen storage tank
AU2007232820B2 (en) Flareless pipe coupling structure, flareless pipe coupling method, and on-site pipe coupling method
JP4941730B2 (en) Fuel supply device and vehicle
US20090045624A1 (en) Bite type tube connection structure, tube fitting, valve, closing valve, refrigerating cycle device, hot-water supply device, bite type tube connection method, and on-site tube connection method
CN101568777A (en) Pulse width modulation with discharge to suction bypass
US20080017353A1 (en) Valve for controlling a coolant flow for a heating element of a motor vehicle and system with at least one valve
WO2007100163A1 (en) Regulating valve and fuel cell system
JP2006242285A (en) Piping joint seal structure
US8015993B2 (en) Heatable hydrogen pressure regulator
JP6802984B2 (en) Fuel cell cooling system
WO2010082348A1 (en) Device for supplying high-pressure fluid
JP2007121210A (en) Fuel gas consumption system and gas leak detection method of fuel gas consumption system
US10601058B2 (en) Fuel cell system
JP2007040435A (en) Fuel storage tank system
US10862147B2 (en) Fuel cell system
JP2008241008A (en) Piping joint, piping structure, and fuel cell system including these
JP2010078258A (en) Refrigerating cycle device
JP2001227303A (en) Steam turbine shaft sealing device
JP4047497B2 (en) Supercritical vapor compression cycle system and pressure control valve with relief valve
JP2008039262A (en) Expansion valve
JP5045041B2 (en) Fuel cell system
CN218919040U (en) Lower shell assembly of battery pack, battery pack and vehicle
CN213017911U (en) Ventilation one-way valve and marine diesel engine preheating system thereof